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Abstract. We give a short introduction (with a few proofs) to higher alge-
braic K-theory (mainly of schemes) based on the work of Quillen, Waldhausen,
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Introduction

These are the notes for a course taught at the Sedano Winter school on K-theory,
January 23 – 26, 2007, in Sedano, Spain.

Section 1 is an introduction to Quillen’s fundamental article [Qui73]. Here the
algebraic K-theory of exact categories is introduced via Quillen’s Q-construction.
We state some fundamental theorems, and state/derive results about the G-theory
of noetherian schemes and the K-theory of smooth schemes.

Sections 2 and 3 are an introduction to Thomason’s fundamental paper [TT90].
In section 2 we introduce the abstract concepts. and define the K-theory of com-
plicial exact categories with weak equivalences. Then we state (the connective and
non-connective versions 2.21 and 2.29 of) Thomason’s localization theorem in this
context. In section 3, we use the localization theorem to derive basic properties of
the K-theory of quasi-compact and separated schemes most of which are beyond
the reach of Quillen’s methods.

In section 4, we state results that go beyond the methods explained in sections
1 – 3.

Date: January 18, 2007.

1



2 MARCO SCHLICHTING

1. Quillen’s Q-construction

1.1. Exact categories. An exact category is an additive category E equipped with
a family of sequences of maps in E , called conflation (or admissible exact sequences),

X
i
→ Y

p
→ Z (1)

satisfying the properties (a) – (f) below. In a conflation (1), the map i is called
inflation (or admissible monomorphism) and may be depicted as // // , and
the map p is called deflation (or admissible epimorphism) and may be depicted as

// // .

(a) In a conflation (1), the map i is a kernel of p, and p is a cokernel of i.
(b) Conflations are closed under isomorphisms.
(c) Inflations are closed under compositions, and deflations are closed under

compositions.

(d) Any diagram Z X // i //oo Y with i an inflation can be completed to
a cocartesian square

X // i //

²²

Y

²²
Z // j

// W

with j an inflation.

(e) Dually, any diagram X // Z Y
p

oooo with p a deflation can be com-
pleted to a cartesian square

W //

q

²²²²

Y

p

²²²²
X // Z

with q a deflation.
(f) The following sequence is a conflation

X
( 1
0 )
→ X ⊕ Y

( 0 1 )
→ Y. (2)

An additive functor between exact categories is called exact if it sends conflations
to conflations.

Let A, B be exact categories such that B ⊂ A is a full subcategory. We say that
B is a fully exact subcategory of A if B is closed under extensions in A (that is, if in
a conflation (1) in A, X and Z are isomorphic to objects in B then Y is isomorphic
to an object in B), and if the inclusion B ⊂ A preserves and detects conflations.

1.2. Examples.

(a) Abelian categories are exact categories when equipped with the family of
conflations (1) where 0 → X → Y → Z → 0 is a short exact sequence.
Examples of abelian (thus exact) categories are: the category R -Mod of
all (left) R-modules, R a ring; the category R -mod of all finitely generated
(left) R-modules, R a noetherian ring; the category OX -Mod (Qcoh(X)) of
(quasi-coherent) OX -modules, X a scheme; the category Coh(X) of coherent
OX -modules, X a noetherian scheme.
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(b) Let A be an exact category, and let B ⊂ A be a full additive subcategory
closed under extensions in A. Call a sequence (1) in B a conflation if
it is a conflation in A. One checks that B equipped with this family of
conflations is an exact category making B into a fully exact subcategory of
A. In particular, any extension closed subcategory of an abelian category
is canonically an exact category.

(c) The category R−proj of finitely generated projective left R-modules is ex-
tension closed in the category of all R-modules. Similarly, the category
Vect(X) of vector bundles (that is, locally free sheaves of finite rank) on a
scheme X is extension closed in the category of all OX -modules. In this
way, we consider R−proj and Vect(X) as exact categories where a sequence
is a conflation if it is in its ambient abelian category.

(d) An additive category can be made into an exact category by declaring a
sequence (1) to be a conflation if it is isomorphic to a sequence of the form
(2). Such exact categories are referred to as split exact categories.

(e) Let E be an exact category. We let Ch E be the category of chain complexes
in E . Objects are sequences (A, d) :

· · · → Ai−1 di−1

→ Ai d
→ Ai+1 → · · ·

of maps in E such that d ◦ d = 0. A map f : (A, dA) → (B, dB) is a
collection of maps f i : Ai → Bi, i ∈ Z, such that f ◦ dA = dB ◦ f . A
sequence (A, dA)→ (B, dB)→ (C, dC) is a conflation if Ai → Bi → Ci is a
conflation for all i ∈ Z. This makes Ch E into an exact category.

The full subcategory Chb E ⊂ Ch E of bounded chain complexes ((A, dA)
is bounded if Ai = 0 for i >> 0 and i << 0) is a fully exact subcategory.

It turns out that the examples in 1.2 (c) are typical as the following lemma shows.
The proof of the lemma can be found in [TT90, Appendix A] and [Kel90, Appendix
A].

1.3. Lemma. Every small exact category can be embedded into an abelian category
as a fully exact subcategory.

1.4. Exercise. Use the axioms 1.1 (a) – (f) of an exact category or lemma 1.3
above to show the following (and their duals).

(a) A cartesian square as in 1.1 (e) with p a deflation is also cocartesian. If,
moreover, X → Z is is an inflation, then W → Y is also an inflation.

(b) If the composition ab of two maps in an exact category is an inflation, and
if b has a cokernel, then b is also an inflation.

1.5. Definition of K0. Let E be a small exact category. The Grothendieck group
K0(E) of E is the abelian group freely generated by symbols [X] for every object
X of E modulo the relation [Y ] = [X] + [Z] for every conflation X → Y → Z.
An exact functor F : A → B between exact categories induces a homomorphism
F : K0(A)→ K0(B) : [X] 7→ [FX].

1.6. Remark. The conflation 0→ 0→ 0 shows that 0 = [0] in K0(E). Let X → Y
be an isomorphism, then we have a conflation 0→ X → Y , and thus [X] = [Y ] in
K0(E), so K0(E) is in fact generated by isomorphism classes of objects in E . The
split conflation 1.1 (2) shows that [X ⊕ Y ] = [X] + [Y ].
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1.7. Exercise. Let F : A → B be an equivalence of small exact categories, that is,
an exact functor which is an equivalence of categories and which detects conflations.
Then F induces an isomorphism of K0-groups. In particular, the group K0(E)
makes sense for any essentially small (that is, equivalent to a small) exact category
E .

1.8. Definition. The groups K0(R), K0(X), and G0(X) are the Grothendieck
groups of the (essentially small) exact categories R−proj (for R any ring), Vect(X)
(for X a quasi-projective or separated regular noetherian scheme), and Coh(X) (for
X a noetherian scheme) defined in 1.2.

In order to define higher K-groups, one constructs a topological space K(E) and
defines Ki(E) as the homotopy groups πiK(E). We start with describing the space
K(E).

1.9. Quillen’s Q-construction. Let E be a small exact category. We define a new
category QE as follows. The objects of QE are the objects of E . A map X → Y in

QE is an equivalence class of data X W // i //p
oooo Y where p is a deflation and

i an inflation. The datum (W,p, i) is equivalent to the datum (W ′, p′, i′) if there is
an isomorphism g : W → W ′ such that p = p′g and i = i′g. The composition of
(W,p, i) : X → Y and (V, q, j) : Y → Z in QE is the map X → Z represented by
the datum (U, pq̄, jī) where U is the pull-back of q along i as in the diagram

X W
p

oooo
²²

i

²²

U
q̄

oooo
²²

ī

²²
Y Vq

oooo //
j

// Z

which exists, by 1.1 (e). The map q̄ (and hence pq̄, by 1.1 (c)) is a deflation, by 1.1
(e), and the map ī (and hence jī) is an inflation, by 1.4 (a). The universal property
of cartesian squares implies that composition is well-defined and associative. The
identity map idX of an object X of QE is represented by the datum (X, 1, 1).

1.10. The classifying space of a category. To any small category C, one asso-
ciates a topological space BC, its classifying space. This is a CW -complex.

• Its 0-cells are the objects of C.
• Its 1-cells are the non-identity morphisms attached to their source and tar-

get.
• Its 2-cells are the 2-simplices (see the figure below) corresponding to pairs

(f, g) of composable morphisms such that neither f nor g is an identity
morphism.

C1

C2

C0

(f, g) : gf g

f

The edges f , g and gf , which make up the boundary of the 2-simplex (f, g),
are attached to the 1-cells corresponding to f , g, and gf . In case gf = idC0

,
the whole edge gf is identified with the 0-cell corresponding to C0.
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• Its 3-cells are the 3-simplices corresponding to triples C0
f0
→ C1

f1
→ C2

f2
→ C3

of composable arrows such that none of the maps f0, f1, f2 is an identity
morphism. They are attached in a similar way as in the case of 2-cells, etc.

For a precise definition, see appendix A.

Since we have a category QE , we have a topological space BQE . We make the
classifying space BQE of QE into a pointed topological space by choosing a 0-object
of E as base-point.

To an object X of E , we associate a loop lX = (0, 0, 0)−1(X, 0, 1)

lX : 0
(X,0,1)

55

(0,0,0)
))
X

in BQE , and thus an element [lX ] in π1BQE .

1.11. Proposition. The assignment which sends an object X to the loop lX in-
duces a well-defined homomorphism of abelian groups K0(E)→ π1BQE which is an
isomorphism.

Proof. In order to see that the assignment [X] 7→ [lX ] yields a well defined group
homomorphism K0(E)→ π1BQE , we observe that we could have defined K0(E) as
the free group generated by symbols [X], X ∈ E , modulo the relation [Y ] = [X][Z]

for any conflation X
i
→ Y

p
→ Z (commutativity is forced by axiom 1.1 (f)). So

we have to check the relation [lY ] = [lX ][lZ ] in π1BQE (alternatively, direct sum
operation makes BQE into a connected H-space, hence an H-group, so that π1BQE
is an abelian group [Whi78, III.4.17]). The loops lX and lZ are homotopic to the
loops

0
(X,0,1)

55

(0,0,0)
))
X

(X,1,i)
// Y and 0

(Z,0,1)

66

(0,0,0)
((
Z

(Y,p,1)
// Y which are

0
(X,0,i)

33

(0,0,0)
++
Y and 0

(Y,0,1)

33

(X,0,i)
++
Y. Therefore,

[lX ][lZ ] = [(0, 0, 0)−1(X, 0, i)][(X, 0, i)−1(Y, 0, 1)] = [(0, 0, 0)−1(Y, 0, 1)] = [lY ],

and the map K0(E)→ π1BQE is well-defined.
It is easy to see that K0(E) → π1BQE is surjective. To show injectivity, we

construct a map π1BQE → K0(E) such that the composition K0(E) → K0(E) is
the identity. To this end, we introduce a little notation. For a group G, we let
G be the category with one object ∗, and Hom(∗, ∗) = G. Recall from appendix
A.5 that πiBG = 0 for i 6= 1 and π1BG = G where the isomorphism G → π1BG
sends an element g ∈ G to the loop lg represented by the morphism g : ∗ → ∗.
In order to obtain a map π1BQE → K0(E), we construct a functor F : QE →
K0(E). The functor sends an object X of QE to the object ∗ of K0(E). A map

(W,p, i) : X → Y in QE is sent to the map represented by the element [ker(p)] ∈
K0(E). For a composition in the notation of 1.9, we have F [(V, q, j) ◦ (W,p, i)] =
F (U, pq̄, jī) = [ker(pq̄)] = [ker(q̄)] + [ker(p)] = [ker(q)] + [ker(p)] = F (V, q, j) ◦
F (W,p, i), because there is a conflation ker(q̄)→ ker(pq̄)→ ker(p) (5-lemma), and
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ker(q̄) = ker(q) (universal property of pull-backs). So F is a functor, and induces a
map on fundamental groups of classifying spaces π1BQE → π1K0(E) = K0(E). It

is easy to check that the composition K0(E)→ K0(E) is the identity. ¤

1.12. Definition of K(E). Let E be a small exact category. Its K-theory space is
the topological space

K(E) = ΩBQE .

