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Abstract We consider the class of higher derivative 3d vec-
tor field models with the field equation operator being a poly-
nomial of the Chern–Simons operator. For the nth-order the-
ory of this type, we provide a general recipe for construct-
ing n-parameter family of conserved second rank tensors.
The family includes the canonical energy-momentum tensor,
which is unbounded, while there are bounded conserved ten-
sors that provide classical stability of the system for certain
combinations of the parameters in the Lagrangian. We also
demonstrate the examples of consistent interactions which
are compatible with the requirement of stability.

1 Introduction

In this paper we consider a class of 1-form field A = Aμdxμ

models on 3d Minkowski space with the action

S = m2

2

×
∫

A ∧
(

− a0 ∗ A + a1
2

m
dA + a2

4

m2 d ∗ d A

+ a3
8

m3 d ∗ d ∗ d A + a4
16

m4 d ∗ d ∗ d ∗ d A + . . .

)
,

(1)

where m is a constant with dimension of mass, a0, a1, a2,

a3, . . . are some real dimensionless coefficients, ∗ is Hodge
conjugation, and the signature is (+,−,−). The coeffi-
cient a0m2 corresponds to the usual mass term, a1m is the
Chern–Simons mass, a2 is a coefficient for the Maxwell’s
Lagrangian, a3 corresponds to the extended Chern–Simons
Lagrangian [1] and the fourth-order term appears in the
Podolsky electrodynamics Lagrangian [2]. With appropri-
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ate choice of the coefficients ak, k = 0, 1, 2, . . ., this
action reproduces various known 3d models, including the
Chern–Simons–Proca [3,4], Maxwell–Chern–Simons [5,6],
Maxwell–Chern–Simons–Proca [7,8] and the other previ-
ously studied higher derivative models [9,10].

In any dimension, inclusion of the higher derivative terms
results in the unbounded canonical energy, so classical stabil-
ity becomes the issue. It is also known that the ghost poles can
emerge in the propagator once higher derivatives are included
in the action.

The specifics of higher-order terms in three dimensions is
that they can be viewed as derived from the Chern–Simons
term by the repeated shift of the field by its strength: A �→
A + 2m−1 ∗ d A. As a result, the operator of field equations
is a polynomial in the first-order operator W = 2m−1 ∗ d A.
This special structure allows us to make some conclusions
concerning conservation laws and stability. The observation
is that the nth-order theory of the class (1) admits n para-
metric family of conserved second rank tensors whenever
a0 �= 0. Once a0 = 0 (the theory is gauge invariant in this
case), there exists an n − 1 parametric family of conserved
tensors. The canonical energy-momentum is included in the
family in every instance. We provide the general recipe for
constructing these conservation laws and the related symme-
tries. The construction in fact applies to any system (of any
field A, not necessarily a 1-form) with the operator of field
equations being a polynomial in another operator,

MA = 0, M = m2
n∑

k=0

akW
k, (2)

where W can be any self-adjoint1 differential operator, ak
are real constants, and an �= 0. We term the models of the
type (2) derived from the theory with equations W A = 0.
For the case (1), when W = 2m−1 ∗ d, we apply the
general procedure to explicitly deduce the conserved

1 The conjugation rule is explained in the next section.
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tensors for the third-order actions of this class. As we see,
the bounded conserved tensors are contained in the family,
once the polynomial M(2m−1 ∗ d) has only simple roots, or
at most one double zero root. In this generic case, the the-
ory is classically stable even though the canonical energy-
momentum is unbounded. As we shall explain, these models
can admit certain interactions such that the stability survives
at nonlinear level. The case of multiple roots is special. It also
admits a family of n conserved tensors, including the canon-
ical energy-momentum, though there are no bounded con-
served quantities in this family. As we see, the corresponding
representations of the Poincaré group are non-unitary, while
in the generic case, the representation decomposes into uni-
tary ones.

The article is organized in the following way. In the next
section we describe the general structure of field equations in
the higher derivative models that fall into the class of derived
theories (2). For the generic derived system of order n we sug-
gest a procedure of constructing n-parametric family of con-
served tensors whose structure depends on the coefficients ak
in the field equations (2). In Sect. 2, we explicitly construct
the families of conserved tensors for the theory (1) involving
terms up to third order. As we see, four different cases are
possible from the viewpoint of existence the bounded repre-
sentative in the family of conserved quantities. These cases
are distinguished by the structure of roots in the polynomial
(2). Once the positive conserved quantity exists, the theory is
stable at the classical level, even though the canonical energy
is unbounded. In Sect. 3, we demonstrate the example of the
self-interaction such that the nonlinear theory remains stable.
In conclusion, we summarize the results and comment on the
stability of the theory (1) at the quantum level.

