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Recently we constructed a renormalizable field theory up to two loops for the quasi-static depinning of elastic
manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher
correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much
simpler diagrammatic rules than anticipated. This is applied to the universal scaled width-distribution. The
expansion ind = 4 — ¢ predicts that the scaled distribution coincides to the lowest orders with the one for
a Gaussian theory with propagat6fq) = 1/¢%"%¢, ¢ being the roughness exponent. The deviations from
this Gaussian result are small and involve higher correlation functions, which are computed here for different
boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the
stability of the fixed point. We find that the correction-to-scaling exponeat is —e and not—¢/3 as used
in the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the
roughness of interfaces grows as a power of a logarithm instead of a pure power.

. INTRODUCTION assume that the interface-position is monotonic in time. This

removes the ambiguity and, remarkably, leads to a renormaliz-

Understanding the behavior of an elastic interface in a ranable theory, to at least two loops [9-11]. This is supported by
dom potential is important for many experimental systems ande “non-crossing theorems” which apply to single component
still offers a considerable theoretical challenge [1-4]. It is ex-depinning and, remarkably, is the same property allowing to
pected that below the upper critical dimensiap the inter-  Show ergodicity and to construct an efficient algorithm to find
face is pinned by arbitrarily weak disorder, into some roughthe exact critical configuration at depinning [12, 15]. The ori-

configurations and that at zero temperature it can acquire @in Of recent progresses in both numerics and field theory are

than the depinning thresholfl. A functional renormalization OTY by calculating more universal measurable quantities and
group (FRG) method predicts thét. = 4 for the statics [5], Study its properties.
and for the simplest universality class, the so called isotropic In this paper we further explore the field theory constructed
depinning [6-8]. in [9-11]. We study displacement correlations of more than
There has been recent progress towards a precise descri@go points. We find that these correlations atatic Al-
tion of the depinning transition. From the theory side, thethough physically natural, if one wants quasi-static depinning
FRG for single component manifolds, originally studied toto make sense, this manifests itself through rather non-trivial
one loop in an expansion in= d,. — d, has now been ex- Mmassive cancellations in the time dependence of multi-point
tended to a field theory shown to be renormalizable to twadiagrams. We elucidate these cancellations and obtain as a
loops. Renormalizable, we recall, means it has a well definegonsequence for a large class of diagrams much simpler di-
continuum limit, which is independent of all microscopic de- agrammatic rules than previously anticipated. Basically, all
tails, and thus ensures universality of large scale observableéine integrals become almost trivial, resulting in a theory with
Presumably there exists a fully renormalizable theory to alfquasi static” diagrams. We then apply these properties to the
orders, with full predictive power [9—11]. From the side of calculation of universal observables. One natural universal
numerics a novel powerful algorithm allows to obtain the con-quantity is the so-called width distribution of the interface.
figurations at (or just below) depinning with much improved Interestingly, to the two lowest leading ordersein= 4 — d,
accuracy [12—14]. A reasonable agreement between the twide distribution coincides with the one for a Gaussian theory
methods was found in a measurement of the roughness expwith the full non-trivial propagatot(q) = 1/¢*™2¢, ¢ be-
nent(, especially the clear conclusion that> /3 contrarily ~ ing the depinning exponent. This is also the subject of a re-
to a previous conjecture [7, 8 (= ¢/3) based on the 1-loop lated publication [16], where the distribution is also measured
analysis. numerically. Here we give a detailed presentation and also

The field theory of depinning in its present form is uncon-compute the_higher connected cum'ulants of the displacement
ventional in that one must work with a non-analytic action. field, i.e. deviations from the Gaussian. Some of these results

This peculiar feature is a deep part of the physics of the prob2r€ quoted in [16].

lem and necessary to avoid the so called dimensional reduc- In a second part we study the theory at the upper critical
tion. It makes the perturbation theory superficially “ambigu-dimension. The motivation is that no exact result is avail-
ous”. A non-trivial step taken in [9—11] to define the theory able to confirm thatl,. = 4 (the only exactly solved limit
atT = 0 as the limitv — 0 of the moving phase, was to corresponding to fully connected models [17-19]). Thus the



qguestion of what is the upper critical dimensigp is still de- B. Review of FRG and field theory

bated, even though the field theory of depinning [6-11, 20]I_et us briefly review the field theoretic approach, more details

clearly predictsd,. = 4. Also, in the other class of depin- ) . _
ning transitions, the so called anisotropic depinning class witff " bg found n [_10]' Thesdynamlcal action (MSR) averaged
over disorder is given by~ with

KPZ nonlinearities, there is not even a convincing prediction
for d,. [21-23] and recent numerical studies have reopened . 9 1 . .

the debate [24]. Recently it has become possible to study n [ @) = / “wt(at_vm)“wt_§/ /“th(“wt_“wt’)”wt’
merically depinning and statics in high dimensional spaces for ot ot (2.3)
reasonable system sizes with better precision, allowing for thejere and below we denotﬁT = fdd:c, in Fourierfk =

hope to settle the issue of the upper critical dimension in the, g4 o _
near future [12-14, 25]. It is thus important to give precisef (2m)? andft = J d. The FRG shows that the full func

predictions for the behavior predicted by the FRG, in order tdion 2 (u) becomes relevant below = d,. = 4 and a flow
compare with numerics. equation for its scale dependence has been derived to one and

two loops, in an expansion ith = 4 — e. In Ref. [10] this
was derived by adding a small massas an infrared cutoff
and computing the flow of disorder, defined from the effective
actionI'[u, @] of the theory, asn decreases towards zero. As

Finally, we also clarify the issue of finite size scaling. In
a previous work, used in several simulations, the value
—e/3 was used for the finite size scaling exponent [26, 27].

We find that the correct value is instead= —e. This may ) i
prove useful in numerical studies [35]. in [10] we will deno;e bon(u) thg bare disorder correlator,
i.e. the one appearing in the actidhin (2.3), and byA(u)

The paper is organized as follows. In Section Il we define

the model, briefly review the FRG method and field theorythe renormalized one, appearinglif, 4] which has a simi-

and define the main observable of interest here, the width di%’Ir expression as (2.3). The rescaled disorder is then defined
tribution. In Section Il we compute the Laplace transform
of the width distribution in perturbation theory and find that I Sy ¢

to lowest order ire it coincides with a Gaussian Approxima- Alu) = zm Alum®) , (2.4)
tion. This approximation is introduced and further studied. _