Its K-groups are the homotopy groups Ki(E) = πiK(E) = πi+1BQE of its K-theory
space. An exact functor E → E ′ induces a functor QE → QE ′ on Q-constructions,
and thus continuous maps BQE → BQE ′ and K(E)→ K(E ′, compatible with com-
position of exact functors. The K-theory space and the K-groups are thus functorial
with respect to exact functors between small exact categories. By Proposition 1.11,
the group K0(E) defined in this way coincides with the group defined in 1.5.

For a ring R and a quasi-projective (or separated regular noetherian) scheme
X, the K-theory spaces K(R) and K(X) are the K-theory spaces associated with
(a small model of) the exact categories R−proj of finitely generated projective R-
modules and Vect(X) of vector bundles on X. For a noetherian scheme X, its
G-theory space G(X) is the K-theory space associated with (a small model of) the
abelian category Coh(X) of coherent OX -modules.

1.13. Remark. An equivalence of small exact categories induces an equivalence
of associated Q-constructions, and thus a homotopy equivalence of associated K-
theory spaces (see A.6). Therefore, changing the small models of R−proj, Vect(X)
and Coh(X) in the definition of K(R), K(X) and G(X) results in homotopy equiv-
alent K-theory spaces and isomorphic K-groups.

In order to reconcile the definition of K(R) given above with the plus-construction
of Cortiñas’ lecture, we cite the following theorem of Quillen, a proof of which can
be found in [Gra76].

1.14. Theorem (Q = +). There is a natural homotopy equivalence

BGL(R)+ ' Ω0BQ(R−proj),

where Ω0 stands for the connected component of the constant loop. In particular,
there are natural isomorphisms for i ≥ 1

πiBGL(R)+ ∼= πi+1BQ(R−proj).

1.15. Warning. Some authors define K(R) to be K0(R)× BGL(R)+ as functors
in R. Strictly speaking, this is wrong; there is no zig-zag of homotopy equivalences
between K0(R)×BGL(R)+ and ΩBQ(R−proj) which is functorial in R.

1.16. Exact sequences of abelian categories. Let A be an abelian category.
A Serre subcategory of A is a fully exact subcategory B ⊂ A of A which is closed
under taking subobjects and quotient objects in A. In particular, B is itself an
abelian category. In this situation, one can (up to set theoretical issues which don’t
exist when A is small) construct a quotient abelian category A/B which has the
universal property of a quotient object in the category of exact categories. The
quotient abelian category A/B is equivalent to the localization A[S−1] of A w.r.t.
the set S of morphisms f in A for which ker(f) and coker(f) are isomorphic to
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objects in B. The set S satisfies a calculus of fractions so that A[S−1] has a very
explicit description, see C.3. We may call B → A → A/B an “exact sequence of
abelian categories”. More details can be found in [Gab62], [Pop73].

The following two theorems are proved in [Qui73, §5 Theorem 5] and [Qui73, §5
Theorem 4].

1.17. Theorem (Quillen’s Localization Theorem). Let A be a small abelian cate-
gory, and let B ⊂ A be a Serre subcategory. Then the sequence

BQ(B)→ BQ(A)→ BQ(A/B)

is a homotopy fibration (see appendix B for a definition). In particular, there is a
long exact sequence

· · · → Kn+1(A)→ Kn+1(A/B)→ Kn(B)→ Kn(A)→ Kn(A/B)→ · · ·

· · · → K0(A)→ K0(A/B)→ 0.

1.18. Theorem (Dévissage). Let A be a small abelian category, and B ⊂ A full
abelian subcategory such that the inclusion B ⊂ A is exact. Assume that every
object A of A has a finite filtration

0 = A0 ⊂ A1 ⊂ ... ⊂ An = A

such that the quotients Ai/Ai−1 are in B. Then the inclusion B ⊂ A induces a
homotopy equivalence

K(B)
∼
→ K(A).

In particular, it induces an isomorphism of K-groups Ki(B) ∼= Ki(A).

The following are two applications of Quillen’s localization and devissage theo-
rems.

1.19. Nilpotent extensions. Let X be a noetherian scheme, and i : Z ↪→ X a
closed subscheme corresponding to a nilpotent sheaf of ideals I ⊂ OX . Assume
In = 0. Then i∗ : Coh(Z) → Coh(X) satisfies the hypothesis of the dévissage
theorem, since Coh(Z) can be identified with the subcategory of those coherent
sheaves F on X for which IF = 0, and every sheaf F ∈ Coh(X) has a filtration
0 = InF ⊂ In−1F ⊂ ... ⊂ IF ⊂ F with quotients in Coh(Z). We conclude that i∗
induces a homotopy equivalence G(Z) ' G(X). In particular,

G(X) ' G(Xred).

1.20. G-theory localization. Let X be a noetherian scheme, and j : U ⊂ X an
open subscheme with i : Z ⊂ X its closed complement X − U . Let CohZ(X) ⊂
Coh(X) be the (fully exact) subcategory of those coherent sheaves on X which have
support in Z, that is, for which F|U = 0. Then the sequence

CohZ(X) ⊂ Coh(X)
j∗

→ Coh(U) (3)

is an exact sequence of abelian categories (see below). By theorem 1.17, we ob-
tain a homotopy fibration K CohZ(X) → K Coh(X) → K Coh(Z). Moreover, the



8 MARCO SCHLICHTING

inclusion i∗ : Coh(Z) ⊂ CohZ(X) satisfies dévissage, so that we have a homo-
topy equivalence K Coh(Z) ' K CohZ(X). Put together, we obtain a homotopy
fibration

G(Z)
i∗→ G(X)

j∗

→ G(U)

and an associated long exact sequence of G-theory groups.

Proof (that (3) is an exact sequence of abelian categories). As the “kernel” of
the exact functor Coh(X) → Coh(U), the category CohZ(X) is obviously a Serre
subcategory of Coh(X). Moreover, the composition CohZ(X) ⊂ Coh(X)→Coh(U)
is trivial, so that we obtain an induced functor Coh(X)/CohZ(X)→Coh(U) which
we have to show is an equivalence.

The functor is essentially surjective on objects, since for any F ∈ Coh(U), the
OX -module j∗F is quasi-coherent (because X is noetherian), and thus it is a filtered
colimit colim Gi of its coherent sub-OX -modules Gi. Every ascending chain of
subobjects of a coherent sheaf eventually stops, so that we must have j∗Gi

∼=
j∗j∗F = F for some i.

The functor is full, because for F,G ∈ Coh(X), any map f : j∗F → j∗G in

Coh(U) is the image of the fraction F
t
← H → G which which we can take to be

the pull-back of F → j∗j
∗F

j∗f
→ j∗j

∗G← G. The unit of adjunction G→ j∗j
∗G has

kernel and cokernel in CohZ(X), hence the same is true for its pull back t : F → H.
Moreover, H is coherent as it is a quasi-coherent subsheaf of the coherent sheaf
F ⊕G.

By construction, the “kernel category” of Coh(X)/CohZ(X)→Coh(U) is trivial.
This implies that the functor is conservative (that is, detects isomorphisms). Let
f : F → G be a map in Coh(X)/CohZ(X) such that j∗(f) = 0. Then ker(f)→ F
and G→ coker(f) are isomorphisms in Coh(U), hence are isomorphisms themselves,
so that f = 0. It follows that the functor is fully faithful. Since it is also full and
essentially surjective, it has to be an equivalence. ¤

1.21. Theorem (Homotopy invariance of G-theory [Qui73, Proposition 4.1]). Let
X and P be a noetherian schemes and f : P → X a flat map whose fibres are affine
spaces (for instance, a geometric vector bundle). Then

f∗ : G(X)
∼
→ G(P )

is a homotopy equivalence. In particular, Gi(X × A1) ∼= Gi(X).

Proof (sketch). Using noetherian induction, 1.19 and 1.20, one reduces to X an
integral noetherian scheme. By a limit argument, one reduces the claim to X =
Spec k, and P = Spec(k[T1, ..., Tn]), k a field. The homotopy equivalence G(k) →
G(k(T1, ..., Tn)) is treated separately [Qui73, §6 theorem 8]. ¤

1.22. Remark. Besides the theorems mentioned above, Quillen proves further fun-
damental theorems among which “Additivity” [Qui73, §3 Theorem 2 and Corollary
1] and “Resolution” [Qui73, §4 Theorem 3]. Both can – a posteriori – be deduced
from Thomason’s Localization Theorem 2.21 (see [Kel99]), so we will refrain from
stating them here.
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1.23. K-theory of regular schemes. Let X be a regular noetherian and sepa-
rated scheme, then the inclusion Vect(X) ⊂ Coh(X) induces a homotopy equiva-
lence K Vect(X) ' K Coh(X), that is, K(X) ' G(X) (see Poincaré duality 3.1, it
also follows more classically from Quillen’s resolution theorem). Thus, 1.20 and 1.21
translate into theorems about K(X) when X is regular, noetherian and separated.

Besides the groups Ki, i ≥ 0, one can also define groups Ki, i < 0, which
extend certain K0 exact sequences to the right (see Cortiñas lecture). For rings
they were introduced by Bass [Bas68] and Karoubi [Kar68]. The treatment for
exact categories below follows [Sch04].

1.24. Idempotent completion. Let A be an exact category, and B ⊂ A a fully
exact subcategory. We call the inclusion B ⊂ A cofinal if every object of A is a
direct factor of an object of B. For instance, the category of (finitely generated) free
R-modules is cofinal in the category of (finitely generated) projective R-modules.

Given an additive category A, there is a “largest” category Ã of A such that the
inclusion A ⊂ Ã is cofinal. We call Ã the idempotent completion of A (an additive
category is called idempotent complete if every idempotent map p = p2 : A → A
has an image, that is, is isomorphic to ( 1 0

0 0 ) : X ⊕ Y → X ⊕ Y ). The objects

of Ã are pairs (A, p) with A an object of A and p = p2 : A → A an idempotent
endomorphism. Maps (A, p)→ (B, q) are the maps f : A→ B such that fp = f =
qf . Composition is composition in A, and id(A,p) = p. We have a fully faithful

embedding A ⊂ Ã : A 7→ (A, 1). Every idempotent q = q2 : (A, p)→ (A, p) has an

image in Ã, namely (A, q), so that Ã is indeed idempotent complete.

If E is an exact category, its idempotent completion Ẽ becomes an exact category
when we declare a sequence in Ẽ to be a conflation if it is a direct factor of a
conflation of E . For more details, see [TT90, Appendix A].

1.25. Proposition (Cofinality [Gra79, Theorem 1.1]). Let A be an exact category
and B ⊂ A be a cofinal fully exact subcategory. Then the maps Ki(B)→ Ki(A) are
isomorphisms for i > 0 and a monomorphism for i = 0. This holds in particular
for Ki(E)→ Ki(Ẽ).

1.26. Negative K-theory and the spectrum IK(E). To any exact category E ,
one can associate a new exact category SE (see 1.28, called suspension of E , such
that there is a natural homotopy equivalence [Sch04]

K(Ẽ)
∼
→ ΩK(SE). (4)

If E = R−proj one can take SE = (SR)−proj where SR is the suspension ring of
R (see Cortiñas’ lecture).

