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1 Introduction

In many applications supersymmetric field theories or supergravities are considered as an

effective description of a more fundamental theory, such as string theory. Most properties

of this low energy effective theory are captured by the leading two-derivative Lagrangian
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L(0). It can, however, happen that specific couplings vanish in L(0) and then higher order

corrections do become important. A particular class of corrections are higher-derivative

terms which in supersymmetric theories can simultaneously induce corrections of the scalar

potential. It is the purpose of this paper to analyse supersymmetric higher-derivative

operators with this property — both conceptually and as a new tool to stabilize moduli in

string theory. Such terms were also studied in [1–5], while [6–10] started looking at their

implications for cosmology.

More precisely, we focus on N = 1 supersymmetry and supergravity in four space-

time dimensions and within such theories on ghost-free higher-derivative operators. In

non-supersymmetric theories it is well-known that the unique ghost-free four-derivative

operator for a scalar field φ is given by (∂µφ∂
µφ)2.1 Several distinct superspace-operators

exist which induce such terms. However, there is a unique ghost-free operator given by [2]

L(1) ∼
∫

d4θ (DαΦ)(DαΦ)(D̄α̇Φ
†)(D̄α̇Φ†) , (1.1)

where Dα, D̄α̇ denote the superspace derivatives, d4θ = d2θd2θ̄ denotes the integration

over the Grassmann variables and Φ is a chiral superfield. We will see that the equation

of motion for the auxiliary field F is cubic instead of linear after including L(1). This in

turn implies up to three inequivalent solutions for F and, hence, three inequivalent on-shell

theories. The presence of this multiplet of theories is somewhat puzzling as one seems to

loose predictability. However, studying the explicit solutions we find that only one out of

the three theories is consistent with the principles of effective field theory (EFT).

There is a notable example in which higher-derivative operators such as L(1) have been

computed from radiative corrections in a manifest off-shell scheme, namely the effective

one-loop superspace Lagrangian of the Wess-Zumino model [13–15]. These references fo-

cused purely on those higher-derivative operators that contribute to the scalar potential

and in [15] an infinite tower of such higher-derivative operators, denoted as the effective

auxiliary field potential (EAFP), was explicitly computed. To lowest order in superspace-

derivatives this EAFP coincides with L(1) given in eq. (1.1). The full non-local EAFP turns

out to imply a unique on-shell theory. When truncating this EAFP to a finite number of

terms, the truncation naively produces multiple on-shell theories. Applying the truncation

at higher order even increases the number of solutions. However, we will show that at any

order of the truncated EAFP there is a unique Lagrangian which reproduces the dynamics

of the non-local theory at that order and which is consistent with the principles of EFT.

The remaining theories can be regarded as artefacts of the truncation of the infinite tower

of higher-derivative operators similar to the emergence of ghosts in truncated theories [16].

Apart from addressing this conceptual issue we proceed to compute the on-shell La-

grangians for models with arbitrarily many chiral superfields both in global and local su-

persymmetry. In particular we focus on the induced correction to the scalar potential and

1The ghost-free higher-derivative operators are in general those that do not induce more than two

derivatives acting on fields in the equations of motion. Additionally, in supersymmetric theories ghostlike

degrees of freedom can occur when a kinetic term for the auxiliary field is induced [11, 12].
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analyze the situation where the two-derivative theory has a minimum with a flat direction

which can (or cannot) be lifted by the presence of L(1).

In the second part of this paper we will purely focus on the effective action obtained

from type IIB flux compactifications on Calabi-Yau orientifolds. The background fluxes

are able to stabilize the complex structure moduli and the dilaton [17, 18]. In contrast,

all Kähler moduli are described at leading order by a no-scale supergravity and thus are

flat directions of the potential. Perturbative corrections for the Kähler moduli are in-

duced from α′- and gs-corrections in the ten-dimensional action. An important example is

the leading order (α′)3-correction to the Kähler potential which is computed by reducing

higher-curvature terms in ten dimensions [19]. This correction breaks the no-scale prop-

erty, but by itself does not lead to a stabilization. When non-perturbative effects are taken

into account scenarios with supersymmetric [20] or non-supersymmetric minima can be

found [21].2 There is an intrinsic merit to demonstrate the existence of various classes

of meta-stable de Sitter (dS) vacua as explicitly as possible in well-controlled examples

of string compactifications. Thus, we find it worthwhile to explore further possibilities of

moduli stabilization using only fully perturbative and explicitly computable contributions.

Hence, it is of interest to pursue the question to what extent additional (α′)3-corrections

of the ten-dimensional theory can lead to corrections to the scalar potential and, thus,

potentially to a stabilization of moduli without taking into account non-perturbative effects.

Indeed, several such corrections to the scalar potential are expected to appear and have not

been discussed in detail, owing to the fact that the explicit structure of the ten-dimensional

analogues are still unknown. We will argue that some of these (α′)3-corrections to the

scalar potential can be matched to higher-derivative operators of the type of L(1) as off-

shell completions.3 Therefore, even though it is not possible to compute the corrections to

the scalar potential directly, one can determine the respective four-derivative terms, which

as we will show decend from the explicitly known R4-terms in ten dimensions [25, 26],

and, hence, infer the correction to the scalar potential V(1) indirectly. By computing these

four-derivative terms we find

V(1) ∼
Πi t

i

V4
, (1.2)

where the ti denote the two-cycle volumes, V the overall volume and the Πi are topological

numbers defined as

Πi =

∫
c2 ∧ D̂i . (1.3)

They encode information of the second Chern class c2 and D̂i form a basis of H1,1(M,Z).4

We then proceed to study the minima of V(1) taken together with the potential obtained

from the α′-corrected Kähler potential. We show the existence of a model-independent non-

supersymmetric minimum of this potential where all four-cycle volumes are fixed to values

2For reviews on moduli stabilization, flux compactifications and de Sitter vacua, see e.g. [22–24].
3We will show that it is in fact impossible to supersymmetrically complete these corrections within a

two-derivative theory, that is via additional terms in the Kähler and/or superpotential.
4We perform this computation without determining numerical factors and for the simple case of h1,1 = 1

but argue that V(1) given in (1.2) also holds for arbitrary h1,1 as long as W = const.
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τi ∼ Πi for any Calabi-Yau threefold with χ(M) > 0.5 This result suggests the existence

of many new non-supersymmetric vacua within the landscape, where stabilization occurs

purely from the leading order α′-corrections, but a more detailed discussion of all possible

α′-corrections will be necessary to support this. Furthermore, the minimum only exists if

the overall sign of L(1) is negative. This sign is universal and does not depend on the choice

of the Calabi-Yau. Unfortunately, determining this sign requires the knowledge of the

particular linear combination of all additional 4D higher-derivative operators contributing

to the 4D four-derivative kinetic terms. This is beyond the scope of this paper and we

leave it for future work.

This paper is organized as follows. In section 2 we study L(1) in effective theories with

global supersymmetry. The conceptual discussion of the on-shell theories is performed

for theories with a single chiral superfield in section 2.2 and in appendix A, where we

also display the exact solutions for the chiral auxiliary field and prove the absence of

ghosts. In section 2.3 we illustrate the interpretation of the higher-derivative operators

and the respective on-shell theories with the one-loop Wess-Zumino model. In section 2.4

we then display the physical on-shell Lagrangian for arbitrarily many chiral superfields

and make some statements regarding the structure of the resulting minima, providing

an explicit example for the lifting of flat directions in section 2.5. In section 3 we show

the respective Lagrangians for the case of supergravity and again discuss the structure of

the minima with an explicit example in section 3.2. Finally in section 4 we turn to the

discussion of flux compactifications of Type IIB on Calabi-Yau orientifold, where the details

of the reduction of the curvature-terms in ten dimensions can be found in appendix B and

appendix C. Furthermore, in appendix D we prove that V(1) given in eq. (1.2) cannot be

off-shell completed via corrections to the Kähler potential and/or superpotential. At the

end we provide some conclusions in section 5.

2 Higher-derivative terms in N = 1 supersymmetry

2.1 Preliminaries

In this section we consider globally supersymmetric theories with nc chiral superfields Φi,

i = 1, . . . , nc whose couplings are encoded in a Kähler potential K, a superpotential W

and the higher-derivative operator L(1). In the following we adopt the conventions and

notation of [27]. Thus, the total superspace Lagrangian is of the form6

L = L(0) + L(1) ,

where L(0) =

∫
d4θK(Φ,Φ†) +

∫
d2θW (Φ) + h.c. ,

L(1) =
1

16

∫
d4θ Tijk̄l̄(Φ,Φ

†)DαΦiDαΦ
jD̄α̇Φ

†k̄D̄α̇Φ†l̄ .

(2.1)

5We estimate the typical size of the Πi for a specific Calabi-Yau threefold to be O(10–100).
6Here and henceforth we drop brackets, which would indicate explicitly on which fields certain

superspace-derivatives act. More precisely this means DαΦDαΦ = (DαΦ)(DαΦ).
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In the spirit of [3] we allow for an arbitrary hermitian four-tensor superfield Tijk̄l̄(Φ,Φ
†)

which we assume to depend only Φ and Φ† but not on any derivative.7 We will often refer

to this mass dimension −4 quantity, respectively its scalar component as coupling tensor.

From the structure of L(1) one infers the symmetry properties

Tijk̄l̄ = Tjik̄l̄ = Tjil̄k̄ . (2.2)

In order to obtain the component expression of L we use the well known θ-expansion of

the chiral superfields

Φi = Ai +
√
2θψi + θ2F i + iθσµθ̄∂µA

i − i√
2
θθ∂µψ

iσµθ̄ +
1

4
θ2θ̄2�Ai , (2.3)

where Ai are scalars, ψi chiral fermions and F i auxiliary components. From the form of

the superspace derivatives

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇ ∂

∂xµ
and D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇

∂

∂xµ
, (2.4)

one finds that the bosonic part of L(1) only has a contribution at order θ2θ̄2 which is

given by

Tijk̄l̄(Φ,Φ
†)DαΦiDαΦ

jD̄α̇Φ
†k̄D̄α̇Φ†l̄|bos =

16Tijk̄l̄(A, Ā)
[
(∂µA

i∂µAj)(∂νĀ
k̄∂νĀl̄)− 2F iF̄ k̄(∂µA

j∂µĀl̄) + F iF jF̄ k̄F̄ l̄
]
θ2θ̄2 .