Some results on Laplace Inversion are given. In Section IV wevherel; = m™<I; = [, (k* + m?)~? is the 1-loop integral.
go beyond the Gaussian Approximation and compute highelt was then shown in [9, 10] that (2.3) leads to a functional
connected cumulants. The detailed calculation of the fourtlienormalization group equation

cumulant (4-point connected correlation function of the dis O Adu) = (e — 20)A () + Culd ()

placement field) is given, and the cancellations that occur in

the field theory are studied. In Section VI we discuss the up- 1 [(A(u) _ A(O))z} "
per critical dimension and in Section VIl the finite size scal- 2
ing. The effect of various boundary conditions is studied in Lrx,\ & xreon2]”
Appendix A. Jr2 [(A(u) A0)A (u) }
1- ~
+5 A (07?0 (u) . (2.5)

Il. - MODEL AND OBSERVABLES up toO(A*) terms. This equation implies that there are only

A. Model two main universality classes at depinning, a single RF fixed
' point for interfaces and a periodic one for CDW type disor-
We study the over-damped dynamics described by the equaer [9, 10]. Both¢ and the fixed point functiod\* (u) were

tion of motion determined to orde®(e?) for these classes [9, 10].
The important feature of the field theory of depinning is that
N0zt = CVotyy + F (2, uz) + f (2.1)  A(u) has a cusp-like non-analyticity at= 0. As was shown

in [9, 10] calculations in the non-analytic theory (e.g. yielding
with friction n. Long range elasticity relevant for solid friction (2.5)) are meaningfully performed using the expansion:
at the upper critical dimensioth = 2, can be studied replac-

ing cg> — c|q|. In presence of an applied forgethe center Au) = A0) + A0T)|u] + EA(OJF)UQ +.... (2.6)

of mass velocity i&» = L~¢ fx Osuze. The pinning force is 2

F(u,z) = -8,V (u, ) and thus the second cumulant of the Performing Wick averages yields the usual diagrams, except

force is that their actual values involve averages of e.g. sign func-
tions of the fields. Replacing everywhesen(u; — uy) —

F(z,u)F(z',u') = A(u — u')6%z — 2') , (2.2) sgn(t — t) is justified for single component quasi-static de-

pinning (i.e. in the limit of vanishing velocity = 0%). This

such thatA(u) = —R/(u) in the bare model, wherB(u) is  yields diagrams with sometimes complicated internal time

the correlator of the random potential. Random bond disorand momentum dependences. We find however that in some
der is modeled by a short range functifiu), random field cases massive cancellations occur despite the complications
(RF) disorder of amplitude by R(u) ~ —o|u| atlargewand  due to the time dependence between various diagrams, con-
CDW disorder by a periodic functioR(u). tributing to the same observable.
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C. Universal distributions and observables pute observables either to dominant ordee,ior within a 1-

_ ) ... __loop approximation, it is easy to make the necessary replace-
To motivate the present study let us consider one specific ®hents, as will be indicated below. For instance the 1-loop

ample of a universal observable, the width distribution of theFRG equation remains identical to the two first lines of (2.5),
configuration at depinning (the so-called critical configura-y,o only changes being that

tion). The width of a configuration is definéda given disor- B _
der realizationas 1. —md,, A has to be replaced b0, A.

) 1 5 2. m — 1/L in the definition of the rescaled disorder.
w* = —d/(ul —u)°, (2.7)
L% Ja 3. the 1-loop integral; = fk m entering into the
definition of the rescaled disorder has to be replaced by

— _ 1 .
wheret = 7 fw u; Is the center of mass ard’ the volume its homologue for periodic boundary conditions [37]:

of the system. The basic observation is that the sample to

sample probability distributior?(w?) of w? is expected to 1y 1

be universal, with a single scale set by the disorder averaged I = Z e =1L Z 4 (2.9)
tha ~ (k?) — , (2mn/L)

second cumulani?, i.e: k ne€Z?,n#0

w

5 used below.
) (2.8)

Pt == f(
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v [ll. WIDTH DISTRIBUTION:
f(2) is a universal function. This holds for thermal averagesPERTURBATION THEORY AND GAUSSIAN
in a number of finite temperature problems of pure systems APPROXIMATION
[28, 29]. Here we show that it also holds for depinning at

T = 0 and compute the distribution, first within a simple | et ys start by giving the simplest approximation for this dis-
Gaussian approximation and second within ¢&hexpansion. ripytion. It can be derived in two ways: (i) perturbation the-
In the process we study higher point correlation functions INory in the renormalized theory to lowest ordekifii) a simple

the field theory of depinning, define specific universal ratiosgassian approximation. In the end this will motivate going

of these, describing deviations from Gaussian behavior angther, i.e. studying deviations from the Gaussian approxima-
compute them. tion.

Before turning to actual calculations let us first summarize
the general spirit of the method and discuss the question of
the universality of such observables. The hallmark of a renor-
malizable theory is that if one expresses the correlation funcwe now study perturbation theory. To compute the width dis-
tions in an expansion in theenormalizeddisorderA, then  tribution using the dynamical field theoretic method [9, 10]
the resulting expressions are UV finite, equivalently they havene can start from the Laplace transform
a well defined continuum limit, independent of short scale
details. On a technical level, this can be achieved by com- W(A) = e w? (3.1)
puting correlations in standard perturbation theory to a given ) . _
order in powers ofA,, and then using the relation between With w” = 24 (ue —)*. Here and below we omit the global
renormalized disordeA and bare one\, to the same order, multlphcat_lve factorL~% in t.he def|n|.t|0|’_1 ofyﬂ, since in _the
or equivalently through the definition of appropriate counter-€nd we will always normalize the distributidf(w?) by fix-
terms [36]. Here, we restrict ourselves to calculations at domiNd its first moment to unity (in (3.1) it can be absorbed by a
inant order inc and thus using eitheh or A, makes no dif-  escaling ofA). o
ference. Beyond the Larkin scale, however, these are non- Expanding in powers of the correlator of the pinning force
analytic functions, which is crucial. A(u) (to lowest qrder thisis equalent vy see above), one

In the limit of large scales or large system sizes, the fixedinds that to leading ordén 17()) is the sum of all connected
point form reached by the rescaladmplies that the resulting 1100 diagrams, as represented n Fig. 1. The loop with
observable, e.g. the width distributionisiversal Universal ~ disorder vertices and insertions ofw* is
means that these quantities do not depend on the short scale 1 —2XA(0)\"
details. However theglo dependn the details of the large ((qg)g)

scale infrared (IR) cutoff, i.e. of the type of chosen boundary
Here and below the sums over thus runs over ad-

conditions. Here we focus gperiodic boundary conditions
[34], also of interest for numerical simulations [16], althoughdimensional hypercubic lattice with spacir?g, and the O-
Fode is excluded, as appropriate for periodic boundary con-

A. Perturbation theory

] (3.2)

we sometimes give results for other types, for instance for th
massive IR cutoff described in the previous paragraph. diti
. . itions. If one were now to resum (3.2) overone would
Since the FRG method developed in [9, 10] and summag;, . (3.2)
rized above uses a mass as IR-cutoff and defines disorder ver-
tices at zero momentum, one should be careful in calculations W(\) = H (1+ zAg(q))*l/z (3.3)

with e.g. periodic boundary conditions. Since we only com- 4



- = = r.h.s. of (3.5) generalizes into

_— - WTGA = 2”71(77/7 1)'/ G:I:1.’E2G.’L‘2.’L‘3 "'G.’L‘n-’El
e (3.6)
as a simple consequence of Wick’s theorem. This is again
=1 ——<- easily resummed into (3.3) which would thus be exact if the

measure of, were exactly Gaussian. Note that all results of
[28, 29] for pure Gaussian theories can also easily be obtained

o= —<-e . .
by the present resummation method (temperature replacing
disorder). Thus in the GA, th€'(q) appearing in (3.3) is the
exact 2-point function. It can be tested in a simulation by in-

moo- serting the measured 2-point function in (3.3). In the large

but finite system size limit it takes the scaling function form
G (q) discussed above.

