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1 Introduction

Supersymmetry offers a window into non-perturbative physics. While N = 1, 2, 4 super-
symmetric theories in four dimensions have been studied extensively, it has been known
that perturbatively N = 3 theories with rigid supersymmetry are disguised versions of
theories with N = 4 supersymmetry [1]. To see this, one can simply look at the massless
matter representations of N = 3 supersymmetry where, once we add the CPT conjugate
representation to ensure that the full multiplet is CPT invariant, the field content matches
with that of N = 4 theory. This can be used to see that perturbatively, there can not be
theories that exhibit genuine rigid N = 3 supersymmetry. However, in recent years several
non-perturbative constructions have been found which evade this, where the theories have
no weak coupling limit [2–10]. For supergravity theories, the situation is different from the
outset. If we consider the massless representation of N = 3 supersymmetry with maximal
helicity 2, which corresponds to supergravity theories, the field content no longer matches
that of N = 4 supergravity theories. Thus, there exist supergravity theories which exhibit
genuine N = 3 supersymmetry. Constructing these supergravity theories is important in
the context of classifying supergravity theories in four dimensions. Further, in the light of
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gauge/gravity duality, N = 3 AdS4 solutions and the associated field representations were
studied in [11–13] and have seen renewed interest [14–19]. This provides the motivation to
construct higher derivative invariants in N = 3 supergravity as they are known to provide
important insights for holography [20–22].

The study of supergravity theories with higher derivative corrections is greatly facil-
itated by the superconformal approach. The superconformal approach relies on a larger
group of symmetries: the superconformal symmetry, which distributes the physical degrees
of freedom in shorter multiplets and therefore it becomes technically tractable to construct
such theories. In this framework, one first studies a theory of conformal supergravity
coupled to additional matter multiplets and then uses some of these matter multiplets to
gauge fix the extra symmetries to arrive at a supergravity theory with only super-Poncaré
symmetry.
N = 1, 2, 4 supergravity theories have been well studied in the literature using the su-

perconformal formalism. However, N = 3 supergravity theories are relatively less studied
Previous works looked at supergravity solutions and field content of N = 3 theories that
arose in compactifications of certain 11D supergravity theories on so-called tri-Sasakian
manifolds [12, 16, 23]. Further, at two derivative level, matter couplings to Poincaré su-
pergravity was presented in [24]. Superspace approaches have also been developed [25–27].
However, to construct general higher derivative matter couplings, it is instructive to look
at N = 3 supergravity using the superconformal approach. In this approach, a crucial
ingredient is the N = 3 Weyl multiplet whose components were conjectured long back
in [28]. However, it was only recently the explicit transformation laws of the component
fields under the N = 3 superconformal symmetry were written down [29, 30]. Subse-
quently, action for the N = 3 conformal supergravity theory was constructed in [31]. This
was done by first constructing a “density formula”1 using the “covariant superform action
principle”.2 Following this, the Weyl multiplet was embedded in the density formula to
derive an explicit form of the N = 3 conformal supergravity action. The work of [31] also
found a consistent truncation of the N = 4 Weyl multiplet to the N = 3 Weyl multiplet
and used it to check that the N = 3 conformal supergravity action indeed arise from the
truncation of the N = 4 conformal supergravity action derived in [36, 37].

The aim of this paper is to look at pure N = 3 Poincaré supergravity using the
superconformal approach and construct higher derivative invariants. To achieve this, we
need a compensating multiplet to gauge fix additional symmetries in the superconformal
theory. The on-shell N = 3 vector multiplet field content has been known [17, 24] and
there is a harmonic superspace construction to render the multiplet off-shell [39–41]. We
begin our work by finding the transformation law of the on-shell N = 3 vector multiplet
coupled to conformal supergravity. This is done by performing a supersymmetry reduction
of the N = 4 vector multiplet coupled to conformal supergravity. As we will see later, the

1Density formula basically gives an invariant action in terms of an abstract multiplet. Using this formula
one can construct an invariant action for any known multiplet by simply embedding the known multiplet
in the abstract multiplet.

2This principle is the same as the “ectoplasm principle” [32, 33] and “rheonomy principle” [34, 35] and
was used recently also in [36–38].
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components of the on-shell N = 3 vector multiplet are not truncations but rather mere
re-arrangements of the components of the N = 4 vector multiplet which is obvious as we
have discussed earlier, due to CPT invariance. However the key difference arises in the
way it couples to conformal supergravity since the N = 3 Weyl multiplet is fundamentally
different from the N = 4 Weyl multiplet. We follow the same truncation scheme as followed
in [31], where we set one of the supersymmetries to zero while the SU(1, 1) coset scalars φα
that are present in the N = 4 theory are set to the constant values of φ1 = 1 and φ2 = 0.
This provides a map between the various components of the vector multiplets between the
N = 3 and N = 4 theories. Thereafter, we follow [31] and embed the vector multiplet
in the density formula to obtain an action for the N = 3 vector multiplet coupled to
conformal supergravity. However, this procedure will give only a partial action due to the
on-shell nature of the vector multiplet. Such a feature is akin to vector multiplet coupled to
N = 4 conformal supergravity, where again the embedding of vector multiplet in the N = 4
density formula leads to mismatches in certain kinetic terms [37]. The “density formula”
derived from the “superform action principle” relies on the closure of the supersymmetry
algebra. Hence as long as it is being used to derive an action for a multiplet on which the
algebra closes off-shell, such as the Weyl multiplet, then it produces the correct action. But
if one wants to apply it on an on-shell multiplet where the algebra closes modulo equations
of motion, such as N = 3, 4 vector multiplets, then the action one obtains may be blind
to terms that vanish when one uses the equations of motion. Hence in order to find the
full action, one needs to know the equations of motion of the N = 3 vector multiplet.
This is obtained by using our truncation scheme on the equations of motion of the N = 4
vector multiplet coupled to conformal supergravity derived in [42]. Further, one adds terms
proportional to the equations of motion to the partial action obtained using the density
formula and demands that the same equations of motion arise from a variational principle of
the modified action. In this way one may obtain the full action of N = 3 vector multiplet
coupled to conformal supergravity. This action also straightforwardly generalizes to an
action for nv vector multiplets coupled to conformal supergravity. This generalization is
done carefully so that the action for three vector multiplets come with the wrong sign of the
kinetic terms so that they can be used as compensators to go from conformal supergravity
to Poincaré supergravity by choosing appropriate gauge fixing conditions for the extra
symmetries (dilatation, special conformal transformation, SU(3) × U(1) R-symmetry and
conformal-supersymmetry or special (S)-supersymmetry).

To summarize, we start section 2 by briefly reviewing N = 3 conformal supergravity,
where we discuss the field content of the Weyl multiplet in N = 3 conformal supergravity,
the N = 3 density formula and the truncation of the N = 4 Weyl multiplet to its N = 3
counterpart based on previous work [31]. In section 3, we introduce the N = 3 vector multi-
plet along with its transformation rule under ordinary (Q) and special (S)-supersymmetry.
We also perform the reduction of the equations of motion of the N = 4 vector multiplet
coupled to conformal supergravity to their N = 3 counterparts using the truncation scheme
discussed earlier. In the next section, section 4, we discuss the embedding of the vector
multiplet in the N = 3 density formula and derive the Lagrangian for Maxwell action cou-
pled to N = 3 conformal supergravity. We will then give a straightforward generalization
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of this action for nv vector multiplets coupled to conformal supergravity in such a way that
the action for three of the vector multiplets come with the wrong sign of the kinetic terms
and the remaining come with the right sign. Since in this paper, we will be interested in
pure Poincaré supergravity, we will restrict ourselves to nv = 3 with all of them coming
with the wrong sign of the kinetic terms. In section 5, we will demonstrate how we can use
the compensating vector multiplets for explicit breaking of the extra symmetries present
in the superconformal theory and arrive at supergravity with N = 3 super-Poincaré sym-
metries. In section 6, we will also show how we can eliminate the auxiliary fields in an
iterative fashion and obtain the action as an expansion in the number of derivatives. We
will also demonstrate how the truncation of the action to the fourth order in the derivative
is a consistent truncation. Finally, we will end with some conclusions and discussions.

2 N = 3 conformal supergravity

A conformal supergravity theory with minimal/extended (N ≥ 1) supersymmetry in four
dimensions is a gravity theory that is obtained from the gauge theory based on the super-
conformal algebra su(2, 2|N ). The gauge theory transforms into a theory of gravity upon
imposing an appropriate set of curvature constraints. The Weyl multiplet in conformal
supergravity is the multiplet that contains the gauge fields of the superconformal algebra.
For extended supersymmetry (N > 1), one also requires an extra set of auxiliary fields for
the off-shell closure of the algebra. The algebra is also modified where the structure con-
stants become field dependent, and this leads to a soft superconformal algebra. For more
details, please refer to [43]. The N = 3 Weyl multiplet in four dimensions was constructed
in [29, 30], and we will discuss its structure in the following subsection.

2.1 N = 3 Weyl multiplet

The N = 3 Weyl multiplet is a 64 + 64 (bosonic+fermionic) multiplet whose components
are as tabulated in table 1. There are two types of supersymmetry in conformal super-
gravity: Q (or ordinary) supersymmetry and S (or special) supersymmetry. The Q and
S-supersymmetry transformations of the components of the Weyl multiplet are given as:

δeaµ = ε̄iγ
aψiµ + h.c.

δψiµ = 2Dµεi −
1
8ε

ijkγ · Tjγµεk − εijk ε̄jψµkΛL − γµηi

δVµ
i
j = ε̄iφµj −

1
48 ε̄

iγµζj + 1
16εjklε̄

kγµχ
il − 1

16 ε̄
iγ · TjγµΛR −

1
16 ε̄

iγµΛREj + 1
8εkljE

iε̄kψlµ

+ 1
4 ε̄

iγaψµjΛ̄LγaΛR − ψ̄iµηj − h.c.− trace

δAµ = i

6 ε̄
iφµi + i

36 ε̄
iγµζi + i

12εklpE
pε̄kψlµ + i

12 ε̄
iγ · TiγµΛR + i

12 ε̄
iγµΛREi

− i

3 ε̄
iγaψµiΛ̄LγaΛR −

i

6 ψ̄
i
µηi + h.c.