2 Derived theories, higher symmetries,
and conservation laws

In this section, we consider the field equations of general
structure (2). We demonstrate that combining the space-time
translations with the powers of operator W , one can construct
non-trivial higher-order symmetries and find related con-
served tensors. The construction is quite general, it applies to
any system of the form (2). The explicit details for the exten-
sion of Chern–Simons theory (1) are provided in Sect. 3.

2.1 Derived theories

Consider a set of fields AJ (x) on d-dimensional Minkowski
space with local coordinates xμ. The multi-index J accom-
modates all the tensor, spinor, isotopic indices labeling the
field components. Here, we suppose that the theory admits
appropriate constant metrics that can be used to raise and
lower the multi-indices. In this setting, any local linear sys-

tem of field equations can be represented in the following
form:

MI J (∂)AJ = 0, (3)

where MI J (∂) is a square matrix whose entries are poly-
nomials in the formal variables ∂μ. If ∂μ are understood as
the partial derivatives in Minkowski space coordinates xμ,
(3) will be a linear PDE system. The formal adjoint to the
operator M is defined by

M†
I J (∂) = MJ I (−∂). (4)

The field equations (3) are variational whenever M = M†,
in which case the action reads

S =
∫

dd xL , L = 1

2
AI MI J (∂)AJ . (5)

Let us further suppose that the self-adjoint linear differential
operator WI J (∂) exists (cf. (2)) such that the operator of the
field equations is polynomial in W :

M(W ) = m2
n∑

k=0

akW
k = anm

2
r∏

i=1

(W − λi )
pi

×
s∏

j=1

(W 2 − (ω j + ω j )W + ω jω j )
q j . (6)

The real numbers λi and the complex conjugate numbers
ω j , ω j are the roots of the polynomial M(W ) with multi-
plicities pi and q j , respectively. The multiplicity of the roots
is connected with the total degree of the polynomial,

r∑
i=1

pi + 2
s∑

j=1

q j = n.

If W is a differential operator of finite order, nW , the order
of the PDE system (3) will not exceed n × nW .

Once the field equation operator M(∂) is a polynomial of
another self-adjoint operatorW (∂), we say that the theory is a
derived model. In [11], the special case of the factorization (6)
was studied, where M has two different simple real roots in
W . This simple assumption has far-reaching consequences.
In particular, each of the factors defines its own Lagrangian
theory whose order is lower than that of the derived theory.
Let us mention some of these consequences noticed in [11].
Once the two lower-order theories are translation invariant,
the derived higher derivative theory has a two-parameter fam-
ily of independent conserved tensors. This family includes
the canonical energy-momentum tensor of the derived theory.
The canonical energy is unbounded in general, as it should be
in the higher derivative system, while some other conserved
quantities can be bounded in this family. The existence of the
bounded conserved quantities guaranties the classical stabil-
ity of dynamics. As demonstrated in Ref. [11], every con-
served tensor in this family can be connected to translation
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invariance of the system by appropriate Lagrange anchor.2

As we will see in this section, for any derived system (2),
one can construct n-parameter family of conserved tensors,
where n is the order of polynomial M(W ).

We consider two ways of constructing conserved tensors
in the derived theories. First, we notice that the symmetry
algebra of the derived theory includes higher-order symme-
tries generated by the operator W , and translations, once W
is translation invariant. Then we derive the conserved ten-
sors from these symmetries by the Noether theorem. Another
option employs the procedure of reducing the order of higher
derivative theory (2) by assigning a lower-order system to
every irreducible factor in the decomposition of the poly-
nomial (6). Then, making use of the canonical conserved
tensors for the lower-order systems, we get the family of the
conserved tensors for the original theory (2). Although the
Noether theorem provides a uniform way for deducing con-
servation laws from given symmetries, the conserved tensors
obtained from the lower-order equivalent system appear in a
more convenient form in this case, and we will use them for
further analysis of stability.

2.2 Higher-order symmetries and conservation laws.

Provided the operator W is translation invariant, the action
(5) admits the following symmetry transformations:

δεA
J = −εα∂α(Wk A)J , k = 0, . . . , n − 1. (7)

The space-time translations correspond to k = 0. The higher-
order transformations with k = n, n + 1, . . . are equivalent
to the lower-order ones taking account of the equations of
motion (3), while for k < n one has independent symmetries.
By the Noether theorem one can link the symmetries (7) with
the conserved tensors

(T k)μν(A), ∂μ(T k)μν

= −(∂ν(W
k A)J )(MA)J , k=0, 1, . . . , n−1.

(8)

Here, k = 0 corresponds to the usual energy-momentum
tensor. There are n independent tensors in the set (8).