When comparing to the numerical results for the width dis-
tribution, it turns out that the GA is a surprisingly good ap-
proximation even down td = 1. This is discussed in details

With G(q) = Gramn(q) = A(0)/q% a Larkin model type in [16]. However, we do not expect the GA to be exact. Itis

. . . . _ ﬁC
result if interpreted as naive perturbation theory (LeAf) ~ thus interesting to compute the deviatibn= |, ufuj - for
was interpreted as the bare original disorder rather than thi&e second cumulant e in (3.5). Itis computed below and
renormalized one). The correct procedure implies thei) ~ found to be of ordet* while the GA contribution (first term
is the running renormalized disordex(0) — A;(0) = in (3.5)) is of orderk? (sinceG ~ ¢). Similarly the GA contri-
(eI)"1e2¢=9IA*(0) where A*(0) is the (non-universal) bution to (3.5) isO(e™), while the deviations are found to be
value of the fixed point [9, 10]. Although= In(L) for the ~ O(¢*"). This can be summarized as= \/eug+ecus whereuo
zero momentum disorder vertex, one notes that a momeptum'S @ Gaussian random variable@f1) andu, a non-Gaussian

flows in each vertex and one should take care of this by settin§"€ ofO(1). o _ o
I — In(1/q). This yields finally (3.3) with Computing deviations from the GA is thus one motivation

to compute higher point correlations.

FIG. 1: Examples of contributions to (3.1), term8", (w2)28 and

(w2)4c (bottom), together with the vertices for disorder (top left},
(top center), and response function (top right).

G(q) = C/q"™*¢ (3.4)
C. Laplace inversion

\évhere the valug afis non-gmversa] and fixed by®. As wil . Before doing so, let us discuss how the distributidfw?) is

ecome clear in the following section, the appropriate ch0|ceOlotaineol throuah an inverse Laplace-transform. as
for G(q) is the 2-point finite-size scaling-functiafi; (¢) = g P '
C/q™*2¢g(qL) with g(0) = 1. The difference between the Plw?) = 4 D
two above-mentioned choices fosimply amounts to the two (w) = ?{ ori
different limits of small, or large L. However to lowest order
in e = 4—dthey are identical. (For a calculation of the scaling
function to next order i see Appendix J in Ref. [10].) W(A) = H (142XG(q) ", (3.8)

q>0
B. Gaussian Approximation and beyond this is equivalent to

W(A) e’ (3.7)

Noting that ind = 1 (3.3) can also be written as

A more general approach consistent with the previous calcu- L2 1 G(q) -1

. . . . P 2\ breien) 1 q
lation is the following. We first note that the above result (3.3) (w) = Ze r 2G() H el :
would be exact if the distribution of the displacement fields p>0 q>0,q#p
were Gaussian It can thus be called the Gaussian Approxi- __ ) S (3.9)
mation (GA). To understand why it was obtained here let us NiS formula shows that for large®, the distribution is dom-
consider simply the second connected cumulant of the woinated by the first termp = 1, and in practice summing the

c 2 . . first few terms gives an excellent approximation.
2\27 — 2)2 _ 2 - . h
(w?)?” = (w?)? — (w?) . This cumulant however is notcon- i< jnstryctive to apply (3.9) to a random walk, where

nected w.r.t. thes, and thus there is an exact relation: G(q) = 1/¢2. Using that € N)
———=¢ ——5¢ 2 i
(w?)? = / (262, +wuy’) (35) I1 (1 = 352) _ sin(mz) (3.10)
Y n>0 n T

where herér,, = 4, is the exact disorder averaged 2-point gne finds in terms of the widt2
function. The first term is just Wick’s theorem and would be 9 , ,
the full result if the measure of thewere Gaussian. Analo- P(w?) = w2 Z n2(—1)"tHle T WE" . (3.11)
gous formulae exist for higher cumulants: the first term on the 3 =

M



Ford > 1 the situation is more complicated. Writing The number of elements of each class is defined as
Plw?) :%di)‘.euﬂ)\ [[ 0+22G@)".  (3.12) ICo| := number of elements i, (3.15)
211 g >0 _
We further define

we have e.g. at least multiplicityd for each factor in (3.3),

as long as no component vanishes, but this multiplicity may do := any element out of,, . (3.16)
even be higher, as can be seen from the following solutions of

the diophantic equation (for 2 dimension$)+ 72 = 5+ 5%, Note that since fop € C,, andp # 0 (by definition we exclude

6% + 72 = 9% 4+ 22, and many more. Let us define the classp = 0) |C,| is always even. (3.12) can then be rewritten as
C(q) as

d\ s
peClq) if p?=¢>. (3.13) P(w?) = 7{ o e I+ 220G (ga)) V2 (3.17)

Let us index these classes dyand introduce an order
There are poles at = —[2G(q,)]~!. The sum over these
Co <Co fgelCyiandd €Ch =gl <|¢'| (3.14) poles can after partial integration be written as

. T LN E e B
rn = Za: (ICal/2 = 1! (2G(qa)> <8>\> N (519

o Fa A=—[2G(qa)] !