δbµ = 1
2(ε̄iφµi − ψ̄iµηi) + h.c.
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δΛL = −1
4Eiε

i + 1
4γ · Tiε

i

δEi = −4ε̄i /DΛL −
1
2εijk ε̄

jζk + 1
2 ε̄

jχij −
1
2εijkE

k ε̄jΛL − 4Λ̄LΛLε̄iΛR − 4η̄iΛL

δT iab = −ε̄i /DγabΛR − 4εijk ε̄jRab(Q)k + 1
8 ε̄jγabχ

ij + 1
24ε

ijk ε̄jγabζk −
1
8ε

ijkEj ε̄kγabΛR

+ η̄iγabΛR

δχij = 2 /DE(iεj) − 8εkl(iγ ·R(V )lj)εk − 2γ · /DT(iεj) + 1
3εkl(iD

l
j)ε

k

+ 1
4εkl(iE

kγ · Tj)εl −
1
3Λ̄Lγaε(iγaζj) + 1

4εlm(iEj)E
mεl − Λ̄LγaΛRγaE(iεj)

− Λ̄Lγ · T(iγ
aΛRγaεj) + 2γ · T(iηj) + 2E(iηj)

δζi = −3εijk /DEjεk + εijkγ · /DTkεj − 4γ ·R(V )ijεj − 16iγ ·R(A)εi − 1
2D

i
jε
j

− 3
8E

iγ · Tjεj + 3
8E

jγ · Tjεi + 3
8E

iEjε
j + 1

8E
jEjε

i

− 4Λ̄L /DΛRεi − 4Λ̄R /DΛLεi − 3Λ̄R /DγabΛLγabεi − 3Λ̄Lγab /DΛRγabεi

+ 1
2ε

ijkΛ̄Lγaεjγaζk − 6Λ̄LΛLΛ̄RΛRεi + εijkγ · Tjηk − 3εijkEjηk

δDi
j = −3ε̄i /Dζj − 3εjklε̄k /Dχil + 1

4εjklε̄
iζkEl + 1

2εjklε̄
kζ lEi + 3

4 ε̄
iχjkE

k + 3ε̄iγ · Tj
↔
/DΛR

− 3ε̄i /DΛREj − 3ε̄i /DEjΛR + 3
4εjklE

lε̄kΛLEi + 3εjklT i · T lε̄kΛL − 2ε̄iΛLΛ̄Rζj

− 3ε̄iΛLΛ̄RΛREj + 3ε̄iγ · TjΛLΛ̄RΛR + h.c.− trace (2.1)

where, Dµεi is defined as:

Dµεi = ∂µε
i − 1

4γ · ωµε
i + 1

2(bµ + iAµ)εi − Vµijεj (2.2)

The covariant derivative Da that appears above is fully supercovariant w.r.t. all the gauge
transformations (bosonic as well as fermionic). The covariant derivative Da is often used to
denote covariantization only w.r.t. the “standard gauge transformations” which are dilata-
tion (D), local Lorentz transformation (M), SU(3) R-symmetry (V) and U(1) R-symmetry
(A). Apart from the above mentioned standard gauge transformations, which are bosonic,
there is another non-standard bosonic gauge transformation which is the special conformal
transformation (K). The complete Q and S-supersymmetry transformations of the depen-
dent gauge fields corresponding to local Lorentz transformations (ωabµ ), S-supersymmetry
(φiµ) and special conformal transformation or K-gauge field (faµ), along with the constraints
on the curvatures arising from the Bianchi identities, are provided in appendix B.

2.2 N = 3 density formula

Superconformally invariant actions in conformal supergravity are obtained by exploiting
the knowledge of density formulae. Density formulae in conformal supergravity are super-
conformally invariant actions given either in terms of an abstract multiplet or a known
multiplet. For example, the well known chiral density formula in N = 2 conformal super-
gravity is built on an N = 2 chiral multiplet [44]. In this subsection, we will review the
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Field SU(3)
Irreps Restrictions Weyl

weight (w)
Chiral

weight (c)
eµ
a 1 Vielbein -1 0

Vµ
i
j 8 (Vµij)∗ ≡ Vµij = −Vµji

SU(3)R gauge field 0 0

Aµ 1 U(1)R gauge field 0 0
bµ 1 dilatation gauge field 0 0

T iab 3 Self-dual i.e
T iab = 1

2εabcdT
icd 1 1

Ei 3̄ Complex 1 -1
Di

j 8 (Di
j)∗ ≡ Di

j = Dj
i 2 0

ψµ
i 3 γ5ψµ

i = ψµ
i -1/2 -1/2

χij 6̄ γ5χij = χij 3/2 -1/2
ζi 3 γ5ζ

i = ζi 3/2 -1/2
ΛL 1 γ5ΛL = ΛL 1/2 -3/2

Table 1. Field content of the N = 3 Weyl multiplet.

density formula and transformation rules for the relevant fields of the abstract multiplet
in the context of N = 3 conformal supergravity based on [31]. The density formula in
N = 3 theory is constructed from an abstract multiplet using the superform action prin-
ciple [31, 37, 38]; for details on the construction, see [31]. The density formula is given as
the integral of the following 4-form:

S =
∫
J, (2.3)

where the 4-form J is given in terms of the composites constructed out of the components
of the abstract multiplet as,

J = 1
72e

aebecedLεabcd + 1
3e

aebecψ̄kγdNkεabcd + 1
3e

aebecψ̄kMd
kεabcd

− 1
12e

aebψ̄lγcψkΛ̄Lγdρklεabcd −
1
2e

aebψ̄iψjH−labεijl −
1
2e

aebψ̄iγabψ
jKij

− 1
32e

aebψ̄iψjG+l
abεijl −

1
2e

bψ̄iψjψ̄kγbC
klΛLεijl −

1
6εklne

aψ̄kψlψ̄mγaρ
n
m

+ 1
4 ψ̄

iψjψ̄kψlεijmεklnC
mn + h.c. (2.4)

The vielbein and gravitino 1-forms are denoted as ea and ψi, respectively. The wedge
product between the forms is suppressed in the above expression. The fields represented
in bold are the composites constructed out of the components of the abstract multiplet.
The composite Cij appearing with the maximum number of gravitino 1-forms is the lowest
component of the abstract multiplet, has Weyl weight +2, chiral weight +2, and is invariant
under S-supersymmetry. It is in the 6 of SU(3) and its complex conjugate Cij is in the 6̄
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of SU(3). It also needs to satisfy the constraints(
∇kCij

)
15

= 0

∇(iCjk) = 0 (2.5)

where ∇k and ∇k are the generators for the left chiral Q-supersymmetry and right chiral
Q-supersymmetry, respectively. In other words, the left and right chiral Q-supersymmetry
transformation of Cij should take the following form:

δQLC
ij = 1

2 ε̄
(iρ̂j)

δQRC
ij = 2

3ε
lk(iε̄kρ

j)
l (2.6)

The component ρij appears in one of the cubic gravitino terms of the density formula (2.4).
As shown below, the component ρ̂j appears in the composite H−lab which appears in one
of the quadratic gravitino terms:

H−lab = 1
2C

lmTabm −
1
16Λ̄Lγabρ̂l, (2.7)

The composite Kij that appears in another quadratic gravitino term is given as:

Kij = 1
24Fij + 1

4Λ̄RΛRCij (2.8)

The term Fij that appears above and the composite G+l
ab that appears in another quadratic

gravitino term in the density formula arises upon the application of the right chiral Q-
supersymmetry transformation on ρij as shown below:

δRQρ
i
j = 3

4C
ikEjεk −

1
4δ

i
jC

lkEkεl + 3
8Λ̄Lρ̂iεj −

1
8δ

i
jΛ̄Lρ̂kεk

− 1
4ε

iklFjkεl + 3
64γ ·G

iεj −
1
64δ

i
jγ ·Gkεk (2.9)

The composite Nk andMak that appears in the linear gravitino terms are given as:

Nk = − 1
32γ · T

lΛRCkl + 1
192 θ̃k + 1

4θk

Mak = − 1
64γ · Tjγaρ

j
k + 1

48Υak (2.10)

The components θk, θ̃k and Υak appearing above arises upon taking the right-supersym-
metry transformations on Kij and left-supersymmetry transformation on the composite
Gaij ≡ Λ̄Lγaρij − h.c, as shown below:

δRQKij = ε̄kτ
k
ij + 1

2 ε̄(iθj)

δLQGdij = ε̄kαd
i
jk + 1

4 ε̄
kγdα̃

i
jk + 1

2εmjkε
mβikd + 1

8εmjkε
mγdβ̃

ik + 3
8 ε̄

iΥdj

+ 3
32 ε̄

iγdθ̃j −
1
8δ

i
j ε̄
mΥdm −

1
32δ

i
j ε̄
mγdθ̃m (2.11)
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And finally the composite L that appears in the e4 term in the density formula is given as:

L = Y + 1
2H
−l · Tl − h.c (2.12)

where H−lab is already defined in (2.7) and the component Y appears in the right-supersym-
metry transformations of Ni as shown below:

δRQNi = −1
2W

j
iεj −

1
6Y εi + 1

8Z
+
ab
j
iεj + 1

24 Z̃
+
abεi (2.13)

In order to find an invariant action for a known multiplet in N = 3 conformal supergrav-
ity, one needs to find the lowest component Cij of the abstract multiplet as a composite
expression in terms of the known multiplet that satisfies the desired properties. Then all
the other composites appearing in the 4-form J are obtained by successive application of
Q-supersymmetry on Cij , which ultimately gives us the desired action. The action for pure
N = 3 conformal supergravity was constructed in [31] using the above mentioned density
formula and embedding the N = 3 Weyl multiplet into it, i.e., finding the composites Cij
and everything else related to it by supersymmetry in terms of the components of the Weyl
multiplet.

2.3 Truncation of the Weyl multiplet from N = 4 to N = 3

To make the paper self-contained in this subsection, we review the off-shell reduction of the
N = 4 Weyl multiplet to the N = 3 Weyl multiplet as discussed in [31]. The independent
fields of the N = 4 Weyl multiplet possesses an SU(4) R-symmetry appropriate for the
SU(2, 2|4) algebra. An auxiliary U(1) R-symmetry has been added to the algebra so that
the scalar sector can be described by an SU(1, 1) valued scalar φα, where α = 1, 2. It obeys
the constraint φαφα = 1, where φα is related to φα by complex conjugation φα = ηαβφ∗β .
The metric ηαβ = diag(+1,−1). The gauge field for the SU(4) R-symmetry is VµIJ where
I, J = 1, . . . , 4. For performing the supersymmetry reduction of the N = 4 Weyl multiplet,
we will decompose the SU(4) index I into 4 and the SU(3) index i which takes value from
i = 1, 2, 3. The gauge field aµ corresponding to the auxiliary U(1)-symmetry is composite.
It is determined by solving the following constraint in terms of the independent fields of
the N = 4 Weyl multiplet.