2 The notion of the Lagrange anchor was introduced in Ref. [12] in
relation to the path-integral quantization of not necessarily Lagrangian
systems. Later it was shown that every Lagrange anchor admitted by
the equations of motion maps the conserved quantity to the symmetry
of the equations [13]. In Ref. [11] it was noticed that once the operator
M decomposes into two self-adjoint independent factors, the equations
admit a two-parameter family of Lagrange anchors such that there is
a map of any representative of the family of conserved tensors to the
space-time translation. In this sense, any of these tensors can be under-
stood as the energy-momentum of the theory.

2.3 Conservation laws by the reduction of order.

Consider the polynomial (6). Denote the cofactors to the real
roots λi and the complex roots ω j by 	i and 
 j , respectively,

	i =
∏
k �=i

(W − λk)
pk

s∏
j=1

(W 2 − (ω j + ω j )W + ω jω j )
q j ,


 j =
r∏

i=1

(W − λi )
pi

∏
k �= j

(W 2 − (ωk + ωk)W + ωkωk)
qk .

(9)

By definition, the polynomials 	i (W ) and 
 j (W ) are
coprime. Obviously,

M = anm
2(W − λi )

pi 	i

= anm
2(W 2 − (ω j + ω j )W + ω jω j )

q j 
 j

(no summation in i, j).

For each cofactor, we introduce the new set of fields,

(ξi )
J = (	i A)J , i = 1, . . . , r,

(ζ j )
J = (
 j A)J , j = 1, . . . , s, (10)

called components. Once the original fields A are subject to
the original field equations (3), the components satisfy the
lower-order derived equations

anm
2(W − λi )

pi ξi = 0,

anm
2(W 2 − (ω j + ω j )W + ω jω j )

q j ζ j = 0,

(no summation in i, j) (11)

where pi , q j are the multiplicities of the roots λi , ω j in the
operator of the original equations (6).

The one-to-one correspondence between solutions of
these equations and the original system (3) is easy to see.
The inverse transformation to (10) is established by the rela-
tions

AJ =
r∑

i=1

(Biξ i )
J +

s∑
j=1

(C jζ j )
J ,

Bi =
pi−1∑
p=0

bp
i W

p, C j =
2q j−1∑
q=0

cqj W
q , (12)

where the polynomials Bi (W ) and C j (W ) can be found by
the method of undetermined coefficients. The coefficients
bp
i , cqj are defined by the relation

r∑
i=1

Bi	i +
s∑

j=1

C j
 j = 1. (13)

The last equality is just Bezout’s identity for the coprime
univariate polynomials 	i (W ) and 
 j (W ).

Whenever the equivalent formulation (11) is known, the
conserved tensors can be obtained by applying Eq. (8) sepa-
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rately to every component and then summarizing the results.
We denote the conserved tensors for the components by

(τ
p
i )μν(ξi ), p = 0, . . . , pi − 1,

(σ
q
j )

μ
ν(ζ j ), q = 0, . . . , 2q j − 1, (14)

where the indices i, j label the corresponding components
(10) while pi , q j are the multiplicities of the corresponding
roots (6). The conserved tensors of the original derived theory
are obtained by substitution (10):

(T p
i )μν(	i A) = (τ

p
i )μν(ξi )

∣∣∣
ξi=	i A

,

(Uq
j )

μ
ν(
 j A) = (σ

q
j )

μ
ν(ζ j )

∣∣∣
ζ j=
 j A

. (15)

By construction,

∂μ(T p
i )μν(	i A) = −(∂ν(W

p	i A)J )(MA)J ,

∂μ(Uq
j )

μ
ν(
 j A) = −(∂ν(W

q
 j A)J )(MA)J . (16)

There are n conserved tensors (15). The relationship between
“new” and “old” conserved tensors is established by compar-
ing their divergences (8) and (16). In particular, the canonical
energy-momentum tensor of the derived theory (2) has the
following representation:

(T 0)μν(A) =
r∑

i=1

pi−1∑
p=0

bp
i (T p

i )μν(	i A)

+
r∑
j=1

2q j−1∑
q=0

cqj (U
q
j )

μ
ν(
 j A),

with the coefficients of linear combination being defined by
Eq. (13).

Notice that some combinations of the conserved tensors
(8) or (15) may be trivial. A conserved tensor is said to be
trivial if it is given by the divergence of an antisymmetric
tensor modulo the equations of motion, i.e.,

Tμ
ν(A)

∣∣∣
MA=0

= ∂α�αμ
ν, �αμ

ν = −�μα
ν.

The trivial conserved tensors do not result in any conserved
quantity and have to be systematically ignored. However, we
provide the expressions for the conserved tensors modulo
divergence terms, but keep the contributions from the equa-
tions of motion. Consistency of the computations can then
be verified by taking the divergence; see (8) and (16).