One uses the suspension construction to slightly modify the definition of alge-
braic K-theory in order to incorporate negative K-groups as follows. One sets

IKi(E) = Ki(E) for i ≥ 1, IK0(E) = K0(Ẽ), and IKi(E) = K0(S̃−iE), i < 0. Since
Vect(X), Coh(X), and R−proj are all idempotent complete, we have IK0 Vect(X) =
K0 Vect(X) = K0(X), IK0 Coh(X) = K0 Coh(X) = G0(X), and IK0(R−proj) =
K0(R−proj) = K0(R), so that in these cases, we have not changed the definition of
K-theory, and we have merely introduced “negative K-groups” IKi, i < 0. That’s
why, we may write Ki(X), and Ki(R) instead of IKi(X) and IKi(R), i ∈ Z.
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In fancy language, one constructs a spectrum IK(E) whose homotopy groups are
the groups IKi(E), i ∈ Z. Its n-th space is K(SnE) with structure maps given by
(4).

It turns out (see Bass’ fundamental theorem 3.10 below) that there is a split
exact sequence

0→ Ki(R)→ Ki(R[T ])⊕Ki(R[T−1])→ Ki(R[T, T−1])→ Ki−1(R)→ 0, i ∈ Z.

One can use the exact sequence to give a recursive definition of the groups Ki(R),
i < 0, starting with the functor K0. This was Bass’ original way of defining Ki(R),
i < 0.

1.27. Remark. Not much is known about IKi(E), i < 0, though their calculation
should be easier than that of Ki(E), i ≥ 0. However, we do know the following.
Ki(R) = 0, i < 0, for R a regular noetherian ring [Bas68]. IK−1(A) = 0 for
any abelian category A [Sch06, Theorem 6], and IK−1(A) = 0, i < 0, for A a
noetherian abelian category [Sch06, Theorem 7]. In particular, K−1(R) = 0 for a
regular coherent ring R, and K−i(X) = 0, i < 0 for any regular noetherian and
separated scheme X. In [CHSW05] it is shown that Ki(X) = 0, i < −d, for X
a d-dimensional scheme essentially of finite type over a field of characteristic 0,
and K−d(X) = Hd

cdh(X, Z) which may be non-zero [Rei87]. Similar statements
are conjectured to be true in arbitrary and mixed characteristic [Wei80]. It is also
conjectured that Ki(ZG) = 0, i < −1, and G a finitely presented group [Hsi84].
For results in this direction, see [LR05].

1.28. Construction of the suspension SE. Let E be an exact category. The
countable envelope FE of E is an exact category whose objects are sequences A0 ↪→
A1 ↪→ A2 ↪→ ... of inflations in E . The morphism set from a sequence A∗ to B∗ is
limi colimj HomE(Ai, Bj). A sequence in FE is a conflation iff it is isomorphic (in
FE) to the maps of sequences A∗ → B∗ → C∗ with Ai → Bi → Ci a conflation in
E . Colimits of sequences of inflations exists in FE and are exact. In particular, FE
has exact countable direct sums. There is a fully faithful exact functor E → FE

which sends an object X ∈ E to the constant sequence X
1
→ X

1
→ X

1
→ · · · . For

details, see [Kel90, Appendix B] (where FE was denoted E∼).
The suspension SE of E is the quotient FE/E (in the category of small exact

categories) of the countable envelope FE of E by the subcategory E . The proof of
the existence of the quotient FE/E and an explicit description is given in [Sch04].

One shows that there is a homotopy fibration K(Ẽ) → K(FE) → K(SE) of K-
theory spaces [Sch04]. Since FE has exact countable direct sums, K(FE) ' 0,
which implies the homotopy equivalence 1.26 (4).

2. Algebraic K-theory of complicial exact categories

Most calculations in the early days of K-theory were based on Quillen’s local-
ization theorem 1.17 for abelian categories (together with dévissage 1.18). Unfor-
tunately, not all K-groups are (not even equivalent to) the K-groups associated to
some abelian category, notably K(X) where X is some singular variety. Also, there
is no satisfactory generalization of Quillen’s localization theorem to exact categories
which would apply to all situations K-theorists had in mind.
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Here is where triangulated categories come in. They provide a flexible framework
within which to state theorems which allowed to prove many results that cannot
be proved with Quillen’s methods.

We start this section with the definition of the Grothendieck group of a tri-
angulated category, and recall two basic properties in exercise 2.3 and 2.7 which
motivate their generalizations to higher K-theory in theorems 2.16 and 2.21.

Unfortunately, there is no good definition of higher algebraic K-theory of tri-
angulated categories [Sch02] (see however the work of Neeman [Nee05], Breuning
[Bre]). That’s why we have to work with categories carrying more structure. These
are the “complicial exact categories with weak equivalences”. They are close enough
to triangulated categories, and they allow a good definition of higher algebraic K-
theory for which the analog of Quillen’s localization theorem holds. Their definition
is in 2.13 and the analog is in 2.21.

At this point, the reader is advised to be acquainted with some background on
triangulated categories which is summarized in appendix C.1 – 2.2.

2.1. Definition of K0(T ). Let T be a small triangulated category. The group
K0(T ) is the abelian group freely generated by symbols [X], where X is an object
of T , modulo the relation [X] + [Z] = [Y ] for every distinguished triangle X →
Y → Z → TX in T .

As in remark 1.6, one shows that [X] = [Y ] if there is an isomorphism X ∼= Y .
We also have [X ⊕ Y ] = [X] + [Y ]. Moreover, the distinguished triangle X → 0→
TX → TX shows that [TX] = −[X]. In particular, every element in K0(T ) can
be represented as [X] for some object X in T .

2.2. The bounded derived category DbE. A standard example of a triangulated
category is the bounded derived category Db(E) of an exact category E , see for

example [Kel96]. Let Chb E be the exact category of bounded chain complexes in
E , see example 1.2 (e). Call a bounded chain complex (A, d) in E strictly acyclic
if every differential di : Ai → Ai+1 can be factored into Ai → Zi+1 → Ai+1 such
that Zi → Ai → Zi+1 is a conflation in E , i ∈ Z. A bounded chain complex is
called acyclic if it is homotopy equivalent to a strictly acyclic chain complex. A
map f : (A, d)→ (B, d) is called quasi-isomorphism if its cone C(f) (C.2) is acyclic.

As a category, the bounded derived category Db(E) is quis−1 Chb E – the category

obtained from the category of bounded chain complexes Chb E by formally inverting
quasi-isomorphisms.

A more explicit description of Db(E) is obtained as follows. Let Kb(E) be the
homotopy category of bounded chain complexes in E . Its objects are bounded chain
complexes in E , and maps are chain maps up to chain homotopy. With the same
definitions as in C.2, the homotopy category Kb(E) is a triangulated category.

Let Kb
ac(E) ⊂ K

b(E) be the full subcategory of acyclic chain complexes. The
category Kb

ac(E) is closed under taking cones and shifts T , T−1 in Kb(E), and is
therefore a full triangulated subcategory of Kb(E). The bounded derived category
of the exact category E is the Verdier quotient Kb(E)/Kb

ac(E).

An inflation X
i
→ Y

p
→ Z of chain complexes in Chb E yields a canonical triangle

X
i
−→ Y

p
−→ Z

q◦s−1

−→ TX

in Db(E), where s is the quasi-isomorphism C(i)→ C(i)/C(idX) ∼= Z and q is the
canonical map C(f)→ TX as in C.2.



12 MARCO SCHLICHTING

2.3. Exercise. Let E be an exact category, and DbE its bounded derived category,
see appendix 2.2. Consider objects of E as chain complexes concentrated in degree
zero. Show that the map K0(E)→ K0(D

bE) : [X] 7→ [X] is an isomorphism. Hint:
The inverse K0(D

bE) → K0(E) is given by [A, d] 7→ Σi(−1)i[Ai]. The point is to
show that this map is well-defined.

2.4. Definition. A sequence of triangulated categories A → B → C is called exact
if the composition sends A to 0, A → B is fully faithful and coincides (up to
equivalence) with the subcategory of those objects in B which are zero in C, and if
the induced map B/A → C from the Verdier quotient B/A to C is an equivalence.

2.5. Example. Let R be a ring with unit, and let S ⊂ R a multiplicative set of
central non zero divisors in R. LetHS(R) be the exact category of finitely presented
S-torsion left R-modules of projective dimension at most 1. It is an extension closed
full subcategory of the category of all left R-modules, and we therefore consider it
as an exact category. Let P1(R) ⊂ R -Mod be the full subcategory of those left
R-modules M which fit into an exact sequence 0 → P → M → H → 0 of R-
modules with P finitely generated projective, and H ∈ HS(R). The inclusion
P1(R) ⊂ R -Mod is closed under extensions which makes P1(R) into a fully exact
subcategory of R -Mod. Let P ′(S−1R) ⊂ S−1R−proj be the full subcategory of
those finitely generated projective S−1R-modules which are localizations of finitely
generated projective R-modules. Then the sequence HS(R)→ P1(R)→ P ′(S−1R)
induces an exact sequence of associated bounded derived categories. Moreover, the
inclusion R−proj ⊂ P1(R) induces an equivalence of bounded derived categories.
In summary, we have an exact sequence of triangulated categories

Db(HS(R))→ Db(R−proj)→ Db(P ′(S−1R)). (5)

For instance, let R be a Dedekind ring, and S ⊂ R the set of non-zero elements.
Then S−1R = K, the field of fractions of R, P ′(S−1R) the category of finitely gen-
erated K-vector spaces, and HS(R) ⊂ R -Mod is the category of finitely generated
torsion R-modules.

2.6. Two useful criteria. Let A → B be an exact functor between exact cate-
gories.

(a) If B is obtained from A by a calculus of left (or right) fractions, then
Db(A) → Db(B) is a localization. This shows for instance, that in the
diagram 2.5 (5), the category Db(P ′(S−1R)) is a quotient triangulated cat-
egory of Db(R−proj).

(b) Suppose that A is a fully exact subcategory of B. If for any inflation A→ B
in B with A ∈ A, there is a map B → A′ with A′ ∈ A such that the
composition A→ A′ is an inflation in A, then the functor Db(A)→ Db(B)
is fully faithful [Kel96, 12.1]. This shows that in the diagram 2.5 (5), the
left hand map is fully faithful.

2.7. Exercise. Let A → B → C be an exact sequence of triangulated categories.
Then the following sequence of abelian groups is exact

K0(A)→ K0(B)→ K0(C)→ 0. (6)

Hint: Show that the map K0(C) → coker(K0(A) → K0(B)) : [C] 7→ [B] is well-
defined, where B ∈ B is such that its image in C is isomorphic to C.
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We would like to extend the exact sequence 2.7 (6) to the left. To this end, we
need to introduce more structure.

2.8. Definition. An exact category with weak equivalences is an exact category E
together with a set w ⊂ Mor E of morphisms in E . Morphisms in w are called
weak equivalences. The set of weak equivalences is required to contain all identity
morphisms; to be closed under isomorphisms, retracts, push-outs along inflations,
pull-backs along deflations, composition; and to satisfy the “two out of three” prop-
erty for composition (if two of the three maps among a, b, ab are weak equivalences,
then so is the third).

2.9. Example. Let E be an exact category. The exact category Chb E of bounded
chain complexes in E of example 1.2 (e) together with the set quis of quasi-
isomorphisms (as defined in 2.2) is an exact category with weak equivalences,

Chb E = (Chb E , quis).

2.10. Notation. We write Chb(Z) for the exact category with weak equivalences of
bounded chain complexes of finitely generated free Z-modules, see example 2.9. A
quasi-isomorphism here is just an ordinary chain homotopy equivalence. A sequence
here is a conflation if it splits in each degree (that is, is isomorphic to the sequence
1.1 (2).