IV. HIGHER POINT CORRELATIONS IN action (i.e. 1-particle irreducible vertex functions IVF). The
DEPINNING FIELD THEORY simplification here is that a priori the exact 2-point correlation
function and vertices such &éﬁjm could also contribute, but
In this section we analyze how one can compute higher cottheir contribution vanishes faf = 0 at the depinning thresh-
relations in the depinning field theory and obtain simple dia-old. This is becauséu,u, ;, ) is time independent there, and
grammatic rules for doing so. These are illustrated on the 4then statistical tilt symmetry implies that all IVF’s with at least
point function. Specific calculations and results will be givenone external: leg carrying frequency vanish when this fre-

in the next Section. guency is set to zero (see section Il A in [10]). The above
formula (4.2) generalizes straightforwardly to any connected
A. Preliminaries 2n-point correlation function of the field in terms ofFf"L
We want to compute af' = 0, using the dynamical actiofi Next one can computg'"). - in perturbation, using the di-
in (2.3) , e.g. the 4-point expectation value, connected w.r.tagrammatic rules for the non-analytic action arising from the
disorder (and:) as defined in the previous sections: expansion (2.6). Let us denof&, the number ofi, external
legs,n, the number of (unsplitted) vertices,, n; the num-
/ rgtuitc _ / <uitu72;t>c . (4.1)  ber of internal lines (response functions) abhdhe number
zy zy ’ of (momentum) loops. Then one has, — n; = E; and

L=1+n;—n,. Here one ha¥; = 4 and thus the lowest

Similar formulas hold for higher correlation functions. This is order contribution has, = 4, n; = 4, i.e. it is the 1-loop

identical to a connected expectation value w.r.t. the acfion square (since two vertices, = 2 impliesn; = 0 and is

denoted hereaftet .., disconnected, three vertices = 3 impliesn; = 2 and is
The first step is to show that correlations can all be ex- ' e = pliesmny =

pressed as: 1-particle reducible). The two loop corrections are diagrams

with 5 vertices and so on. Similar@ff% to lowest order is
the 1-loop2n polygon diagram.

<uitu2t>c :/ Rmt,xltlRa:t,azgtzRyt,zgthyt,m4t4
it <t Since twou fields must come out (arrows) of each vertex,
Xfflgw(xlthxztz, Tts, Taty) (4.2) there are four possible diagrams corresponding to the 1-loop
square, shown on figure 2. Each line entering a vertex cor-
HereR is the exact response function afidhe exact effec- responds to one derivative of ti(«) function of the vertex.
tive action (sum of 1PI graphs) (with the choiee’ for the  Thus from (2.6) we see that (a) is proportional¥t{0+)*, (b)
probability andl'*) is symmetric). This is the standard rela- and (c) toA” (07)A’(07)2A(0) and (d) toA”(0F)2A(0)2.
tion between connected correlation functions and the effectivelowever, as we will show below using the so-called mount-
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ing property only (a) is non-zero. 4 A ._J
We found two ways to compute diagram (a) (as well as any=—" b < b g B 4 -

other similar diagrams), a systematic but complicated Waﬁ L L —}\ L T

and a simple way which uses a very important property and ™ . - . R . . [

not yet fully elucidated of the field theory of depinning, the VH VH l

“quasistatic property” described below. To appreciate the ex-
tent of the cancellations involved in this drastic simplification,

we start by sketching the systematic method. T 1 ‘ S . T
To perform an actual calculation, since eakhvertex in- . ) g - . foe .

3

volves fields at two times, one must switch to the splitted dia-
grammatics, as described in [10]. Diagram (a) then becomes
the sum of 16 splitted diagrams (two choices per vertex) repre-
sented in Fig. 3. Note that the last one is zero since it involves—
an acausal loop. That leaves 15 non-zero and non-trivial dia-
grams.
These diagrams correspond to the following. One first ex-
pandsS* /4! using (2.6), which gives, schematically:
At - - . =
Wulu2312u12u3u4534”34”5“6356“56U7USS7SU78 .
(4.3)
In shorthand notation&; = 4y, +,, G2 = Uz, ¢,y U12 = U1 —
ug, S12 = sgn(ty — t2) omitting all space and time integrals.
On then carries the Wick contractions, yielding FIG. 3. The 16 1-loop diagrams with splitted vertices which cor-
respond to diagram (a) in Fig. 2. The last one, which contains an
A’(O*)4 acausal loop and thus vanishes, is added here for future convenience.
4!

X (R32 — Ra2)(Rsa — Rea)(R76 — Rse)(Ri1s — Ras) - _ _
(4.4) with p;; = p; — p; the entering momenta ang, . =
Q(T)e*PQT the free response function. Because of the sign
R;; = (i;u;) is the free response function. The factor of functions the evaluation of these integrals, and of the other 14
2 comes from the two possible time orientations of the loopnon-vanishing diagrams is very tedious and was handled us-
Expanding the product of response functions yields the 16 dimg Mathematica. Adding all diagrams, massive cancellations
agrams represented in Fig.3, where space and time labels asgcur. The final result is very simple and given below.

ordered turning clockwise around the momentum loop. Foril- | et us now explain the simple method and the properties of
lustration let us indicate the full expression of the first diagramthe theory which lead to it.

in Fig.3, in momentum space:

2011 U3T517512534 556578

Ta1) (P12, 13 P23, 133 P34, t55 par, tr) = (4.5) B. Theorems and other properties
A0+ 4/ son(t — to)sen(ta — ta)son(te — 1 The simple way to. co_mpgte the 4-point corrr—;lations (and
0% totstats gn(ty — to)sgn(ts — ta)sgn(ts — o) h|gher one§) at depinning is based on the very important fol-
xsgn(ty — ts) Ry, ta—to Rpyits—ta R ts—te Rpa ity —te lowing conjectured property:

(4.6)  Quasistatic property 1:
All correlation functions(uy, ¢, . . . Ug,,1,, ) COMputed us-

ing the diagrammatic rules of the quasistatic field theory of
depinning at zero temperature and exactly at threshold, are
(a) (b) independent of all time arguments

Using relations such as (4.2) for arbitrary times shows that
an equivalent way to state this property is the following:

Quasistatic property 2:
(C) (d) Al T8 (21ty,... 2onts,) are independent of
t1,...,ton.

This property, which appears as a physical requirement for
, . . . , , the correct field theory of depinning, implies non-trivial prop-
Ff -2 Thﬁ four 1-loop d(;agfg{“ s with ufnSp",ttei)vert'Ces which con-g ies of the diagrammatics. Although we will not attempt to
tribute to the 4-point ireducible vertex functiah ;. prove it here in full generality, we have checked it on many




examples, and believe that it works. We encourage the readésee graph (a) on figure 2) is independent of the most advanced
to contribute a valid proof. We will however state and provetime.
some easier and useful properties below. Proof:

Once the properties 1 and 2 are accepted, evaluation of the First suppose that a response-function enters at the most-
diagrams drastically simplifies, thanks to the following trick: advanced time'. Then there is the following cancellation
Since the result does not depend on external times, one can , ,
take these times mutually infinitely separated, with some fixed t /’ t
(and arbitrary) ordering. Then one can integrate easily over all |
internal times since the order at each vertex is then specified
and each sign function has a fixed value. One recalls that in /dt \.