(2.5)

Performing the θ integration in eq. (2.1) one obtains the Lagrangian

Lbos =−Gij̄ ∂µA
i∂µĀj̄ +Gij̄ F

iF̄ j̄ + F iW,i + F̄ ī W̄,̄i

+ Tijk̄l̄(A, Ā)
[
(∂µA

i∂µAj)(∂νĀ
k̄∂νĀl̄)− 2F iF̄ k̄(∂µA

j∂µĀl̄) + F iF jF̄ k̄F̄ l̄
]
,
(2.6)

where Gij̄ = ∂i∂j̄K and W,i denotes the holomorphic derivative of the superpotential. We

indeed see that no derivative terms for F i appear and, thus, their equations of motion

stay algebraic such that the F i remain non-propagating auxiliary fields. However, Lbos

contains quartic terms in the F i which lead to cubic contributions to the bosonic part of

the respective equations of motion

Gik̄F
i + W̄,k̄ + 2F i(F jF̄ l̄ − ∂µA

j∂µĀl̄)Tijk̄l̄ = 0 . (2.7)

Determining all solutions to this equation in all generality is a delicate task and there-

fore we first turn to a theory with a single chiral multiplet where we can solve the cubic

equation (2.7) exactly.

7Note that if T would depend on space-time or superspace-derivatives of the chiral multiplets the resulting

theory would either involve more than four derivatives for the component fields and/or not correct the scalar

potential.
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2.2 Theory with one chiral multiplet

For one chiral multiplet eqs. (2.7) reduce to

GAĀ F̄ +W,A + 2T F̄
(
|F |2−∂µA∂µĀ

)
= 0 , (2.8)

where we defined T = TAAĀĀ for brevity. In appendix A.1 we solve eq. (2.8) exactly and

show that depending on T and the specific region in the phase space of A one or three

solutions for F exist. Expanding the solutions for small T and inserting into eq. (2.6)

keeping only the leading terms one obtains, in the case where all three solutions exist, the

following three Lagrangians

LF1 =−GAĀ

(
1 + 2T̂ V(0)

)
∂µA∂

µĀ+ T̂G2
AĀ(∂µA∂

µA)(∂νĀ∂
νĀ)

− V(0) + T̂ V 2
(0) +O(T̂ 2) ,

LF2,3 =− 1

4
T̂−1 +

1

2
V(0) +O(T̂ 1/2) ,

(2.9)

where for convenience we defined T̂ = TG−2
AĀ

and V(0) = GAĀ|W,A|2 is the scalar potential

of L0.
8 In the following we will sometimes refer to the individual Lagrangians in eq. (2.9)

as branches. We observe that LF1 is analytic in T̂ and reproduces L0 at leading order. At

linear order in T̂ it induces a correction to the kinetic energy, which is proportional to V(0),

as well as to the potential, proportional to V 2
(0). LF2,3 on the other hand have a pole-like

term in T̂ and at order T̂ 0 only have a contribution to the potential, which differs from

V(0) by a factor −1/2.

In summary the theory defined by (2.1) can lead to three different and independent on-

shell Lagrangians. However, a multiplet of theories is dissatisfying, since it predicts several

inequivalent evolutions of fields for a given set of initial data. Furthermore, suppose we

include additional off-shell higher-derivative operators with more than four superspace-

derivatives then the equations of motion for the chiral auxiliaries admit more than three

solutions, rendering the problem even more severe. Let us now argue how to resolve this

issue in the context of an effective field theory.

When performing the limit T → 0 in the off-shell Lagrangian given in eq. (2.1) we

recover the ordinary, two-derivative theory L(0). For consistency this should also hold in

the on-shell theories given in eq. (2.9). For example suppose that the higher-derivative

operator arises by integrating out massive states associated with a mass scale M from a

UV theory. Then to lowest order in fields one has T ∼M−4 and hence the operator should

decouple as M becomes large compared to the masses of the light states as dictated by the

decoupling principle, see for instance [28]. We see that LF1 given in (2.9) is analytic in T ,

while LF2,3 contain a non-analytic part and thus violate the decoupling limit. Based on

this observation we propose to regard only LF1 as the physical on-shell Lagrangian since

it is the unique Lagrangian compatible with the principles of effective field theory. We

8Expanding eq. (A.10) one observes that T̂ is the correct expansion parameter only for LF1
, while for

LF2,3
it is

√
T̂ . Note that at the displayed order in

√
T̂ the solutions F2 and F3 induce the same Lagrangian

while at higher order we find LF2
6= LF3

.

– 6 –
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will substantiate this proposition with the example of the effective one-loop Wess-Zumino

model in the next section. Notably we will show that the non-analytic theories not only

fail to obey the decoupling limit, but furthermore are incapable of reproducing the on-

shell Lagrangian of the full, non-local theory. To some extent this is already visible in

eq. (2.9). More precisely the non-analytic branches fail to reproduce the terms in L(0).

In fact they neither include the kinetic terms nor the scalar potential of L(0). On the

other hand the O(T 0) contributions in LF1 exactly coincide with the terms in L(0). In

summary, this observation and the results of the next section suggest that the non-analytic

solutions should be regarded as mere artefacts of the truncation of an infinite sum of higher-

derivatives. Note that the above observation is reminiscent of the discussion of theories

with higher-derivative terms in the equations of motion where ghost-like degrees of freedom

emerge. Similarly the ghosts arise from truncating an infinite series of higher-derivative

terms to a finite sum and violate EFT-reasoning in as much as the inclusion of higher order

operators should merely induce a small correction to the dynamics of some IR-Lagrangian.

A ghost-free theory can then be obtained by demanding analyticity of the solutions to the

equations of motion in EFT-control parameters [16, 29], identical to our reasoning above.

In the rest of this paper we will therefore only discuss the analytic theory. Furthermore,

recall that besides the operator in eq. (2.1) superspace higher-derivative terms with more

than four superspace-derivatives exist and they contribute higher polynomial powers of

the auxiliary field to the Lagrangian (next section we display the one-loop Wess-Zumino

model as an explicit example where infinitely many superspace-derivative operators are

present). These operators are further mass-suppressed and hence modify the equations of

motion for the auxiliary fields at order O(T 2).9 This implies that without including such

higher-derivative terms into the superspace Lagrangian, we can trust the resulting on-shell

Lagrangian only up to linear order in T .10 Fortunately this greatly simplifies the structure

of the on-shell Lagrangian and makes a proper discussion of the multi-field case feasible.

To conclude this section let us describe why the theory is free of ghosts. The absence

of ghosts is not immediately clear, but can be understood with the exact solution for the

auxiliary field at hand. The sign of the ordinary kinetic term is affected by the presence of

the higher-derivative operator through eq. (2.8). In appendix A.2 the absence of ghosts is

explicitly demonstrated for the theory obtained by solving eq. (2.8) exactly and reinserting

the result into eq. (2.6). Nevertheless, one might still worry about the sign of the ordinary

kinetic term in the truncated theory after inspection of eq. (2.9). More precisely one finds

that the theory becomes ghost-like once T̂ V(0) ∼ −1. However, in that regime we cannot

trust our truncation at linear order in T any longer as we illustrate in appendix A. In other

words, studying the exact solutions of eq. (2.8) shows that if T̂ V(0) ∼ −1, the analytic

solution ceases to exist and one enters a regime, in which only non-perturbative solutions

can be found. To summarize, the analytic theory breaks down before it would become

ghostlike.

9They might also induce modifications at order O(T 3/2).
10In models, where the EAFP is solely given in terms of the four-derivative operator, it is sensible to

regard the full solution for F i and the respective Lagrangians along the lines of appendix A.
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2.3 One-loop Wess-Zumino model

After the general discussion of the previous section let us now turn to an explicit example,

where the truncation of the infinite sum of higher-derivatives and the structure of the

equations of motion for the auxiliary field can be explicitly studied. This example is given

by the one-loop Wess-Zumino model in superspace, for which the full, non-local effective

auxiliary field potential (EAFP) was recently computed in [15] following up on earlier

works [13, 14]. More precisely the model consists of a single chiral superfield Φ with

Kähler potential and superpotential of the form

K = ΦΦ† , W =
1

2
mΦ2 +

1

6
λΦ3 . (2.10)

According to [15] the only contributions to the effective superspace potential at one-loop

come from corrections to the Kähler potential as well as an EAFP, which we denote as F.

More precisely it consists of an infinite tower of higher-derivatives of the form

F =

∫
d4θ

DΨDΨD̄Ψ†D̄Ψ†

(ΨΨ†)2
G

(
D2ΨD̄2Ψ†

(ΨΨ†)2

)
, (2.11)

where Ψ = m + λΦ = W
′′
and G is a known real-valued analytic function with non-

vanishing coefficients in the respective series expansion at all orders [15]. The lowest order

contribution arises from the constant term in the series expansion of G and comparing

with (2.1) we have

T ∼ |W ′′ |−4 . (2.12)

Expanding T as a geometric series, we identify that to lowest order we have T ∼ m−4.

Let us now proceed by performing the superspace integration in eq. (2.11). From

eq. (2.5) we infer that the bosonic part of the superfield multiplying G has only a θ2θ̄2

contribution and hence the remaining superfields have to be evaluated at their scalar com-

ponent. This yields

Fbos =
(DΨDΨD̄Ψ†D̄Ψ†)|θ4

|m+ λA|4 G

( |λF |2
|m+ λA|4

)
. (2.13)

For simplicity let us set λ = 1 from now on. Fbos displays an infinite sum in the auxiliary

field F and F̄ . Additional powers of the auxiliary field are in a one-to-one correspondence

with additional powers of superspace-derivatives. We can identify

ǫ ≡ |m+A|−4 (2.14)

as the parameter controlling the infinite series of higher-derivatives and powers of the

auxiliary field, respectively. We immediately observe that eq. (2.13) comprises an analytic

function in ǫ. Using the full (and explicitly known) function G we checked numerically

that the solution to the equations of motion for F derived from the standard Lagrangian

plus Fbos is unique and analytic in ǫ.11

11The numerical analysis was performed with the help of Mathematica 10.
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The non-local theory with F in eq. (2.13) can be regarded as a UV-theory for a local

theory after truncating the infinite sum of higher-derivatives to a finite sum. Moreover,

the control parameter ǫ is non-polynomial, which in turn makes the Lagrangian non-local

even after truncation of the tower of higher-derivative operators. Thus, it would also be

necessary to expand ǫ in a small parameter and truncate this expansion at an appriopriate

order to obtain a local theory. We omit this here, as it does not provide additional insight

into the structure of the series in higher-derivatives.