As the issue of stability is concerned, the positive con-
served tensors are relevant. By a positive tensor we mean the
one whose 00-component is positive for any solution which
is not a pure gauge. We consider the ansatz for the general
conserved tensor of the derived theory (3) in the form

Tμ
ν(A) =

r∑
i=1

pi−1∑
p=0

β
p
i (T p

i )μν(	i A)

+
s∑

j=1

2q j−1∑
q=0

γ
q
j (Uq

j )
μ
ν(
 j A). (17)

The ansatz means that we consider the conserved tensors
being additive in the contributions from bilinear combina-
tions of 	i A and 
 j A, where 	i ,
 j are the cofactors (9)
to the real roots λi and complex roots ω j in the decomposi-
tion (6). The quadratic forms (T p

i ) and (Uq
j ) are defined by

Eqs. (14) and (15). In fact, they represent the conserved ten-
sors (8) of the component fields ξi , ζ j subject to equations
(11) in terms of the original field A. Here, (T 0

i ), (U 0
j ) are

just the energy-momentum tensors for the component fields
ξi , ζ j expressed in terms of A by substitution (10), while
p, q > 0 correspond to the higher-order symmetries (7) of
the component fields.

As far as the components (10) are independent, the con-
served tensor (17) is positive if and only if the tensors

pi∑
p=0

β
p
i (T p

i )μν(ξi ),

q j−1∑
q=0

γ
q
j (Uq

j )
μ
ν(ζ j )

are. In other words, the derived theory (2) is stable if and
only if all the components (10) are stable.

Below, we examine the third-order extension of the
Chern–Simons theory from the viewpoint of the existence of
bounded 00-components of the conserved tensors we found
above.

3 Conserved tensors in the third-order extension of the
Chern–Simons theory

The field equations of the higher derivative extension of the
Chern–Simons model (1) fall into the class of derived theories
(2), with W being the composition of the Hodge and de Rham
operators:

(W ) ν
μ = (2m−1 ∗ d) ν

μ ,

W ν
μ Aν = m−1ε αν

μ ∂αAν, ε012 = ε012 = 1. (18)

The nth-order theory (1) has n degrees of freedom if
there are no zero roots in the polynomial (6). If the zero
root exists of any multiplicity (including a simple zero root)
one degree of freedom is gauged out by the transformation
δχ A = dχ(x), so the theory has n − 1 DoF. The theory
(1) describes a (decomposable) representation of the proper
Poincaré group. Its indecomposable sub-representations are
described by the components (10). In particular, the field
content of the theory with simple real roots includes n mas-
sive vector fields that satisfy the Chern–Simons–Proca equa-
tions (n − 1 massive fields and one Chern–Simons field in
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the gauge case).3 A double zero root describes Maxwell’s
theory. A pair of complex conjugate roots results in the the-
ory with tachyons. The representations related to multiple
nonzero roots and zero roots of multiplicity higher than 2
are non-unitary. The case of multiple roots is special because
the set of conserved tensors (14) includes a number of terms
corresponding to the multiplicity of root. One of the terms
corresponds to the energy-momentum tensor of the compo-
nent, while the others are connected to the higher-order sym-
metries of the components

δεξi = −εα∂α(W pξi ), p = 1, . . . , pi − 1,

δεζ j = −εα∂α(Wqζ j ), q = 1, . . . , 2q j − 1,

where pi , q j are the multiplicities of real and complex roots.
Below we will observe that the equations do not have posi-
tive conserved quantities in the family (19) once they involve
tachyon or non-unitary representations (which corresponds
to complex, double or higher multiplicity nonzero real or
triple or higher multiplicity zero roots). The models leading
to the unitary representations [which corresponds to simple
roots, or at most one double zero root in (6)] admit the con-
served tensors with bounded 00-component, even though the
canonical energy is unbounded in all the instances.

The conserved tensors (8) and (15) of the higher derivative
extension of the Chern–Simons model are given by

(T k)μν = −m2

2

{
1

m2 δμ
ν(W

k A)α(MA)α

+
n∑

l=0

al(t
k,l)μν(A)

}
,

(T p
i )μν = −m2

2

{
1

m2 δμ
ν(W

pA)α(MA)α

+ an

pi∑
l=0

pi !(−λi )
pi−l

l!(pi − l)! (t p,l)μν(	i A)

}
,

(Uq
j )

μ
ν = −m2

2

⎧⎨
⎩

1

m2 δμ
ν(W

q A)α(MA)α + an

q j∑
l=0

q j−l∑
k=0

×q j !(−ω j − ω j )
k(ω jω j )

q j−l−k

l!k!(q j − l − k)!