N

the splitted diagrammatics all non-vanishifig= 0 diagrams =0 (49

aretrees(see section Il A in [10]). This can be seen on the
fifteen non-vanishing diagrams of Fig.3. Thus integrating in-
dependently along each tree starting from the leaves yields
one correlation function per link, sincﬁ, Ryi—v = 1/¢. o ) ]
Performing this calculation on all fifteen diagrams of Fig.3 The mechanism is the same as in the proof of theorem 1; since
shows that they cancel pairwise since they differ only by &Py assumptiort’ is the most advanced time, the argument of
global sign, with the exception of the acausal diagram whicrhe right-most disorder can never Che_lnge sign, and can be in-
is zero. Thus the final result is the same as if one had keg€grated over, even though it is odd, -e.A’(0%). Thus the

Before giving the final result below, let us now state the
easier properties.

t

~

Theorem 1 (mounting trick):

A diagram which contributes to am-independent vertex \ (4.10)

function is 0 if it contains a vertex, into which no response-
function enters.

Examples are diagrams (b), (c) and (d) on figure 2. This
theorem thus ensures that only (a) is non-vanishing.

Proof:
The following figure demonstrates the principle. Note thatThis diagram is independent ¢f as long ag’ is the largest
it may be part of a larger diagram. Especially, there may bdexternal) time.
more response-functions entering into the upper disorder. The Note that for a loop made out of two disorders, there is only
statement is that one diagram remaining, namely

FERS

=0. 4.7)

—

(4.11)

Since no response-function enters into the lower disorder
A(u — u'), due to the assumptions this givag0), with no . ) o
dependence on time. Thus one can freely integrate over tH&is manifestly time independent.

response-function starting at timeThis integral for both di- Lemma 2:

agrams is[ dt R(k,t) = 1/k*. The difference in sign comes

from deriving the two different ends of the upper disorder ver- ()

tex. Thus both contributions exactly cancel. Liaaa(@1ty, wata, 3ts, 2aty) (4.12)

ThusT(). . (w181, @ats, 23t3, 24t4) is given only by graph (see graph (a) on figure 2) is independent of the differences in
(a). We have not found a complete proof that it is independengime, if those are very large.
of external times, but we can prove the weaker Proof:

Lemma 1: By inspection, one finds that by taking the external times,
i.e. one time at each disorder, (infinitely) far apart, the remain-
ing integrals become unambiguous. Thus integrating over the

ngm(mltl, Tota, T3ts, Taty) (4.8) response-functions does not leave any time-dependence.
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to carry a 1-loop approximation directly in fixed dimensitn
Also, since there is one exact result for a massive propagator,
we also give the result in that case.

B We denote:

= (5.3)
FIG. 4: The two contributions t¢u") _at leading order. q
with the obvious change for long range elastigity) = —

lal*
and (see below) the massive propagator.

As mentioned above, calculation of the diagram (a) be- The final result in the continuum is given by the sum of the
comes then possible and one finds the two diagrams in Fig. 4:

Property (missing acausal loop):
The diagram (a) is given by—1) times the acausal loop, D= / <u§tu§t>c
Yy
ddq d% d%
= —2A/(0M)*L¢ /
O ] emin ae

if there one replaces each response-function by a correlation-
[QQ(q)Zg(k)zg(p)zg(p +q)g(p + k)

function.
Intuitively this means, that if the acausal loop would give a
+9(a)*9(k)?g(p)g(p + 0)g(p+ k)glp + k + q)]
(5.4)

contribution, then all diagrams would cancel. This seems to
be a general mounting theorem.

Check:

One can calculate diagram A on Fig. 4 explicitly using
none of the above theorems or conjectures. The result is a
formidable expression, which has to be integrated over mo-
menta. By evaluating it for given values of the momenta (not
even necessarily conserving momentum), one can compare y
with the prediction of property 5. We found both expressions /=y (27)

to be equal for any randomly chosen values of the momenta._l_h bi ) be d oll H ,(5'52
The properties described here suggest the following e combinatorics can be done as lollows. There Is a factor

1/(412%). There aret! ways to associate each one of the four
Property (any loop):

. externalu to an unsplitted vertex. Saly, 2 are now linked to
All graphs can be computed to any number of loops, using,2 anq3 4 to 2. At each vertex a field comes out. There
generalizations of the above rules. ”” Y

This is not attemoted here but oreliminary investigati nare24 ways to assign them to each splitted vertex. Then there
S IS not attempted nere but pre ary investigation unique set of four splitted points, one at each vertex, en-
suggests that the same mechanism holds for two loops wi

ol 4 It related to the si f iol ring the acausal graph (which - in effect - is the only one
ffzr:]n?ioﬂ?;%p?s"en result related to the signs ot possi eolrising,with the minus sign). But there are still 3 ways to join

these four points in a loop: Two give the first integral, one the
second, and finally for each case the orientation can be chosen
in two ways.

Let us go to the discrete model with periodic BC [34]. We
recall that

d d
6, = 1" [ 56k = 180 [ et

V. FINAL RESULT FOR THE FOURTH
CUMULANT AND UNIVERSAL RATIO

In this Section we compute the fourth cumulant

. ddq 2mn
n d
D= / (u2ul,) (5.1) <z
Yy where here and in the following the term with= 0 is always
as well as the ratio (kurtosis): excluded. In the limit of largé./a one finds:
D D = a* u?,u? 5.7
R= ———— (5.2) Z< t yt>c (5.7)
) ] . ) ) ] ) _ _2A/ O+ 4L—2d ' \16
which, according to the discussion in Sections Il and Il is (07) (27r) X
expected to be universal and characterizes the deviations from 1
the Gaussian approximation (for whi¢h= 0). Z 2 (n2)2(m2)2(12)2(1 + n)2(l + m)?
Below, we computeR at depinning both for short range (re- n,m, €24
spectively long range) elasticity to lowest non-trivial order in " 1

e = 4 — d (respectivelye = 2 — d), i.e within a 1-loop cal-
culation. However, since it turns out that the momentum inte-
grals involved in the calculation depend very strongly on the
dimension, we found it useful, and sometimes more accurate,

(n2)2(m2)2(2)(L +n)2 (L +m)* (L + m +n)?

L\* 1
2d 2 2

nezd

(5.8)



One can see that the rati® will be universal since the 1-
loop FRG fixed point equation takenat= 0 yields:

(€ = 20)A(0) = (eI)A'(07)? (5.9)
2 1
=10l =——F—————— = — 5.10
(eI) L= i = 1) (5.10)
The last identity is valid foel = 4. In fact, since the 1-loop
FRG equation is universal, it holds as well fér= 4 as for
d < 4. Ford < 4, we use

dip 1 d 1
I=| ——=L" E —_—
/@mw4 ~—, (27n/L)"
n

L 1
nezd
Le 1
LopT = el = @ > = (5.12)
nezd

This is all we need to compute the universal ratio.

