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Abstract
Background Obesity is of complex origin, involving genetic and neurobehavioral factors. Genetic polymorphisms may
increase the risk for developing obesity by modulating dopamine-dependent behaviors, such as reward processing. Yet, few
studies have investigated the association of obesity, related genetic variants, and structural connectivity of the dopaminergic
reward network.
Methods We analyzed 347 participants (age range: 20–59 years, BMI range: 17–38 kg/m2) of the LIFE-Adult Study.
Genotyping for the single nucleotid polymorphisms rs1558902 (FTO) and rs1800497 (near dopamine D2 receptor) was
performed on a microarray. Structural connectivity of the reward network was derived from diffusion-weighted magnetic
resonance imaging at 3 T using deterministic tractography of Freesurfer-derived regions of interest. Using graph metrics, we
extracted summary measures of clustering coefficient and connectivity strength between frontal and striatal brain regions.
We used linear models to test the association of BMI, risk alleles of both variants, and reward network connectivity.
Results Higher BMI was significantly associated with lower connectivity strength for number of streamlines (β=−0.0025,
95%—C.I.: [−0.004, −0.0008], p= 0.0042), and, to lesser degree, fractional anisotropy (β=−0.0009, 95%—C.I.
[−0.0016, −0.00008], p= 0.031), but not clustering coefficient. Strongest associations were found for left putamen, right
accumbens, and right lateral orbitofrontal cortex. As expected, the polymorphism rs1558902 in FTO was associated with
higher BMI (F= 6.9, p < 0.001). None of the genetic variants was associated with reward network structural connectivity.
Conclusions Here, we provide evidence that higher BMI correlates with lower reward network structural connectivity. This
result is in line with previous findings of obesity-related decline in white matter microstructure. We did not observe an
association of variants in FTO or near DRD2 receptor with reward network structural connectivity in this population-based
cohort with a wide range of BMI and age. Future research should further investigate the link between genetics, obesity and
fronto-striatal structural connectivity.
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Introduction

Obesity or excess body weight is the result of an imbalance
in energy intake and expenditure and is now mainly con-
sidered a neurobehavioral disorder, which involves
homeostatic brain regions as well as regions engaged in
salience and reward processing [1]. Although increasing
obesity rates in western societies may be primarily driven
by the availability of high-fat diets and a sedentary lifestyle
[2], the risk of developing obesity is under strong (poly-
genetic) control, with heritability estimates of 50–70%
[3, 4]. Yet, it is poorly understood which individual
(genetic) predispositions determine the vulnerability to
those environmental influences and how they lead to
excessive weight gain and obesity.

Single nucleotid polymorphisms in the fat- and obesity-
related gene (FTO) are the most common genetic variants
associated with obesity [5]. Yet, little is known about the
mechanisms underlying this association [6]. Variation in
FTO may contribute to the risk for obesity by modulating
feeding behavior rather than energy expenditure [7]. Here,
one possible mechanism is that polymorphisms in FTO
influence dopamine signaling between the nucleus accum-
bens (Nacc) and frontal brain regions, either directly or by
interaction with dopamine-related variants [8]. Conse-
quently, behavioral changes in reward processing, learning
and impulsivity might lead to differences in eating behavior,
and ultimately, weight gain [9–12].

Functional neuroimaging studies have provided evidence
for a main effect of FTO on the neural response to food
cues, and reported that this association depended on fasting
state and ghrelin signaling [13–17]. Further studies have
shown that FTO interacted with the Taq1A polymorphism,
located near the D2 dopamine receptor (DRD2), to mod-
ulate reward learning and neural activity in response to food
cues—both key functions of the Nacc [18–20].

Besides functional activation, the strength of structural
connections between the Nacc and frontal brain regions
plays an important role for dopamine-dependent behavior
[21, 22]. Van Schouwenburg and colleagues showed that
the effects of a dopaminergic drug depended on fronto-
striatal structural connectivity [23]. Previously, individual
effects of dopaminergic drugs have been related to baseline
working memory capacity, which presumably reflects
baseline dopamine levels [24]. Along these lines, a DRD2
variant (rs6277 C-allele), previously linked to reduced
striatal binding potential, was associated with increased
fronto-striatal structural connectivity [25]. This variant is in
linkage disequilibrium with the Taq1A (D′= 0.66) [26].