φαDµφα = −1
4Λ̄IγµΛI , (α = 1, 2) . (2.14)

To truncate this multiplet to the N = 3 Weyl multiplet, we need to set the fourth super-
symmetry to zero. Thus, we demand,

ε4 = 0 = ψ4
µ, (2.15)

and follow through the transformation rule of the N = 4 Weyl multiplet to obtain the
conditions on the fields. For instance, if we demand consistency of the above condition
with the transformation of gravitino field ψIµ, we get

Tab
i4 = 0 = Vµ

4
i , Λi = 0 . (2.16)

– 8 –
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In the next step, we identify ψiµ coming from the N = 4 Weyl multiplet as the gravitino
in the N = 3 Weyl multiplet and compare its transformation with (2.1) to get,

Tab
ij = −1

4ε
ijkTabk,

Λ4 = ΛL. (2.17)

In arriving at the above expression, we have related the SU(4) Levi-Civita and SU(3) Levi-
Civita as εijk4 := εijk. In the above equations, we have fields belonging to the N = 4 Weyl
multiplet on the L.H.S and on the r.h.s. we have fields that belong to the N = 3 Weyl
multiplet. Further, if we use the conditions (2.16) on the transformation of Vµ4

i we get the
following condition,

Pa = εαβφ
αDaφ

β = 0. (2.18)

We can satisfy this condition by setting the scalars φα to constant values which is consistent
with the condition φαφα = 1. We can either truncate the scalar fields as given below or
any other truncation related to it by a rigid SU(1, 1) transformation.

φ1 = 1, φ2 = 0. (2.19)

Since the N = 3 Weyl multiplet would belong to an SU(1, 1) invariant subsector of the
N = 4 Weyl multiplet, the precise details of the scalar field truncation would not matter for
the truncation of the N = 4 Weyl multiplet to N = 3. One can also check that the above
condition is consistent with the supersymmetry transformations of the scalars φα, since
Λi = 0 as shown in (2.16). From the above truncation of the scalars (2.19), we can also
solve the constraint (2.14) to obtain the gauge field aµ of the auxiliary U(1) R-symmetry as,

aµ = i

4Λ̄RγµΛL. (2.20)

Note that since the gauge field aµ is invariant under the rigid SU(1, 1) transformations,
the precise details of the reduction of the scalar fields would not affect its expression given
in (2.20). We can now proceed in the similar fashion and infer the full reduction of the
N = 4 Weyl multiplet to the N = 3 Weyl multiplet, which can be summarized as follows.
On the left hand side we have quantities coming from the N = 4 Weyl multiplet and on
the right hand side we have quantities coming from the N = 3 Weyl multiplet.

Tab
ij =−1

4ε
ijkTabk , Tab

4i = 0 , ψiµ =ψiµ , ψ4
µ = 0 ,

φiµ =φiµ , φ4
µ = 0 , ωµ

ab =ωµ
ab , faµ = faµ , bµ = bµ , aµ = i

4Λ̄RγµΛL ,

Vµ
4

4 = 3i
2 Aµ+ 3

8Λ̄RγµΛL , Vµ
i
j =Vµ

i
j−

i

2δ
i
jAµ−

1
8δ

i
jΛ̄RγµΛL ,

φ1 = 1 , φ2 = 0 , Λ4 = ΛL , Λi = 0 , E4j =−1
4Ej , Eij = 0 ,

χ4
4j = 1

24ζj+
1
24EkΛR , χijk =− 1

16εjkmχ
im− 1

24δ
i
[jζk]−

1
24δ

i
[jEk]ΛR ,

χ4
ij = 0 , χi4j = 0 , D4i

4j =− 1
48D

i
j , Dij

kl =
1
12δ

[i
[kD

j]
l] , D4i

jk = 0 , Dij
4k = 0.

(2.21)
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Fields Type SU(3) w c

Aµ Boson 1 0 0
ξi Boson 3 1 -1
ψi Fermion 3 3

2
1
2

θL Fermion 1 3
2

3
2

Table 2. Fields of the N = 3 vector multiplet.

One can also check that the transformations of the N = 3 Weyl multiplet is reproduced
from the transformation rules of the N = 4 Weyl multiplet upon using the above reduction.

3 TheN = 3 vector multiplet and its coupling to conformal supergravity

In order to study the coupling of N = 3 vector multiplet to conformal supergravity we will
perform a supersymmetric truncation of the N = 4 vector multiplet coupled to conformal
supergravity, similar in spirit to the truncation of N = 4 Weyl multiplet to the N = 3
Weyl multiplet studied in [31] and reviewed in the previous section. The theory of an
arbitrary number of N = 4 abelian vector multiplets coupled to conformal supergravity
has been studied earlier by de Roo [42]. The vector multiplet consists of a gauge field Aµ,
spin-1

2 gaugino ψI and pseudo-real scalars φIJ where I, J = 1, . . . , 4. In order to perform
the truncation of the N = 4 vector multiplet to the N = 3 vector multiplet, we define the
following reduction

ψi = Φψi; ψi = Φ∗ψi; θR = Φ∗ψ4; θL = Φψ4 ,

εijkξ
k = Φφij ; εijkξk = Φ∗φij ; ξi = Φ∗φ4i; ξi = Φφ4i .

(3.1)

The quantities appearing on the l.h.s. are those of the N = 3 theory while the quantities
on the r.h.s. are the N = 4 fields. As we can see from above, the N = 3 vector multiplet
is not a truncated version of N = 4 vector multiplet but is rather a re-arrangement since
none of the N = 4 vector multiplet fields are set to zero in the process. The term Φ and
its complex conjugate appearing above are defined as follows

Φ = φ1 + φ2 , Φ∗ = φ1 − φ2 , (3.2)

where φ1 and φ2 are the scalar fields appearing in the N = 4 Weyl multiplet defined in
section-2.3.

In table 2, we list the components of the N = 3 vector multiplet along with their SU(3)
representations as well as chiral and Weyl weights.

The Q and S supersymmetry transformations of the components of the N = 3 vector
multiplet coupled to conformal supergravity can be deduced from that of the N = 4
transformation laws [42] along with the truncation defined in (3.1) as well as the truncation
of the Weyl multiplet discussed in section-2.3. The Q and S supersymmetry transformation
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laws for the N = 3 vector multiplet reads as

δAµ = ε̄iγµψi − 2ε̄iψjµξkεijk − ε̄iγµΛLξi + h.c.

δψi = −1
2γ · F

+εi − 2εijk /Dξkεj −
1
4Eiξ

kεk + 1
2Λ̄LθLεi + 1

2γaε
jΛ̄RγaΛLξkεijk + 2εijkξjηk

δθL = −2 /Dξiεi − γaΛ̄LγaΛRξjεj + 1
4εijkE

iξjεk − Λ̄Rψiεi − 2ξiηi

δξi = −ε̄iθR + εijk ε̄
jψk (3.3)

In the transformation law above, the quantity F+
ab is the self dual component of a modified

superconformal field strength defined as

F+
ab = F̂+

ab −
1
4Λ̄RγabθR −

1
2T

i
ab ξi (3.4)

where F̂+
ab is the self-dual part of the standard supercovariant field strength corresponding

to the gauge field Aµ. Armed with the above dictionary of reduction of the N = 4 vector
multiplet to the N = 3 vector multiplet, we look at the equations of the motion of the
fields in the N = 3 vector multiplet coupled to conformal supergravity. In order to do this,
we start with the equations of motion for the N = 4 vector multiplet coupled to conformal
supergravity [42] and use (3.1) to obtain the corresponding equations of motion for the
N = 3 theory.

The equations of motion of the spin- 1
2 fermionic field ψI in the N = 4 theory will result

in two equations of motion, one for I ≡ i and another for I ≡ 4 which will give rise to the
equations of motion for ψi and θR respectively as shown below:

/Dψi + 1
2Λ̄RψiΛL −

1
8EiθL + 1

8γ · TiθL + 1
8χijξ

j + 1
24εijkζ

jξk = 0 ,

/DθR −
3
4Λ̄RθRΛL + 1

4γ · F̂
−ΛL −

3
8Λ̄LΛLθL −

1
8γ · TiΛLξ

i − 1
8Eiψ

i − 1
8γ · Tiψ

i

− 1
12ζ

iξi −
1
8E

iξiΛL = 0 .
(3.5)

The equation of motion of ξi can be obtained from the equations of motion of φIJ (in the
N = 4 theory) by fixing I ≡ 4 and J ≡ j. This yields,

�cξj −
1
4Λ̄R /DξjΛL + 1

4 F̂
− · Tj −

1
16Λ̄Lγ · TjθL −

1
8ξ

iTi · Tj + 1
24 ζ̄jθR + 1

16EjΛ̄RθR

− 1
16 χ̄mjψ

m − 1
48εjklζ̄

lψk − 1
48D

l
jξl −

1
96ξjE

kEk + 1
12ξj(Λ̄R

/DΛL + Λ̄L /DΛR)

+ 1
12ξjΛ̄RΛRΛ̄LΛL = 0 ,

(3.6)

where �c = DaD
a is the superconformal de-Alembertian.
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4 N = 3 vector multiplet action

In this section, we will derive an action for the N = 3 vector multiplet coupled to conformal
supergravity. We will embed the vector multiplet in the N = 3 density formula derived
in [31] and reviewed in section-2.2. However, unlike the Weyl multiplet, N = 3 vector
multiplet is on-shell. Since the covariant superform method to obtain the density formula
relies on the closure of the superconformal algebra which is now realized up to equations of
motion, we would miss the information on terms proportional to equations of motion in the
action. Upon adding terms proportional to equations of motion and imposing consistency
with the equations of motion given in the previous section, we will obtain the action for
N = 3 vector multiplet coupled to conformal supergravity.

As per the density formula reviewed in section-2.2, in order to embed the N = 3
vector multiplet in this density formula, we need to find a suitable composite of the vector
multiplet which transforms as a 6 representation of SU(3) with Weyl weight +2, chiral
weight +2, is S-invariant and satisfies the constraints (2.5), so that it serves as Cij , the
lowest component of the abstract multiplet. Such a combination exists up to a complex
rescaling as follows,

Cij = αξi ξj , (4.1)

where α is an arbitrary complex number. Analogous to the case of pure conformal su-
pergravity action as discussed in [31], when α is real, the density formula leads to a to-
tal derivative action. Since we are interested in the supersymmetric completion of the
Maxwell’s action, we take α to be purely imaginary and set α = i. In this section, we are
interested in obtaining the supercovariant part of the action which is encoded in the com-
posite L that appears with the e4 term of the 4-form J in the density formula (2.4). And
therefore, in this section we will outline the results that are relevant for the computation
of L. However, we would like to stress that one can indeed find all the composites needed
for the full action including the gravitino terms by following the density formula discussed
in section-2.2.