A. Calculation to lowest orderin  e=4—d
TheratioR = D/(23°,,G7,) is:

1
(27T)8 Zn,EZd 7%8

R=—€*(1-2)%(87%)?2 X

1
z:[%wwwmmm+MW+mv

n,m,l€Z%

TR I+ )2+ m)2( +m + n)z}
(5.13)

One finds, using
S et = 0(3,0,07) (5.14)
nez

thatind =4

> ig = 1/ 3(0(3,0,e")? — 1) = 10.2454 (5.15)
nezd n 6 0

Noting f(p) = > cz4 ayz(rrgy ONe has:
Z 1
(@*)?(R*)*(P?)*(p + K)*(p + 9)*

q,k,p€Z

=Y i)~ 1850 (5.16)

1
n77;lezd (n2)2(m2)2(l2)(l + n)Q(l 4 m)Q(l T+ TL)2

~ 980. (5.17)

The final result is:

1
R= —1.17§e2 ~ —0.13¢> (5.18)

This results shows thak is quite small nearl = 4, but in-
creases quite fast as the dimension is lowered. However the
sums over the momenta depend very strongly (see below)

and one should expect significant higher order corrections in
€. Thus the result (5.18) is likely to drastically overestimate
the (absolute value of the) result in lower dimensions, which
is why we now turn to an estimate in fixed dimension.

B. 1-loop estimate in general dimension

One can perform an estimate in general dimension, based on
an arbitrary truncation on (i) 1-loop graphs (ii) neglect of the
finite size scaling function.

In general dimension one has the dimensionless ratio:

1

R = —(e—2¢)?
(€ ¢ (e ZnGZd %)2 Znezd %

2
2 [(nQ)Z(mQ)Q(ZQ)Q(l +n)?(l+m)?

n,m,l€Z?

22 + 02U+ m2( + m +n)?

(5.19)
Let us give a table of values:
1 4
> = 2—5 =2.16465  (d=1)
nezd (5.20)
= 6.0268120 (d =2)
=165 (d=3)
1 78
Y == = 2.00815 (d=1)
8
st n 4725 (5.21)
= 4.28143066080578 (d =2)
= 6.9458079272 (d=3)
Z 1
g (2204 )P0+ m)?
= 0.37342751117 (d=1)
= 26.567 (d=2)
=240 d=23)
(5.22)

1
2 02)2(m2)2(2) (I + n)2(l + m)2(L + m + n)?

n,m,l€Z4
= 0.069672062794960 (d=1)
=14.138 (d=2)
=143 (d=3)

In d = 1 one finds:

2
R = —0.0867759691287 (1 - 24) (5.24)
€
~ —0.00964177 (¢ =¢/3) (5.25)
~ —0.00347 (¢C=1.2) (5.26)
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— inds: 1 4
Ind = 2 one finds: S = =T — 60268120 (5.36)
C 2 nez? n 45
fi=—0.4326 (1 - 2) ! 550420  (5.37)
€ = .
~—0.0481  (C=¢/3) (527)  nmiez )+ 1|+ m]
1
= inds: =370+ 10
Ind = 3 one finds: ) zl:ezz D) )+ nlll + ml[l +m + 7]
2 L, 1,
R = —-0.3297 (1 — 2C> (5.38)
€
~ 00366  (C=e/3) (5.28) Thisyields
1
where we have inserted various choices fancluding the R=—¢(1-2¢) (QW)QWZi X
1-loop result¢ = ¢/3. One finds that already id = 3 the nezd nt
1-loop approximation is significantly lower than the extrapo- Z 9 1
lation from (5.18) as discussed above. o (n?)(m?)(12)|l + n||l + m]|
C. Long range elasticity in general dimension + IR nﬁl g [ pr——— (5.39)
For LR elasticity the upper critical dimensionds. = 2. The )
general expression fdt is: The resultis
1
R= —6.17§62 ~ —0.686€> (5.40)
1
R=—(e—20)° T T X i babl imation of th It if naivel
(€3 emt =) > et again, a probable overestimation of the result if naively ex-
[ 9 trapolated tal = 1.
> |ommoe
n,m,l€Zd (n?)(m2)(I2)[L + |l +m| E. Harmonic well, SR elasticity
e 1 } It is interesting to compare with the calculation in a massive
() (m?)[U[|l + nl[l+ m||l + m + n| scheme, i.e. an interface in a harmonic well. Settjtg) :=

(5.29)  1/(1+¢?), we have ford = 1

Itis interesting to comput® in d = 1. Using that: /g(q)2 _ g —1.5708 (5.41)
1 2 a 5
Z S=5= 3.28987 (5.30) /g(q)4 _ T | 69596 (5.42)
nez q 16
1 71—4 ‘ 2 2 2
D a = g = 216465 (5.31) ///g(q) 9(k)*g(p)*9(p + a)g(p + k)
nez qJkJp
1 163173
= 3.847 5.32 = = 1.62588 5.43
nmz;ez (n2)(m2)(12)|l + n||l + m| (5.32) 31104 (5.43)
1 // /g(Q)Qg(k)Qg(p)g(p +a)g(p+k)glp+k+q)
> = 1.934 oSty
(n2)(m2)|l||l + n||l + m||l + m + n|
n,m,leZ 24571’3
(5.33) =T — 1.46538 (5.44)
one finds: This gives the ratio
2 2366 ) 2366
R — —0.4100 (1 B QC) =~ 551 (1 20/ = — {2 = —0.216369455
€ (5.45)
~ —0.04566 (¢ =¢€/3) (5.34) It is interesting to compare the present result to one case
(to our knowledge the only one apart from mean field models)

D. Long range epsilon expansion where theull distribution of is known in a non-trivial disor-

o o dered problem [30]. This is thetatic random field model in
Similarly, one can perform an expansiondn= 2 —d. In 4 = 0in a harmonic well (i.e. the massive case), the so-called
d = 2 one has: toy model. The exact result there is:

el =1/(2m) (5.35) Rioy = —0.080865 ... (5.46)
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The present 1-loop approximation for the problem of de-This gives:
pinning, continued tal = 0 would give the larger result

R = —1/3. ltis unclear at present whether the difference be- 9 o9 ANE 11In(3)
tween the two results indicates that the 1-loop approximatiohta—q) = ¢(¢” +m")" In m T 3m(d)
is unsatisfactory so far froni = 4, or if statics and depinning m (6.6)

have radically different values at. Assuming scaling, i.e. that the functigh — iz +...) —

(14 )~ 3 one finds that:
VI. BEHAVIOR AT THE CRITICAL

B 1L/

DIMENSION fugtca) ~ a7 2] 67
In this Section we reexamine isotropic depinning, and stat
ics, exactly ind = 4. We solve the RG equations ih= 4
and obtain the behavior of the correlation function. Contrarily (ug — up)2 ~ (Inz)?/3 (6.8)
to periodic systems at the upper critical dimension [31], non-

periodic objects such as interfaces submitted to either random
bond or random field type disorder exhibit a roughness, which VII.  STABILITY OF THE 1-LOOP FIXED

and thus:

is a power of a logarithm. POINT
The FRG flow equationd-function) for the (renormalized)
force correlator has a good limit far= 4. If one defines Here we analyze the stability of a functional fixed point. Two

~ cases have to be distinguished:
A(u) = 87224 1A, (ul %) 6.1) g

with [ = In(A/m) (A some UV cutoff) then the function
A;(u) satisfies

(a) There is the freedom to rescale the fieldvhile at
the same time rescaling the disorder correlator. This
includes the random bond and random field interface

OA() = (1 —2¢)Au) + Gud (u) models.