Regarding the structural connectivity of the reward net-
work in obesity, studies showed contradicting results, with
both higher and lower structural connectivity between
striatum and frontal cortex associated with weight status

[27–29]. For other white matter tracts, studies have con-
sistently reported associations of higher body mass index
(BMI) and lower WM microstructure, possibly mediated by
the negative metabolic impact of obesity [30, 31]. Recently,
a variant in FTO was shown to interact with weight status
on fronto-striatal structural connectivity, indicating that
some of the mixed results might be due to genetic varia-
bility or differences in tonic dopamine levels [32, 33].

In summary, while there is consistent evidence of
obesity-related differences in global white matter micro-
structure, less is known about the association of BMI and
reward network white matter structure, and the impact of
obesity-related genotypes on this trait. In this study, we
aimed to investigate the association of structural reward
network connectivity, obesity, and genetic variations linked
to obesity in a well-characterized population-based sample.
Based on previous studies, we hypothesized that a higher
BMI would relate to lower reward network connectivity
[27]. More exploratory, we investigated whether FTO and
Taq1A polymorphisms had interactive or independent
effects on structural connectivity within the reward network
[19, 32]. This may help to better understand the genetic and
neurobehavioral background of obesity.

Methods

Participants

All participants took part in the MRI assessment of the LIFE-
Adult-Study (n ~ 2600) [34]. The study was approved by the
institutional ethics board of the Medical Faculty of the Uni-
versity of Leipzig and conducted according to the declaration
of Helsinki. Besides age and sex stratification, participants
were randomly selected from the registry of the city of
Leipzig and gave written informed consent. We included
participants aged between 20 and 59 years (n ~ 800) with
complete information on BMI and genotyping (n ~ 400).
Further, we excluded participants with stroke [1], neuror-
adiological findings of brain pathology [11], cancer treatment
in the last 12 months [5], epilepsy [5], multiple sclerosis [1],
and intake of centrally active medication (n= 25).

Due to incomplete fat suppression during the diffusion-
weighted imaging (DWI) acquisition, an artifactual rim in the
parietal lobe of the brain was present in many DWI scans. As
this artifact was difficult to detect in an automated fashion, we
manually rated all scans into three categories dependent on
the number and severity of affected slices, i.e., “no/very
mild”, “moderate”, and “severe”. We restricted our analysis to
those scans that were rated as “no/very mild” and “moderate”.
Two participants were excluded due to outlying values in
structural connectivity (see connectome reconstruction from
DWI data). This led to a total sample of 347 healthy
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volunteers eligible for analysis. We did not perform a formal
power analysis before the study. Yet, we estimate our power
to be sufficient (β= 0.98, based on N= 150 in the under- and
normal-weight group, N= 197 in the overweight and obese
group, alpha= 0.05 and the lowest Cohen’s d reported in ref.
[27] of d= 0.44 for FA CC difference, calculated using ‘pwr’
in R version 3.6.1).

Genotyping

Genomic DNA was extracted from EDTA-treated blood
samples using the Autopure LS instrument (Qiagen, Hilden).
Genotyping of FTO polymorphism rs1558902 and rs1800497
(Taq1A), a polymorphism near dopamine D2 receptor, was
performed based on using the Affymetrix Axiom Technology
with custom option (Axiom-CADLIFE). Individuals were
imputed at the 1000Genomes reference phase 1, release 3
(http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_
phase1_integrated.html) using SHAPEIT v2 and IMPUTE
2.3.0. Details of the measurement and quality control can be
found elsewhere [35].

We selected the rs1558902 polymorphism on FTO based
on a large BMI meta-GWAS [36]. The variant is in high
linkage disequilibrium with other obesity-associated SNPs,
e.g., rs9939609. The risk allele of this variant is the A allele
and the genotype frequencies in our sample were TT n=
116, AT n= 170, AA n= 61 (minor allele frequency=
0.42, test for Hardy–Weinberg equilibrium Chi2= 0.0008,
df= 0.97). We considered three groups of risk carriers for
the analysis (0: TT, 1: AT, 2: AA).

For the rs1800497 polymorphism, the genotype fre-
quencies were TT n= 249, AT n= 89, AA n= 9 (minor
allele frequency= 0.15, test for Hardy–Weinberg equili-
brium Chi2= 0.02, df= 1, p= 0.89). We grouped together
carriers of at least one risk allele (A).