Applying supersymmetry on the above Cij and using (2.6), we get the following com-
posites,

ρ̂i = −4i ξi θL,

ρil = −3i
(
ξiψl −

1
3δ

i
l ξ

kψk

)
. (4.2)

The right-supersymmetry transformation of ρij in (2.9) yields the composites Fij and Gabi
as given below,

Fij = 6iψ̄i ψj
Giab = 32i ξiF+

ab + 4iεijkψ̄jγabψk. (4.3)

Further, applying supersymmetry onKij which is obtained from Fij (2.8) and the composite
Gaij ≡ Λ̄Lγaρij − h.c, we get:

θi = i

2γ · F̂
+ψi −

i

4γ · T
jξjψi −

i

16ψiEjξ
j − i

16ψjξ
jEi + i

8γ · T
jΛRξiξj + i

8E
jΛRξiξj

+ i

2Λ̄LθLψi −
i

8γ
abψiΛ̄RγabθR + iΛ̄RΛRξiθR
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θ̃i = 3iψiξjEj − iψjξjEi − 16i εijkξj /DξkΛL − 2iΛREjξiξj − 16iψiΛ̄LθL − 8iΛ̄RΛRξiθR
(4.4)

Using the expressions for θi and θ̃i obtained above in (2.10), we can determine the composite
Ni in terms of the vector multiplet fields as,

Ni = i

8γ · F̂
+ψi −

i

16γ · T
jξjψi −

i

48ψjξ
jEi −

i

12εijkξ
j /DξkΛL

+ i

16γ · T
jΛRξiξj + i

48ΛRξiξjEj + i

24Λ̄LθLψi

− i

32γ
abψiΛ̄RγabθR + 5i

24Λ̄RΛRξiθR (4.5)

From the right-supersymmetry transformation of the composite Ni (2.13), we can read off
Y as follows.

Y = −3i
2 F̂+ · F̂ + 3i

2 F̂
+ · T iξi −

i

4T
i · T jξiξj + i

96E
iEjξiξj −

i

96EiEjξ
iξj

− 3i
4 ψ̄j

/Dψj + iψ̄i /DΛLξi + iψ̄i /Dξ
iΛL + i

6Λ̄L 6Dψiξi + 3i
4 Λ̄Rγ · F̂+θR

− 3i
32 χ̄

ijψiξj −
i

32ε
ijkψ̄iζjξk + 3i

32 ψ̄iθRE
i − 3i

32 ψ̄iγ · T
iθR

− i

48Λ̄Rγ · T iθRξi+
i

24Λ̄Lγ · TiθLξi + 5i
48Λ̄Rχijξiξj + i

24Λ̄Lχijξiξj

+ i

24Λ̄LθLξiEi −
3i
16Λ̄RθREiξi −

3i
8 Λ̄RψiΛ̄Lψi + i

16Λ̄LΛLθ̄LθL

− i

16Λ̄RΛRθ̄RθR+ i

6Λ̄LΛLΛ̄Rψiξi + 5i
12Λ̄RΛRΛ̄Lψiξi (4.6)

And finally using the above expression in (2.12), we can obtain the composite L, which
encodes the supercovariant part of the Lagrangian density.

L = −3i
2 F̂+ · F̂ + 3i

2 F̂ · T
iξi −

3i
4 ψ̄j

/Dψj + iψ̄i /DΛLξi + iψ̄i /Dξ
iΛL

+ i

6Λ̄L 6Dψiξi + 3i
4 Λ̄Rγ · F̂+θR −

3i
32 χ̄

ijψiξj −
i

32εijkψ̄
iζjξk

+ 3i
32 ψ̄iθRE

i − 3i
32 ψ̄iγ · T

iθR+ 7i
48Λ̄Lγ · TiθLξi + 7i

48Λ̄Rχijξiξj

− 7i
48Λ̄RθREiξi −

3i
8 Λ̄RψjΛ̄Lψj + 7i

12Λ̄RΛRΛ̄Lψiξi − h.c. (4.7)

The supercovariant Lagrangian density for a single vector multiplet coupled to conformal
supergravity is given as LV = −ieL. This Lagrangian, however, misses terms proportional
to equations of motion, as we discussed earlier. In fact, we can see that the above La-
grangian has no kinetic term for the fields θL and ξi. To amend this, we need to add terms
proportional to equations of motion and, in turn, demand consistency of the Lagrangian
with equations of motion.

We add kinetic terms of θL and ξi by using their equations of motion multiplied by
the respective conjugate field with an arbitrary coefficient. These terms are of the form
θ̄L( /DθR + . . .) and ξi(�ξi + . . .) and their hermitian conjugates. The dots in the brackets
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indicate the terms from equations of motion obtained in the previous section (3.5), (3.6).
Further, we also allow the coefficient of the ψi kinetic term to change by adding ψ̄j( /Dψj +
. . .) and its hermitian conjugate with an arbitrary coefficient. We would like to fix the
coefficients by demanding consistency with equations of motion. But this consistency
requirement also forces us to add a term of the form ξiΛ̄L( /Dψi + . . .) and its hermitian
conjugate so that certain unwanted terms do not appear in equations of motion. Finally,
all the arbitrary coefficients are determined by using the consistency of the action with the
equations of motion, which finally gives us the correct Lagrangian density. With future use
in mind, we present this supercovariant part of the Lagrangian density with a generalization
to n abelian vector multiplets below.

e−1LV = −3
2 F̂+I · F̂ JηIJ + 6 ξIi�ξJiηIJ + 3 F̂ I · T iξJi ηIJ −

1
8D

i
jξ
I
i ξ
JjηIJ

− 3
4Ti · Tjξ

IiξJjηIJ −
1
16E

iEiξ
IjξJj ηIJ − 3ψ̄Ij /DψJjηIJ − 3θ̄IL /DθJRηIJ

+ ψ̄Ii /DΛLξJiηIJ + ψ̄Ii /Dξ
JiΛLηIJ − Λ̄L 6DψIi ξJiηIJ + 3

2Λ̄Rγ · F̂+IθJRηIJ

− 3
4 χ̄

ijψIi ξ
J
j ηIJ −

1
4εijkψ̄

IiζjξJkηIJ + 1
2 θ̄

I
Lζ

iξJi ηIJ + 3
4 ψ̄

I
i θ
J
RE

iηIJ

+ 3
4 ψ̄

I
i γ · T iθJRηIJ + 3

4Λ̄Lγ · TiθILξJiηIJ + 3
4Λ̄LθILEiξJi ηIJ −

3
2Λ̄R /DξIjΛLξJjηIJ

+ 1
2ξ

I
j ξ
Jj(Λ̄R /DΛL + Λ̄L /DΛR)ηIJ − 3 Λ̄RψIj Λ̄LψJjηIJ + 9

4Λ̄LθILΛ̄RθJRηIJ

+ 9
8Λ̄LΛLθ̄ILθJLηIJ + 1

2ξ
I
j ξ
JjΛ̄RΛRΛ̄LΛLηIJ + h.c (4.8)

The indices I, J = 1, . . . , n label the vector multiplets. As we will discuss in the
next section, we will need three compensating vector multiplets to obtain pure Poincaré
supergravity. The kinetic term of the compensating multiplets should come with the wrong
sign so that upon using the Poincaré gauge fixing condition, the kinetic term of the physical
fields such as graviton, graviphoton, gravitino, etc comes with the right sign. However, if
we are interested in studying coupling of nv vector multiplets to Poincaré supergravity, we
would need to consider 3 + nv vector multiplets coupled to conformal supergravity, where
the sign of the kinetic terms for 3 of the vector multiplets should come with a wrong sign and
for the remaining nv vector multiplets, it should come with the correct sign. Therefore one
would need to take ηIJ = diag{−1,−1,−1, 1, . . . , 1} in the above Lagrangian. In this paper,
however, we limit ourselves to 3 vector multiplets coupled to conformal supergravity and
take ηIJ = diag(−1,−1,−1), because we are interested in studying pure N = 3 Poincaré
supergravity. Note that in the above Lagrangian, the fields Di

j , χij and ζi belonging to
the N = 3 Weyl multiplet appear as Lagrange multiplier and imposes 8 bosonic and 36
fermionic constraints on the vector multiplet fields. This observation will play an important
role in our discussion in the next section.

5 Gauge fixing and pure Poincaré supergravity

Now that we have obtained the superconformal action, we are in a position to write the
action for the super-Poincaré theory by breaking the superfluous symmetries in the super-
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conformal theory. In this section, we will discuss the gauge fixing of the superconformal
group to the super-Poincaré group, and subsequently, we will write down the action in the
super-Poincaré theory.

Starting with special conformal symmetry, which can be broken by simply turning off
the only gauge field on which they act, the dilatation gauge field bµ.

K − gauge : bµ = 0 (5.1)

Furthermore, extra 18 (bosonic) + 48 (fermionic) degrees of freedom are required to gauge
fix dilatation (1B), SU(3)R (8B), U(1)R (1B), and S-supersymmetry (12F), as well as to
satisfy the constraints imposed by the Lagrange multipliers Di

j (8B), χij (24F), and ζi
(12F).3 We know that one N = 3 vector multiplet has the fields ξi (6B), ψi (12F) and θL
(4F) which are relevant for providing 6 (bosonic)+ 16 (fermionic) degrees of freedom for
the purpose. Thus, we need at least three vector multiplets as compensators to get the
super-Poincaré theory. The vector gauge fields coming from these compensating multiplets
would be a part of the super-Poincaré theory and would be known as graviphotons.