1 {(A(u) - A(O))Z}” LI 5(A) . (6.2) (b) There is no such freedom, since the period is fixed by
2 the microscopic disorder. This is the case for a charge

where, for depinning, density wave (random periodic problem), but also for
) ot oA the random field bulk problem, in its treatment via a
Ba(A) = [(A(u) = A0)A (w)?]" + A'(07)* A" (u) . non-linear sigma model.

and(; = (/e = 1/3 is the 1-loop value, see e.g. [10]. Itis e first analyze the simpler case (b).
then easy to see that the functidn(«) converges towards the

1-loop fixed point with the following asymptotic corrections: A. Stability of a functional fixed point; periodic

Ru(u) = A° () + 3 170 bu(u) + 7 BIAT) " Ba(A7) case
n 6.3) Be the flow-equation given by
where (3;)~! is the inverse of the linearized 1-loog- O R(u) = B[R](u) = eR(u) + f[R, R](u) , (7.1)

function and thev,, are the 1-loop eigenvalues.

Using (6.1) with¢; = 1/3 yields the result for the correla- where f is some bilinear form of?, which contains at least
tion function atg = 0: one derivative for eacl®. A similar equation of course exists

_ for A(u) = —R”(u) and the corresponding[A](u).
(ugti—g)lgem = m™~"A(0) (6.4) SupposeR*(u) is the non-trivial fixed point of order, i.e.
= em 4 In(A/m) "3 (1 4+ O(1/In(A/m))) B[R*] = 0. Two eigenfunctions and eigenvalues ab&/eu)
] - ] ~ can be identified.

asm — 0, with ¢ = 872A*(0), both for statics and depin-

ning; the difference lies in the subdominant piece. Within the (i) The constant modéR(u) = 1 with eigen-value. (As
present approach using the renormalization scheme-=ab, long as it is permissible physically.)

the 2-point correlation function at non-zercan be computed
from the renormalized (uniform) effective action by resum-
ming an infinite set of diagrams. Using the standard finite size
scaling ansatz allows to obtain the other limit of the scalingpyqof:

function, whereA > ¢ > m. To lowest order (one loop) in For case (i), we have for < 1
the renormalized disorder one has [11]

(if) The first subleading eigenfunctiofR(v) = R*(u)
with eigenvalue-—e.

(4* +m*) (ugu_g) = (A(0) — A(0+)*(I(q) — 1(0)) +...) O (R (u) + ) = BIR" +w](u) =en,  (7.2)
I(q) = / 1 (6.5) since f does not couple to the constant by assumption. This
V= P m) o+ +m?) proves ().
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For case (ii), we havey(« 1): Let us turn to the next solution. Multiplying (7.11) with

and addinge timesg[A] = 0 gives
O (R*(u) + £R"(u)) = B[R (1 + #)](u)
= eR*(u)(1 +x) + (1 + )2 f[R*, R*](u) (7.3) (e = 20) (Cul'(u) + (2¢ — 2¢)A(u))

A’ 2¢ — 20)A(u))’
Subtracting8[R*](u) = 0 on the r.h.s. and expanding for +Gu (Cuk'(u) + (2€ = 20) Alu))

smallx yields +2f (A(u), CuA'(u) + (e = 20)A(u)) =0, (7.12)
3 (R*(u) + kR* () = exR*(u) + 2k f[R*, R*](u) where we used the bilinearity &(«). Rearranging yields
= —enl(u), (7.4) (€ = 2¢) (CuA'(u) + (€ — 20) A(u))
where in the last equation we have again used the fixed-point +Cu (Cul' (u) + (€ — 20) A(u))’
condition3[R*)(u) = 0, i.e.eR*(u) + f[R*, R*](u) = 0, to +2f (A(u), Culd'(u) + (e — 2¢)A(u))
eliminatef[R*, R*](u). This proves (ii). — —e(Cul(u) + (e — 20)A(w)) . (7.13)

Using the same line of arguments, it is easy to see that when

starting fromR(u) ~ R*(u) with some arbitrary amplitude, This equation is nothing but the eigenvalue-equation for the
the flow is always remaining on the critical manifold Spannedperturbatioml(u) = Cul\'(u) + (e —2¢)A(u) about the fixed
by R*(u). _ _ _ point 3[A] = 0 with eigen-value\; = —e. g.e.d.

Of course, there are in general more eigen-functions anglemark'

eigen-values. See [10] for an explicit example. Consider the case of short-range disorder, i.e. fiat) falls

off rapidly, and is monotonic. Usually, the leading fixed point
B. Perturbations of the fixed point in presence of solution has no knot (na such thatA(u) = 0). Thenz(u)
the freedom to rescale has no knot and; (u) has one knot. Eigenvalues should be
We state the following ordered (like in quantum mechanics) due to their number of
knots. Thus we should have found the two leading solutions
M: . . for short-range disorder. This is confirmed by the numerical
The differential equation of the form analysis given in subsection VII C.

—mOn,A(u) = B[A] Corollary: (Random bond case)
BIA] = (e — 2¢0)A(u) + Cul'(u) + f[A,A] (7.5)  The differential equation of the form
where the symmetric functiongf[A, A] transforms under —mO, R(u) = B[R] (u) (7.14)
A(u) — k~2A(ku) in the same way a4, has the two eigen- (e /
functions and eigenvalues of perturbations around the fixed BlRI(u) = (e = 4O R(u) + CuR'(u) + fIR, R](u)
point B[A*] =0 where the symmetric functionaf[R, R] transforms under

R(u) — x~*R(ku) in the same way ag, has the two eigen-

J— / _
Zo(u) = ulk(u) — 24A(u) (76) " functions and eigenvalues of perturbations around the fixed
Ao =0. (7.7)  pointB[R*] =0
z1(u) = Cul'(u) + (e — 20)A(u 7.8
1) = Cul' (W) + (€ ~20A@w)  (79) oft) = w(u) — 4B() 715
A= —¢€. (7.9)
A =0. (7.16)
(We noteA instead ofA* for the fixed point for simplicity z1(u) = CuR' (u) + (e — 4¢)R(u) (7.17)
of notations.) Note that the assumptions are satisfied by the A= (7.18)
1-loop flow-equation (RF-case). L= |
Proof: Note that the assumptions are satisfied by the 1-loop flow-
Be B[A](u) = 0. Due to the assumptions, for all equation (random bond case).
BlE2A](ku) = 0. (7.10)  Proof:
o ] ] This can either be proven along the same lines as for (7.5)
Deriving w.r.t.x gives with (7.5) ak = 1 or by derivingzo(u) andz; (1) twice w.r.t.w and then using
the th for th fiel 7.5).
(€ — 20) (A (u) — 2A(u)) + Cu (u () — 2A(u))/ e theorem for the random field case (7.5)
+2f (A(u), ul'(u) = 2A(u)) =0 (7.11) C. Numerical analysis of the RF-fixed point