There is a symmetric monoidal tensor product ⊗ : Chb(Z) × Chb(Z) → Chb(Z)
which extends the usual tensor product of free Z-modules [Wei94, 2.7.1]. The unit
of the tensor product is the chain complex 11 which is Z in degree 0 and 0 elsewhere.

Besides 11, we have two other distinguished objects in Chb(Z). The complex C
is Z in degrees 0 and −1, and is 0 otherwise. The only non-trivial differential is
d−1 = idZ. The complex T is Z in degree −1 and 0 elsewhere. Note that there is a
short exact sequences of chain complexes 0→ 11→ C → T → 0.

2.11. Definition. An exact category E is called complicial if it is equipped with a
bi-exact tensor product

⊗ : Chb(Z)× E → E (7)

which is associative and unital in the sense that there are natural isomorphisms
A ⊗ (B ⊗ X) ∼= (A ⊗ B) ⊗ X and 11 ⊗ X ∼= X such that a pentagonal and a
triangular diagram [ML98, VII.1.] commute. In other words, a complicial exact
category is an exact category E equipped with a bi-exact action of the symmetric
monoidal category Chb(Z) on E , see also [Gra76, p. 218] for actions of monoidal
categories.

For an object X of E , we write CX and TX instead of C ⊗X and T ⊗X. Note
that there is a functorial conflation X → CX → TX which is the tensor product
of 11→ C → T with X. For a map f : X → Y in E , we write C(f) for the push-out
of f along the inflation X → CX, and call it the cone of f . As a push-out of
an inflation, Y → C(f) is also an inflation with cokernel TX. In particular, the
following is a conflation in E

Y → C(f)→ TX.
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2.12. Example. Write F (Z) for the category of finitely generated free Z-modules.

So we have Chb(Z) = Chb F (Z).
Let E be an exact category. We define an associative and unital tensor product

F (Z) × E → E by Zn ⊗ X = Xe1 ⊕ ... ⊕ Xen where Xei stands for a copy of X
corresponding the the base element ei of the based free module Zn = Ze1⊕...⊕Zen.
On maps, the tensor product is defined by (aij)⊗ f = (aijf).

Using the usual formulas for tensor products of chain complexes, this tensor
product extends to an associative, unital and bi-exact pairing

⊗ : Chb(Z)× Chb E → Chb E

making the category of bounded chain complexes Chb E into a complicial exact
category.

2.13. Definition. An exact category with weak equivalences (E , w) is complicial,
if E is complicial, and if the tensor product 2.11 (7) preserves weak equivalences (in

both variables). For instance, the exact category with weak equivalences (Chb E , quis)
of examples 2.9 and 2.12 is complicial.

2.14. Definition of K(E , w), K(E). Let E = (E , w) be a complicial exact category
with weak equivalences. We write Ew ⊂ E for the fully exact subcategory of w-
acyclic objects in E , that is of those objects X in E for which the map 0→ X is a
weak equivalence.

The algebraic K-theory space K(E) = K(E , w) of (E , w) is the homotopy fibre
of the map of pointed topological spaces BQEw → BQE , that is,

K(E) = K(E , w) = F (g) where g : BQEw → BQE .

The higher algebraic K-groups Ki(E) of E are the homotopy groups πiK(E) of the
K-theory space of E, i ≥ 0.

Exact functors preserving weak equivalences induce maps between algebraic K-
theory spaces of complicial exact categories with weak equivalences.

2.15. Remark. Definition 2.14, though different from the one in [Wal85, p. 330,
Definition], is equivalent to it, by [Wal85, Theorem 1.6.4]. Here we use that E =
(E , w) is complicial. The reader might have noticed that definition 2.14 makes
sense for any exact category with weak equivalences – the complicial structure is
not needed. The reason, we define it only for complicial exact categories with weak
equivalences is that otherwise it would not necessarily be equivalent to [Wal85, p.
330, Definition].

2.16. Theorem [TT90, Theorem 1.11.7]. Let E be an exact category. The embed-

ding of E into Chb E as degree-zero complexes induces a homotopy equivalence

K(E) ' K(Chb E , quis).

2.17. The triangulated category T (E) associated with E = (E , w). Let E =
(E , w) be a complicial exact category with weak equivalences. As in 2.2, one can
associate a triangulated category T (E) with E. The construction is analogous. As
a category, T (E) is just w−1E – the category obtained from E by formally inverting
the weak equivalences. In order to obtain a more explicit description, we will first
construct the homotopy category E of E . This is a triangulated category which only
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depends on the complicial structure of E , but not on the set of weak equivalences.
Two maps f, g : X → Y in E are homotopic if their difference factors through
X → CX. One easily checks that this defines an equivalence relation compatible
with composition of maps. The homotopy category E of E has the same objects as
E , and morphisms homotopy classes of maps in E . A sequence in E is a distinguished
triangle if it is isomorphic (in E) to a sequence of the form

X
f
→ Y → C(f)→ TX (8)

defined in 2.11. The category E equipped with this set of distinguished triangles is
a triangulated category (see remark 2.18 below).

Since Ew is also complicial, its homotopy category Ew is a triangulated category
as well. Moreover, the functor Ew → E is a fully faithful triangle functor. As a
category w−1E can be identified with w−1E which is the Verdier quotient E/Ew (see
C.4), and thus carries a structure of a triangulated category which we define to be
T (E).

2.18. Remark. Let E be a complicial exact category. Call conflation X → Y → Z
in E a Frobenius conflation if every map X → CU extends to a map Y → CU , and if
every map CU → Z lifts to a map CU → Y . One can show that E together with the
Frobenius conflations is a Frobenius exact category, that is, an exact category which
has enough injectives, enough projectives, and injectives and projectives coincide.
The injective-projective objects are the direct factors of objects of the form CU ,
U ∈ E . The homotopy category E of E is now the stable category of the Frobenius
category E , which is always a triangulated category [Kel96], [Hap87, Section 9].

2.19. Exercise. Let C be a dg-category. Show that the pre-triangulated category
Cpretr (see Toen’s lecture) of C can be given the structure of a complicial exact cate-
gory such that its associated triangulated category is isomorphic to the triangulated
category H0(Cpretr).

2.20. Proposition. Let E = (E , w) complicial exact category with weak equiva-
lences. Then the map K0(E) → K0(T (E)) : [X] 7→ [X] is well defined and an
isomorphism of abelian groups.

Proof. By definition 2.14 and proposition 1.11, the group K0(E) is the cokernel of
K0(E

w) → K0(E). Since inflations in E yield distinguished triangles in T (E), the
map K0(E) → K0(T (E)) : [X] 7→ [X] is well defined. It clearly sends K0(E

w) to
zero, so that we obtain a well-defined map K0(E)→ K0(T (E)).

In order to see that the inverse K0(T (E)) → K0(E) : [X] 7→ [X] is also well-
defined, we first observe that the existence of a quasi-isomorphism f : X → Y
implies that [X] = [Y ] in K0(E). This is because, by the definition of the mapping
cone C(f), there is a conflation X → CX ⊕ Y → C(f) in E . Since CX and C(f)
are in Ew, we have [X] = [Y ]. The conflation X → CX → TX in E with CX ∈ Ew

shows that [X] = −[TX] in K0(E). Since every distinguished triangle in T (E) is
isomorphic (in T (E)) to one of the form 2.17 (8) where Y → C(f) → TX is a
conflation in E , the inverse K0(T (E))→ K0(E) is well-defined. ¤
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2.21. Theorem (Thomason’s Localization Theorem, connective version [TT90,
1.9.8., 1.8.2]). Let A → B → C be a sequence of complicial exact categories
with weak equivalences such that the associated sequence of triangulated categories
TA→ T B→ T C is exact. Then the sequence of K-theory spaces

K(A)→ K(B)→ K(C)

is a homotopy fibration. In particular, there is a long exact sequence of K-groups

· · · → Ki+1(C)→ Ki(A)→ Ki(B)→ Ki(C)→ Ki−1(A)→ · · ·

ending in K0(B)→ K0(C)→ 0.

2.22. Remark. As a special case of theorem 2.21, a functor A→ B of complicial
exact categories with weak equivalences such that TA → T B is an equivalence,
induces a homotopy equivalence of K-theory spaces K(A) → K(B) and isomor-
phisms Ki(A) ∼= Ki(B) on K-groups.

2.23. Example. Theorem 2.21 applied to example 2.5 yields a homotopy fibration

K(HS(R))→ K(R)→ K(P ′(S−1R)).

This example illustrates a slight inconvenience. In the homotopy fibration, one
would like to have K(S−1R) instead of K(P ′(S−1R)). However, the map K0(R)→
K0(S

−1R) in not surjective, in general. The problem is that Db(S−1R−proj) is
not a quotient triangulated category of Db(R−proj), in general. However, it is a
quotient of Db(R−proj) – up to factors. This leads to the following definition.

2.24. Definition. A sequence of triangulated categories A → B → C is exact up
to factors, if the composition is zero, the functor A → B is fully faithful, and the
induced map B/A → C is an equivalence up to factors (or cofinal), that is, B/A → C
is fully faithful, and every object of C is a direct factor of an object of B/A.

2.25. Example. Keep the hypothesis and notation of example 2.5. The following
sequence of triangulated categories is exact up to factors

Db(HS(R))→ Db(R−proj)→ Db(S−1R−proj)

but not exact, in general.

2.26. Proposition (Cofinality, [TT90, 1.10.1, 1.9.8]). Let A → B be a functor of
complicial exact categories with weak equivalences such that TA → T B is cofinal
(that is, an equivalence up to factors). Then Ki(A) → Ki(B) is an isomorphism
for i ≥ 1 and a monomorphism for i = 0.

2.27. Idempotent completion of triangulated categories. A triangulated cat-
egory A is in particular an additive category. So we can speak of its idempotent
completion Ã, see 1.24. It turns out that Ã can be equipped with the structure of
a triangulated category such that the inclusion A ⊂ Ã is a triangle functor [BS01].

A sequence in Ã is a distinguished triangle if it is a direct factor of a distinguished
triangle in A.

If E is an idempotent complete exact category, then DbE is also idempotent
complete [BS01]. In particular, Db Vect(X), Db Coh(X) and Db(R−proj) are all
idempotent complete.
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2.28. Negative K-theory and the functor IK. To any complicial exact category
with weak equivalences E, one can associate a new complicial exact category with
weak equivalences SE, called suspension of E, such that there is a natural map

K(E)→ ΩK(SE) (9)

which is an isomorphism on πi, i ≥ 1 and a monomorphism on π0 [Sch06], see
the construction in 2.31 below. In fact, K1(SE) = K0((T E)∼), where (T E)∼ de-
notes the idempotent completion of T E. Moreover, the suspension functor sends
sequences of complicial exact categories with weak equivalences such that the as-
sociated sequence of triangulated categories exact up to factors to sequences with
the same property.

One uses the suspension construction to slightly modify the definition of algebraic
K-theory in order to incorporate negative K-groups as follows. One sets IKi(E) =
Ki(E) for i ≥ 1, IK0(E) = K0((T E)∼), and IKi(E) = K0((T S−iE)∼), i < 0.

In fancy language, one constructs a spectrum IK(E) whose homotopy groups are
the groups IKi(E), i ∈ Z. Its n-th space is K(SnE) with structure maps given by
(9). Then one has the following theorem.