The dilatation symmetry can be broken by imposing the following condition on the
scalar field of the vector multiplet ξi:

D − gauge : ξIiξJi ηIJ = − 1
κ2 , (5.2)

where κ is a dimensionfull constant of mass dimension −1 that enters the theory as a result
of the breaking of the dilatation symmetry. In order to break S-supersymmetry, we choose
the following gauge condition,

S − gauge : ξIi θ
J
LηIJ = 0 . (5.3)

At this point, the Lagrangian (4.8) is still invariant under local SU(3)R × U(1)R trans-
formation. However, instead of imposing suitable gauge fixing conditions on the scalars
for breaking these symmetries, we note that we can write the bosonic part of the action
in terms of an SU(3) × U(1) invariant object M IJ ≡ κ2ξIi ξ

Ji which satisfy the following
conditions

M † = M ; Tr(Mη) = −1 ; M †ηM = −1
3M (5.4)

For the minimal case with only 3 coupled vector multiplets, the above conditions imply
that

M IJ = −1
3η

IJ . (5.5)

We now focus on the field equations of the Weyl multiplet fields that appear as Lagrange
multiplers in the vector multiplet action (Di

j , χij , ζi).
3The numbers inside the brackets denote the degrees of freedom required for the purpose and “B” or

“F” denotes bosonic or fermionic.
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• Field equations of Di
j :

(ξIiξJj ηIJ)8 = 0 (5.6)

• Field equations of χij :

ψI(iξ
J
j)ηIJ = 0 (5.7)

• Field equations of ζi:

ξIi θ
J
LηIJ −

1
2εijkξ

IjψJkηIJ = 0 (5.8)

After taking S-gauge condition into consideration, the field equations (5.7) and (5.8) to-
gether implies:

ψIi ξ
J
j ηIJ = 0 (5.9)

Note that,

ξIiξJj ηIJ = (ξIiξJj ηIJ)8 + 1
3δ

i
j(ξIkξJk ηIJ) = − 1

3κ2 δ
i
j (5.10)

where we have used D-gauge (5.2) and the Di
j field equation (5.6) to reach the above

form (5.10).
The auxiliary fields T iab and Ei appear quadratically in action and, therefore, can be

expressed in terms of their field equations as

Ei = −6ψ̄Ii θJRηIJ , (5.11)

T jabξ
I
j ξ
J
i ηIJ = 2F̂+I

ab ξ
J
i ηIJ −

1
2Λ̄RγabθIRξJi ηIJ . (5.12)

Similarly, the equation of motion for the SU(3) and U(1) fields are given as

V iµ j = 3
2ξ

Ii←→∂ µξ
J
j ηIJ − trace + fermions,

Aµ = i

2ξ
I
i

←→
∂ µξ

JiηIJ + fermions. (5.13)

It must be noted that, for the case of pure Poincaré supergravity, when we have only
three vector multiplets as compensators, then the dilatation gauge fixing condition, the
constraints imposed by the Lagrange multipler Di

j together with a suitable SU(3)R×U(1)R
gauge fixing condition would imply that all the scalar fields ξIi take constant values. The
constant value would be determined by the exact nature of SU(3)R × U(1)R gauge fixing
condition. However, irrespective of the constant values taken by the scalar fields, the
SU(3)R × U(1)R invariant object M IJ constructed out of them is given by (5.5). This
combined with (5.9) and (5.8) implies θL = 0 = ψi. Thus, for the minimal case, we get,

V iµj = 0, Aµ = 0 ,
Ei = 0, T iab = −6κ2F̂+I

ab ξ
JiηIJ (5.14)
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However, it is important to note that in matter coupled supergravity theories where
we have nv additional vector multiplets, ξIi will no longer be constant. For (3 + nv) vector
multiplets coupled to conformal supergravity, we will have 6(3 + nv) scalars, out of which
only 18 will be fixed by the gauge fixing conditions leaving behind 6nv physical real scalar
(3nv complex scalar) fields in the matter coupled Poincaré supergravity theory, which will
be encoded in the matrix valued scalar fields M IJ obeying (5.4).

After imposing all the field equations and gauge fixing conditions on the Lagrangian
for the compensating vector multiplets coupled to conformal supergravity, we obtain the
Lagrangian for pure Poincaré supergravity as

e−1L0 = − 1
κ2R+ 3

2 F̂+I · F̂ JηIJ + fermions + h.c . (5.15)

The supersymmetry preserved by the above action has to be redefined from the Q-supersym-
metry (δQ) defined in the superconformal theory. This is because the K-gauge and the
S-gauge condition break Q-supersymmetry and hence the unbroken supersymmetry for the
super-Poincaré theory has to be redefined by adding field dependent K and S transforma-
tions which preserve the gauge fixing condition. And hence, the Poincaré supersymmetry
transformations δPQ that is preserved by the super-Poincaré theory is given as

δPQ(εi) = δQ(εi) + δK(ΛKµ) + δS(ηi) , (5.16)

where,

ΛKµ = −1
2 ε̄

iφµi + h.c. ,

ηi = 3
4 θ̄

I
Lγ

aθJRηIJγaεi + 3
2εijkψ̄

kIγaθJLηIJγaε
j − 1

2Λ̄ILγaΛJRγaεi (5.17)

The bosonic part of the Lagrangian (5.15) is given by an Einstein-Maxwell theory for a set
of three graviphotons (3 ≤ I ≤ 1) coupled to gravity. The bosonic equations of motion are
given by the following Einstein-Maxwell’s equations:

Rµν −
1
2gµνR = 3

4κ
2
(

2gρσF̂µρF̂νσ −
1
2gµνF̂ · F̂

)
.

DaF̂ abI = 0 (5.18)

The Bianchi identity is given as:

Da
˜̂
F
abI

= 0 (5.19)

where our convention for dual tensor is given in appendix-A. The Maxwell’s equation
together with the Bianchi identity implies:

DaF̂+abI = 0 = DaF̂−abI , (5.20)

In the above equations of motion, we have written the Maxwell’s equation and the Bianchi
identities in terms of the covariant derivative Da which is covariant only w.r.t. the local
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Lorentz transformations.4 However, we can convert it into the covariant derivative ∇µ
which is also covariant w.r.t. general coordinate transformation as we explain below.

Recall, that in order to construct a theory of conformal supergravity from superconfor-
mal gauge theory, we need to impose the following constraint on the curvature correspond-
ing to the local translation (Pa), so that local translation is realized as general coordinate
transformation:

R(P )aµν = 2D[µe
a
ν] + fermions = 0 (5.21)

Let us further define:

D(µe
a
ν) ≡ γ

a
µν , Γρµν ≡ eρaγaµν (5.22)

And therefore (up to fermions)

∇µeaν ≡ Dµeaν − Γρµνeaρ = D[µe
a
ν] = 0 (5.23)

The derivative ∇µ defined above is covariant w.r.t. all the standard gauge transformations
as well as general coordinate transformation with the quantity Γρµν defined above playing
the role of the Christoffel connection. Under this covariant derivative, the vielbein eaµ and
consequently the metric gµν is covariantly constant as it should be. Thus, one can re-write
the Maxwell’s equation appearing in (5.20) as5

∇µF̂+µνI = 0 = ∇µF̂−µνI (5.24)

6 Higher derivative deformation

In the previous section, we obtained the pure N = 3 Poincaré supergravity action which
is second order in derivatives. The goal of this section is to construct a higher deriva-
tive deformation to the leading order piece obtained in (5.15). In order to obtain such a
deformation in the superconformal set-up one needs to do the following:

1. Add the pure N = 3 conformal supergravity action, constructed purely out of the
Weyl multiplet, to the action for the vector multiplets coupled to conformal super-
gravity.

2. Impose the Poincaré gauge fixing condition discussed in the previous section.

3. Eliminate the auxiliary fields Tabi, Ei, Di
j , Vµij and Aµ. We will see later that the

elimination of these fields systematically lead to a derivative expansion of the action.
We will also see that the truncation of the action at the fourth order in derivatives
is a consistent truncation.

4This descends from the superconformal theory where the derivative Da is defined to be covariant w.r.t.
all the standard gauge transformations (dilatation, local Lorentz, SU(3)×U(1) R-symmetry).

5By following the sequence of steps: DaF ab = eµaDµF ab = eµa∇µF ab = ∇µ(eµaF ab) = (∇µFµν)ebν = 0.

– 18 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
5

The pure N = 3 conformal supergravity action has been obtained in [31].6 As discussed
above, as a first step, we add this action to the action for the vector multiplets coupled
to conformal supergravity. For the sake of brevity, we will only consider the bosonic part.
Since we are interested in pure supergravity, as we did in the previous section, we will
consider only the coupling of 3 compensating vector multiplets to conformal supergravity
labelled by the index I with ηIJ = diag(−1,−1,−1).

L = LV + λ LCSG , (6.1)

where LV is given in (4.8) and

LCSG = 24R(M)abcdR(M)+
abcd + 48R(V )+j

i ·R(V )+i
j − 144R(A) ·R+(A)

− 6R(V )j i · T iEj + 12iR(A) · T iEi + 3
16T

i · T jEiEj + 1
48D

i
jD

j
i

+ 3
2E

iDaDaEi + 24T abiDaD
cTbci −

1
128EiE

iEjE
j + 3

8
(
T i · T j

)(
Ti · Tj

)
+ h.c. (6.2)

Here R(M), R(V ) and R(A) are the fully supercovariant curvatures for the local Lorentz
transformation (M), SU(3) R-symmetry (V) and U(1) R-symmetry (A) respectively. Their
expressions are given in appendix-B along with the curvature constraints and the Bianchi
identities that they satisfy. The curvature R(M)µνab becomes the Weyl tensor Cµνab (de-
fined in A.9) upon using the K-gauge condition (5.1) and inserting the composite expression
for the dependent K-gauge field faµ , which upon using the K-gauge condition is given in
terms of the Ricci tensor and Ricci scalar as shown below (See appendix-A for our conven-
tion of Riemann tensor, Ricci tensor and Ricci scalar):

faµ = 1
2Rµ

a − 1
12Re

a
µ (6.3)

The covariant derivative Da appearing in the action (6.2) is the fully supercovariant
derivative. However, if one is only interested in the bosonic part, one may replace it by
Da = Da +K-covariantization. where Da, as discussed in the previous section, is covariant
w.r.t. all the standard gauge transformations (dilatation, local Lorentz transformation and
R-symmetry). The parameter λ appearing in (6.1) is a dimensionless parameter which, as
we will see, will control the derivative expansion of the action. Hence, we will also refer to
it as the control parameter.