Anthropometric measurement

Anthropometric measurements were conducted by trained
study personal. Body weight was measured with scale
SECA 701, height was measured with height rod SECA 220
(SECA Gmbh & Co. KG). BMI was calculated as the
weight in kilograms divided by the square height in meters
(kg/m2).

Possible confounders

We performed sensitivity analysis of our results by con-
sidering different confounders. Head motion is an important
confounder in neuroimaging studies, not only affecting
measures of functional connectivity, but also measures of
brain structure. Since we previously noticed a strong colli-
nearity between BMI and head motion during resting state,

we adjusted for head motion in our analysis of structural
connectivity [37]. Therefore, we used the six rotation and
translation parameters returned by eddy_correct during
preprocessing to calculate mean framewise displacement as
described by [38]. Mean FD was used to adjust for head
motion during the DWI scan.

Smoking status and education were derived from self-
report questionnaires. Smoking status was available for N=
337 participants in three levels (0= never smoker, 1= pre-
vious smoker, 2= current smoker). Education was given in 3
levels (1= left school without degree or finished secondary
school after 9 years, 2= finished secondary school after 10
years, 3= finished secondary school after 12 or 13 years) and
was available for N= 345 participants. Depression scores
were derived from the CES-D questionnaire as previously
described and were available in N= 326 participants [39]. We
log-transformed mean FD and CES-D score prior to the
analysis because of the skewed distribution of these scores.

MR data acquisition

Brain imaging was performed on a 3T Verio Scanner
(Siemens, Erlangen) with a 32 channel head coil. T1-
weighted images were acquired using generalized auto-
calibrating partially parallel acquisition imaging technique
[40] and the Alzheimer’s Disease Neuroimaging Initiative
standard protocol with the following parameters: inversion
time, 900 ms; repetition time, 2300 ms; echo time, 2.98 ms;
flip angle, 9°; band width, 240 Hz/pixel; image matrix,
256 × 240; 176 partitions; field of view, 256 × 240 ×
176 mm3; sagittal orientation; voxel size, 1 × 1 × 1 mm3; no
interpolation.

DWI was performed using a double-spin echo sequence
with the following parameters: TR, 13.8 s; TE, 100 ms;
image matrix, 128 × 128 × 72; field of view, 220 × 220 ×
123 mm3, voxel size of 1.7-mm isotropic, max b value=
1000 s/mm2, 60 directions.

All MRI scans were acquired between 8 a.m. and 2 p.m.,
rarely at 3 p.m. Participants were randomly assigned to scan
slots. Accordingly, age, sex, and BMI were not linearly
associated with scanning hour (n= 236, correlations and
t-tests, respectively, all p > 0.05). Moreover, structural
connectivity measures were not linearly associated with
scanning hour (available in n= 236; bivariate correlations,
all p > 0.05). We also did not find evidence for periodic
associations with time of day by visually checking the plots.
Participants received a small non-standardized breakfast
before the scan.

T1-data processing

Cortical reconstruction and volumetric segmentation of T1-
weighted MR images were performed with the Freesurfer

Higher BMI, but not obesity-related genetic polymorphisms, correlates with lower structural. . . 493

http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html


image analysis suite (version 5.3.0) [41, 42]. Regions of
interest from subcortical segmentation and cortical Desikan-
Killiany parcellation were used as nodes in connectome
reconstruction. Volumetric measures of reward network
regions (bilateral, lateral, and medial orbitofrontal cortex;
caudate; putamen; and accumbens) were averaged across
hemispheres for analysis.

Connectome reconstruction from DWI data

Connectome reconstruction was performed during the
10kin1day-workshop, a collaborative science event where
over 10000 DWI datasets were processed in a joint effort
[43]. Preprocessing included correction for susceptibility
and eddy currents using FSL’s tool eddy-correct. Free-
surfer’s standard Desikan-Killiany parcellation was used to
select 68 cortical and 14 subcortical regions for connectome
reconstruction. A diffusion tensor was fitted to each voxel in
a white matter mask using robust tensor fitting, and deter-
ministic pathway tractography was applied to construct
white matter fiber tracts using a customized script described
in [43]. Tracts were started in each voxel and then followed
the main diffusion direction using the fiber assignment by
continuous tracking algorithm. Stopping criteria were FA
value below 0.1, crossing of the brain mask, or a fiber turn
of more than 45°. Weighted, unsigned, and undirected
connectivity matrices were constructed for each subject by
using 82 (sub)cortical regions as nodes and connectivity
weights between the regions as edges. Two types of con-
nectivity weights were assessed (1) total number of con-
necting streamlines touching both regions (NOS) and (2)
mean FA across voxels included in these streamlines (FA).