It is interesting to discuss the equations of motion for the auxiliary field once the theory

is truncated at a given order in ǫ. In the following let Gn denote the truncation of the

series expansion of G at order n. If we truncate G at O(ǫ), the discussion reduces to the

familiar cubic in eq. (2.8), which admits only one analytic solution. For arbitrary n the

contribution of eq. (2.13) to the scalar potential reads

Fbos ∼ ǫ|F |4Gn(ǫ|F |2) . (2.15)

Taking into account the remaining, ordinary terms in the Lagrangian, i.e. L(0) in eq. (2.1),

the equation of motion for F reads

F + W̄ ′ + 2ǫF |F |2Gn(ǫ|F |2) + ǫ2F |F |4G′
n(ǫ|F |2) = 0 , (2.16)

where we only took into account terms that contribute to the scalar potential. Gn induces

monomials in |F |2 up to degree n and, hence, eq. (2.16) admits up to (2n+3) independent

solutions. In other words the number of solutions is increasing with the order of the

truncation. To solve eq. (2.16) we first redefine the auxiliary field via

F = W̄ ′f . (2.17)

Inserted into eq. (2.16) one observes that f has to be real and, hence, eq. (2.16) reduces to

f + 1 + 2ǫf3|W ′|2Gn(ǫf
2|W ′|2) + ǫ2f5|W ′|4G′

n(ǫf
2|W ′|2) = 0 . (2.18)

We make an ansatz of the form

f =
∞∑

i=−1

ǫi/2fi , (2.19)

such that eq. (2.18) at lowest order in ǫ reads

f−1 + f3−1|W ′|2Gn(f
2
−1|W ′|2) + f5−1|W ′|4G′

n(f
2
−1|W ′|2) = 0 . (2.20)

Since Gn is a polynomial of degree n with non-vanishing coefficients we see that only the

branch given by f−1 = 0 is analytic. All other solutions, which are defined at lowest

order by the remaining 2n + 2 solutions of eq. (2.20) and necessarily fulfill f−1 6= 0, are

non-analytic in ǫ for any n.

In effective field theory one generally expects to be able to compute observables with

higher precision by including more and more operators. Indeed since the unique solution

of the non-local theory was analytic, the analytic solution of the truncated theory is able

to reproduce the Lagrangian of the non-local theory at order ǫn+1 and, thus, mimics the
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non-local theory with better precision for larger n. However, regardless of the order of the

truncation the non-analytic theories fail to reproduce the non-local theory to that specific

order. One can explicitly check this for the first components in the expansion in eq. (2.19).

At lowest order this was also already visible in eq. (2.9).

It is worth noting that the existence of a unique analytic solution for F in the truncated

theory does not depend on the details of the F, but we expect it to hold in general as long

as the coefficient of the |F |2 term in the Lagrangian is non-vanishing. Indeed the EAFP

is correcting the Lagrangian by at least cubic powers of F and F̄ [13] so that one would

always expect the analytic solution to be unique.

After the above conceptual discussion we can now proceed to study theories with more

than one chiral multiplet.

2.4 Multi-field case and analysis of scalar potential

Given the results of the previous sections we constrain the discussion of the multi-field case

to the analytic solution of eq. (2.7). Solving eq. (2.7) using perturbation theory yields at

linear order in T

F i =F i
(0) + F i

(1) , where F i
(0) = −Gil̄ W̄,l̄ ,

F i
(1) =2T k̄l̄ij W̄,k̄ W̄,l̄W,j − 2T k̄

j
i
l̄ (∂µA

j∂µĀl̄) W̄,k̄ .
(2.21)

Insertion of the auxiliary field into the Lagrangian in eq. (2.6) yields

Lbos = −
(
Gik̄ + 2T l̄

i
j
k̄W,j W̄,l̄

)
∂µA

i∂µĀk̄ + Tijk̄l̄ (∂µA
i∂µAj)(∂µĀ

k̄∂µĀl̄)− V (A, Ā) .

(2.22)

The resulting scalar potential at linear order in T reads

V = V(0) + V(1) , where V(0) = Gij̄W,iW̄,j̄ , V(1) = −T ijk̄l̄W,iW,jW̄,k̄W̄,l̄ . (2.23)

Before we analyse this potential, let us make a comment regarding the ordinary kinetic term

in the Lagrangian in eq. (2.22). The metric multiplying the kinetic term is corrected by

δGik̄ = 2T l̄
i
j
k̄W,j W̄,l̄ . (2.24)

Since we added a new operator in the superspace Lagrangian in eq. (2.1), there is no reason

for the metric multiplying the two-derivative term in eq. (2.22) to be Kähler. The complex

structure on the manifold spanned by the chiral scalars is unchanged and continues to be

locally defined by the chiral superfields. Indeed, it was shown in [1] that for the following

special

Tijk̄l̄ =
T

2

(
Gik̄Gjl̄ +Gil̄Gjk̄

)
, (2.25)

with constant T the hermitian connection has non-vanishing torsion and, thus, the metric

multiplying the two-derivative term in eq. (2.22) is not Kähler.

Since the off-shell supersymmetry transformations of the chiral multiplets do not

change, the order parameter for supersymmetry breaking continues to be 〈F i〉. There-

fore the supersymmetric minima of V are found at

〈F i〉 = 0 . (2.26)
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From eq. (2.7) we see that the supersymmetric locus in field space 〈Ai〉 which solves (2.26)

is determined by 〈F i
(0)〉 = 〈W,i〉 = 0 and, thus, is not corrected by the presence of the

higher-derivative terms under the condition that T is non-singular.12 Indeed it was shown

that for arbitrary higher-derivative theories the structure of the supersymmetric vacua is

unchanged [1]. In particular this implies that any flat direction of V(0) is not lifted.

If supersymmetry is broken by some 〈F i
(0)〉 6= 0 the higher-derivative correction can

become important. Still V(1) is a perturbation of V(0) and therefore the minimum 〈Ai
(0)〉

of V(0) will at best be shifted to a nearby field value 〈Ai
(0)〉 → 〈Ai

(0)〉 + 〈δAi〉. However,

if the non-supersymmetric minimum of V(0) has a flat direction the contribution from V(1)
becomes the leading term in this direction and may lift its flatness. A possible exception

to this occurs when the flatness is due to a symmetry, such as a perturbatively unbroken

shift-symmetry. Further exceptions are models in which supersymmetry breaking occurs

due to a spontaneously broken R-symmetry [30]. In this case there always exists a flat

direction, the R-axion, associated with the Goldstone boson of the broken R-symmetry.

Here the existence of higher-derivative corrections does not lift the flatness.

If the flatness is lifted, then depending on the structure and sign of T the flat direction

can be stabilized or destabilized. It is difficult to make a general statement, and in the

end a case-by-case analysis is necessary. Nevertheless, before we proceed, let us offer some

general observations.

A (real) flat direction φ is characterized by the fact the all φ-derivatives of V vanish

in the background, or in other words

〈∂nφV 〉 = 0 , ∀n ∈ N . (2.27)

Let us assume that V(0) has a flat direction and thus satisfies (2.27). A special (and simple)

case of this situation is that V(0) does not depend on φ at all, i.e. ∂nφV(0) ≡ 0, ∀n. In this

case the flat direction is lifted for generic T but preserved if T is also independent of φ. A

slight generalization occurs when W,i and only the matrix element of Gij̄ in the direction

of the supersymmetry breaking F -term, say F 0, are independent of φ. In this case the flat

direction is preserved if also T 000̄0̄ is independent of φ. As a final example let us discuss a

specific form of the coupling tensor given in eq. (2.25). In this case we have V(1) = −TV 2
(0)

and thus any flat direction of V(0) remains flat with respect to V(1), given that the scalar

function T does not depend upon it.

2.5 Example: O’Raifeartaigh model

For concreteness let us discuss a specific example of a model with flat directions within

non-supersymmetric vacua. The simplest case is given by the O’Raifeartaigh model. This

is defined via a Kähler and superpotential, which read

K = |A0|2+|A1|2+|A2|2 , W = λA0 +mA1A2 + Y A0A
2
1 . (2.28)

12This can also be inferred from eq. (2.21). However, care must be taken as eq. (2.21) suggests that

up to two additional solutions to eq. (2.26) exist for which 〈W,i〉 6= 0. Yet these would be due to a non-

trivial cancellation between F i
(0) and F i

(1) that will be spoiled once higher order corrections in T to F i are

considered. More precisely these solutions would only exist because we truncate the auxiliary field at a

certain order and are, thus, artefacts of this truncation.
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Here λ,m, Y are real parameters such thatm2 > 2λY . The resulting potential is minimized

at 〈A1〉 = 〈A2〉 = 0 leaving A0 unfixed. Since 〈V0〉 = 〈|F0|2〉 = λ2, supersymmetry is

broken in the vacuum. Eq. (2.28) has a Z2-symmetry in A1 and A2 and furthermore an

R-symmetry, if we assign R-charges as follows

R(A0) = R(A2) = 2 , R(A1) = 0 . (2.29)

For the continuum of vacua labeled by 〈A0〉 there exists one vacuum, namely 〈A0〉 = 0,

in which the R-symmetry is not spontaneously broken. Thus, the O’Raifeartaigh model

is an exception to the generic expectation that supersymmetry breaking occurs due to

R-symmetry breaking in models, which reduce to Wess-Zumino models in the low energy

regime and respect the principles of EFT [30].

Let us proceed by switching on the higher-derivative operator. We consider vacua in

which 〈A1〉 = 〈A2〉 = 0 as in the ordinary theory. The respective potential at the point

A1 = A2 = 0 is extremized, if the following holds

∂iV = −T 000̄0̄
,i λ4 − 2mλ3(1− δi,0)(T

i00̄0̄ + T 00̄i0̄) = 0 . (2.30)

We see that the flatness of A0 is lifted, if certain components of the tensor require a specific

value for extremization.

Inspecting eq. (2.1) we find that the higher-derivative Lagrangian is R-symmetric, if

R(Tijk̄l̄) = 0 . (2.31)

The most general coupling tensor at quadratic order in fields respecting the Z2- and R-

symmetry is given by

T = T(0) + T(1)|A0|2+T(2)|A1|2+T(3)|A2|2+T(4)(A2
1 + Ā2

1) . (2.32)

For simplicity we suppressed the tensor indices of T and T(0), . . . , T(4) here. From eq. (2.30)

we see that A0 is fixed in the minimum to the value 〈A0〉 = 0, in which the R-symmetry is

preserved, unless the following couplings vanish

T 000̄0̄
(1) = T 100̄0̄

(1) + T 001̄0̄
(2) = T 200̄0̄

(1) + T 002̄0̄
(1) = 0 . (2.33)

In a generic effective field theory there is no reason why these couplings could be zero and

so one concludes that indeed A0 is fixed. Note furthermore that if the R-symmetry would

have been broken in the minimum, then a flat direction associated with the respective

Goldstone boson would have persisted. Finally, note that the flatness of A0 can also be

lifted by including higher-dimensional operators into the Kähler- or superpotential.