× (tq,2l+k)μν(
 j A)

⎫⎬
⎭ , k = 0, 1, . . . , n − 1,

p = 0, 1, . . . , pi − 1, q = 0, 1, . . . , 2q j − 1,

(19)

3 The irreducible massive vector corresponds to the massive represen-
tation of the proper Poincaré group. Being subject to the self-duality
equation proposed in [3,4], it has one physical polarization. On the
generalities of the Poincaré group unitary irreducible representations in
d = 3 we refer to [14–16].

where the notation is used

(tk,l)μν

= 1

m
εμαβ

[
l−k∑
s=1

(Wk+s−1A)α∂ν(W
l−s A)β

−
k−l∑
s=1

(Wk−s A)α∂ν(W
l+s−1A)β

]
, (tk,l)μν

∣∣∣
l=k

= 0.

The expressions for the conserved tensors (19) can be sim-
plified making use of the identity

1

m
εμαβ(Wk A)α∂ν(W

l A)β

= (Wk+1A)μ(Wl A)ν + (Wl+1A)μ(Wk)ν

− δμ
ν(W

l+1A)α(Wk A)α

− 1

m
∂α(εμαβ(Wl A)ν(W

k A)β), k, l ≥ 0. (20)

Applying this formula one can express all the conserved ten-
sors in terms of Wk A, k = 0, . . . , n − 1.

For a0 = 0, only n − 1 of n conserved tensors (19) are
non-trivial. The trivial conserved tensor reads

(T pi−1
i )μν ≡

n∑
k=pi

ak(T
k−1)μν = −(MA)μ(W pi−1	i A)ν

+m

2
∂α(εμαβ(W pi−1	i A)ν(W

pi−1	i A)β),

(21)

with λi = 0. The simplest example of that kind is provided by
the energy-momentum tensor for the Chern–Simons theory,
where n = 1, λ1 = 0, p1 = 1.

Taking account of (21), we consider the following ansatz
for the general conserved tensor of the derived theory (3):

Tμ
ν(W

n−1A, . . . ,W A, A) =
r∑

i=1

p̃i−1∑
p=0

β
p
i (T p

i )μν(	i A)

+
s∑

j=1

2q j−1∑
q=0

γ
q
j (Uq

j )
μ
ν(
 j A), (22)

where p̃i = pi if λi �= 0 and p̃i = pi − 1 otherwise.
Here, its 00-component is given by the quadratic form in
Wk A, k = 0, . . . , n−1 (k = 1, . . . , n−1 in the casea0 = 0).
Identification of the range of the parameters β and γ that
satisfy the positivity condition is a well-known problem of
linear algebra. It can always be solved in various ways, for
example, by the Silvester criterion.

Let us turn to the case when ak = 0 for k > 3 and a3 = 1.
This is the most general case of the third-order derived theory.
The equations of motion (2) read
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M ν
μ Aν = 0, M ν

μ = m2(W α
μ W β

α W ν
β

+ a2W
β

μ W ν
β + a1W

ν
μ + a0δ

ν
μ )

= − 1

m
�ε αν

μ ∂α − a2(�δ ν
μ − ∂μ∂ν)

+ a1mε αν
μ ∂α + a0m

2δ ν
μ . (23)

This model has a three-parameter family of conserved tensors
if a0 �= 0 and a two-parameter family if a0 = 0. Depending
on the structure of the roots in the decomposition (6) for the
third-order equations (23), the four different cases are seen
with different behavior of the 00-component of the conserved
tensors.

Case A: Three different real roots. The family of con-
served tensors includes the one with positive 00-
component.

Case B: Simple real root and real root of multiplicity 2.
The conserved tensor exists with the positive 00-
component if the double root is zero, otherwise the
conserved quantity is unbounded.

Case C: Simple real root and pair of complex conjugate
roots. The conserved tensor with the positive 00-
component does not exist.

Case D: Real root of multiplicity 3. The conserved tensor
with the positive 00-component does not exist.

Below we elaborate on each case separately.

3.1 Case A

The coefficientsa0, a1, a2 are defined by three real rootsλ1 <

λ2 < λ3 of the polynomial (6),

a2 = −(λ1 + λ2 + λ3), a1 = λ1λ2 + λ2λ3 + λ1λ3,

a0 = −λ1λ2λ3.

The factorization (6) for the equations of motion (3) reads

M = m2
3∏

i=1

(W − λi ),

which corresponds to r = 3, s = 0, pi = 1.
The general solution to the theory (23) is decomposed into

three components (10),

ξi = 	i A, 	i =
∏
j �=i

(W − λ j ), i = 1, 2, 3, (24)

that satisfy the Chern–Simons–Proca equations

m2(W − λi )ξi = 0. (25)

Each of the equations describes the massive vector field with
the mass m|λi |. Thus, the third-order theory describes a col-
lection of three massive fields with different masses. At the
level of the propagator, the decomposition into irreducible

components has been noticed already in the original paper
[1], where the third-order extension was proposed for the
Chern–Simons theory. In this paper we see the decompo-
sition at the level of solutions to the equations of motion
and elaborate on conserved tensors. In the case of second-
order theory, n = 2, the decomposition into components was
noticed [17]. The solution (12) to the original theory (23) is
reconstructed by the formula