As a second step, we need to impose the Poincaré gauge fixing conditions, which are
the same as discussed in the previous section. As a third step we would need to eliminate
the auxiliary fields from their equations of motion. In the absence of the pure conformal
supergravity action (LCSG), the field Di

j appeared as a Lagrange multiplier that imposed
the constraints (5.6) on the vector multiplet scalars. However, in the presence of the

6We have corrected minor typos in the original paper [31]. The negative sign of the term T abiDaDcTbci
apperaring in the Pontryagin and Weyl square Lagrangian has been corrected to positive. We trace the
error back to an appendix and have correct this in the new arXiv version of [31].
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conformal supergravity action, the variation of the action (6.1) w.r.t. Di
j leads to the

following equation:

[
ξIi ξ

JjηIJ
]

8
= λ

3D
j
i . (6.4)

Taking into account the dilatation gauge fixing condition (5.2), we can re-write the above
equation as

ξIi ξ
JjηIJ = − 1

3κ2 δ
j
i + λ

3D
j
i . (6.5)

Note the appearance of the field Di
j in the above equation. In the absence of the conformal

supergravity action, we really do not worry about the expression for the field Di
j in terms

of the physical fields since the expression in the action involving Di
j vanishes due to the

constraint (5.6). However, this is not true once we add the conformal supergravity action.
Thus, we need to know the expression which would determine Di

j . In this context, the
equation of motion for the vector multiplet scalars (3.6) is useful. It is instructive to put
the label I on the equations. The bosonic part is given as:

�cξ
Ii + 1

4 F̂
I · T i − 1

48D
i
jξ
Ij − 1

8T
i · T jξIj −

1
96E

jEjξ
Ii = 0 (6.6)

In order to extract Di
j from the above equation, one needs to contract ξJk ηIJ to the above

equation and take the projection on the 8 irrep of SU(3). We get:

Di
j = −144κ2

(
ξJj �cξ

IiηIJ
)

8
− 36κ2

(
F̂ I · T iξJj ηIJ

)
8

+ 18κ2
(
T i · T kξIj ξJk ηIJ

)
8

+ λκ2

2 EkEkD
i
j + λκ2

(
Di

kD
k
j

)
8

(6.7)

The Tabi and Ei equations of motion are also modified as follows:

• Field equations for Ei:

Ei = −λκ2
(
24�cEi −

1
4EiEjE

j + 48R(V )j i · Tj − 96R(A) · Ti + 3Ti · TjEj
)

≡ −λκ2Pi . (6.8)

• Field equations of T iab:

T jabξ
I
j ξ
J
i ηIJ = 2F̂+I

ab ξ
J
i ηIJ + λM+

abi , (6.9)

where,

Mabi = 32DaD
cTbci − 4R(V )abjiEj + 8iR(A)abEi

+ 1
4T

j
abEjEi + T jabTi · Tj . (6.10)
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Using the equations of motion of Ei and Tabi, one may simplify the equations of motion
determining Di

j (6.7) as:

Di
j =− 144κ2

[
ξIj�cξ

JiηIJ
]

8
+ λκ2

[
Di

kD
k
j

]
8

+ 18λκ2
[
T i · Mj

]
8

+ 1
2λ

3κ6Di
jP2 . (6.11)

The equations of motion for the R-symmetry gauge fields Aµ and Vµij are also modified as
follows:

• Field equations of Aµ:

Aµ = − i2κ
2ξiI
↔
∂µξ

I
i −

iλκ2

3 V j
µ iD

j
i + λκ2Σµ , (6.12)

where Σa ≡ eµaΣµ is given by

Σa = 12DbR(A)ab −Db
(
T iabEi

)
− i

8E
iDaEi − 2i(DcT

bci)Tabi + h.c. . (6.13)

• Field equations for V i
µj :

V i
µj = −3κ2

2 ξIi
↔
∂µξ

j
I + 2iλκ2AµD

i
j + λκ2Σi

µj , (6.14)

where,

Σa
i
j = 24DbR(V )abij − 3Db

(
T iabEj

)
+ 3

4DaEjE
i + 12TabjDcT

bci − h.c− trace.
(6.15)

It is evident from the equations of motion that one can obtain the solutions to the auxiliary
fields (schematically denoted as Φ) in powers of the control parameter λ:

Φ = Φ(0) + λΦ(1) + . . . . (6.16)

One can also see from the equations of motion (6.8), (6.9), (6.11), (6.12), (6.14) of the
auxiliary fields that a factor of κ2 accompanies every power of λ and hence an expansion
in λ controls the derivative expansion of the action. From the following argument we show
that the zeroth order solutions for the auxiliary fields are sufficient if we are interested in
expanding the action up to fourth order in derivatives.

S[Φ(0) + λΦ(1)] = SV [Φ(0) + λΦ(1)] + λSCSG[Φ(0) + λΦ(1)],

= SV [Φ(0)] + λ

(
δSV
δΦ

)
Φ(0)
· Φ(1) + λSCSG[Φ(0)] (6.17)

Expanding the action to first order in λ is adequate because we want to expand the action
up to fourth order in derivatives. Furthermore, Φ(0) is the leading order solution of the
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auxiliary fields and hence it satisfies
(
δSV
δΦ

)
Φ0

= 0. Thus the expansion of the action up to
O(λ) or equivalently up to fourth order in derivatives is given by

S[Φ(0) + λΦ(1)] = SV [Φ(0)] + λSCSG[Φ(0)] (6.18)

Hence it is sufficient to find the leading order solutions for the auxiliary fields in order
to expand the action up to fourth order in derivatives. The leading order solution for all
the auxiliary fields except Di

j is given in (5.14). One can also check from the equation
determining Di

j (6.11) that the leading order solution is given as:

Di
j = −144κ2

[
ξIj�cξ

JiηIJ
]

8
= 0 (6.19)

The above expression vanishes because of the following reason. In the case of pure su-
pergravity, as explained in the previous section, at the leading order the vector multiplet
scalars take constant values. Hence ξIj�cξ

JiηIJ ∼ faa ξIj ξJiηIJ ∼ Rδij . Therefore it vanishes
when we project it on the 8 irrep of SU(3). Plugging the leading order solutions for the
auxiliary fields in (6.2), we obtain the expansion of the N = 3 Poincaré supergravity action
up to fourth order in derivatives as

e−1L = L0 + λκ2L1 , (6.20)

where the leading piece is

L0 = − 2
κ2R+ 3

2 F̂ · F̂ , (6.21)

and the four derivative deformation is given as,

L1 = 24
κ2C

µνρσCµνρσ + 288RµνF̂+Iµ
ρF̂
−JρνηIJ − 576∇µF̂+Iµν∇ρF̂−Jρν ηIJ

+ 108κ2(F̂+I · F̂+K)(F̂−J · F̂−L)ηKLηIJ . (6.22)

The indices I, J = 1, 2, 3 label the compensating vector multiplets with
ηIJ = diag(−1,−1,−1). In order to expand the Lagrangian to next order in deriva-
tives, we would need to find the corrections to the auxiliary field solutions. The first order
corrections to the auxiliary fields are obtained as follows. First, we need to obtain the
first order correction (O(λ)) to the vector multiplet scalars by substituting the leading
order expression for Di

j in equation (6.5). However since Di
j vanishes at leading order,

we find that the vector multiplet scalars do not receive any correction at the first order.
And therefore, the first order corrections to the auxiliary fields are obtained by simply
putting the leading order solutions into the O(λ) term appearing in the auxiliary field
equations (6.8), (6.9), (6.11), (6.12), (6.14)). For instance, the O(λ) correction to the
SU(3) gauge field is given as:

V (1)
µ

i
j = λκ2Σ(0)

µ
i
j (6.23)

where Σ(0)
µ

i
j is the expression (6.15) evaluated on the leading order solution of the auxiliary

fields and is given as:

Σ(0)
a

i
j = 12T (0)

jabDcT
(0)bci − h.c− trace (6.24)
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where T (0) is the leading order solution to the auxiliary T-field given in (5.14). In the same
way the (O(λ)) correction to the other auxiliary fields are given as:

E
(1)
i = 0 ,

A(1)
a = −2iλκ2T

(0)
abiDcT

(0)bci + h.c ,

T
(1)i
ab = 9λκ4M(0)+

abj ξ
(0)jKξ(0)iLηKL ,

D(1)i
j = 18λκ2

[
T (0)i · M(0)

j

]
8
, (6.25)

where,M(0)
abi is the expression (6.10) evaluated on the leading order solutions of the auxiliary

fields and is given as:

M(0)
abi = 32DaD

cT
(0)
bci + T

(0)j
ab T

(0)
i · T (0)

j (6.26)

It is clear that if the leading order Maxwell’s equation is satisfied, then DcT
(0)bci = 0.

One can also show that if the leading order Einstein-Maxwell’s equations (5.18), (5.24)
are satisfied, then M(0)+

abi = 0 (refer to appendix-C) and hence all the above first order
corrections and as a consequence all order corrections to the auxiliary field vanishes and
the leading order solutions to the auxiliary fields (5.14), (6.19) become exact. As a result
of which the truncation of the Lagrangian at the fourth order in derivatives (6.20) is
a consistent truncation. However, in order to arrive at this conclusion, one must show
that the corrections to the dynamical Einstein-Maxwell’s equation coming from the fourth
order piece vanish when the leading order Einstein-Maxwell’s equations (5.18), (5.24) are
satisfied. In the context of Maxwell’s equations, it is important to note that the corrections
to the Maxwell’s equation come via the corrections to the auxiliary T-field. In order to see
this, consider the fields AIµ and T abi in the Lagrangian (6.1) as independent fields. The
Maxwell’s equation is obtained by varying the action w.r.t. AIµ which comes only from LV
and is given as:

∇µ
(
F̂µνI − TµνiξIi − T

µν
i ξiI

)
= 0 (6.27)

Inserting the first order corrections to Tµν in the above equation, we obtain the corrections
to the Maxwell’s equation as:

∇µF̂µνI = 3λκ2∇µ
(
M(0)+

j
µνξjI + h.c

)
(6.28)

Since M(0)+
abj vanishes upon using the leading order Einstein-Maxwell’s equation, it also

implies that the corrections to the Maxwell’s equation also vanishes. The corrected Einstein
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equations can be obtained from (6.20) and is given as

Rµν−
1
2gµνR= 3κ2

4

(
2gρσF̂µρF̂νσ−

1
2gµνF̂ ·F̂

)
−24λκ2

(
2∇ρ∇σCµρνσ−

(
Rρσ− 1

2g
ρσR

)
Cµρνσ

)
+144λκ4

(
−1

2gµνRρσF̂
+Iρ

αF̂
−JασηIJ−

1
2gµν∇α∇β(F̂+Iα

ρF̂
−Jρβ)ηIJ

−1
2∇

2(F̂+I
µρ F̂

−Jρ
ν)ηIJ+∇α∇(µ(F̂+I

ν)ρF̂
−Jρα)ηIJ+2Rσ(µF̂

+I
ν)

ρF̂−J σρ ηIJ

+RαβF̂+Iα
(µF̂

−J β
ν) ηIJ

)
+54λκ6

(1
2gµν(F̂+I ·F̂+K)(F̂−J ·F̂−L)ηKLηIJ

)
+. . . .

(6.29)
where (. . . ) represents all the terms that trivially vanishes on imposing the leading order
Maxwell’s equations (5.24). After some tedious but straightforward calculations, one can
show that the O(λ) corrections to the Einstein’s equation vanishes upon using the leading
order Einstein-Maxwell’s equation (5.18), (5.24) (Please refer to appendix-C).

As a result of the above discussions, we can conclude that for the case of pure N = 3
supergravity, we can consistently truncate our action at the fourth order in derivatives
where the auxiliary fields as well as the dynamical fields (graviton and graviphoton) are
given by their leading order two derivative equations of motion. Such a feature has been
observed in the case of minimal N = 2 ungauged [45, 46] as well as gauged supergravity [21].
However, when one considers matter coupled supergravity theories, one cannot consistently
truncate at the fourth order in derivatives, and one indeed needs to consider the full
derivative expansion of the action.