3 Higher-derivative terms in N = 1 supergravity

3.1 Preliminaries

Let us now couple the theory specified in (2.1) to supergravity. We will only reproduce the

essential steps here and refer the reader for a detailed derivation to the original paper [3].
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Without any higher-derivative operator the Lagrangian is given by [27]

L(0) =

∫
d2Θ2E

[
3

8
(D̄2 − 8R)e−K(Φi,Φ†j)/3 +W (Φi)

]
+ h.c. , (3.1)

where E denotes the chiral density, R the curvature superfield and D̄2 = D̄α̇D̄α̇ with

D̄α̇ being the covariant spinorial derivative. To obtain the Einstein-frame Lagrangian for

the scalar fields Ai, it is necessary to perform a Weyl transformation of the vielbein and

successively integrate out all the auxiliary fields. This results in the familiar scalar potential

V(0) = eK
(
Gij̄DiWD̄j̄W̄ − 3|W |2

)
, (3.2)

where DiW =W,i +K,iW is the Kähler covariant derivative of the superpotential.

To couple the higher-derivative operator of eq. (2.1) to supergravity one can either add

the term [3]

L(1) = − 1

64

∫
d2Θ E(D̄2 − 8R)DΦiDΦjD̄Φ†k̄D̄Φ†l̄Tijk̄l̄ + h.c. (3.3)

to (3.1) or modify the Kähler potential as13

K(Φi,Φ†j̄) → K(Φi,Φ†j̄) +
1

16
Tijk̄l̄ DΦiDΦjD̄Φ†k̄D̄Φ†l̄ . (3.4)

Due to (2.5) the bosonic Lagrangians obtained by the two methods coincide up to a Kähler

factor, which can be absorbed in a redefinition of T . Here we assume that Tijk̄l̄ only

depends on the chiral and anti-chiral superfields Φ and Φ† but not on the gravitational

multiplet.

In the Lagrangian L = L(0) + L(1) one performs the same Weyl-transformation as

before and integrates out the auxiliary fields in the gravitational multiplet. This procedure

is not affected by the presence of L(1). One is then left with the Lagrangian [3]

Lbos√−g =− 1

2
R−Gik̄∂µA

i∂µĀk̄ +Gik̄e
K/3F iF̄ k̄ + e2K/3

[
F iDiW + F̄ k̄D̄k̄W̄

]
+ 3eK |W |2

+Tijk̄l̄(∂µA
i∂µAj)(∂νĀ

k̄∂νĀl̄)−2Tijk̄l̄e
K/3F iF̄ k̄(∂µA

j∂µĀl̄)+Tijk̄l̄e
2K/3F iF jF̄ k̄F̄ l̄.

(3.5)

The equations of motion for F i now read

Gik̄F
i + eK/3D̄k̄W̄ + 2F i(eK/3F jF̄ l̄ − ∂µA

j∂µĀl̄)Tijk̄l̄ = 0 . (3.6)

After the discussion in the previous section we only focus on the analytic solution

of (3.6).14 Here it is sufficient to know the auxiliary fields up to linear order in the coupling

tensor. They read

F i = F i
(0) + F i

(1) , F i
(0) = −eK/3Gik̄ D̄k̄W̄ ,

F i
(1) = 2e4K/3 T k̄l̄ij D̄k̄W̄ D̄l̄W̄ DjW − 2eK/3T k̄

j
i
l̄ (∂µA

j∂µĀl̄) D̄k̄W̄ .
(3.7)

13This type of procedure of coupling a higher-derivative operator to supergravity was also used in [31].
14For the special case in eq. (2.25) we determine the exact analytic solution in appendix A.3.
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Inserting the above auxiliary field into the Lagrangian in eq. (3.5) yields

Lbos√−g =− 1

2
R−

(
Gik̄ + 2eKT l̄

i
j
k̄DjW D̄l̄W̄

)
∂µA

i∂µĀk̄

+ Tijk̄l̄(∂µA
i∂µAj)(∂νĀ

k̄∂νĀl̄)− V (A, Ā) .

(3.8)

The scalar potential is corrected as follows

V = V(0) + V(1) , (3.9)

where V(0) is given in (3.2) while

V(1) = −e2KT īj̄klD̄īW̄ D̄j̄W̄DkWDlW . (3.10)

Analogous to eq. (2.22) the metric multiplying the ordinary kinetic term receives a correc-

tion. From eq. (3.8) we read off its form

δGik̄ = 2eKT l̄
i
j
k̄DjW D̄l̄W̄ . (3.11)

As in the global case this correction in general renders the metric non-Kähler.

3.2 Fate of flat directions and simple no-scale examples

Let us begin the analysis with the supersymmetric minima of the potential given in (3.2),

(3.9) and (3.10). 〈F i〉 denotes the order parameter for supersymmetry breaking. Analogous

to the discussion with global supersymmetry eq. (3.6) implies that unbroken supersymmetry

imposes the exact same condition as in a standard two-derivative supergravity, that is

〈F i〉 = 〈DiW 〉 = 0 , 〈V 〉 = −3〈eK |W |2〉 . (3.12)

Thus, the location of the supersymmetric minima in field space are determined by F i
(0) = 0

and they are unaffected by the presence of F i
(1). In particular, any flat direction of V(0)

is preserved by V(1). In addition, 〈W 〉 = 0 corresponds to a Minkowski vacuum while

〈W 〉 6= 0 corresponds to an AdS vacuum.

Let us now turn to minima with spontaneously broken supersymmetry. As in the

global case V(1) is considered to be a perturbation of V(0) and the minimum 〈Ai
(0)〉 of V(0)

is shifted to a nearby field value 〈Ai
(0)〉 → 〈Ai

(0)〉 + 〈δAi〉. Therefore qualitatively nothing

changes except for the flat directions. Contrary to the case of global supersymmetry in the

local case non-trivial models with vanishing potential exist. These are the no-scale models.

The no-scale property is generally expected to be lost when higher-derivative corrections

are taken into account, thus making it possible to lift flat directions. In the rest of this

section we present a simple example to illustrate the fate of flat directions and make a first

step towards the potential relevance to moduli stabilization.

More precisely we consider a model specified by a constant superpotentialW (A) =W0

and the Kähler potential

K(A, Ā) = −p ln(A+ Ā) , (3.13)
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where p > 0. This K is of the no-scale type in that it satisfies

GAĀK,AK,Ā = p . (3.14)

In this case V(0) given in (3.2) is positive (negative) for p > 3 (p < 3) and vanishes identically

for p = 3. Adding V(1) given in (3.10) and redefining T̂ = T (A, Ā)G−2
AĀ

one obtains

V = V(0) + V(1) = (A+ Ā)−p(p− 3)|W0|2−T̂ (A+ Ā)−2pp2|W0|4 . (3.15)

For p = 3 both real and imaginary parts of A are flat directions of V(0). We see that

generically both flat directions are lifted unless the combination T̂ (A+ Ā)−6 is constant in

Re(A) and/or Im(A). For example a continuous shift symmetry A → A+ i const. which

often holds perturbatively in string theory would protect the flat direction along Im(A) in

that T̂ could not depend on Im(A). In order to say something about the stability, however,

one has to make some assumptions about the functional dependence of T̂ .

Let us now consider a very simple situation, in which the inclusion of V(1) stabilizes a

certain direction. For instance if p < 3 and T̂ = const.,15 the two terms in eq. (3.15) can

balance for T̂ < 0 with a non-supersymmetric AdS minimum at

〈A+ Ā〉 =
(

2p2

p− 3
T̂ |W0|2

)1/p

, and 〈V 〉 = (p− 3)2

4p2T̂
< 0 . (3.16)

Furthermore we have to check whether the field-value in eq. (3.16) is within the regime,

where the perturbative solution for the auxiliary field converges. An estimate for the

boundary between the perturbative and non-perturbative regime can be obtained from the

results of appendix A. Indeed, from eq. (A.11) one infers that the boundary lies at

〈A+ Ā〉 =
(
−27

2
pT̂ |W0|2

)1/3

. (3.17)

We see that |T̂ | |W0|2 has to be sufficiently large for some given p to ensure that the

minimum in eqs. (3.16) still lies within the perturbative regime. For example, for p = 1

one needs |T̂ ||W0|2& 10−3.

The existence of the minima in eq. (3.16) are of particular interest in string theory,

where the Kähler potential in (3.13) for p = 1 typically describes the geometry of the

dilaton. For example in Calabi-Yau compactifications of the heterotic string the perturba-

tive superpotential does not depend on the dilaton and background fluxes can generate a

superpotential W0, which is sufficiently big to ensure perturbativity. Of course a proper

discussion of the dilaton in such scenarios lies outside the scope of this paper. We leave

this to future research.

15T̂ = const. can be motivated by the explicit computation of four-derivative terms in [32]. There the

one-loop corrections to the typical no-scale supergravity inspired by the heterotic string were computed.
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4 Consequences for moduli stabilization in type IIB

In this section we consider type IIB Calabi-Yau orientifold compactifications with back-

ground fluxes and the dynamics of the respective four-dimensional N = 1 Kähler moduli

sector. At lowest order in the effective action appropriate fluxes can stabilize the dilaton

and complex structure moduli supersymmetrically, but the Kähler moduli are flat direc-

tions described by a no-scale model. The leading order (α′)3-corrections in the bosonic

ten-dimensional action include specific contractions of four Riemann-tensors [25, 26]. It

was shown that these terms induce a correction to the Kähler potential of the Kähler

moduli in the four-dimensional theory, that lifts the no-scale property [19]. Furthermore,

the Kähler potential can receive certain string-loop corrections. These have been explicitly

computed for toroidal orientifolds, such as T 6/(Z2×Z2) in [33] and for arbitrary Calabi-Yau

threefolds their functional form has been inferred in [34].

Besides the R4-term the action of the type IIB superstring in ten-dimensions receives

several additional eight-derivative corrections at order (α′)3. A subset of these terms ac-

counts for the (α′)3-piece of the 4D scalar potential, which was indirectly inferred in [19].

However, additional (α′)3-corrections in 10D exist, which can contribute to the scalar po-

tential in four dimensions. Even though the existence of these 10D terms is required by

supersymmetry, their explicit structure is still unknown and so we cannot compute the

respective corrections to the scalar potential directly. Still, one can argue that the proper

off-shell completion of some of these corrections to the scalar potential is provided by

the higher-derivative operator in eq. (3.3). In appendix D we explicitly prove that the

respective corrections to the scalar potential cannot be described via a two-derivative the-

ory, i.e. via a correction to the Kähler potential. Now similarly to [19] where the scalar

potential was inferred indirectly by computation of α′-corrections to the two-derivative

term, our strategy will be to compute the bosonic four-derivative term originating from

the 10D (α′)3-correction which generically contains a contribution from one of the addi-

tional derivative-type terms in eq. (3.8). This determines the respective correction to the

scalar potential via supersymmetry using eq. (3.10). It turns out that the respective four-

derivative term for the chiral scalars is descending from the explicitly known R4-correction

in 10D and, hence, can be computed exactly.16 This identification is unique and will be

discussed in a forthcoming publication. The detailed computation of the four-derivative

terms of the four-dimensional theory can be found in appendix B. In this section we present

the action in ten-dimensions and illustrate the influence of the individual terms on the the-

ory in four dimensions. Afterwards we will display the resulting potential, which emerges

from the results of appendix B and study the possible implications for moduli stabilization

these novel corrections might bring.