Reward connectivity networks were reconstructed by
using bilateral lateral and medial orbitofrontal cortex, cau-
date, putamen, and accumbens as nodes and their respective
structural (NOS and FA strength) connectivity strength (CS)
as edges [27]. Data quality assurance was done according to
the 10kin1day-workshop guidelines by identifying subjects
with outlying values in mean NOS or mean FA connectivity
of existing connections or outlying values in prevalence of
existing or non-existing connections [43]. Outliers were
defined as values higher than (3rd quartile+ 2*interquartile
range (IQR)) or lower than (1st quartile− 2*IQR). This led
to the exclusion of two participants with bad data quality
(excessive head motion and large ventricles).

Reward network analyses

We used a graph theoretical approach to investigate the
strength and organization of the reward network. This
approach is based on the evidence that large-scale brain
networks are intrinsically organized like graphs and show
corresponding properties [44]. Following [27], we defined

the reward network based on ten bilateral regions (lateral and
medial orbitofrontal cortex, caudate, putamen, and accum-
bens) as nodes and NOS and average FA between regions as
edges. CS within the network was assessed as the average
connectivity between all pairwise regions. CS indicates the
overall strength of connections between these brain regions,
either quantitatively (NOS) or qualitatively (FA). Further,
we calculated the clustering coefficient (CC) as the average
of the CC of the individual nodes. This measure reflects
local connectivity, i.e., how densely neighboring nodes in
the network are connected to each other. CS and CC mea-
sure different aspects of network organization, e.g., overall
strength and local organization, and might therefore be dif-
ferentially associated with our measures of interest.

We calculated the graph metrics (mean FA and mean
NOS CC and CS) using the Brain Connectivity Toolbox in
Matlab 9.7 (2019b). Then, we normalized the measures by
the corresponding whole brain connectivity metrics,
resulting in the following reward network metrics: FA CS,
FA CC, NOS CS, and NOS CC. The normalization was
performed following [27] and aimed to make the result
more specific to differences in the reward network.

The NOS structural connectivity weights were normal-
ized to [0, 1] prior to calculating the weighted CC.

For sensitivity analysis, we assessed normalized node-
wise CS and CC for the ten nodes (bilateral, lateral, and
medial orbitofrontal cortex; caudate; putamen; and accum-
bens) in the network.

Statistical analysis

We used univariate linear models in R version 3.6.1 to
investigate the association of the BMI, genetic variants, and
measures of reward network (REW) structural connectivity
[45].

We checked the assumptions of linear regression (normality
and homoscedasticity of residuals) visually, and excluded no
data point in the main analysis, as these were met. Yet, we
excluded moderate outliers in BMI (1.5 IQR above 3rd
quartile) in a sensitivity analysis. We use F-tests and associated
p values from R’s anova to compare full versus null models.

First, we tested the association of BMI and the four
reward network measures, adjusting for age and sex (Model
1: REW metric ~ age+ sex+ BMI). If there was a sig-
nificant association of BMI, tested by comparing this full
model against a null model including only age and sex
(Bonferroni-corrected alpha= 0.0125), we additionally
adjusted for average head motion during the DWI scan,
smoking status, depression, and education (Model 2: REW
metric ~ age+ sex+ head motion+ smoking status+
depression+ education+ BMI).

We further investigated the node-wise connectivity if the
edge type (i.e., FA or NOS) reached network-wide
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significance. Thereby we aimed to identify nodes that
contributed most to the result. Here, we fitted Model 2
(node-wise REW metric ~ age+ sex+ head motion+
smoking status+ depression+ education+ BMI) and used
Bonferroni-corrected alpha= 0.005 (accounting for ten
regions of interest tested).

In the genetic analysis, we first investigated whether the
polymorphisms rs1558902 and rs180047 explained variance
in BMI. We compared a full model including the interaction
of rs1558902 (0/1/2 risk-allele groups) with rs180047 (0/1 or
2 risk-allele groups) (Model 3: BMI ~ age+ sex+ FTO*-
Taq1A) against a null model without the interaction (Model 4:
BMI ~ age+ sex+ FTO+ Taq1A). Without a significant
interaction (Chi-square test of Model 3 vs. 4: p < 0.05), we
report only main effects of model 4.