7 Conclusion and future directions

Supergravity theories often arise as a low energy limit of string/M-theory and are useful
for understanding the physics of black holes in these theories. Therefore, the classification
of supergravity theories is of interest. The superconformal approach has been crucial in
the construction and classification of various supergravity invariants in four, five, and six
dimensions. In this paper, we have used the superconformal approach to derive pure N = 3
supergravity in four dimensions along with four derivative corrections. To do this, we used
the N = 3 Weyl multiplet constructed in [29, 30] and the N = 3 conformal supergravity
action constructed in [31]. To compensate for additional symmetries in the superconformal
theory, we constructed N = 3 vector multiplet coupled to conformal supergravity by using
supersymmetric reduction ofN = 4 vector multiplet coupled to conformal supergravity. We
constructed the action for the N = 3 vector multiplet coupled to conformal supergravity by
using the density formula constructed in [31] using the covariant superform method and by
adding terms proportional to the vector multiplet equations of motion which we obtained
by performing supersymmetric reduction of N = 4 vector multiplet equations of motion
coupled to conformal supergravity. We then used the gauge fixing procedure to obtain pure
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quadratic as well as higher derivative supergravity by using the actions for the Weyl and the
vector multiplet. We showed that while eliminating auxiliary fields and obtaining the action
as an expansion in derivatives, one can consistently truncate the action to fourth order in
derivatives, where the auxiliary fields as well as the dynamical fields such as the graviton
and the graviphoton obeys their leading order equations of motion. The main result of this
paper is the N = 3 Poincaré supergravity action up to fourth order in derivatives given
in (6.20). And some of our important intermediate results are: N = 3 vector multiplet
coupled to conformal supergravity and its complete supersymmetry transformation (3.3),
its equations of motion (3.5), (3.6) and its action (4.8).

While we have constructed the pure supergravity action by using three compensating
vector multiplets, our action for vector multiplets coupled to conformal supergravity holds
for arbitrary number of vector multiplets. One can therefore consider the action for 3 +nv
vector multiplets coupled to conformal supergravity to produce matter coupled N = 3
Poincaré supergravity. When the action for 3+nv vector multiplets is considered along with
the pure N = 3 conformal supergravity action, we can obtain higher derivative corrections
to the two derivative results in [24]. Further, minimal gauged supergravity theories have
been recently shown to produce surprising insights into holography [20, 21]. It will be
interesting to construct minimal gauged N = 3 supergravity and obtain these insights for
N = 3 theories.

For conformal supergravities with eight supercharges in five [47] and six dimensions [48],
it was found long ago that there exist two versions of the Weyl multiplet. While they both
contain all the gauge fields for the superconformal algebra, their auxiliary field content
differs. In particular, one of them contains a scalar field of Weyl weight +1 and its super-
partner, which can be used to internally gauge fix dilatation and S-supersymmetry without
resorting to any compensating multiplets. Working with this multiplet reduces the num-
ber of compensating multiplets required for going from conformal supergravity to Poincaré
supergravity. This was dubbed the dilaton Weyl multiplet, while the other as the standard
Weyl multiplet. Dilaton Weyl multiplet was also constructed for four dimensional N = 2
conformal supergravity in [49]. Dilaton Weyl multiplets have the advantage that it allows
us to directly construct the supersymmetrization of a Riemann square term which can be
then used to construct the supersymmetrization of arbitrary curvature squared invariants.
This was used to construct supersymmetrization of arbitrary curvature squared invariants
in N = 1 supergravity in five dimensions [50] as well as N = 2 supergravity in four dimen-
sions [51] using the respective dilaton Weyl multiplets. It is an interesting open question
if the dilaton Weyl multiplet exists for N = 3 and N = 4 conformal supergravity theories
in four dimensions. In recent work (which is to appear soon), where one of the authors is
involved [52], it was found that the dilaton Weyl multiplet in N = 4 conformal supergravity
manifests a USp(4) R-symmetry. One can imagine that if one performs a supersymmetric
truncation of this Weyl multiplet, one could perhaps be able to construct a dilaton Weyl
multiplet for N = 3 conformal supergravity and hence the R-symmetry that would be man-
ifest in an N = 3 dilaton Weyl multiplet should be some subgroup of USp(4). On the other
hand, if one constructs directly in N = 3 using the standard method of coupling a vector
multiplet to the standard Weyl multiplet and using the equations of motion of the vector
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multiplet to eliminate the auxiliary fields of the standard Weyl multiplet in terms of the
auxiliary fields of the dilaton Weyl multiplet, one would expect that the R-symmetry that
would be manifest in N = 3 dilaton Weyl multiplet would be a subgroup of SU(3). Hence
one might think that some subgroup that would lie in the overlap of USp(4) and SU(3)
would be the R-symmetry manifested in N = 3 dilaton Weyl multiplet. It would be inter-
esting to investigate this dilaton Weyl multiplet in N = 3 conformal supergravity and use
it for an alternate formulation of N = 3 Poincaré supergravity and find its relation to the
Poincaré supergravity constructed in this paper. We leave these questions for future work.
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A Conventions

In this paper, curved indices are denoted by µ, ν = 0, 1, . . . while local Lorentz indices are
denoted by a, b,= 0, 1, . . . respectively. We always (anti)symmetrize with weight one, for
example:

T[ab] = 1
2 (Tab − Tba) , T[ab] = 1

2 (Tab − Tba) (A.1)

The completely antisymmetric tensor satisfies:

εabcd = e−1εµνρσeaµe
b
νe
c
ρe
d
σ, ε0123 = i (A.2)

which implies γab = −1
2εabcdγ

cdγ5. The dual of an antisymmetric tensor field Fab is given by:

F̃ab = 1
2εabcdF

cd (A.3)

and the (anti)selfdual part of Fab reads:

F±ab = 1
2
(
Fab ± F̃ab

)
(A.4)

Our convention of Riemann tensor in terms of the spin-connection is given as:

Rµν
ab = 2∂[µω

ab
ν] − 2ωac[µων]c

b (A.5)

Recall that we had defined a covariant derivative which is covariant w.r.t. general coordinate
transformation along with local Lorentz transformations in (5.23). Under this covariant
derivative, eaµ and subsequently the metric gµν is covariantly constant. Hence the Christoffel
connection defined in (5.22) is given as:

Γρµν = 1
2g

ρσ (∂µgσν + ∂νgµσ − ∂σgµν) (A.6)
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Further using [∇µ,∇ν ]eaρ = 0, we get the Riemann tensor defined in (A.5) completely
written in terms of curved indices as:

Rσµνρ ≡ Rνρabeσaeµb = ∂ρΓσµν − ∂νΓσµρ + ΓσλρΓλµν − ΓσνλΓλµρ (A.7)

The Ricci tensor and Ricci scalar are defined as:

Rµν = Rµρ
abeρbeνa = Rρµρν , R = gµνRµν (A.8)

The above convention of Riemann tensor is consistent with the negative sign appearing with
the Einstein-Hilbert term in (5.15). That is the reason why we chose the compensating
vector multiplets with the wrong sign of the kinetic term. The Weyl tensor is the trace-free
part of the Riemann tensor and is given as,

Cµν
ab = Rµν

ab − 2δ[a
[µR

b]
ν] + 1

3Rδ
[a
[µδ

b]
ν] (A.9)

B Transformations of the dependent gauge fields and Bianchi identity

For the purpose of completeness, we provide explicit expressions of the fully supercovariant
curvatures in N = 3 conformal supergravity according to the conventions followed in [31]:

R(P )µνa = 2∂[µeν]
a − 2ω[µ

abeν]b + 2b[µeν]
a − 1

2
(
ψ̄iµγ

aψνi + h.c.
)

R(Q)µνi = 2
(
∂[µ −

1
4ω[µ

abγab + 1
2b[µ + 1

2iA[µ

)
ψiν] − 2V[µ

i
jψν]

j

−1
8ε

ijkγ · Tjγ[µψν] k + 1
2ε

ijkΛLψ̄µ jψν k − γ[µφ
i
ν] ,

R(M)µνab = 2∂[µων]
ab − 2ω[µ

acων]c
b − 4f[µ

[aeν]
b] (B.1)

+
(1

2 ψ̄
i
[µγ

abφν]i −
1
4εijkψ̄

i
µψ

j
νT

ab k − ψ̄i[µγν]R̂
ab(Q)i + h.c.

)
,

R(V )µνij = 2∂[µVν]
i
j + V[µ

i
kVν]

k
j

+
(
−ψ̄i[µφν]j + 1

48 ψ̄
i
[µγν]ζj −

1
16εjklψ̄

k
[µγν]χ

il

− 1
16εkljE

iψ̄kµψν
l + 1

16 ψ̄
i
[µγ · Tjγν]ΛR −

1
16 ψ̄[µ

iγν]ΛREj

−1
8 ψ̄

i
[µγ

aψν]jΛ̄LγaΛR − h.c.− trace
)

R(A)µν = 2∂[µAν] − i
(1

6 ψ̄
i
[µφν]j + 1

36 ψ̄
i
[µγν]ζi + 1

24εkljE
jψ̄kµψν

l

+ 1
12 ψ̄

i
[µγ · Tiγν]ΛR + 1

12 ψ̄
i
[µγν]ΛREi −

1
6 ψ̄

i
[µγ

aψν]iΛ̄LγaΛR + h.c.

)
(B.2)

As per the conventions followed in [31], the set of curvature constraints required to reduce
the superconformal gauge multiplet to the independent fields listed in table 1 are given as:

R(P )µνa = 0
R(M)µνabeνb = 0
γµR(Q)µνi = 0 (B.3)
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The expressions for dependent gauge fields ωabµ , fµa and φiµ are obtained by solving the
above constraints. Their complete Q and S-supersymmetry transformations is given as
follows:

δωabµ =−1
2 ε̄

iγabφµi+
1
2εijk ε̄

iψjµT
abk+ε̄iγµR(Q)abi−

1
2 η̄

iγabψµi+h.c.