16Strictly speaking this is only true at lowest order in superspace-derivatives. More precisely, one expects

additional four-derivative terms involving factors of the flux superpotential and hence the overall volume.

These have to be merged into off-shell operators with more than four superspace-derivatives. Thus, the

respective correction to the scalar potential from such terms is subleading.

– 16 –



J
H
E
P
1
0
(
2
0
1
5
)
0
9
4

4.1 Type IIB action and perturbative corrections

The low energy effective action of type IIB receives perturbative corrections in α′ as well

as in gs. The leading order corrections to the action of the bulk fields arise at order (α′)3

and consist of several eight-derivative terms. More specifically, the bosonic action takes

the form

SIIB = Sb,0 + (α′)3Sb,3 + . . . , (4.1)

where Sb,0 denotes the tree level bosonic action of the bulk fields in the string-frame

Sb,0 = − 1

κ210

∫
d10x

√−ge−2φ

(
R+ 4(∂φ)2 − 1

2 · 3!H
2
3

)
+ SR + Scs . (4.2)

Eq. (4.2) contains the ordinary kinetic terms for the bosonic fields of the type IIB su-

perstring as well as the Chern-Simons term. Here we displayed explicitly the NS-NS

sector which includes the metric g, the ten-dimensional dilaton φ and a two-form with

field strength H3. In eq. (4.1) we neglected terms associated with localised sources, such

as D3/D7 branes or O3/O7 orientifold planes. The contribution of the D3-branes to the

scalar potential is cancelled by the tension of the O-planes. Wrapped D7-branes on the

other hand contribute and the leading order (α′)2-corrections to their action are relevant

and were discussed in [17]. These corrections induce effective D3-brane charge and ten-

sion. Higher order α′-corrections to the action of the localised sources can be ignored

here [35]. Recently additional (apparent) (α′)2-corrections to the Kähler potential for the

Kähler moduli were inferred from F-theory [36, 37]. These corrections are related to a

redundancy in the underlying M-theory description [38] and can be absorbed via field-

redefinitions [36, 37].

The term Sb,3 in eq. (4.1) contains the leading order, eight-derivative α′-corrections to

the action of the bulk fields. The full explicit structure of Sb,3 is unknown. Nevertheless

one can infer their general form to be schematically [35]

Sb,3 ∼
1

κ210

∫
d10x

√−g
[
R4 +R3

(
G3G3 +G3Ḡ3 + Ḡ3Ḡ3 + F 2

5 + (∇τ)2
)

+R2
(
G4

3 +G2
3Ḡ

2
3 + · · ·+ (∇G3)

2 + (∇F5)
2 + . . .

)

+R
(
G6

3 + · · ·+G2
3(∇G3)

2 + . . .
)
+G8

3 + . . .
]
.

(4.3)

Here G3 is given by

G3 = F3 − τH3 , (4.4)

where F3 denotes the field strength of the RR two-form and τ is the axiodilaton, cf.

eq. (B.18). Moreover, R schematically denotes the Riemann tensor and ∇G3 the covariant

derivative (defined with respect to the metric g). Besides G3 and g the bosonic sector

includes the axiodilaton τ as well as the self-dual five form field strength F5. All indices

within the terms in eq. (4.3) are suppressed. Note that expressions with a single factor of

G3 or F5 are forbidden. The precise structure of some of the contributions in eq. (4.3) is

explicitly known. Notably this is the case for the R4 term to which we turn in a moment,

but also all remaining quartic terms have been determined [39, 40]. Furthermore couplings
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of the type R3H2
3 and R2H4

3 are required to ensure supersymmetry [41]. These terms

imply the existence of the R3G2
3, R

3G3Ḡ3, R
3Ḡ3Ḡ3, R

2G2
3Ḡ

2
3 and further contributions

in eq. (4.3).

Note that the R4 contribution in eq. (4.3) is known exactly and has been deter-

mined in [25].17 This particular sum of contractions of four Riemann tensors is usually

denoted as18

J0 = t8t8R
4 +

1

8
ǫ10ǫ10R

4 . (4.5)

For the specific contractions in eq. (4.5) we refer to [25].

Eq. (4.3) implies that contributions to the scalar potential in four dimensions exist,

which involve four powers of the three-form flux G3.
19 Since the explicit form of the quartic

terms in G3 in ten dimensions are unknown, one cannot compute the respective correction

to the potential directly. However, these terms can be supersymmetrically completed off-

shell by the higher-derivative operator in eq. (3.3) which induces also four-derivative term.

From eq. (3.8) and eq. (3.10) we observe that V(1) already has the correct superpotential-

dependence, such that the corresponding coupling tensor must be independent on the

flux-superpotential. Hence, the respective four-derivative terms in eq. (3.8) can only be

generated via J0. Since J0 is known exactly, one can determine the four-derivative terms

and infer the structure of the correction to the potential from eq. (3.8).20 The explicit

computation of the four-derivative term is performed in appendix B. Here we will only

summarize the main steps. For simplicity only a single Kähler class deformation is turned

on. However, we expect the inferred form of the correction to the scalar potential V(1) in

eq. (4.21) to hold also in the case of arbitrarily many Kähler moduli (we explain this at

the end of appendix B), as long as the superpotential does not receive non-perturbative

corrections. Moreover, due to the presence of background fluxes the background metric has

to involve a warp factor. Here we are interested in the behaviour of the potential at large

volume and, therefore, we work in a weak-warping approximation in which we neglect all

warping effects.

We set the four-dimensional piece of the metric to a Minkowski-form. Neglecting the

warping the ten-dimensional metric in the string-frame then reads

ds2(10) = ηµνdx
µdxν + V̂1/3(x)ds2(6) , (4.6)

17Note that also loop corrections contribute R4-type terms which have been computed for instance

in [42]. The tensor structure of these corrections is precisely the same as the tree-level term as required by

supersymmetry [25].
18At tree level this contraction is present for both IIA and IIB and all factors coincide.
19Note that in the situation with localised sources and background fluxes turned on we expect these

contributions to be present. On the other hand, in the context of N = 2 compactifications these corrections

will be absent as no scalar potential for the moduli is generated. Indeed the corrections to the potential

that will be computed in this section vanish when turning off fluxes.
20Naturally there can also be contributions to the scalar potential which arise from 10D terms with

more than four powers of G3. These can also be off-shell completed via eq. (3.3), but are of higher-

order in superspace derivatives. The respective four-derivative terms now carry a dependence on the flux-

superpotential and are obtained from G3-dependent terms in the ten-dimensional action.
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where V̂ describes the Kähler type deformation of the (string-frame) background metric of

the Calabi-Yau threefold denoted by ds2(6). The next step then involves the computation of

the components of the Riemann tensor and finally we determine the four-derivative terms

for V̂, which emerge from J0. Afterwards it is necessary to express the result in terms of the

appropriate N = 1 variables and match to the four-derivative term inside the Lagrangian

in eq. (3.8) to determine the form of Tijk̄l̄. We will present the result in the next section.

First it is necessary to establish the notation of the N = 1 theory and discuss the known

contributions to the scalar potential.

4.2 Structure of scalar potential

Let us now proceed to discuss the general structure of the scalar potential including the

known leading order α′- and string-loop corrections to the Kähler potential as well as the

new, ‘higher-derivative’ α′-corrections. Concretely we consider the Kähler and superpo-

tential that arises after integrating out the complex structure moduli and the dilaton

K = −2 ln(V +
1

2
ξ̂) + δKKK

(gs)
+ δKW

(gs)
,

W =
1√
2

√
gse

〈Kcs〉/2W0 =
1√
2

√
gse

〈Kcs〉/2
〈∫

M3

G3 ∧ Ω
〉
.

(4.7)

Here W0 denotes the flux superpotential, which is the Gukow-Vafa-Witten superpotential

evaluated at the supersymmetric minimum of the complex structure moduli and the dila-

ton. Furthermore, G3 is given in eq. (4.4) and Ω is the (3, 0) form of the Calabi-Yau.

〈Kcs〉 denotes the Kähler potential for the complex structure moduli evaluated at their

minimum, which reads 〈Kcs〉 = −ln 〈−i
∫
M3

Ω∧ Ω̄〉. The additional factor of
√
gs/2 e

〈Kcs〉/2

in the superpotential stems from the Kähler potentials of the complex structure moduli

and the dilaton after performing a Kähler transformation. Moreover, the total (Einstein-

frame) volume modulus V can be expressed in terms of the (completely symmetric) triple

intersection numbers kijk of the Calabi-Yau M3 as well as the 2-cycle volumes ti as follows

V =
1

6
kijkt

itjtk . (4.8)

The 4-cycle volumes τi, that constitute the imaginary components of the Kähler moduli

T i, are derived via

τi =
∂V
∂ti

=
1

2
kijkt

jtk . (4.9)

From these definitions one infers

V =
1

3
τit

i . (4.10)

Furthermore ξ̂ parametrizes the leading α′-corrections to the Kähler potential and is

given by

ξ̂ = ξg−3/2
s = −(α′)3ζ(3)χ(M3)

2(2π)3g
3/2
s

, (4.11)

where χ(M3) = 2(h1,1−h2,1) is the Euler characteristic ofM3, gs denotes the string-coupling

and the Hodge numbers h1,1, h2,1 count the number of Kähler and complex structure mod-

uli. The corrections δKKK
(gs)

and δKW
(gs)

in eq. (4.7) denote the leading order string-loop
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corrections. Their general form for arbitrary Calabi-Yau threefolds has been argued to

be [34]

δKKK
(gs)

∼ gs

h1,1∑

i=1

Ci(aijt
j)

V , δKW
(gs)

∼
h1,1∑

i=1

Di(aijt
j)−1

V . (4.12)

The first term is interpreted as coming from exchange of closed strings carrying Kaluza-

Klein momentum, while the latter is coming from the exchange of winding strings. The

coefficients Ci and Di are expected to be functions of the complex structure moduli and

the dilaton. However, since we assume the latter have already been stabilized, we treat

Ci, Di as constants. The matrix aij consists of combinatorial constants.