Then, we tested whether the polymorphisms were asso-
ciated with reward network connectivity, either indepen-
dently or interacting with each other. Again, we first tested
the interaction effect of the two variants (Model 5: REW
metric ~ age+ sex+ FTO*Taq1A) by comparing it to a
null model without the interaction. If there was no indica-
tion for an interaction (p > 0.05), we checked for indepen-
dent effects of the two genotypes separately (Model 6:
REW metric ~ age+ sex+ FTO+ Taq1A), again by com-
paring against a null model including age, sex. If we found
a significant effect (p < 0.05) for any of the two variants, we
additionally included head motion, smoking status,
depression, education as covariates.

Results

In total, we analyzed 347 participants (53% women), for
descriptive statistics see Table 1.

Association of BMI and reward network metrics

In the main linear regression analysis, reconstruction of
structural connectivity showed that a higher BMI was
associated with lower CS of NOS edge measures in the
reward network, after adjusting for age and sex (Bonferroni-
corrected, p= 0.0042; model 1, Fig. 1 and Table 2). Higher
BMI was also associated with lower FA CS, but this effect
did not survive Bonferroni-correction (p= 0.031). NOS CS
remained significantly associated with BMI when addi-
tionally correcting for potential confounding effects of head
motion, smoking status, depression score, and education
(model 2, p= 0.015), while FA CS did not. The CC for
both FA and NOS was not associated with BMI. When
excluding three individuals with highest BMI (marked as

Table 1 Demographic
characteristics of the sample
(n= 378, sex distribution:
170 men and 208 women).

n Minimum Maximum Mean Std. deviation

Age [years] 347 20 59 45.7 9.0

BMI [kg/m2] 347 17.7 38.2 25.7 3.6

Weight groups (underweight/normal weight/overweight/
obese)

347 2/148/159/38

FTO rs1558902 polymorphism (TT/AT/AA) 347 116/170/61

Near DRD2 Taq1A polymorphism rs1800497 (0/at least 1
risk allele)

347 249/98

Depression scores (CES-D) 326 0 46 9.5 6.8

Smoking status (never smoker/previous smoker/current
smoker)

337 175/79/83

Education (no degree or 9/10/10/12–13 years) 345 9/190/146

Mean FD 347 0.4 1.3 0.62 0.13

Fat suppression artifact in DWI data (“no/very mild”/
“moderate”)

347 318/29

Weight groups according to WHO definition (underweight: BMI < 18 kg/m2, normal weight: ≥18, <25 kg/
m2, overweight: ≥25, <30 kg/m2, obese: ≥30 kg/m2).

BMI body mass index, CES-D Center for Epidemiologic Studies Depression Scale, mean FD mean
framewise displacement during diffusion-weighted imaging.

mean FA
0.65

0

L 
lateral OFC
medial OFC
caudate
putamen
accumbens

R

RRL 

L R

Fig. 1 Structural connectivity measured using mean fractional
anisotropy (FA) between hubs of the reward network. OFC orbi-
tofrontal cortex, L left hemisphere, R right hemisphere.
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moderate outliers), the result for FA (but not NOS) was
attenuated and no longer significant.

In addition, within-network node-wise measures showed
that for NOS, lower CS of the left putamen, and less so,
right Nacc were significantly associated with higher BMI
(Table 3). In line with the network-wide results, lower FA
CS of the bilateral Nacc and putamen, as well as right lateral
OFC, were weakly associated with higher BMI (Table 3).
When excluding three individuals with highest BMI, node-
wise associations of BMI and NOS CS, but not FA,
remained significant.

Association of genotypes and BMI

There was no interaction effect of FTO rs1558902 and
Taq1A on BMI (adjusted for age and sex, F= 1.7, p=
0.19). As main effect, we observed a significant increase in
BMI with increasing number of FTO rs1558902 risk alleles
(adjusted for age and sex, F= 6.9, p= 0.001 TATvsTT= 2.7,
TAAvsTT= 3.5, all p < 0.001) (Fig. 2). Carrying at least one
risk allele in Taq1A rs180047 was not significantly asso-
ciated with BMI (adjusted for age and sex, F= 2.7,
TAT/AAvsTT=−1.6, p= 0.099).

Considering the reward network measures, we did not
observe a significant interaction or main effects of FTO and
Taq1A genotypes on structural connectivity when adjusting
for age and sex, also when adjusting additionally for BMI
(Table 4).