2.29. Theorem (Thomason’s Localization Theorem, non-connective version). Let
A → B → C be a sequence of complicial exact categories with weak equivalences
such that the associated sequence of triangulated categories TA → T B → T C is
exact up to factors. Then the sequence of K-theory spectra

IK(A)→ IK(B)→ IK(C)

is a homotopy fibration. In particular, there is a long exact sequence of K-groups
for i ∈ Z

· · · → IKi+1(C)→ IKi(A)→ IKi(B)→ IKi(C)→ IKi−1(A)→ · · ·

2.30. Remark. Theorem 2.29 is proved in [Sch06, Theorem 9] for “Frobenius
pairs”. The proof for complicial exact categories with weak equivalences is (al-
most mutatis mutandis) the same. Alternatively, one can use the fact that (E , Ew)
is a Frobenius pair for (E,w) a complicial exact category with weak equivalences,
see remark 2.18.

2.31. Construction of the suspension SE. Let E = (E , w) be a complicial exact
category with weak equivalences. In particular, E is an exact category so that we
can construct its countable envelope FE , see 1.28. The complicial structure on E
extends to a complicial structure on FE setting A ⊗ (E0 ↪→ E1 ↪→ E2 ↪→ · · · ) =

(A ⊗ E0 ↪→ A ⊗ E1 ↪→ A ⊗ E2 ↪→ · · · ) for A ∈ Chb(Z) and E∗ ∈ FE . Call a
map in FE a weak equivalence if its cone is a direct factor of an object of F(Ew),
and write w for the set of weak equivalences in FE . The pair FE = (FE , w)
defines a complicial exact category with weak equivalences. The functor E → FE
of exact categories defines a functor E → FE of complicial exact categories with
weak equivalences such that the functor T (E)→ T (FE) of associated triangulated
categories is fully faithful.

The suspension SE is the complicial exact category with underlying exact cat-
egory FE and set of weak equivalences those maps in FE which are isomorphisms
in the Verdier quotient T (FE)/T (E). For more details, see [Sch06].
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2.32. Remark. If C is a dg-category, one can more easily define its suspension as
S ⊗ C, where S = SZ is the suspension ring of Z (see Cortiñas’ lecture).

2.33. K-theory-like functors. Versions of theorems 2.21 and 2.29 also hold for
functors other than K-theory. For instance, a version of theorem 2.21 holds for
Witt groups [Bal00]. A version of theorem 2.29 holds for cyclic homology and its
variants [Kel99] and also for hermitian K-theory [Scha]. All K-theory calculations
based on theorems 2.21 and 2.29 – some of which are explained in the next section
– have therefore (potential) analogues in all these theories.

3. Applications of the Localization Theorem

All results in this section are due to Thomason [TT90], [Tho93] with the ex-
ception of theorem 3.1 – which is due to Quillen [Qui73]. Their proofs are based
on Thomason’s localization theorem 2.21, or rather on its non-connective version
2.29. This has the advantage that they also apply mutatis mutandis to cyclic ho-
mology, and – in suitably adapted form – to Witt-groups and hermitian K-theory,
see remark 2.33.

3.1. Theorem (Poincaré duality, [Qui73]). Let X be a regular noetherian separated
scheme. Then the fully exact inclusion Vect(X) ⊂ Coh(X) induces an equivalence
of triangulated categories

Db Vect(X) ∼= Db Coh(X).

In particular, it induces a homotopy equivalence K(X) ' G(X).

Proof. One first shows that every coherent sheaf F on X admits a surjective map
V → F of sheaves with V a vector bundle. This implies that the dual of criterion
2.6 (b) is satisfied, so that Db Vect(X)→ Db Coh(X) is fully faithful. It also implies
that any coherent sheaf F admits a resolution

· · · → Vi → Vi−1 → · · · → V0 → F → 0

by vector bundles Vi. By Serre’s theorem [Wei94, Theorem 4.4.16], [Mat89, The-
orem 19.2], the image of the map Vi → Vi−1 is a vector bundle for i ≥ dim X, so
that we may assume Vi = 0 for i > n in the above resolution. This shows that
Db Vect(X) → Db Coh(X) is also essentially surjective, hence an equivalence. In
particular, K(X) ' G(X), by 2.22 and 2.16.

To see the existence of a surjection V → F , we can assume X connected, hence
integral. The local rings OX,x are regular noetherian, hence UFD’s. This implies
that for any closed Z ⊂ X of pure codimension 1, there is a line bundle L and a
section s : OX → L such that Z = X − Xs, where Xs = {x ∈ X| sx : OX,x

∼=
Lx} ⊂ X [Har77, Propositions II 6.11, 6.13]. Since any proper closed subset of X is
in such a Z, the open subsets Xs, (L, s), form a basis for the topology of X where
L runs through the line bundles of X, and s ∈ Γ(X,L). For a ∈ F (Xs), there is an
integer n ≥ 0 such that a⊗sn ∈ Γ(Xs, F⊗L

n) extends to a global section of F⊗Ln

[Har77, Lemma II.5.14], that is, a ∈ F (Xs) is in the image of L−n(Xs) → F (Xs).
It follows that there is a surjection

⊕

Li → F from a sum of line bundles Li to F .
Since F is coherent, and X quasi-compact, finitely many of the Li’s are sufficient
to yield a surjection onto F . ¤



HIGHER ALGEBRAIC K-THEORY (AFTER QUILLEN, THOMASON AND OTHERS) 19

3.2. Remark. The derived equivalence of theorem 3.1 also yields an equivalence
IK Vect(X) ∼= IK Coh(X), by theorem 2.29. Since negative K-theory of noetherian
abelian categories are trivial [Sch06], we have IKi(X) = IKi Coh(X) = 0 for i < 0
and X a regular noetherian separated scheme, see also [TT90, Proposition 6.8].

3.3. K-theory of schemes. Any reasonable cohomology theory for schemes should
satisfy a Mayer-Vietoris long exact sequence for open covers. For K-theory this
means that for scheme X = U ∪ V covered by two open subschemes U , V , we
should have a long exact sequence

· · · → IKi+1(U ∩V )→ IKi(X)→ IKi(U)⊕IKi(V )→ IKi(U ∩V )→ IKi−1(X)→ · · ·

If we defined IK(X) naively as IK Vect(X) we would not have such a long exact
sequence, in general. Therefore, one has to give a slightly different definition.

3.4. Definition. Let X be a quasi-compact and separated scheme. A complex
(A, d) of quasi-coherent OX -modules is called perfect, if there is an open covering
X =

⋃

i∈I Ui of X such that (A, d)|Ui
is quasi-isomorphic to a bounded complex of

vector bundles on Ui, i ∈ I.
Let Z ⊂ X be a closed subset of X. We write PerfZ(X) ⊂ Ch Qcoh(X) for

the full subcategory of perfect complexes on X which are acyclic over X −Z. The
inclusion is extension closed, so that we can consider PerfZ X as a fully exact sub-
category of the abelian category Ch Qcoh(X) of chain complexes of quasi-coherent
OX -modules. Ordinary tensor product of chain complexes makes (PerfZ(X), quis)
into a complicial exact category with weak equivalences. It is customary to write
DPerfZ(X) for T (PerfZ(X), quis). We define

IKZ(X) = IK PerfZ(X)

where PerfZ(X) denotes (up to derived equivalence, a small model of) the complicial
exact category with weak equivalences (Perf(X), quis). In case Z = X, we may
write IK(X) instead of IKZ(X).

In many interesting cases, IK(X) is equivalent to vector bundle K-theory. To
be more precise, we say that X has an ample family of line bundles if the sets
Xs = {x ∈ X| sx : OX,x

∼= Lx} ⊂ X form a basis for the topology of X where L runs
through the line bundles of X, and s ∈ Γ(X,L). For instance, a regular noetherian
separated scheme has an ample family of line bundles (see proof of theorem 3.1),
and every quasi-projective scheme has an ample family of line bundles.

3.5. Proposition [TT90, Corollary 3.9]. Let X be a quasi-compact and separated

scheme that has an ample family of line bundles. Then the inclusion Chb Vect(X) ⊂
Perf(X) induces an equivalence of triangulated categories Db Vect(X) ∼= DPerf(X).
In particular,

IK Vect(X) ' IK Perf(X) (= IK(X)).

Proof. The derived category D(Qcoh(X)) of quasi-coherent OX -modules is a com-
pactly generated triangulated category with DPerf(X) ⊂ D(Qcoh(X)) the subcat-
egory of compact objects, see appendix C.11. Since X has an ample family of line
bundles, every quasi-coherent sheaf F on X admits a surjective map

⊕

Li → F from
a direct sum of line bundles to F (see proof of theorem 3.1). This implies firstly
that the dual of criterion 2.6 (b) is satisfied, and we have fully faithful functors
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Db Vect(X) ⊂ Db Qcoh(X) ⊂ DQcoh(X), and secondly that the compact objects
Vect(X) generates DQcoh(X) as a triangulated category with infinite sums. Since
Db Vect(X) is idempotent complete [BS01], the functor Db Vect(X) → DPerf(X)
is an equivalence, see theorem C.10 ¤

3.6. Theorem [TT90, Theorem 5.1, 7.4]. Let X be a quasi-compact and separated
scheme, and U ⊂ X a quasi-compact open subscheme. Let Z = X − U . Then U is
separated, and the sequence DPerfZ(X)→ DPerf(X)→ DPerf(U) of triangulated
categories is exact up to factors. In particular, we have a homotopy fibration

IKZ(X)→ IK(X)→ IK(U)

and its associated long exact sequence of K-groups.

Proof. Write j : U ⊂ X for the open immersion. Restriction Lj∗ = j∗ : DQcoh(X)→
DQcoh(U) has a right adjoint Rj∗ : DQcoh(U)→ DQcoh(X) which is computed
as Rj∗(A) = j∗(I) where A → I is a K-injective resolution (for terminology, see
C.7). The counit of adjunction Lj∗Rj∗(A) → A is j∗j∗(I) = I ← A which is a
(quasi-) isomorphism. Therefore, Rj∗ is fully faithful and Lj∗ makes DQcoh(U)
into a Verdier quotient of DQcoh(X). Let DZ Qcoh(X) ⊂ DQcoh(X) be the sub-
category of those complexes which are acyclic outside of Z, then we have an exact
sequence of triangulated categories

DZ Qcoh(X)→ DQcoh(X)→ DQcoh(U).

In all three categories infinite direct sums exist and the functors preserve them. By
theorem C.11, all three categories are compactly generated by their subcategory of
perfect complexes. Therefore, the sequence

DPerfZ(X)→ DPerf(X)→ DPerf(U)

of subcategories of compact objects is exact up to factors, by theorem C.10. The
IK-theory statement follows from 2.29. ¤

3.7. Theorem (Excision). Let X → Y be a map of quasi-compact and separated
schemes, and let Z ↪→ X be a closed immersion such that the composition Z → Y
is also a closed immersion. Assume that X −Z and Y −Z are quasi-compact, and
that f is flat in a neighborhood of Z ⊂ X. Then Lf ∗ : PerfZ(Y ) → PerfZ(X)
induces an equivalence

IKZ(Y )
∼
→ IKZ(X)

Proof. This is because Lf∗ : PerfZ(Y ) → PerfZ(X) induces an equivalence Lf∗ :
D PerfZ(Y )→ D PerfZ(X) of triangulated categories [TT90, Proposition 3.19]. ¤

3.8. Zariski descent. Let X = U ∪ V be a quasi-compact and separated scheme
covered by two quasi-compact open subschemes U and V . Then U , V , U ∩ V are
quasi-compact and separated, and the square

IK(X) //

²²

IK(U)

²²
IK(V ) // IK(U ∩ V )
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is homotopy cartesian. In particular, there is a long exact sequence of K-groups

· · · → IKi+1(U ∩V )→ IKi(X)→ IKi(U)⊕IKi(V )→ IKi(U ∩V )→ IKi−1(X)→ · · ·

This is because the horizontal homotopy fibres are IKZ(X) and IKZ(V ) with Z =
X − U = V − U ∩ V , and IKZ(X)→ IKZ(V ) is an equivalence, by excision 3.7.