A =
3∑

i=1

Biξi , Bi ≡ b0
i =

∏
j �=i

(λi − λ j )
−1. (26)

The conserved tensors (14) are labeled by the indices i =
1, 2, 3, p = 0 and have the form

(T 0
i )μν(	i A)

= −m2

2

{
2λi (	i A)μ(	i A)ν − λiδ

μ
ν(	i A)α(	i A)α

}

− (MA)μ(	i A)ν. (27)

The sign of the corresponding 00-component coincides with
the sign of −λi ,

(T 0
i )0

0(	i A) = −m2

2
λi (	i A,	i A) − (MA)0(	i A)0.

(28)

Here, the Euclidean scalar product is used,

(	i A,	i A) = ((	i A)0)
2 + ((	i A)1)

2 + ((	i A)2)
2 > 0.

The conserved tensors (27) can be combined into the ten-
sor

Tμ
ν(A) =

3∑
i=1

β0
i (T

0
i )μν(	i A) (29)

with the positive 00-component if and only if three conditions
−β0

i λi > 0 are simultaneously satisfied. This result admits
a simple physical interpretation. Each of the tensors (27) has
the sense of the energy-momentum tensor of the component
ξi . The 00-component of the general conserved tensor (29)
is bounded if the contributions of all the components have
the same sign. In contrast, the 00-component of the canonical
energy-momentum tensor withβ0

i = b0
i is always unbounded

because the different components contribute with different
signs.

Finally, there is an option when one of the roots is zero.
In this case, the corresponding conserved tensor becomes
trivial and the positivity of the 00-component of the general
conserved tensor (22) is ensured by imposing the condition
−β0

i λi > 0 for the nonzero roots. The 00-component of the
canonical energy-momentum tensor is again unbounded.
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3.2 Cases B and C

We deduce the explicit expressions for the conserved quan-
tities in Case C. The corresponding expressions for Case B
follow from the ones of the Case C by setting the imaginary
part of the complex root to zero.

The polynomial (6) has the simple real root λ1 and the
simple complex root ω1, i.e.,

M = m2(W − λ1)(W
2 − (ω1 + ω1)W + ω1ω1).

Here, r = 1 and s = 1, so the indices i, j numerating real
and complex roots take a single value, i = j = 1. The
parametrization for the coefficients a0, a1, a2 of the polyno-
mial (2) reads

a2 = −(λ1 + ω1 + ω1), a1 = λ1(ω1 + ω1) + ω1ω1,

a0 = −λ1ω1ω1.

The general solution to the theory (23) decomposes into
the pair of components (10),

ξ1 = 	1A, ζ1 = 
1A,

	1 = W 2 − (ω1 + ω1)W + ω1ω1, 
1 = W − λ1

that satisfy the first-order and the second-order equations
(11),

m2(W − λ1)ξ1 = 0,

m2(W 2 − (ω1 + ω1)W + ω1ω1)ζ1 = 0, (30)

respectively. The equations for the ξ -component correspond
to the Chern–Simons–Proca theory [3,4] with mass m|λ1|.
The ζ -field satisfies the (tachyon) Maxwell–Chern–Simons–
Proca equations [7,8]. The solution (12) to the original theory
(23) is reconstructed by the formula

A = 1

(λ1 − ω1)(λ1 − ω1)
ξ1

+
[

W − ω1

(ω1 − λ1)(ω1 − ω1)
+ W − ω1

(ω1 − λ1)(ω1 − ω1)

]
ζ1.

The conserved tensors (19) of the theory are parameterized
by the indices p = 0 and q = 0, 1. The expressions for the
tensors have the form

(T 0
1 )μν = −m2

2

{
2λ1(	1A)μ(	1A)ν − λ1δ

μ
ν(	1A)α(	1A)α

}

− (MA)μ(	1A)ν,

(U0
1 )μν = −m2

2

{
2(W
1A)μ(W
1A)ν

− 2ω1ω1(
1A)μ(
1A)ν

− δμ
ν

[
(W
1A)α(W
1A)α

−ω1ω1(
1A)α(
1A)α
]} − (MA)μ(
1A)ν,

(U1
1 )μν = −m2

2

{
2(ω1 + ω1)(W
1A)μ(W
1A)ν

− 2ω1ω1
(
(
1A)μ(W
1A)ν + (W
1A)μ(
1A)ν

)
−δμ

ν

[
(ω1 + ω1)(W
1A)α(W
1A)α

− 2ω1ω1(W
1A)α(
1A)α
]}

− (MA)μ(W
1A)ν . (31)