Exploratory analyses

Furthermore, we tested for a potential interaction of sex and
age on our results. While men had lower FA values on
average compared to women, we did not detect a significant
interaction of sex and BMI on network strength (model
comparison FA: F= 0.35, p= 53; NOS: F= 0.25, p=
0.62). We observed a trend for an interaction between BMI
and age, indicating stronger negative association of BMI
and network strength in younger participants (model com-
parison, FA: F= 1.5, p= 0.22; NOS: F= 3.3, p= 0.067).

Discussion

In this cross-sectional analysis of young to middle-aged
adults, a higher BMI was significantly associated with lower
structural connectivity of the reward network. More speci-
fically, higher BMI predicted less connectivity strength for
NOS, and to a lesser degree FA edge weights in the Nacc,
putamen and orbitofrontal cortex, even if adjusting for age,
sex, education, and other conditions such as depressive
symptoms. In addition, while obesity-related SNPs in the
FTO gene significantly predicted higher BMI, we did not
observe genetic associations with measures of structural
connectivity in the reward network.

Our results of lower reward network connectivity with
higher BMI are in line with a previous study that examined
obesity-related differences in measures of white matter
structural coherence. Using the same graph-based approach,
Marqués-Iturria et al. reported lower CS and network
clustering of the striatum and orbitofrontal cortex in 31
obese participants compared to 32 lean controls [27]. In
contrast, [47] reported higher structural connectivity of the
bilateral putamen in obese and overweight participants
compared to normal-weight controls. This study also
investigated sex-by-weight status interactions and found
that among individuals with overweight and obesity women
had stronger connectivity of reward network regions than
men. Our exploratory analyses showed similar results,
indicating less CS in men compared to women, and a
potential moderation by age. While we chose the same
definition of structural connectivity as Marqués-Itturia,
Gupta et al. derived their connectivity values from the
number of connections and used different graph metrics.
This might be an explanation for the diverging results. Yet,
analyses in larger samples support our finding and showed
that higher BMI was associated with lower FA within white
matter tracts throughout the brain, including connections
between reward network regions [30, 31, 48]. Longitudinal
studies suggest that, at least in older adults, these differ-
ences may reflect damage due to the metabolic con-
sequences of vascular risk factors [49, 50]. Regardless of its

Table 2 Results from the linear
regression analysis of BMI and
reward network structural
connectivity strength (CS) and
clustering coefficient (CC) with
edge weights fractional
anisotropy (FA) and number of
streamlines (NOS).

FA CS FA CC NOS CS NOS CC

Model 1 Adj. R2

β
C.I.
p

0.12
−0.00089
[−0.0016, −0.00008]
0.031

0.11
−0.02
[−0.043, −0.0024]
0.078

0.12
−0.0025
[−0.004, −0.0008]
0.0042

0.007
0.31
[−0.09, 0.72]
0.12

Model 2 Adj. R2

β
C.I.
p

– 0.10
−0.0025
[−0.004, −0.0005]
0.015

–

Given values are adjusted R2, β, 95%—confidence interval (C.I.) of β and two-sided p value for the effect of
BMI (Models 1 and 2). Uncorrected significant p values are highlighted in italic, Bonferroni-corrected,
significant p values are highlighted in bold.
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origin, lower structural connectivity in the reward network
might underlie certain behavioral traits observed in obesity,
such as aberrant processing of food-related reward stimuli
[12, 51].

Considering genetic effects, we replicated the known
association of FTO risk alleles and higher BMI, while
carrying the Taq1A risk allele was not associated with
higher BMI in our cohort.

We did not find an association between the genetic
variants in FTO and near DRD2 on reward network struc-
tural connectivity in this population-based cohort.

Previous studies indicate that the link between obesity-
related genetic variation, obesity, and white matter micro-
structure is complex: while in a large cohort of Mexican-
American families, BMI and white matter microstructure in
different fiber tracts were genetically correlated [52], few
studies have shown associations of single obesity-related
variants and white matter microstructure. Dennis and col-
leagues reported that among 15 obesity-associated genetic
variants, a variant in NEGR1 had the strongest effect on
fractional anisotropy in the corona radiata in a sample of
~500 young, mainly normal-weight adults [53]. Further,
cumulative effects of all considered obesity-associated

Table 3 Results from the linear
regression analysis of BMI and
node-wise connectivity strength
(CS) with edge weights
fractional anisotropy (FA) and
number of streamlines (NOS).