3.9. Theorem (Projective bundle theorem [TT90, Theorem 4.1, 7.3]). Let X be a
quasi-compact and separated scheme, and let E → X be a geometric vector bundle
over X of rank n + 1. Let p : PE → X be the associated projective bundle with
twisting sheaf OE(1). Then we have an equivalence

n
∏

l=0

OE(−l)⊗ Lp∗ :
n
∏

l=0

IK(X)
∼
−→ IK(PE).

Proof. By Zariski descent 3.8, the question is local in X, so that we may assume
X = SpecA affine, and p : PE → X the canonical projection Proj(A[T0, ..., Tn]) =

Pn
A

p
→ SpecA. Moreover, DPerf(SpecA) = Db(A−proj) andDPerf(Pn) = Db Vect(Pn),

by 3.5. In this case, the twisting sheaf O(1) is ample so that for every quasi-coherent
sheaf F there is a surjection

⊕

i∈I O(−li) → F with li ≥ 0. This implies that
DVect(Pn) is generated as an idempotent complete triangulated category by the
family {OPn(−l)| l ≥ 0}, see theorem C.10. The sequence T0, ..., Tn is a regular

sequence in S = A[T1, ..., Tn] so that the Koszul complex
⊗n

i=0( S(−1)
Ti→ S )

induces an exact sequence of graded S-modules

0→ S(−n−1)→
n+1
⊕

1

S(−n)→

(n+1

2 )
⊕

1

S(−n+1)→ · · · →
n+1
⊕

1

S(−1)→ S → A→ 0.

Taking associated sheaves, we obtain an exact sequence of quasi-coherent sheaves
on Pn

A

0→ O(−n− 1)→
n+1
⊕

1

O(−n)→

(n+1

2 )
⊕

1

O(−n + 1)→ · · · →
n+1
⊕

1

O(−1)→ OPn → 0.

This shows that Db Vect(Pn
A ) is generated as an idempotent complete triangulated

category by O(−n), ..., O(−1), OPn . For i ≤ j, let Db
[i,j] ⊂ D

b Vect(Pn) be the full

idempotent complete triangulated subcategory generated by O(l), i ≤ l ≤ j. We
have a filtration

0 ⊂ Db
[0,0] ⊂ D

b
[−1,0] ⊂ ... ⊂ Db

[−n,0] = Db Vect(Pn).

Since H∗(Pn
A , O(−l)) = 0 for l = 1, ..., n [Gro61, Proposition III 2.1.12], we have

Hom(O(−j)[r], O(−l)[s]) = 0 in Db Vect(Pn
A ) for 0 ≤ i < l ≤ n. This implies that

the composition

Db
[−l,−l] ⊂ D

b
[−l,0] → D

b
[−l,0]/D

b
[−l+1,0]

is an equivalence, by exercise C.6.
The unit of adjunction F → Rp∗Lp∗F is an (quasi-) isomorphism for F = A

because A → H0(Rp∗Lp∗A) = H0(Rp∗OPn) = H0(Pn, OPn) is an isomorphism,
and Hi(Pn, OPn) = 0 for i 6= 0 [Gro61, Proposition III 2.1.12]. Since Db(A−proj)
is generated as an idempotent complete triangulated category by A, we see that
the unit of adjunction F → Rp∗Lp∗F is an (quasi-) isomorphism for all F ∈
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Db(A−proj). This implies that Lp∗ = p∗ : Db(A−proj) → Db Vect(Pn) is fully
faithful. Since tensoring with O(l) is an equivalence, we see that O(−l) ⊗ Lp∗ :
Db(A−proj) → Db

[−l,−l] is an equivalence (the functor is fully faithful, and both

categories have the same set of generators).

Now we are ready to prove the theorem. For i ≤ j, let Chb
[i,j] ⊂ Chb Vect(Pn) be

the full subcategory of those chain complexes which lie in Db
[i,j]. Let w be the set of

maps in Chb
[−l,0] which are isomorphisms in the quotient category Db

[−l,0]/D
b
[−l+1,0].

By construction,

(Chb
[−l+1,0], quis)→ (Chb

[−l,0], quis)→ (Chb
[−l,0], w)

induces an exact sequence of associated triangulated categories and thus a homo-
topy fibration in IK-theory (theorem 2.29) for l = 1, ..., n. Moreover, the argument
above shows that the composition

O(−l)⊗ p∗ : (Chb(A−proj), quis)→ (Chb
[−l,0], quis)→ (Chb

[−l,0], w)

induces an equivalence of associated triangulated categories, and thus an equiva-
lence in IK-theory. It follows that the IK-theory fibration splits, and we have a
homotopy equivalence

(O(−l)⊗ p∗, 1) : IK(A)× IK(Chb
[−l+1,0], quis)

∼
−→ IK(Chb

[−l,0], quis)

for l = 1, ..., n. Since Chb
[−n,0] = Chb Vect(Pn

A ), this implies the theorem. ¤

3.10. Theorem (Bass fundamental theorem). Let X be a quasi-compact and sep-
arated scheme. Then there is a split exact sequence for all n ∈ Z

0→ IKn(X)→ IKn(X[T ])⊕ IKn(X[T−1])→ IKn(X[T, T−1])→ IKn−1(X)→ 0

Proof. The projective line P1
X over X has standard open covering by X[T ] and

X[T−1] with intersection X[T, T−1]. Zariski descent 3.8 yields a long exact sequence

· · · → IKn(P1
X)→ IKn(X[T ])⊕IKn(X[T−1])→ IKn(X[T, T−1])→ IKn−1(P

1
X)→ · · ·

By the projective bundle theorem 3.9, the group IKn(P1
X) is IKn(X) ⊕ IKn(X)

with basis [OP1 ] and [OP1(−1)]. Making a base-change, we can write IKn(P1
X)

as IKn(X) ⊕ IKn(X) with basis [OP1 ] and [OP1 ] − [OP1(−1)]. Since on X[T ] and
on X[T−1] the two line-bundles OP1 and OP1(−1) are isomorphic, the left map
in the long Mayer-Vietoris exact sequence above is trivial on the direct summand
K(X) corresponding to the base [OP1 ]− [OP1(−1)]. Since the map is clearly (split)
injective on the other summand, the long Mayer-Vietoris exact sequence breaks up
into shorter exact sequences which give Bass fundamental exact sequences. The
splitting of the map IKn(X[T, T−1])→ IKn−1(X) is given by the cup product with
the element [T ] ∈ K1(Z[T, T−1]). ¤

For a proof of the following theorem, see [Tho93], and [CHSW05].
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3.11. Theorem (Blow-ups along regularly embedded centers). Let i : Y ⊂ X be a
regular embedding of pure codimension d with X quasi-compact and separated. Let
p : X ′ → X be the blow-up of X along Y and j : Y ′ ⊂ X ′ the exceptional divisor.
Write q : Y ′ → Y for the induced map. Then the square

IK(X)
Li∗ //

Lp∗

²²

IK(Y )

Lq∗

²²
IK(X ′)

Lj∗

// IK(Y ′)

is homotopy cartesian. Moreover, there is a homotopy equivalence

IK(X ′) ' IK(X)×

d−1
∏

1

IK(Y ).

3.12. More derived equivalences. There exist semi-orthogonal decompositions
of the derived categories of grassmannians, smooth quadrics [Kap88], for Severi
Brauer varieties [Ber05], toric varieties [CMR04], [Kaw06] and many more. Also,
Neeman and Ranicki describe the exact conditions under which a Cohn localiza-
tion R → S−1R of rings induces a localization Db(R−proj) → Db(S−1R−proj)
of triangulated categories [NR04]. All these theorems yield results in K-theory,
by an application of theorems 2.21 and 2.29. Historically however, many of them
were obtained first as applications of Quillen’s methods, see for instance [Swa85],
[Pan94], [Qui73, §8 4].

4. Beyond the Localization theorem

In this section we simply state some important theorems in the K-theory of
schemes the proofs of which go beyond the methods explained in the previous
sections. For more overviews on a variety of topics in K-theory, we refer the reader
to the K-theory handbooks [FG05].

4.1. Brown-Gersten-Quillen spectral sequence [Qui73]. Let X be a noether-
ian scheme, and write Xp ⊂ X for the set of points of codimension p in X. There
is a filtration 0 ⊂ ... ⊂ Coh2(X) ⊂ Coh1(X) ⊂ Coh0(X) = Coh(X) of Coh(X)

by the Serre abelian subcategories Cohi(X) ⊂ Coh(X) of those coherent sheaves
F whose support has codimension ≥ i. This filtration, together with Quillen’s
localization and devissage theorems, leads to the Brown-Gersten-Quillen (BGQ)
spectral sequence

Ep,q
1 =

⊕

x∈Xp

K−p−q(k(x))⇒ G−p−q(X)

If X is of finite type over a field, inspection of the differential d1 yields an isomor-
phism

Ep,−p
2

∼= CHp(X),

where CHp(X) is the Chow-group of codimension p cycles modulo rational equiva-
lence as defined in [Ful98].
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4.2. Gersten’s conjecture and Bloch’s formula. The Brown-Gersten-Quillen
spectral sequence yields a complex

0→ Gn(X)→
⊕

x∈X0

Kn(k(x))
d1→

⊕

x∈X1

Kn−1(k(x))
d1→ · · ·

Gersten conjectured that this complex is exact for X = SpecR, where R is a
regular noetherian ring. The conjecture is proved in case R (is regular noetherian
and) contains a field [Pan03] building on the geometric case proved in [Qui73].

As a corollary [Qui73], one obtains an isomorphism for the E2-term of the BGQ-
spectral sequence Ep,q

2
∼= Hp

Zar(X,K−q,X), and Bloch’s formula

CHp(X) ∼= Hp
Zar(X,Kp,X),

where Kp,X denotes the Zariski sheaf associated to the presheaf U 7→ Kp(U), and
X is a regular scheme of finite type over a field.

As an application, one can use products Kp(X)⊗Kq(X)→ Kp+q(X) in K-theory
and Bloch’s formula to define the intersection product on Chow-groups (without
using any moving lemma nor deformation to the normal cone).

4.3. The motivic spectral sequence. Let X be a smooth scheme over a perfect
field. Then there is a spectral sequence [FS02], [Lev05]

Ep,q
2 = Hp−q

mot (X, Z(−q))⇒ K−p−q(X).

Here Hp
mot(X, Z(q)) is the motivic cohomology of X as defined in [VSF00], [MVW06].

It is proved in loc.cit that this group is isomorphic to Bloch’s higher Chow group
CHq(X, 2q − p) as defined in [Blo86]. Rationally, the spectral sequence collapses,
and yields an isomorphism [Blo86], [Lev94]

Kn(X)Q
∼=
⊕

i

CHi(X,n)Q.

4.4. Milnor K-theory and the Bloch-Kato conjecture. Let F be a (commuta-
tive) field. The Milnor K-theory KM

∗ (F ) of F is the graded ring generated in degree
1 by symbols {a} for a ∈ F× a unit in F , modulo the relations {ab} = {a}+{b} and
{a} · {1− a} = 0 for a 6= 1. One easily computes KM

0 (F ) = Z and KM
1 (F ) = F×.