δφiµ =− i

12(γµγ ·R(A)−3γ ·R(A)γµ)εi− 1
6(3γ ·R(V )ijγµ−γµγ ·R(V )ij)εj

− 1
4ε

ijkΛ̄LγµRab(Q)kγabεj+
1
32γ ·T

[iγµγ ·Tjεj]+
1
24ε

ijk(γµγ · /DTj−3 /Dγ ·Tjγµ)εk

− 1
12 ε̄

[iψk]
µ ζk+ 1

32
(
ε̄iγaψµj−δij ε̄kγaψµk+ε̄jγaψiµ−δij ε̄kγaψkµ

)
γaΛLEj

+ 1
96
(
ε̄iγaψµj−δij ε̄kγaψµk+ε̄jγaψiµ−δij ε̄kγaψkµ

)
γaζj− 1

4 ε̄
[iψj]µEjΛR

− 1
32ε

ijk
(
ε̄lγaψµk+ε̄kγaψlµ

)
γaχjl−

1
8εjklε̄

jψkµχ
il− 1

2ε
ijk ε̄jψµk /DΛL

− 1
16
(
ε̄iγaψµj−δij ε̄kγaψµk+ε̄jγaψiµ−δij ε̄kγaψkµ

)
γ ·T jγaΛL−

1
4ε

ijk ε̄jγaφµkγ
aΛL

+2Dµηi−
1
24ε

ijkγµγ ·Tjηk+ 1
4ε

ijkη̄jγaψµkγ
aΛL

δfµ
a =−ε̄iγµDbR(Q)abi+

1
4 ε̄

iR̃(S)aµi+
1
2εijkTµb

k ε̄iR(Q)abj− i6 ε̄
kγbψµkR̃(A)ab

+ 1
3 ε̄

iγbψµjR̃(V )abji+
1
64 ε̄

[iγ ·Tiγaγ ·T j]ψµj−
1
3εijk ε̄

iψjµDbT
abk+ 1

48εijk ε̄
iγaγ ·T jφkµ

+ 1
2 η̄

iγaφµi−
1
4 η̄

iR(Q)µai−
1
48εijkη̄

iγ ·T kγaψjµ+h.c.,

(B.4)

The above mentioned supersymmetry transformations of the dependent gauge fields can be
obtained from the independent ones as explained in [43]. The Bianchi identities satisfied
by the curvatures as shown below:

R(D)ab = 0
R(M)abcd = R(M)cdab

εaecdR(M)cdeb = 0
1
4ε

abcdεefghR(M)abef = R(M)cdgh

εcdefDbDdR(M)efab = 0
R(K)abc = −DeR(M)abec

εabcdDbR(V )cdji = 1
16Λ̄Lγbγ · T iR(Q)abj + (h.c; traceless)

εabcdDbR(A)cd = − i

12Λ̄Lγbγ · T jR(Q)abj −
i

12Λ̄Rγbγ · TjR(Q)abj

DaR(Q)abi = −1
4ε

abcdγaR(S)icd
R(Q)+i

ab = 0
R(S)−iab = /DR(Q)iab
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γabR(S)iab = 0
γaR(S)+i

ab = 0

εabcdDbR(S)icd = 1
12ε

ijkγaTk ·R(S)j + 1
3ε

ijkT abk D
dR(Q)dbj

− 1
3γ

aR(V )ij ·R(Q)j − i

6γ
aR(A) ·R(Q)i

− 1
3ε

ijkDgTgckR(Q)acj + 1
32γ · T

[lγaTl ·R(Q)i] (B.5)

C Truncation of equations of motion

In this appendix we show that the O(λ) corrections to the T iab and Einstein’s equation
vanishes upon using the leading order solution T (0)i

ab given in (5.14) and Einstein-Maxwell’s
equation (5.18), (5.24). First we will consider O(λ) corrections to the T iab given as:

T
(1)i
ab = 9λκ4M(0)+

abj ξ
(0)jKξ(0)iLηKL , (C.1)

where,M(0)
abi is given as:

M(0)
abi = 32DaD

cT
(0)
bci + T

(0)j
ab T

(0)
i · T (0)

j

= 32DaDcT (0)
bci − 32facT (0)

bci + T
(0)j
ab T

(0)
i · T (0)

j (C.2)

where covariant derivative Da appearing in the first line is the fully supercovariant deriva-
tive. Since we are interested in only the bosonic part, we can replace it with Da =
Da + K-covariantization in the second line where Da is covariant w.r.t. all the standard
gauge transformations (dilatation, local Lorentz transformation, and R-symmetry). The
K-gauge field faµ in terms of the Ricci tensor and Ricci scalar is given as:

faµ = 1
2Rµ

a − 1
12Re

a
µ (C.3)

Upon using Einstein-Maxwell’s equation (5.18), one can write Ricci tensor and Ricci scalar
as shown below:

Rµν = −3κ2F̂+I
µ

αF̂−Jαν ηIJ , R = 0 (C.4)

Upon substituting T (0)i
ab and the expression Ricci tensor and Ricci scalar from above in (C.2)

we get,

M(0)
abi = −192 ξIiDaDcF̂−Jbc ηIJ + 288 ξIi F̂+K

cα F̂−L[c
[aF̂
−J
b]

α]ηIJηKL

+ 72 ξIi F̂+K
ab

(
F̂−L · F̂−J

)
ηIJηKL (C.5)

To arrive at the last term we use eq. (5.5) and the D-gauge condition given in (5.2). We
notice that the first term of the above equation vanishes upon using the Maxwell’s equation
together with the Bianchi identity given in (5.20). The second term however, can further
be simplified on the using folowing identity:

G±[a[cH
±
d]b] = ±1

8G
±
efH

±efεabcd −
1
4
(
G±abH

±
cd +G±cdH

±
ab

)
(C.6)
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We have,

M(0)
abi = −36 ξIi F̂+K

cα

(
F̂−L · F̂−Jεcαab

)
ηIJηKL − 144 ξIi F̂+K

cα

(
F̂−Lab · F̂

−Jcα
)
ηIJηKL

+ 72 ξIi F̂+K
ab

(
F̂−L · F̂−J

)
ηIJηKL (C.7)

Now, for the O(λ) corrections to the T iab given in (C.1), we need to take selfdual projection
ofM(0)

abi, which yields

M(0)+
abi = −36 ξIi F̂+K

cα

(
F̂−L · F̂−J

)
(εcαab)+ F̂+K

cα ηIJηKL

+ 72 ξIi F̂+K
ab

(
F̂−L · F̂−J

)
ηIJηKL = 0 (C.8)

where we have used the fact that (εcαab)+ F̂+K
cα = 2F̂+K

ab . Thus, we showed

T
(1)i
ab = 9λκ4M(0)+

abj ξ
(0)jKξ(0)iLηKL = 0 (C.9)

Similarly, we will show now that the O(λ) corrections to the Einstein’s equation (C.10)
also vanishes. We consider, the non-trivial part of the corrected Einstein’s equation as
shown below:

E(1)
c = − 24λκ2

(
2∇ρ∇σCµρνσ −

(
Rρσ − 1

2g
ρσR

)
Cµρνσ

)
+ 144λκ4

(
−1

2gµνRρσF̂
+Iρ

αF̂
−JασηIJ−

1
2gµν∇α∇β(F̂+Iα

ρF̂
−Jρβ)ηIJ

−1
2∇

2(F̂+I
µρ F̂

−Jρ
ν)ηIJ+∇α∇(µ(F̂+I

ν)ρF̂
−Jρα)ηIJ + 2Rσ(µF̂

+I
ν)

ρF̂−J σρ ηIJ

+RαβF̂+Iα
(µF̂

−J β
ν) ηIJ

)
+ 54λκ6

(1
2gµν(F̂+I · F̂+K)(F̂−J · F̂−L)ηKLηIJ

)
(C.10)

Upon writing the Weyl tensor in terms of Riemann tensor, Ricci tensor and Ricci scalar as
given in (A.9), the first two terms of (C.10) takes the following form

−48λκ2∇ρ∇σCµρνσ = −24λκ2
(
∇2Rµν − gµν∇ρ∇σRρσ −RµρνσRρσ +Rσ(µRν)

σ
)

24λκ2RρσCµρνσ = 12λκ2
(
2RµρνσRρσ − gµνRρσRρσ + 2Rσ(µRν)

σ
)

(C.11)

To arrive at first equation of (C.11), we have used the following relations:

∇σRµρνσ = ∇ρRµν −∇µRρν , [∇ν ,∇µ]Rαρ = RασµνR
σρ +RρσµνR

ασ (C.12)

On substituting back (C.11) in (C.10) and further writing the expressions for Ricci tensor
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as given in (C.4), we get

E(1)
c =

(((
((((

(((
(((

72λκ4∇2(F̂+I
µρ F̂

−Jρ
ν)ηIJ−

��
���

���
���

���
���:

0

72λκ4gµν∇α∇β(F̂+Iα
ρF̂
−Jρβ)ηIJ−12λκ2gµνR

ρσRρσ

−144λκ4RµρνσF̂
+IραF̂−Jα

σηIJ−72λκ4gµνRρσF̂
+Iρ

αF̂
−JασηIJ

−72λκ4

���
���

���
���

��:0

gµν∇α∇β(F̂+Iα
ρF̂
−Jρβ)ηIJ

((((
((((

((((
(

−72λκ4∇2(F̂+I
µρ F̂

−Jρ
ν)ηIJ

+144λκ4∇α∇(µ(F̂+I
ν)ρF̂

−Jρα)ηIJ+288λκ4Rσ(µF̂
+I
ν)

ρF̂−J σρ ηIJ

+144λκ4RρσF̂
+Iρ

(µF̂
−J σ
ν) ηIJ+54λκ6

(1
2gµν(F̂+I ·F̂+K)(F̂−J ·F̂−L)ηKLηIJ

)
(C.13)

The second and sixth term goes to zero as a consequence of (5.20). We now focus on the
second term in the third line of (C.13).

144∇α∇(µ(F̂+I
ν)ρF̂

−Jρα)ηIJ
=−144

([
∇α,∇(µ

]
F+IαρF̂−Jν)ρ +F̂−Jνρ

[
∇α,∇(µ

]
F−JαρF̂+I

ν)ρ

)
ηIJ

=−144Rσ(µF̂
+I
ν)

ρF̂−J σρ ηIJ+144RµρνσF̂+IραF̂−Jα
σηIJ (C.14)

The reason we could express the above term as commutators is because the term
(F̂+I

νρF̂
−Jρα) is symmetric in α and ν thus, the contribution coming from the term

where ∇α acts on it vanishes as a consequence of (5.20). Thereafter, for simplification, we
will take the first term of the last line in (C.13) and re-express it as

144RρσF̂+Iρ
(µF̂

−J σ
ν) ηIJ = −144Rσ(µF̂

+I
ν)

ρF̂−J σρ ηIJ +72gµνRρσF̂+Iρ
αF̂
−JασηIJ (C.15)

Now, upon substituting (C.14) and (C.15) in the equation (C.13), we get

E(1)
c = −12λκ2gµνR

ρσRρσ + 27λκ6gµν(F̂+I · F̂+K)(F̂−J · F̂−L)ηKLηIJ (C.16)

The first term exactly cancels the second term on substituting the expression for Ricci
tensor as given in (C.4). Thus, we finally obtain

E(1)
c = 0. (C.17)
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