Hemisphere Adj. R2 β C.I. p

FA CS

Nacc Right 0.08 −3.0e−04 [−7.2e−04;−1.3e−04] 0.05

Left 0.06 −2.8e−04 [−6.5e−04; −7.4e−05] 0.12

Caudate Right 0.01 1.8e−04 [−8.6e−05; 4.1e−04] 0.20

Left 0 −1.0e−04 [−3.1e−04; 1.1e−04] 0.34

Putamen Right 0.08 −1.7e−04 [−3.8e−04; 4.9e−05] 0.11

Left 0.05 −2.5e−04 [−4.7e−04; −2.4e−05] 0.03

Medial OFC Right 0.09 −6.9e−05 [−2.7e−04; 1.4e−04] 0.51

Left 0.08 −1.4e−04 [−3.6e−04; 7.6e−05] 0.19

Lateral OFC Right 0.06 −3.5e−04 [−7.0e−04; 3.1e−06] 0.05

Left 0.07 7.9e−05 [−2.7e−04; 4.3e−04] 0.65

NOS CS

Nacc Right 0.05 −5.1e−04 [−1.0e−03; 7.1e−06] 0.05

Left 0.06 −2.8e−04 [−7.2e−04; 1.5e−04] 0.19

Caudate Right 0.05 −6.2e−05 [−6.3e−04; 5.1e−04] 0.83

Left 0 −4.5e−04 [−1e−03; 1.6e−04] 0.15

Putamen Right 0.07 −6.6e−04 [−1.4e−03; 1.5e−04] 0.11

Left 0.09 −1.3e−03 [−2.2e−03; −4.3e−04] 0.004

Medial OFC Right 0.02 −4.2e−04 [−9.2e−04; 2.5e−04] 0.21

Left 0.06 −4.7e−04 [−1.1e−03; 1.6e−04] 0.14

Lateral OFC Right 0.04 −3.9e−04 [−9.2e−04; 1.4e−04] 0.15

Left 0.04 −3.1e−04 [−7.9e−04; 1.5e−04] 0.19

Given are adjusted R2, β, 95%—confidence interval (C.I.) of β and two-sided p value for the effect of BMI
(Model 2, adjusted for age, sex, depression, smoking status, education, head motion during scan).
Uncorrected significant p values are highlighted in italic, Bonferroni-corrected, significant p values are
highlighted in bold. Nacc Nucleus Accumbens, OFC orbitofrontal cortex
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Fig. 2 Body mass index (BMI) depends on FTO- and Taq1A
genotypes. Individual data points are shown for carriers of 0, 1, or 2
FTO risk alleles (x-axis) with no or at least one Taq1A risk allele (red/
blue, respectively). Bars within boxes give medians, surrounding
boxes show the interquartile range, vertical lines indicate 1.5 times the
interquartile range above/below the upper/lower quartile, respectively.
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genotypes predicted white matter microstructure in arcuate
fasciculus, fornix, and inferior frontal-occipital fasciculus.
Olivo et al. showed that BMI and FTO interacted on
structural connectivity of striatal-frontal tracts in a small
sample of young individuals in the normal to overweight
weight spectrum [32].

Regarding genetic variants in dopamine D2/D3 receptors
(DRD2), which may relate to obesity via differences in
reward processing [54, 55], only one study investigated the
link with white matter microstructure and found that a
genetic variant in strong linkage disequilibrium with Taq1A
correlated with higher structural connectivity of striatal-
frontal tracts in a sample of young, normal-weight partici-
pants [25]. Taken together, genetic effects of obesity-related
variants on structural connectivity may be subtle and
dependent on weight group. Along these lines, while the
BMI-by-FTO interaction was not significant in our sample,

an exploratory analysis in the normal-weight individuals
suggested during the revision showed that carrying more
FTO risk alleles was associated with higher NOS CS of the
reward network. This finding indicates that environmental
factors (e.g. metabolic consequences of obesity) might have
blurred the link between genetic factors and structural
connectivity in our sample, which also included overweight
and obese individuals. Moreover, exploratory analyses
suggest that age might play a role in this relationship,
possibly by increasing the variance in brain measures and
thereby making it more difficult to detect subtle genetic
effects.

In summary, future studies in more homogenous (i.e.
normal-weight and young individuals) and larger samples
with longitudinal designs need to further address the
underlying (epi-)genetics of reward structural connectivity
and obesity.