The scalar potential derived from eq. (4.7) including the higher-derivative term L(1)

in (3.3) can be split up as follows

V = V(0) + V(1) = V(α′) + V(gs) + V(1) . (4.13)

The first term describes the scalar potential obtained from the Kähler potential in eq. (4.7)

without string-loop corrections. It reads [43]

V(α′) = eK3 ξ̂|W |2 ξ̂2 + 7ξ̂V + V2

(V − ξ̂)(2V + ξ̂)2
, (4.14)

and has a runaway behaviour at large V . Expanding around large volume yields

V(α′) =
3ξ̂|W |2
4V3

+O((α′)6) . (4.15)

When expanding the string-loop contribution to the potential, one obtains the following

terms at leading order [44]

V(gs) =
∑

i

|W |2
V2

[
g2sC

2
iK(0),ii − 2δKW

(gs),τi

]
, (4.16)

where K(0) = −2ln(V).
Let us now turn to the higher-derivative operator. Inserting eq. (4.7) into eq. (3.10)

the higher-derivative contribution generally has the form

V(1) = −e2KT īj̄klK,̄iK,j̄K,kK,l|W |4 . (4.17)

The result of appendix B are four-derivative terms for the four-cycle volumes, which when

matched to eq. (3.8) yield the following coupling tensor

Tijk̄l̄ = λ̂0(Πm t
m)K(0),iK(0),jK(0),k̄K(0),l̄ , (4.18)

where we introduced λ̂0 = (α′)3g
−3/2
s λ with λ being a universal combinatorial number that

is not computed at this stage. A direct 4D reduction of the partially unknown 10D terms

with four powers in the fluxes and their derivatives which contribute to the scalar potential

of L(1) would determine the sign of λ. Thus, at this point we treat it as an unknown
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real number. Note furthermore that λ̂0 ∼ (α′)3g
−3/2
s includes precisely the same expansion

parameter that shows up in the correction to the Kähler potential via ξ̂ given in (4.11).

This is expected since both corrections originate from the same term in ten dimensions.

However, the fact that V(1) is multiplied by an additional power of |W |2 compared to V(0)
implies that V(1) is subleading in gs compared to V(0). Let us stress again that the result

in eq. (4.18) holds only for h1,1 = 1. However, we expect the respective correction to the

potential to be correct in general as we discuss at the end of appendix B and in appendix C.

The numbers Πi encode the topological information of the second Chern class c2 of M3.

Specifically let us choose a basis D̂i of harmonic (1, 1)-forms, such that the Kähler form is

expressed as

J =
h1,1∑

i=1

D̂it
i . (4.19)

Then we have that

Πi =

∫

M3

c2 ∧ D̂i , Πit
i =

∫

M3

c2 ∧ J . (4.20)

In appendix B we discuss this term further. In particular we have
∫
M3

c2∧J > 0 unlessM3

is a torus T 6. The variables in which J takes the form of eq. (4.19) span the Kähler cone

and, thus, we have ti ≥ 0 independently for all two-cycle volumes, see e.g. [23]. Accordingly,

in order to ensure
∫
M3

c2 ∧ J > 0, we must have that Πi ≥ 0 in this basis. In section 4.4

we compute these topological numbers for an explicit example.

Inserting (4.18) into eq. (4.17) we can read off the correction to the potential

V(1) = −λ̂ |W |4
V4

(Πi t
i) , (4.21)

where we abbreviate λ̂ = 34λ̂0. To understand the volume-behaviour of the individual

terms in the potential (4.13) in the large volume limit we set h1,1 = 1. In this case we

obtain
V

|W |2 ∼ ξ̂V−3 + (g2sC
2
1 +D1)V−10/3 − λ̂|W |2Π1V−11/3 , (4.22)

where we ignored numerical factors.21 The higher-derivative contribution scales slightly

steeper with the volume than the two string-loop contributions. Moreover, it differs by a

factor of |W0|2 and by powers of the string coupling g
−1/2
s and g

−5/2
s with respect to the

string-loop corrections.

Before studying the implication of V(1) for Kähler moduli stabilization, we should

pause for a moment to present a better understanding of the individual pieces of the ten-

dimensional action, which was displayed in eq. (4.1) and eq. (4.3). As already mentioned

the remaining terms in eq. (3.8), such as the corrections to the scalar potential and to the

ordinary kinetic term are related to different, partially unknown terms in the ten dimen-

sional action, which are connected by supersymmetry. Furthermore we wish to analyze

the relevance of further higher-order corrections in the large-volume expansion. Let us

21We thank Michele Cicoli and Francisco Pedro for comments regarding the gs-dependence and the correct

form of the string-loop corrections.
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also stress again that the correction in eq. (4.21) cannot be off-shell completed within a

two-derivative theory. More precisely it is not possible to describe it via a correction to K

and W . We provide an explicit proof of this statement in appendix D.

Let us see how the individual terms in eq. (4.3) contribute to the four-dimensional

action after compactification. J0 generates derivative terms for the Kähler moduli, but

does not contribute to the potential if warping is neglected. This is due to the fact, that

after turning off fluxes this term is still present. However, in the respective N = 2 theory,

no potential can be generated for the moduli as all α′-corrections merely renormalise the

definition of the tree-level moduli. Thus, J0 induces derivative-corrections, such as the ξ̂-

contribution to the Kähler potential in eq. (4.7), the four-derivative terms that we computed

in appendix B and further six- and eight-derivative terms. The ξ̂-corrections imply the

existence of the potential in eq. (4.15) in the N = 1 theory. It was noted in [19] that

after transforming into the Einstein-frame in the four-dimensional action the H2
3 term in

eq. (4.2) indeed produces the correct functional form of eq. (4.15). However, to obtain the

correct prefactors it was concluded that necessarily also R3G2
3 terms have to be present.

Indeed, we have

V(α′) ∼ χ(M3)︸ ︷︷ ︸
R3

|W0|2︸ ︷︷ ︸
G3Ḡ3

, (4.23)

where we used that χ(M3) ∼
∫
d6y

√
gQ with the six-dimensional Euler integrand Q being a

contraction of three Riemann tensors. The corrections of the type R2(∇G3)
2 also contribute

to V(α′).

Next let discuss the additional terms in the Lagrangian which accompany the four-

derivative terms in eq. (3.8). The non-Kähler correction to the two-derivative term in

eq. (3.11) is induced by the terms of the type R3G3Ḡ3. These corrections have the form

δGij̄ ∂µT
i∂µT̄ j̄ ∼ λ̂

V2
|W0|2︸ ︷︷ ︸
∼G3Ḡ3

Πmt
m

︸ ︷︷ ︸
∼R2

K(0),iK(0),j̄∂µT
i∂µT̄ j̄

︸ ︷︷ ︸
∼R

, (4.24)

where we used eq. (B.11). Furthermore the terms with two Riemann tensors in eq. (4.3)

generate V(1) in eq. (4.21), since

V(1) ∼
λ̂

V4
|W0|4︸ ︷︷ ︸
∼G2

3Ḡ
2
3

(Πi t
i)︸ ︷︷ ︸

∼R2

. (4.25)

Furthermore V(1) can be induced by terms of the type RG2
3(∇G3)

2.22

Let us now make a few remarks regarding the terms we did not discuss so far. To begin

with there exist corrections with additional derivatives of the dilaton. These terms do not

contribute to the scalar potential, but are important for the consistency of the equations

of motion. More precisely the presence of the R4 terms demands the addition of terms of

the type R3(∇τ)2 [19]. Furthermore we have terms involving the self-dual five-form F5.

22Note that in [35] a naive estimate for the volume dependence of the potential induced by the R2G4
3

terms was found to be V−11/3. This is in agreement with eq. (4.21).
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In compactifications with imaginary self-dual fluxes warping effects generate a flux for the

five-form [17]. Since we ignore the warp factor here, we will not discuss this term further.

However, in principle warping-induced corrections to the scalar potential are relevant, since

naive dimensional arguments suggest that these contribute at O(V−11/3) [35]. A proper

accounting of such effects is outside the scope of this paper and will be left to future

investigations. Moreover we have terms of the type RG6
3 and G8

3 in eq. (4.3). Dimensional

analysis yields that the contributions to the scalar potential coming from both terms are

suppressed by additional powers of V−2/3 and V−4/3 with respect to V(1) [35]. Furthermore

naively one finds that a reduction of RG6
3 yields a factor of c1(M3), which vanishes for a

Calabi-Yau orientifold compactification at order (α′)3, see also appendix B.

The potential in eq. (4.14) also induces subleading terms at the level of (α′)6, which

scale as V−4. Besides the fact that their volume-dependence is slightly suppressed compared

to V(1), they involve a factor ξ̂2, which is rather small for CY threefolds with small Euler

number and moderate gs-values.

To conclude this section let us make a remark regarding the expansion in higher-

derivatives of the action in eq. (4.3). The expansion in α′ in ten dimensions is indeed an

expansion in higher-derivatives. However, when compactifying the R4 term in eq. (4.3), one

obtains two, four, six and eight-derivative terms for the volume modulus, cf. appendix B.

Thus, in the four dimensional theory the α′-expansion is still roughly controlling the ex-

pansion in higher-derivatives, but several higher-derivative terms might appear at the same

order in α′. This implies that the coupling tensor in eq. (4.18) cannot control all higher-

derivatives, but possibly only a subclass. Moreover, let us briefly revisit the general discus-

sion in section 2.2, as we now have an example with an explicit expansion parameter given

by α′. Recall that we identified the analytic branch as the unique physical theory. Since

Tijk̄l̄ ∼ (α′)3 we find evidence for this once more. In particular the non-analytic branches

would require the presence of terms in ten-dimensions, which are O(α′−3). Furthermore

note that it would not be meaningful to discuss the corrections at order O(T 2), as we would

have to include ten-dimensional terms of order (α′)6 into the analysis.

4.3 Stabilization of the volume for h
1,1 = 1

Using the leading order α′-correction to the Kähler potential accompanied by non-per-

turbative corrections to the superpotential there exist scenarios, where all Kähler moduli

can be frozen [20, 21, 43, 45]. Later works incorporated also string-loop-corrections in the

Kähler potential into the analysis [33, 34, 44, 46, 47]. In all of these scenarios the non-

perturbative superpotential is necessary for the stability of the overall volume. Attempts to

stabilize the volume modulus without the non-perturbative superpotential including string-

loop corrections were made in [46], but a significant amount of fine-tuning of the complex-

structure moduli was required. In addition the structure of the string-loop corrections is

very model-dependent and a case-by-case study is necessary.

In the following we will entertain the possibility that the overall volume and all four-

cycle volumes are stabilized purely by α′-corrections instead of the non-perturbative cor-

rections to the superpotential. The leading order (α′)3-corrections are partially captured

by the higher-derivative corrections together with the known corrections to the Kähler

– 23 –



J
H
E
P
1
0
(
2
0
1
5
)
0
9
4

potential. It is instructive to discuss a stabilization first in the simple case of h1,1 = 1.