The 00-components read

(T 0
1 )0

0 = −m2

2
λ1(	1A,	1A) − (MA)0(	1A)0,

(U 0
1 )0

0 = −m2

2

{
(W
1A,W
1A) − ω1ω1(
1A,
1A)

}

− (MA)0(
1A)0,

(U 1
1 )0

0 = −m2

2

{
(ω1 + ω1)(W
1A,W
1A)

− 2ω1ω1(W
1A,
1A)
}

− (MA)0(W
1A)0. (32)

The sign of (T 0
1 )0

0 coincides with the sign of −λ1; see
(28). The linear combination of (U 0

1 ) and (U 1
1 ) does give

rise to a positive conserved tensor unless ω1ω1 = 0 (Case
B, λ2 = 0). Thus, Cases B and C of theory (23) are unstable
unless the decomposition (6) has one simple nonzero root
and a double zero root. The degrees of freedom of the stable
theory include one massive and one massless vector mode.

3.3 Case D

The polynomial (6) has the simple real root λ1 multiplicity
3, i.e.,

M = m2(W − λ1)
3 = m2(W 3 − 3λ1W

2 + 3λ2
1W − λ3

1).

The comparison with (6) brings us to the identification r = 1
and s = 0. In this case, the index i can take a single value
i = 1 and p1 = 3. The parametrization for the coefficients
a0, a1, a2 of the polynomial (6) reads

a2 = −3λ1, a1 = 3λ2
1, a0 = −λ3

1.

The general solution to the theory (23) consists of one
component. The new variables (10) are not introduced.

The conserved tensors are constructed by the general rule
(19) and parameterized by the indices i = 1 and p = 0, 1, 2.
The expressions for the tensors have the form

(T 0
1 )μν = −m2

2

{
2(w2A)μ(W A)ν + 2(W A)μ(w2A)ν

+ 2λ1(wA)μ(wA)ν − δμ
ν

[
2(w2A)α(W A)α

+ λ1(wA)α(wA)α
]} − (MA)μAν,
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(T 1
1 )μν = −m2

2

{
2(wW A)μ(wW A)ν + 2λ1(w

2A)μ(W A)ν

+ 2λ1(W A)μ(w2A)ν − δμ
ν

[
(wW A)α(wW A)α

+ 2λ1(w
2A)α(W A)α

]} − (MA)μ(W A)ν,

(T 2
1 )μν = −m2

2

{
2λ1(w

2A)μ(w2A)ν + 4λ1(wW A)μ(wW A)ν

+ 2λ2
1(w

2A)μ(W A)ν + 2λ2
1(W A)μ(w2A)ν

− 2λ3
1(wA)μ(wA)ν − δμ

ν

[
λ1(w

2A)α(w2A)α

+ 2λ1(wW A)α(wW A)α + 2λ2
1(w

2A)α(W A)α

− λ3
1(wA)α(wA)α

]} − (MA)μ(W 2A)ν, (33)

where the notation w = W − λ1 is used.
The 00-components read

(T 0
1 )0

0 = −m2

2

{
2(W A,W 2A) − 3λ1(W A,W A)

+ λ3
1(A, A)

}
− (MA)0A0,

(T 1
1 )0

0 = −m2

2

{
(W 2A,W 2A) − 3λ2

1(W A,W A)

+ 2λ3
1(W A, A)

}
− (MA)0(W A)0,

(T 2
1 )0

0 = −m2

2
λ1

{
3(W 2A,W 2A) − 6λ1(W

2A,W A)

+ λ2
1(W A,W A) + 2λ2

1(W
2A, A)

}

− (MA)0(W 2A)0. (34)

One can check that the quantities (33) are not combined into
a positive tensor. This result also applies to the case λ1 = 0.
The theory with a root of multiplicity three has to be consid-
ered as unstable anyway.

4 An example of stable self-interactions

As we have seen, some of the higher derivative extensions of
the Chern–Simons theory admit positive conserved tensors
at the free level. In this section, we provide an example of an
interaction in Case A, such that the theory still has a positive
conserved tensor and remains therefore classically stable.
The equations of motion read

MA ≡ m2(W−λ1)(W−λ2)(W−λ3)A−U ′(ξαξα)ξ = 0,

ξ =
3∑

i=1

β0
i 	i A, (35)

whereU (s) can be any scalar function;U ′(s) = dU (s)
ds and β0

i
are treated as the parameters of interactions. The interaction
could be constructed by the factorization method of Refs.
[11,18], which ensures survival of the selected conservation
law of the free theory at the interacting level. Here, we do not

elaborate on the procedure for constructing the interaction,
we just examine consistency and stability of the interacting
model.