Table 4 Results from linear
regression analysis of BMI,
genetic variants, and reward
network structural connectivity.

Adj. R2 β C.I. p p (adj. for BMI)

FA CC

FTO × Taq1A 0.087 0.96 0.97

FTOATvsTT 0.093 −0.0044 [−0.052; 0.043] 0.86 0.94

FTOAAvsTT 0.0044 [−0.058; 0.067] 0.88 0.64

Taq1A 0.024 [−0.033; 0.061] 0.56 0.67

FA CS

FTO × Taq1A 0.094 0.94 0.92

FTOATvsTT 0.10 0.00035 [−0.0013; 0.002] 0.68 0.48

FTOAAvsTT −0.00046 [−0.0027; 0.0018] 0.68 0.99

Taq1A 0.0005 [−0.0012; 0.0022] 0.55 0.68

NOS CC

FTO × Taq1A −0.004 0.90 0.90

FTOATvsTT 0.0007 −0.59 [−1.44; 0.26] 0.17 0.10

FTOAAvsTT −0.36 [−1.48; 0.75] 0.52 0.33

Taq1A 0.23 [−0.61; 1.08] 0.58 0.48

NOS CS

FTO × Taq1A 0.099 0.67 0.56

FTOATvsTT 0.10 0.00089 [−0.0028; 0.0046] 0.64 0.37

FTOAAvsTT 0.00084 [−0.0041; 0.0058] 0.74 0.38

Taq1A 0.0021 [−0.0016; 0.0058] 0.27 0.39

For the FTO × Taq1A interaction, the adjusted R2 value of the regression model with the interaction and the p
value of the interaction, derived from comparison with the null model including age, sex, and main genetic
effects, are shown. For individual genetic effects, the adjusted R2 value of the regression null model without
the interaction, and the regression coefficients β for Taq1A, FTOATvsTT (0 vs. 1 risk allele), and FTOAAvsTT (0
vs. 2 risk alleles), 95%—confidence intervals (C.I.) of β coefficients and two-sided p value of the coefficients
are given. The column “p (adj. for BMI)” indicates results for the null model additionally adjusted for BMI.
FA CC: clustering coefficient of the reward network based on fractional anisotropy, FA CS: connectivity
strength of the reward network based on fractional anisotropy, NOS CC: clustering coefficient of the reward
network based on number of streamlines, NOS CS: connectivity strength of the reward network based on
number of streamlines.

FA CC clustering coefficient of the reward network based on fractional anisotropy, FA CS connectivity
strength of the reward network based on fractional anisotropy, NOS CC clustering coefficient of the reward
network based on number of streamlines, NOS CS connectivity strength of the reward network based on
number of streamlines.

498 F. Beyer et al.



Limitations

In this study, we did not investigate the causal relationship
between BMI and structural connectivity of the reward
network. Furthermore, our sample was not rich in obese
participants, which might limit the power of our analyses.
Although our sample size was adequate for an imaging
study, we might be underpowered to detect subtle effects of
single polymorphisms on brain connectivity. Finally, we did
not assess epigenetic and environmental factors in this
design such as e.g., physical activity, diet, and sleep [56, 57].
Strengths of our study include the well-characterized cohort
that enabled us to adjust for important confounders in our
analysis, and the high-resolution DWI protocol.

Conclusions

We here provide evidence that higher BMI is associated
with lower reward network structural connectivity. We did
not find any contribution of variants in FTO or near DRD2
receptor gene to reward network structural connectivity,
indicating that the genetic influence of these variants is
small. Future research should investigate the behavioral
implications of structural connectivity differences in the
fronto-striatal network and incorporate larger sample sizes
with longitudinal designs in order to gain further insight
into the genetic determinants of obesity in the brain.

Data availability

Along with the code, we provide a synthetic dataset here:
https://github.com/fBeyer89/BMI-and-reward-connectivity-
in-LIFE-Adult. This data was simulated based on the
properties of the original dataset but guarantees anonymity
for the participants [46]. Access to the original data may be
provided via the LIFE-Adult Study coordination by the
authors upon request.

Code availability

We made the code and a synthetic dataset available here:
https://github.com/fBeyer89/BMI-and-reward-connectivity-
in-LIFE-Adult. This code allows to reproduce the main
results of the paper, yet, more specific investigations may
not yield accurate results [46].
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