We will generalize the analysis to an arbitrary number of four-cycles in the next section.

In the following we neglect string-loop corrections to the scalar potential. Since these are

suppressed by powers g
1/2
s and g

5/2
s , respectively, relative to both (α′)3-contributions, a

moderate tuning of gs < 1 should suffice to parametrically suppress them. Moreover, note

that from the discussion in refs. [33, 46] it is also expected that the coefficients Ci and Di

in eq. (4.12) are small. Indeed, in the explicit computations they are suppressed by loop

factors of 1/(128π4) and thus small, unless the complex structure moduli are frozen at

large values. Note that fluxes typically stabilize the complex structure moduli at smaller

values 〈Za〉 < 1. In this case one also finds that e〈Kcs〉 & 1, which leads to an additional

enhancement of V(1) over the string-loop corrections.

The potential in eq. (4.22) is then minimized at

〈V〉 ∼
(
gs e

〈Kcs〉 λ̂|W0|2Π1

ξ̂

)3/2

(4.26)

under the assumption that λ̂ < 0 and ξ̂ < 0. The latter requirement is fulfilled for any

Calabi-Yau with χ(M3) > 0 or in other words h1,1(M3) > h2,1(M3). Note that background

fluxes require h2,1(M3) ≥ 1. Hence, we need at least two Kähler moduli to satisfy χ(M3) >

0. Thus, the above analysis is not realistic. However, based on this simple example one

would naively expect that in the case of h1,1 > 1 one finds a stabilized volume only if

χ(M3) > 0 and λ < 0. This is indeed confirmed in the next section.

Supersymmetry is broken in the vacuum given in eq. (4.26) which can be seen as

follows. From section 3.2 we know that supersymmetry is broken, if it is broken at two-

derivative level. Suppose supersymmetry was unbroken, then one could derive the minimum

from eq. (3.12). However, necessarily all such points would be λ̂-independent, which is

not satisfied for our minimum. Thus, supersymmetry is indeed broken in the vacuum in

eq. (4.26). Furthermore computation shows that it is an AdS vacuum with a value of the

cosmological constant given by

〈V 〉 ∼ ξ̂|W |2
〈V〉3 < 0 (4.27)

In the next section we generalize to the case h1,1 > 1 and prove the existence of a general

minimum. Finally, we note that this minimum does not arise by balancing two terms in the

same expansion at different order. Instead, both terms originate from 10d terms which are

of the same order in α′ and gs. Moreover, in the four-dimensional theory we formally have

an expansion in the coupling tensor, which controls the higher-derivative corrections, as

well as in ξ̂, which controls V(α′) in eq. (4.14). From this point of view, in the minimization

we are comparing leading order terms, which are associated with different expansions.

4.4 Existence of model-independent minimum

Neglecting string-loop corrections and taking the large-volume limit the potential given

in (4.13) reads

V =
3ξ̂|W |2
4V3

− λ̂|W |4 Πit
i

V4
. (4.28)
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For λ̂ < 0 we will now show that V has a non-supersymmetric AdS minimum for any

orientifolded Calabi-Yau threefold with χ(M3) > 0 where all four-cycles are fixed as

〈τi〉 = C Πi , with C =
44λ̂|W |2

9ξ̂
. (4.29)

The volume in this minimum is given by

〈V〉 = 1

3
C Πk〈tk〉 =

44

27

〈∫
c2 ∧ J

〉
λ̂|W |2
ξ̂

∼ Πk〈tk0〉
(
λ̂|W |2
ξ̂

)3/2

, (4.30)

where 〈ti0〉 do not depend on C, but are implicit functions of the Πi. Moreover, positivity

of the four-cycles requires that Πi > 0 for all i = 1, . . . , h1,1. As we already mentioned

when choosing the correct Kähler cone variables one has Πi ≥ 0, so we have to require that

Πi 6= 0.

In order to prove the existence of this minimum it is sufficient to show that the potential

in eq. (4.28) is minimal as a function of the two-cycle volumes ti as it is then also minimal

in terms of the four-cycle volumes τi. The first derivatives of eq. (4.28) read

∂V

∂ti
=

|W |2
V5

[
−3

4
ξ̂τi
(
tiτi
)
− 1

3
λ̂|W |2Πi

(
tjτj

)
+ 4λ̂|W |2τi

(
Πjt

j
)]

, (4.31)

where we used eq. (4.10). Inserting the values of the four-cycle volumes given in eq. (4.29)

one finds that indeed 〈∂V/∂ti〉 = 0. From eq. (4.10) we also obtain the first equality in

eq. (4.30). To determine the overall dependence of 〈V〉 on C, note that the two-cycles are

implicitly defined via eq. (4.9), which at the extremal point is given by

kijk〈tj〉〈tk〉 = 2CΠi . (4.32)

This implies 〈ti〉 =
√
C〈ti0〉, where ti0 do not depend on C. With this we obtain the scaling

of the volume with respect to |W |, ξ̂ and λ̂ in eq. (4.30).

It remains to analyse the matrix of second derivatives. In general it reads

∂2V

∂ti∂tj
=

|W |2
V6

[
9ξ̂Vτiτj + 4λ̂|W |2V (τiΠj +Πiτj)− 20λ̂|W |2(Πkt

k)τiτj

+
∂τj
∂ti

(
4λ̂|W |2V(Πkt

k)− 9

4
ξ̂V2

)]
.

(4.33)

Making use of eq. (4.10) we find that at the extremal point this simplifies to

〈
∂2V

∂ti∂tj

〉
= aΠiΠj + bkijk〈tk〉 , where a = −8λ̂|W |4C

〈V〉5 , b =
9

44

ξ̂|W |2
〈V〉4 . (4.34)

For λ < 0 and χ(M3) > 0 we see that a > 0 and b < 0. For any vector with components xi
we have (xiΠi)(xjΠj) ≥ 0 and so aΠiΠj is a positive-semidefinite matrix. The matrix kijkt

k

was studied in [48] and shown to have signature (1, h1,1 − 1). In other words there exists

an orthogonal decomposition of the h1,1-dimensional vector space into a one-dimensional
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subspace, on which kijkt
k is positive definite and an (h1,1 − 1)-dimensional complement

on which it is negative definite. Here orthogonality is defined with respect to the inner

product determined by kijkt
k. The one-dimensional subspace is spanned by the vector

with components ti, as the volume has to be positive. Since we have b < 0 the signature of

bkijk〈tk〉 reads (h1,1−1, 1). On the (h1,1−1)-dimensional subspace the sum aΠiΠj+bkijk〈tk〉
must hence be positive-definite. On the one-dimensional subspace we find

〈ti〉
〈
∂2V

∂ti∂tj

〉
〈tj〉 = −22λ̂|W |4C

3〈V〉5
(
Πk〈tk〉

)2
> 0 , (4.35)

which shows that the matrix of second derivatives is also positive definite there.

It remains to be shown, that the matrix (4.34) is positive definite on the whole space.

A generic non-zero vector with components xi can be decomposed as xi = µ〈ti〉+xi⊥, where
µ ∈ R and xi⊥ is the component of xi in the subspace orthogonal to the one-dimensional

space spanned by 〈ti〉. Since

ΠiΠj〈tj〉 ∼ Πi ∼ kijk〈tj〉〈tk〉 (4.36)

we have the following orthogonality relations

xi⊥kijk〈tj〉〈tk〉 = xi⊥ΠiΠj〈tj〉 = 0 . (4.37)

With this we find

xi
〈
∂2V

∂ti∂tj

〉
xj = xi⊥

(
aΠiΠj + bkijk〈tk〉

)
xj⊥ + µ2〈ti〉

(
aΠiΠj + bkijk〈tk〉

)
〈tj〉 > 0 ,

(4.38)

since the matrix is positive on the respective subspaces. We conclude that the matrix in

eq. (4.34) is positive definite.

In addition we have to establish that the locus specified in eq. (4.29) is a minimum

of the potential, which includes also the dilaton as well as the complex structure moduli.

The answer can be easily obtained in the spirit of [21]. Indeed the potential including the

dilaton and complex-structure moduli reads [19]

V = eK(Gab̄DaWDb̄W̄+Gτ τ̄DτWDτ̄W̄ )+eK
ξ

2V (WDτ̄W̄+W̄DτW )+V(α′)+V(1) , (4.39)

where a, b label complex structure moduli directions. W denotes the the Gukov-Vafa-

Witten superpotential. The first term in the above potential is positive definite and has a

V−2 behaviour at large volume. At the extremal condition DaW = DτW = 0, it vanishes

identically and is positive around this value. Since it dominates over the subleading O(V−3)

and O(V−11/3) terms coming from V(α′) + V(1), eq. (4.29) represents a minimum of the full

potential. Of course also the dilaton and complex structure moduli will receive higher-

derivative corrections, which contribute in V(1). However, these terms have a subleading

volume-dependence compared to the first terms in eq. (4.39) and thus do not spoil the

argument.
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As in the preceding section, supersymmetry is broken in the minimum. Up to numerical

factors the value of the potential in the minimum reads

〈V 〉 ∼ ξ̂

|W |7

(
ξ̂

λ̂

)9/2

. (4.40)

We can estimate the gravitino mass from the ordinary two-derivative theory. It reads

m3/2 ∼ eK/2|W | ∼ |W |
V ∼ ξ̂3/2

λ̂3/2|W |2Πi〈ti0〉
. (4.41)

Note that the corrections F(1) contribute only subleading here. Let us compare the gravitino

mass with the string scale and Kaluza-Klein scale [35]

ms ∼
1√
V
, mKK ∼ 1

V2/3
. (4.42)

Direct computation reveals that

m3/2

ms
∼ ξ̂3/4

λ̂3/4
√
|W |Πi〈ti0〉

. (4.43)

Furthermore, from eq. (4.32) we find that roughly 〈ti0〉 ∼ √
Πi. Let Π denote a typical

value for the topological numbers Πi, then we can estimate

Πi〈ti0〉 ∼ h1,1Π3/2 . (4.44)

In the next section we show that Π ∼ O(10 . . . 100). Furthermore, we can estimate the size

of λ̂ by the combinatorial part of ξ̂. In other words we roughly expect that |λ̂|∼ |ξ̂/χ(M3)|.
Altogether, the scale-quotients read23

m3/2

ms
∼ e−〈Kcs〉/4g−1/4

s

χ(M3)
3/4

√
|W0|h1,1Π

. O(10−1) ,
m3/2

mKK
∼ χ(M3)

1/2

(h1,1)1/3
√
Π
< 1 . (4.45)

To obtain more accurate expressions for m3/2/ms and m3/2/mKK , it will be necessary

to compute λ̂ and study the minimum for explicit examples. Note furthermore, that

m3/2/mKK ≪ 1 in order to ensure that higher superspace-derivative corrections and hence

higher corrections to the scalar potential of the type (F(0))
n with n > 4 are under con-

trol [49]. This can be achieved best by choosing a geometry with χ(M3) ∼ O(1) and

h1,1 ≫ 1.24

Let us finish this section with some remarks. Firstly let us stress again that the sta-

bilization of the four-cycle volumes proposed here does not require any non-perturbative

effects, but occurs purely from considering the leading order (α′)3-corrections in the poten-

tial. Note furthermore that even though a Calabi-Yau might have some Πi = 0, the overall

volume is stabilized at a positive value. In such cases it could still happen that string-loop

23We thank Shanta de Alwis for helpful comments and discussions regarding this point.
24We thank Michele Cicoli for helpful comments regarding this point.
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or other α′-corrections shift the minimum to a point at which all four-cycles are positive

and the overall volume is roughly the same.