Since K1(F ) = F×, and since Quillen’s K-groups define a graded ring K∗(F ) (which
is commutative – in the graded sense), we obtain a morphism KM

∗ (F ) → K∗(F )
extending the isomorphisms on K0 and K1. Matsumotos’ theorem says that this
map is also an isomorphism for ∗ = 2, that is, KM

2 (F )→ K2(F ), see [Mil71].
Let m = pν be a prime power, with p different from the characteristic of F ,

and let Fs be a separable closure of F . Then we have an exact sequence of Galois

modules 1 → µm → F×
s

m
→ F×

s → 1 where µm are the m-th roots of unity.
The sequence induces a map on etale cohomology F× → H1

et(F, µm). Using the
multiplicative structure of etale cohomology H∗

et(F, µ⊗∗
m ), this map extends to a map

of rings KM
∗ (F )→ H∗

et(F, µ⊗∗
m ) which induces the “norm residue homomorphism”

KM
n (F )/m→ Hn

et(F, µ⊗n
m ).

The Bloch-Kato conjecture for the prime p says that this map is an isomorphism
for all n.

The conjecture for m = 2ν was proved by Voevodsky [Voe03], and proofs for
m = pν odd have been announced by Rost and Voevodsky.
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4.5. Computation of K(Fq). Quillen computed the K-groups of finite fields in
[Qui72]. They are given by the formulas K0(Fq) ∼= Z, K2n(Fq) = 0, n > 0, and
K2n−1(Fq) ∼= Z/(qn − 1)Z, n > 0.

4.6. Computation of K(Z). Modulo the Bloch-Kato conjecture 4.4 for odd primes
(which is believed to be proved...) and the Vandiver conjecture (which seems to
be wide open), the K-groups of Z for n ≥ 2 are given as follows [Wei05], [Kur92],
[Mit97]

n mod 8 1 2 3 4 5 6 7 8
Kn(Z) Z⊕ Z/2 Z/2ck Z/2w2k 0 Z Z/ck Z/w2k 0

where k is the integer part of 1+ n
4 , ck and w2k are the numerator and denominator

of Bk

4k
with Bk the k-th Bernoulli number. The Bk’s are the coefficients of the power

series

t

et − 1
= 1−

t

2
+

∞
∑

k=1

(−1)k+1Bk

t2k

(2k)!

4.7. Cdh descent [CHSW05]. The following is due to Häsemeyer [Hae04]. Let k
be a field of characteristic 0, and write Schk for the category of separated schemes
of finite type over k. Let F be a contravariant functor from Schk to the category
of spectra (or chain complexes of abelian groups). Let Y → X ← X ′ be maps
of schemes in Schk and Y ′ = Y ×X X ′ the fibre product. Consider the following
square of spectra (or chain complexes)

F (X)

²²

// F (Y )

²²
F (X ′) // F (Y ′)

(10)

obtained by functoriality of F . Suppose that F satisfies the following.

(a) Nisnevich Descent. Let f : X ′ → X be an etale map, and Y → X an
open immersion. Assume that f induces an isomorphism f : (X ′−Y ′)red

∼=
(X − Y )red. Then the square (10) is homotopy cartesian.

(b) Invariance under nilpotent extensions. The map Xred → X induces an
equivalence F (X) ' F (Xred).

(c) Excision for ideals. Let f : R → S be a map of commutative rings, I ⊂ R
an ideal such that f : I → f(I) is an isomorphism, and an ideal in S.
Set X = SpecR, Y = SpecR/I, X ′ = SpecS, Y ′ = SpecS/f(I) with the
induced maps between them. Then (10) is homotopy cartesian.

(d) Excision for blow-ups along regularly embedded centers. Let Y ⊂ X be
a regular embedding of pure codimension (a closed immersion is regular
of pure codimension d if, locally, its ideal sheaf is generated by a regular
sequence of length d), X ′ the blow-up of X along Y , and Y ′ ⊂ X ′ the
exceptional divisor. Then (10) is homotopy cartesian.

Then for any closed embedding Y ⊂ X in Schk, the square (10) is homotopy
cartesian, where X ′ is the blow-up of X along Y , and Y ′ ⊂ X ′ the exceptional
divisor. In this case we say that F satisfies cdh descent.
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4.8. Example (Infinitesimal K-theory [CHSW05]). By theorems 3.7, 2.29, and
3.11, IK-theory satisfies (a) and (d). But neither (b) nor (c) holds for IK-theory
(see Cortiñas’ lecture). The same holds for cyclic homology and its variants, since
(a) and (d) are formal consequences of the localization theorem 2.29. Therefore, the
homotopy fibre Kinf of the Chern character IK → HN from IK-theory to negative
cyclic homology satisfies (a) and (d). By a theorem of Goodwillie [Goo86], K inf

satisfies (b), and by a theorem of Cortiñas [Cor06], K inf satisfies (c). Therefore,
infinitesimal K-theory Kinf satisfies cdh-descent in characteristic 0.

This was used in [CHSW05] to prove that Ki(X) = 0, i < −d, for X a d-
dimensional scheme essentially of finite type over a field of characteristic 0, and
K−d(X) = Hd

cdh(X, Z).

4.9. Examples. Cdh-descent in characteristic 0 also holds for homotopy K-theory
KH [Hae04], periodic cyclic homology HP [CHSW05], and stabilized Witt groups
[Schb].

Appendix A. The classifying space of a category

We recall the definition of simplicial sets and that of a classifying space of a
category. Details can be found for instance in [FP90], [GJ99], [May67], [Wei94].

A.1. Simplicial sets. Let ∆ be the category whose objects are the sets [n] =
{0, 1, 2, ..., n}, n ≥ 0, and where a map [n] → [m] is an order preserving map
of sets [n] → [m]. Composition in ∆ is composition of (order preserving) maps.
The unique order preserving injective maps di : [n − 1] → [n] which leave out i,
are called face maps, i = 0, ..., n. The unique order preserving surjective maps
sj : [n]→ [n− 1] for which the pre-image of j ∈ [n− 1] contains two elements, are
called degeneracy maps, j = 0, ...n − 1. Every map in ∆ is a composition of face
and degeneracy maps. Thus ∆ is generated by face and degeneracy maps modulo
some relations (see references above).

A simplicial set is a functor X : ∆op → Sets where Sets stands for the category
of sets. Thus, for every integer n ≥ 0, we are given a set Xn, and for every order
preserving map θ : [n]→ [m], we are given a map of sets θ∗ : Xm → Xn such that
(θ ◦σ)∗ = (σ)∗ ◦ (θ)∗. Since ∆ is generated by face and degeneracy maps, it suffices
to specify θ∗ for face and degeneracy maps, and to check the relations alluded to
above. A map of simplicial sets X → Y is a natural transformation of functors.

A cosimplicial space is a functor ∆→ Top, where Top stands for the category of
(compactly generated Hausdorff) topological spaces (a Hausdorff topological space
is compactly generated if a subset is closed iff its intersection with every compact
subset is closed in that compact subset; every compact Hausdorff space, and every
CW-complex is compactly generated, [ML98, VIII.8], [Whi78, I.4]). The standard
cosimplicial space is the functor ∆∗ : ∆→ Top where

∆n = {(t0, ..., tn) ∈ R
n | ti ≥ 0, t0 + · · · tn = 1} ⊂ R

n

is equipped with the subspace topology coming from Rn.
An order preserving map θ : [n]→ [m] defines a continuous map

θ∗ : ∆n → ∆m : (s0, ..., sn) 7→ (t0, ..., tm) with ti =
∑

θ(j)=i

sj
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such that (θ ◦ σ)∗ = θ∗ ◦ σ∗. The space ∆n is homeomorphic to the usual n-
dimensional ball with boundary ∂∆n =

⋃

0≤i≤n(di)∗∆n−1 ⊂ ∆n homeomorphic to
the n− 1-dimensional sphere.

The topological realization of a simplicial set X is the quotient topological space

|X| =
⊔

j≥0

Xj ×∆j/ ∼

where the equivalence relation ∼ is generated by (θ∗x, t) = (x, θ∗t). A simplex x ∈
Xn is called non-degenerate if x /∈ s∗jXn−1, j = 0, ...n− 1. Write Xnd

n ⊂ Xn for the
set of non-degenerate n-simplices. Let |X|n ⊂ |X| be the image of

⊔

n≥j≥0 Xj ×∆j

in |X|. Note that |X|0 = X0. One checks that the square

Xnd
n × ∂∆n

Â

Ä

//

²²

Xnd
n ×∆n

²²
|X|n−1

Â

Ä

// |X|n

is cocartesian, so that |X|n is obtained from |X|n−1 by attaching exactly one n-cell
∆n along its boundary ∂∆n for each non-degenerate n-simplex in X. In particular,
|X| has a structure of a CW-complex.

If X and Y are simplicial sets, the product simplicial set X × Y has n-simplices
Xn × Yn with structure maps θ∗(x, y) = (θ∗x, θ∗y).

A.2. Proposition. The projection maps X × Y → X and X × Y → Y induce a
map of topological spaces |X×Y | → |X|× |Y | which is a homeomorphism, provided
the cartesian product |X| × |Y | is taken in the category of compactly generated
topological spaces.

A.3. The classifying space of a category. Consider the sets [n] as categories
with objects the integers 0, 1, ..., n. There is a unique map i → j if i ≤ j. Then
a functor [n] → [m] is nothing else than an order preserving map. Thus, we can
consider ∆ as the category with objects the categories [n], n ≥ 0, and maps the
functors [n]→ [m].

Let C be a small category. Its nerve is the simplicial set N∗C whose n-simplices
NnC are the functors [n]→ C. A functor θ : [n]→ [m] defines a map NmC → NnC :
F 7→ F ◦ θ such that (θ ◦ σ)∗ = (σ)∗ ◦ (θ)∗. An n-simplex in N∗C, that is, a functor
[n]→ C, is nothing else than a string of maps

C0
f0
→ C1

f1
→ · · ·

fn−1

→ Cn (11)

in C. The face map d∗
i deletes the object Ci and, if i 6= 0, n, composes the maps fi−1

and fi. The degeneracy map si doubles Ci and inserts the identity map 1Ci
. In

particular, the n-simplex (11) is non-degenerate iff none of the maps fi, i = 0, ..., n,
is an identity map.

The classifying space BC of a small category C is the topological realization

BC = |N∗C|

of the nerve N∗C of C. Any functor C → C′ induces a map on associated nerves and
classifying spaces.
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The classifying space construction commutes with products. This is because a
functor [n]→ C × C′ is the same as a pair of functors [n]→ C, [n]→ C ′, so that we
have N∗(C × C

′) = N∗C ×N∗C
′, hence B(C × C′) = BC ×BC′, by proposition A.2.

A.4. Example B[1]. The nerve of the category [1] has two non-degenerate 0-
simplices, namely the objects 0 and 1, and exactly one non-degenerate 1-simplex,
namely 0 → 1. All other simplices are degenerate. Thus, the classifying space
B[1] is obtained from the two point set {0, 1} by attaching a 1-cell ∆1 along its
boundary ∂∆1. The attachment is such that the two points of ∂∆1 are identified
with the two points {0, 1}. We see that B[1] is homeomorphic to the usual interval
∆1
∼= [0, 1].

A.5. Example BG. For a group G, we let G be the category with one object ∗, and
Hom(∗, ∗) = G. Then πiBG = 0 for i 6= 1 and π1BG = G where the isomorphism
G → π1BG sends an element g ∈ G to the loop lg represented by the morphism
g : ∗ → ∗. For details, see for instance [Wei94, Exercise 8.2.4, Example 8.3.3].

A.6. Lemma. A natural transformation η : F0 → F1 between functors F0, F1 :
C → C′ induces a homotopy BF0 ' BF1 between the associated maps BF0, BF1 :
BC → BC′ on classifying spaces. In particular, an equivalence of categories C → C ′

induces a homotopy equivalence BC → BC ′.