This is nothing but the eigenvalue equation for the perturbayye start from the 1-loop flow equation

tion zo(u) about the fixed poinf3[A] = 0 and proves the

existence of the solutiogy (u) with eigenvalue\, = 0. Note —mOm Au) = (€ — 2¢)A(u) + Cul(u)

that thisredundantoperator with eigenvalue 0 persists to all 1 o1

orders in perturbation theory. —3 [(A(u) = A®0))?]" . (7.19)
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of fine-tuning A such that it approaches the axis for lange
from above. However this is incompatible with the asymptotic
behavior in Eq. (7.24), which predicts, that all solutions for
A < —2/3 converge from below. In fact, we have not been
able to find any further solution, and we conjecture that there
is none. It would be interesting to prove this rigorously. This
behavior is in contrast to the random periodic case, solved in
[10], which has infinite many subleading contributions.

-0. 2¢ In this paper we have explored further properties of the field

theory of depinning. We have defined and computed universal
observables, such as the distribution of the interface width and
FIG. 5: The solutior; (u) (in black, withz(0) = 1) and asymptotic ~ the ratioR of the connected 4-point cumulant to the square of
behavior as given in (7.24) (blue/bright). the 2-point one (kurtosis). This ratio measures the deviations
from a Gaussian approximation which we have also used to
obtain the universal distribution. Higher order connected cu-

It has the following solution [5, 10] mulants can be computed in a similar way to one loop using
polygon diagrams, and one should be able to reconstruct the
Au) = Eyl(u) full distribution from them. Other properties of the theory
3 such as the behavior at the upper critical dimension and the
y1(u) —Inyy(u) =1+ 1u2 . (7.20) finite size scaling behavior have been clarified. All calcula-
2 tions in the present paper are of interest for comparison with
Perturbations around this solution satisfy the differential equaltUMerical simulations, existing ones [16] or in the near future.
tion In the process of computing the 4-point function we dis-
covered massive cancellations between diagrams. We traced
—mOm [A(u) + 2(u)] = Nez(u) (7.21) this btiatckttg the physicr?llylgxbpetqted pr(cj)pertydtha: c:r(;glations
_ o _ _ " exactly at depinning should be time independent. iagram-
(1 =3X) 2(u) +u2'(u) — [(y1(u) — y1(0))(2(u) — 2(0))] matic proof of this property is still incomplete, but we have
=0 (7.22) provided some convincing elements in that directions. As a

result the correlation functions can be computed in a much
esimpler way. Thus there seems to be an underlying theory,
with “quasi-static” diagrams (i.e. not containing time explic-
itly), with some additional rules. We have understood these
rules to lowest (1-loop) order and it would be of high interest
to understand —and prove— them to all orders. It is even pos-

and assuming exponentially fast decay #6x), one finds that sible that there exists a simpler formulation of the theory at

In order to have a criterion for the numerical integration, on
has to determine the behavior at infinity. Using thatdor
o

yi(u) m e 1702 (7.23)

the asymptotic behavior is depinning in terms of, e.g. effective fermions. The fermionic
character is suggested by the cancellation of all diagrams ex-
(u® — 1)671%2/2 cept for the “acausal loops” with a minus sign. We thus en-

713N (7.24)  courage further examination of this fascinating question and
full elucidation of the field theory which describes depinning.

Quite surprisingly, the asymptotic behavior is fixed, including

its amplitude[38]. In any case, slower power law decay is APPENDIX A: DIFFERENT BOUNDARY

ruled out on physical ground since we are considering short

range disorder. CONDITIONS
The solutions for\ = 0 and\ = —e are given in Egs. (7.6)

. . : . - . Periodi iti
ff. The solutionz; (u) is dominant, and gives the correction a. Periodic boundary conditions

to scaling exponent = —e. Note that this exponent is mi- A periodic functionu with period L satisfies
nus the engineering dimension of the coupling, as is the case A
in standard field-theory[32], and also for the random periodic u(z + Lé;) = u(x), (A1)

class [10]. Ref. [26] cites the value = —¢/3. We find the

corresponding numerical solution to decayuag, incompat-

ible with (7.24) and physically unacceptable [34]. u(z) = Zak etk (A.2)
The question arises, of whether there are more solutions

with fast decay. Intuitively, one would expect this: Making where summation runs over &l such thatt; = n;2x/L,

A more negative, the solution overshoots and one might think,; € Z.

where the?; are orthonormal. It can be written as
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b. Open boundary conditions does not change any observable constructed fuGnor any
energy, all based on the symmetry relation (A.4). Importantly,
the modes have all mean 0, which is not the case for other
basis, e.g. when using anti-periodic functions. Also note, that
this ansatz reproduces the formula in [33]. As an interesting
consequence, we observe that the following systems lead to
the same distribution

To simplify the notation, we give all formulas for one dimen-
sion; generalizations are straightforward.

Suppose the functiofi(z) is defined on0, L]. Then a func-
tion g(«) can be defined by the following prescription

f(z) for 0<z<L
g(x) = (A.3) o
f2L—=z) for L <z <2L e An elastic object withV degrees of freedom, and closed

. , _ boundary conditions.
g(x) can be prolonged to a periodic function with peritg,

i.e.g(z+2L) = g(x), and satisfies by construction in addition e An elastic object witl2 NV degrees of freedom, and open

boundary conditions.
g(2L —x) = g(x) . (A.4) _ . . . _
The simplest example is a 1-dimensional random walk with
In the basis needed to construct functions with pefibdwe  closed boundary conditions, and a 2-dimensional random
have to restrain ourselves to walk with open boundary conditions, which can be checked

2rnx - numerically[39].
g(l’) = Zgn cos ( 2L ) = Zﬁn CcOos (T) R (A5)

since thesin do not satisfy (A.4). The such constructed set

of functions f(x), « € [0, L] has Neumann-boundary condi- We are grateful to W. Krauth and A. Rosso for an ongoing
tions atz = 0 andz = L. From (A.5), we infer that the collaboration and numerous stimulating discussions, and we
number of modes is reduced by a factor2ofcompared to  thank E. Bézin, O. Narayan and J. M. Schwarz for very useful
the case of closed boundary conditions), but the constructioremarks.
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