The theory admits the conserved tensor

Tμ
ν(A) =

3∑
i=1

β0
i (T

0
i )μν(	i A) + 1

2
δμ

νU (ξαξα),

∂μT
μ
ν = −∂νξ

α(MA)α. (36)

Taking account of the equations of motion it can be rewritten
as

Tμ
ν = −

3∑
i=1

m2β0
i λi

2

{
2(	i A)μ(	i A)ν − δμ

ν(	i A)α(	i A)α

}

−U ′(ξαξα)ξμξν + 1

2
δμ

νU (ξαξα) − (MA)μξν. (37)

The conserved tensor is positive if −β0
i λi > 0 and U >

0,U ′ < 0. The latter property is not satisfied by the poly-
nomial interactions. The admissible choice can be U (s) =
π/2 − arctg(s), for example.

The consistent inclusion of interactions should not change
the degree of freedom number. The interaction (35) is con-
sistent. This fact can be seen from decomposition of solution
into components (24). The equations of motion for the com-
ponents take the form

Miξi ≡ m2(W − λi )ξi −U ′(ξαξα)ξ = 0,

ξ =
3∑
j=1

β0
jξ j , i = 1, 2, 3. (38)

At the free level, elimination of longitudinal degree of free-
dom is ensured by the transversality conditions ∂α(ξi )α =
0, i = 1, 2, 3. In nonlinear theory, the transversality condi-
tions are modified but still remain the first-order constraints,

∂μ(Miξi )μ = ∂μ
{
m2λi (ξi )μ +U ′(ξαξα)ξμ

}
= 0. (39)

The degree of freedom number can also be covariantly com-
puted without depressing the order, e.g. by bringing the
original higher derivative equations into the involutive form
as explained in [19]. Anyway, Eq. (38) still describe three
degrees of freedom, so the interaction (35) is stable (if
U > 0,U ′ < 0) and consistent.

Rare examples are known of stable interactions in the
higher derivative systems. The best known example is f (R)-
gravity [20,21] where the canonical energy is bounded
at the linearized level. This exceptional phenomenon hap-
pens because the theory is strongly constrained. In Ref.
[22], the stability of some interactions is demonstrated for
the Pais–Uhlenbeck oscillator (whose canonical energy is
unbounded) by numerical simulations. The stable interac-
tions were recently proposed for Podolsky electrodynamics
[11] and for the higher-order Pais–Uhlenbeck oscillator [18].
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The example of this section extends the limited list of known
stable interactions in higher derivative models.

Concluding remarks

Let us summarize the results. In this paper, we suggest a
simple general procedure of constructing a family of higher-
order symmetries and related conservation laws for the
derived theories whose equations are polynomial in certain
operator (2). For the higher-order extensions of the Chern–
Simons theory (1), being an example of derived theory,
we explicitly deduce the conserved tensors. In some cases,
depending on the structure of the roots in the polynomial (6),
the positive tensors exist among the conserved quantities,
while in the other cases, none of the conserved quantities
is positive. Once a positive conserved tensor exists, the the-
ory is classically stable, even though the canonical energy
is unbounded. In the third-order examples of the theory (1)
we notice that the stable theories realize the irreducible uni-
tary representations of the Poincaré group, while the models
admitting only unbounded conserved tensors correspond to
non-unitary representations. We also demonstrate that a sta-
ble free theory can admit consistent interactions that do not
break the stability.

Finally, we make remarks on the stability at the quantum
level. Let us mention that the derived theories (2) admit non-
trivial Lagrange anchors that can be constructed as polynomi-
als in W of order lower than n. The construction of the anchor
for the case n = 2 is demonstrated in [11]. This may allow
one to quantize the classically stable theory without loss of
stability. As established in [23–25], every Lagrange anchor
leads to a Poisson bracket and Hamiltonian in the first-order
formalism. The inequivalent Lagrange anchors lead to the
canonically inequivalent Poisson brackets, so the theory will
be a multi-Hamiltonian in the first-order formulation once it
admits different Lagrange anchors. As demonstrated in [13],
the Lagrange anchor maps conservation laws to symmetries.
In the examples of classically stable higher derivative systems
admitting the different Lagrange anchors [11,18], the anchor
exists such that it maps the positive conserved quantity to the
time shift. This means that in the corresponding Hamiltonian
formalism (which is not unique, once there exist inequiva-
lent Lagrange anchors) the positive quantity can serve as
a Hamiltonian. As an example, let us mention that for the
Pais–Uhlenbeck oscillator positive Hamiltonians are known
[26,27], also at interacting level [18]. As the Hamiltonian is
bounded at the classical level, we can hope to have a bounded
spectrum of energy in the quantum theory. In view of these
reasons, we may expect that classically stable higher deriva-
tive extensions of the Chern–Simons model can remain stable
at the quantum level once an appropriate Lagrange anchor is
applied to quantize the theory.
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