Proof. A natural transformation η : F0 → F1 defines a functor H : [1] × C → C ′

which sends the object (i,X), i = 0, 1, X ∈ C to Fi(X). There are two types of
morphisms in [1]× C, namely (idi, f) and (0→ 1, f) where i = 0, 1 and f : X → Y
is a map in C. They are sent to Fi(f), i = 0, 1 and ηY F0(f) = F1(f)ηX . It is
easy to check that H is indeed a functor. Now H induces a map [0, 1] × BC =
B[1] × BC = B([1] × C) → BC ′ whose restriction to {0} × BC and {1} × BC are
BF0 and BF1. Thus BF0 and BF1 are homotopic maps.

If F : C → C′ is an equivalence of categories, then there is a functor G : C ′ → C
and natural isomorphisms FG ∼= 1 and 1 ∼= GF . Thus BG : BC′ → BC is a
homotopy inverse of BF . ¤

Appendix B. Homotopy fibres and homotopy fibrations

We recall the definition of the homotopy fibre (or mapping fibre) of a map of
spaces [Whi78, chapter I.7]. Let g : Y → Z be a map of pointed topological spaces.
The homotopy fibre F (g) of g is the pointed topological space

F (g) = {(γ, y)| γ : [0, 1]→ Z s.t. γ(0) = ∗, γ(1) = g(y)} ⊂ Z [0,1] × Y

with base point the pair (∗, ∗), where the first ∗ is the constant path t 7→ ∗, t ∈ [0, 1].
There is a continuous map of pointed spaces F (g)→ Y : (γ, y) 7→ y which fits into
a natural long exact sequence of homotopy groups [Whi78, Corollary IV.8.9]

· · · → πi+1Z → πiF (g)→ πiY → πiZ → πi−1F (g)→ · · · (12)

ending in π0Y → π0Z.

A sequence of pointed spaces X
f
→ Y

g
→ Z such that the composition is the

constant map to the base point of Z is called homotopy fibration if the natural map
X → F (g) : x 7→ (∗, x) is a homotopy equivalence. In this case, there is a long
exact sequence of homotopy groups as in (12) with X in place of F (g).
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Appendix C. Background on triangulated categories

C.1. Definition. References here are [Ver96] and [Kel96]. A triangulated category
is an additive category A together with an auto-equivalence T : A → A and a class
of sequences

X
u
→ Y

v
→ Z

w
→ TX (13)

of maps in A called distinguished triangles. They are to satisfy the axioms TR1 –
TR4 below.

TR1 Every sequence of the form (13) which is isomorphic to a distinguished
triangle is a distinguished triangle. For every object A of A, the sequence

A
1
→ A→ 0→ TA is a distinguished triangle. Every map u : X → Y in A

is part of a distinguished triangle (13).

TR2 A sequence (13) is distinguished if and only if Y
v
→ Z

w
→ TX

−Tu
→ TY is a

distinguished triangle.

TR3 For any two distinguished triangles X
u
→ Y

v
→ Z

w
→ TX an X ′ u′

→ Y ′ v′

→

Z ′ w′

→ TX ′ and any pair of maps f : X → X ′, g : Y → Y ′ such that
gu = u′f there is a map h : Z → Z ′ such that hv = v′g and (Tf)w = w′h.

TR4 Octahedron axiom, see [Ver96], [Kel96]

In a distinguished triangle (13) the object Z is determined by the map u up to
(non-canonical) isomorphism. We call Z “the” cone of u.

C.2. Example. Let A be an additive category, and let K(A) be the homotopy
category of chain complexes in A. Its objects are chain complexes in A, and maps
are chain maps up to chain homotopy. The category K(A) is a triangulated category
where a sequence is a distinguished triangle if it is isomorphic in K(A) to a cofibre
sequence

X
f
→ Y

j
→ C(f)

q
→ TX.

Here, C(f) is the mapping cone of the chain map f : X → Y , which has C(f)i =

Y i ⊕ Xi+1 and differential di =
(

dY f
0 −dX

)

, and TX is the “shift” of X which

has (TX)i = Xi+1 and differential di = −di+1
X . The maps j : Y → C(f) and

q : C(f)→ TX are the canonical inclusions and projections in each degree.

C.3. Calculus of fractions. Let C be a category and w ⊂ Mor C a class of mor-
phisms in C. The localization of C with respect to w is the category obtained from C
by formally inverting the morphisms in w, that is, it is the category C[w−1] together
with a functor C → C[w−1] which satisfies the following universal property. For any
functor C → D which sends maps in w to isomorphisms, there is a unique functor
C[w−1] → D such that the composition C → C[w−1] → D is the given functor
C → D. In general, the category C[w−1] may, or may not exist. It always exists if
C is a small category.

If the class w satisfies a “calculus of right (or left) fractions”, there is an explicit
description of C[w−1] as we shall explain now. A class w of morphisms in a category
C is said to satisfy a calculus of right fractions if

(a) it is closed under composition, and 1X ∈ w for every object X of C.
(b) For all pairs of maps u : X → Y , s : Z → Y with s ∈ w, there are maps

v : W → Z, t : W → X with t ∈ w and sv = ut.
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(c) For any three maps f, g : X → Y , s : Y → Z with s ∈ w and sf = sg there
is a map t : W → X with t ∈ w and ft = gt.

If w satisfies the dual of (a) – (c) then w is said to satisfy a calculus of left fractions.
If w satisfies both, a calculus of left and right fractions, then w is said to satisfy a
calculus of fractions.

If w satisfies a calculus of right fractions, then the localized category C[w−1]
has the following description. Objects are the same as in C. A map X → Y in

C[w−1] is an equivalence class of data X
s
← M

f
→ Y written as a “right fraction”

fs−1, where f, s are maps in C and s ∈ w. The datum fs−1 is equivalent to the

datum X
t
← N

g
→ Y iff there are map s̄ : P → N and t̄ : P → M with s̄ (or t̄)

in w and such that st̄ = s̄t and f t̄ = gs̄. Composition (fs−1)(gt−1) is defined as
follows. By (b) above, there are maps h, r in C with r ∈ w and sh = gr. Then
(fs−1)(gt−1) = (fh)(tr)−1.

In this description, it is not clear whether or not HomC[w−1](X,Y ) is actually a
set. It is a set if C is a small category, but in general, this issue has to be dealt with
separately.

C.4. Verdier quotient. Let A be a triangulated category and B ⊂ A a full trian-
gulated subcategory. The class w of maps whose cones are (isomorphic to objects)
in B satisfies a calculus of fractions. The Verdier quotient A/B is, by definition,
the localized category A[w−1]. It is a triangulated category where a sequence is a
distinguished triangle if it is isomorphic to the image of a distinguished triangle of
A.

C.5. Example. Let A be an abelian category. Its (unbounded) derived category
D(A) is obtained from the category ChA of chain complexes in A by formally in-
verting the quasi-isomorphisms (a chain map is a quasi-isomorphism if it induces an
isomorphism in homology). Since homotopy equivalences are quasi-isomorphisms,
D(A) is also obtained from K(A) by formally inverting quasi-isomorphisms. Let
Kac(A) ⊂ K(A) be the full subcategory of acyclic chain complexes (that is, those
chain complexes which have trivial homology). It is closed under cones, and a chain
complex A is acyclic iff TA is. Therefore, Kac(A) is a full triangulated subcategory
of K(A). Since a map is a quasi-isomorphism iff its cone is acyclic, we see that
D(A) is the Verdier quotient K(A)/Kac(A). In particular, D(A) is a triangulated
category (provided it exists, that is, has small hom sets).

C.6. Exercise. LetA be a (idempotent complete) triangulated category, andA0,A1 ⊂
A full (idempotent complete) triangulated subcategories. Assume that Hom(A0, A1) =
0 for all objects A0 ∈ A0 and A1 ∈ A1. If A is generated as a (idempotent com-
plete) triangulated category by the union of A0 and A1, then the the composition
A1 ⊂ A → A/A0 is an equivalence. Moreover, an inverse induces a left adjoint
A → A/A0

∼= A1 to the inclusion A1 ⊂ A.

C.7. Grothendieck abelian categories. References here are [Spa88] and [Fra01].
Let A be a Grothendieck abelian category (that is, an abelian category which has
all set-indexed colimits, filtered colimits are exact, and has a generator (U is a
generator if for every object X there is a surjection

⊕

I U → X with I some index
set; a set of objects is called “set of generators” if their direct sum is a generator).
Then DA has small hom sets [Fra01]. It has the following explicit description.
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A K-injective complex is a complex I ∈ ChA such that for every map f : X → I
and every quasi-isomorphism s : X → Y there is a unique map (up to homotopy)
g : Y → I such that gs = f in K(A). This is equivalent to the requirement
that HomKA(A, I) = 0 for all acyclic chain complexes A. For instance, a bounded
below chain complex of injective objects in A is K-injective. But K-injective chain
complexes don’t need to consist of injective objects (for instance every contractible
chain complex is K-injective), nor does an unbounded chain complex of injective
objects need to be K-injective.

In a Grothendieck abelian category, every chain complex A has a K-injective
resolution, that is, admits a quasi-isomorphism A→ I with I a K-injective complex
[Fra01].

Let Kinj(A) ⊂ K(A) be the full subcategory of K-injective chain complexes. It is
a triangulated subcategory. Using the fact that every chain complex in A has a K-
injective resolution, it is easy to see that the composition Kinj(A) ⊂ K(A)→ D(A)
is an equivalence.

C.8. The derived category of quasi-coherent sheaves. Let X be a quasi-
compact and separated scheme. In the category Qcoh(X) of quasi-coherent OX -
modules, all small colimits exists, and filtered colimits are exact (as they can be
calculated locally). Every quasi-coherent OX -module is a filtered colimit of its
quasi-coherent submodules of finite type [Gro60, 9.4.9]. Therefore, the set of quasi-
coherent OX -module of finite type forms a set of generators for Qcoh(X). Hence,
the category Qcoh(X) is a Grothendieck abelian category. In particular, its derived
category DQcoh(X) exists, and has an explicit description as in C.7.

C.9. Compactly generated triangulated categories. References here are [Nee96]
and [Nee92]. Let A be a triangulated category in which all (set indexed) direct sums
exist. An object A of A is called compact if the canonical map

⊕

i∈I

Hom(A,Ei)→ Hom(A,
⊕

i∈I

Ei)

is an isomorphism, for any set of objects Ei, i ∈ I. Let Ac ⊂ A be the full
subcategory of compact objects. It is easy to see that Ac is an idempotent complete
triangulated subcategory of A.

A set S = {Ai, i ∈ I}, of compact objects is said to generateA (orA is compactly
generated (by S)) if for every object E ∈ A we have

Hom(Ai, E) = 0 ∀i ∈ I =⇒ E = 0

C.10. Theorem [Nee92].

(a) Let A be a compactly generated triangulated category with generating set S of
compact objects. Then Ac is the smallest idempotent complete triangulated
subcategory of A containing S.

(b) Let A → B → C be an exact sequence of compactly generated triangulated
categories. Assume that the functors in the sequence preserve direct sums
and compact objects. Then the sequence

Ac → Bc → Cc

of triangulated categories is exact up to factors.
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Let j : U ⊂ X be an open immersion of quasi-compact and separated schemes,
and let Z = X − U be the closed complement. Write DZ Qcoh(X) ⊂ DQcoh(X)
for the full subcategory of those complexes A which have support in Z, that is,
which are acyclic over U : Lj∗(A) = 0. It is obviously a triangulated subcategory
of DQcoh(X). For a proof of the following theorem, see [TT90, proof of Theorem
5.1] or [Nee96].

C.11. Theorem (Thomason). Let X be a quasi-compact and separated scheme,
and let U ⊂ X be a quasi-compact open subscheme with closed complement Z = X−
U . Then DZ Qcoh(X) is compactly generated by the (essentially small) subcategory
of perfect complexes on X which are acyclic over U . In particular, DPerfZ(X) ∼=
Dc

Z Qcoh(X).
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