Consequently, we might now worry about the size of the flux density

ρflux =
1

α′

(∫
d6y G3 · Ḡ3

)1/2

∼ W0

V . (4.46)

While supersymmetric flux stabilization of the type IIB axio-dilaton and the complex struc-

ture moduli has vanishing F-terms DτW = DaW = 0 which removes their contribution to

the flux density (see e.g. section 2.3 in [49]), volume stabilization requires the (0, 3)-piece

of G3 to be non-zero in order to generate the VEV for W in the first place. Hence, the

F-terms of the Kähler moduli still produce a flux density

ρflux ∼
(
eKKīDiW0D̄j̄W̄0

)1/2 ∼ W0

V (4.47)

scaling the same way as the naive ten-dimensional estimate above. However, inserting the

scaling of the volume in our vacuum, we note that the fraction |W0|/V ∼ |W0|−2 and so

one expects the flux density to actually decrease with increasing W0 — quite contrary to

the situation known for KKLT or LVS class vacua.

In the minimum eq. (4.29) the value of the cosmological constant is negative. To lift

this vacuum to a metastable dS one may introduce an uplifting sector in the same way as

it is done for LVS. We do not see any obstacles to an uplifting, since supersymmetry is

already broken for eq. (4.29).

4.5 Estimating the size of the Πi — a simple explicit example

At this point we have established the functional form of the contribution from the higher-

derivative correction to the scalar potential. Moreover, we know that the positivity of the

2nd Chern class guarantees the positive semi-definiteness of its expansion coefficients Πi

when using proper Kähler cone variables. In closing our discussion, we should like to have

a ballpark estimate of the size of the Πi in order to assess the generic size of the new

correction.

To this end, we will provide results for the coefficients Πi in the expression
∫
c2 ∧ J =

Πit
i for the well-known complete-intersection CY manifold X3 = P

4
11169

[
18

4

]
which has

h11 = 2, h21 = 272, and consequently χ = −540 < 0. This example was presented

in [21, 50, 51] and is of the “Swiss-Cheese” type. While this example cannot show volume

stabilization due to its negative Euler number, its mirror does stabilize all the volumes,

and we use the χ < 0 manifold just as an illustrative example to provide an estimate for

the numerical size of the Πi.

We can describe X3 as the vanishing locus of the polynomial

ξ2 = P18,4(ui) (4.48)
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in the ambient toric variety

Xamb
4 :

u1 u2 u3 u4 u5 ξ

1 1 1 6 0 9

0 0 0 1 1 2

. (4.49)

Eq. (4.48) arises in Sen’s limit as the double cover of the base B3 = P
1 → P

2 with twist

n = −6 of an elliptically fibred CY 4-fold Y4 : T2 → B3. From the above weight system data

we can compute the linear relations and triple intersections of the toric divisors Dui , Dξ

(given by the vanishing loci ui = 0, ξ = 0), and their restriction to the hypersurface equation

(see e.g. [45]). This allows us to compute the total Chern class of X3 by adjunction in terms

of the Chern class of the embedding toric variety and the normal bundle of the hypersurface.

Expanding to second order, we get the second Chern class of X3 in terms of the elements

of a basis of toric divisors. Carefully expanding the Kähler form J = tiDi into a basis of

divisors spanning the Kähler cone, i.e. where all ti ≥ 0 simultaneously and independently

from each other, we can then compute
∫
c2 ∧ J using the known divisor triple intersection

numbers on our CY 3-fold. Following the conventions of [45], we write J = t1D1 + t5D5

and the Chern class computation produces

∫

X3

c2 ∧ J = 36t1 + 102t5 . (4.50)

Hence, this example served us to verify that the Πi ≥ 0, and provides us with a first

estimate of their typical size to be O(10 . . . 100).

5 Conclusion

In the first part of this paper we revisited the ghost-free four-derivative sector for chiral

superfields in N = 1 global supersymmetry as well as supergravity in superspace. This

sector is captured by the operator in eq. (2.1). This term does not lead to a propagating

auxiliary field, but induces cubic polynomial equations for the chiral auxiliaries and, thus,

up to three inequivalent on-shell theories. We showed that within the context of effective

field theory there is a unique physical on-shell theory, namely the theory with analyticity in

the coupling T . The additional theories can be regarded as mere artefacts of a truncation of

an infinite-series of higher-derivative operators in superspace, as was illustrated explicitly

by the one-loop Wess-Zumino model in section 2.3. This example furthermore revealed

that the non-analytic theories are incapable of reproducing the non-local, untruncated

‘UV’-theory. In addition we have demonstrated that in a regime of small kinetic terms

all on-shell Lagrangians obtained from eq. (2.1) are ghost-free. After clarification of these

conceptual issues we displayed the general on-shell theory in eq. (3.8).

In the second part of this paper we analysed the correction to the scalar potential,

which is generated by the operator in eq. (2.1), and the properties of the vacua of the

theory. Firstly, in situations in which the ordinary, two-derivative theory possesses a su-

persymmetric minimum, this minimum persists unchanged in the higher-derivative theory
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in agreement with the general discussion in [1]. If, one the other hand, supersymmetry

was already broken in the two-derivative theory, then the higher-derivative operator might

be of interest, specifically in situations, in which flat directions exist within the minimum.

Unless a symmetry is protecting this flat direction or the flat direction is a Goldstone

boson, as for example if supersymmetry breaking occurs via R-symmetry breaking, we ex-

pect that in general the higher-derivative operator lifts the flatness. For the case of global

supersymmetry this was exemplified using the O’Raifeartaigh model. Within supergravity

we provided a simple one-dimensional no-scale type model as a first example in section 3.2.

Of special interest are theories, which do not have a minimum at two-derivative level.

This is for instance the case for the Kähler moduli sector of type IIB flux compactifica-

tions on Calabi-Yau orientifolds after inclusion of the leading order α′-corrections to the

Kähler potential, but ignoring non-perturbative effects. We extended the analysis of how

(α′)3-corrections in ten dimensions modify the four-dimensional theory obtained after com-

pactification to the higher-derivative sector. Specifically we found that corrections to the

scalar potential, which are induced by terms with four powers of the flux three-form G3

fit into the off-shell operator in eq. (3.3). The respective four-derivative terms for the

Kähler moduli can be found by reducing the ten-dimensional R4 corrections. Contrary to

the terms quartic in G3, the R
4 term is fully known [25, 26] and, thus, we computed the

four-derivative terms and inferred the correction to the scalar potential by matching to

eq. (3.8). The result is displayed in eq. (4.21). In this computation we omitted numerical

factors. A proper treatment of these factors lies outside the scope of this paper as this

requires a systematic understanding of the off-shell higher-derivatives in four dimensions.

Notably (ghost-like) operators exist, which do not modify the scalar potential, but induce

four-derivative terms of the same type as those obtained from the R4 correction. However,

it is important to note that eq. (3.3) is the only off-shell operator which receives four-

derivative terms from R4 and contributes to the scalar potential at order (α′)3, as we will

demonstrate elsewhere. Furthermore we proved in appendix D that the correction V(1) in

eq. (4.21) cannot be off-shell completed via a two-derivative theory, that is by including a

correction to the Kähler potential, but indeed is only consistent with supersymmetry after

including higher-derivatives.

Moreover, in our KK-reduction we neglected warping effects. In principle, warping-

induced contributions are expected to enter the scalar potential at the same order in powers

of inverse volume as the correction in eq. (4.21), for instance via terms R3F 2
5 in ten-

dimensions. On the other hand it was recently shown that large cancellations associated

with warping-induced terms occur in the context of α-corrections to the effective action

of M-theory [52]. Leading order warping-effects were also studied in [53]. Thus, it will be

interesting to test our approximation in the future.

In a second step we assessed whether the correction in eq. (4.21) can lead to a theory

with a minimum without taking into account non-perturbative effects. In section 4.4 we

indeed found that a model-independent minimum exists, where all four-cycle volumes are

frozen to values which are determined by topological numbers encoded in the second Chern

class, cf. eq. (4.29). This holds for all Calabi-Yau threefolds with χ(M) > 0 and provided

that the undetermined overall numerical factor of the higher-derivative operator has a neg-
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ative sign. This moduli stabilization scenario is intriguing as the structure and properties

of the vacuum are determined purely from topological data of the Calabi-Yau and no ad-

ditional ingredients are required. Moreover let us compare the vacuum in eq. (4.29) and

eq. (4.30) to the results of LVS. We obtain a minimum given that χ(M3) > 0, contrary to

LVS, where it is necessary that χ(M3) < 0. To ensure a large volume in eq. (4.30) we see

that a largish value |W0|& 1 is preferred. The ensuing scaling of the stabilized value of the

volume with the W0 also renders both the 3-form flux density and the gravitino mass in

eq. (4.41) small at large W0.

In the future it will be necessary to determine the sign of λ to confirm the existence

of the minimum in eq. (4.29). However, a prior systematic understanding of all higher-

derivative operators in curved superspace is required. Furthermore, a better understanding

of additional (α′)3-corrections to the scalar potential, such as for instance warping-induced

terms but also the subleading terms in inverse volume, is important in order to fully trust

the minimum in eq. (4.29).
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A Exact solutions of the cubic equation for F

A.1 One-dimensional models with arbitrary W

In this appendix we discuss the general solution of the equation of motion for the auxiliary

field F of a single chiral multiplet in the context of supergravity. All the results below can

be extrapolated to the case of global supersymmetry after reintroducing the factors of the

Planck scale Mp and performing the limit Mp → ∞.

Recall that the equation of motion for F is cubic and given by (cf. (3.6))

F
[
|F |2+e−K/3

(
(2T )−1GAĀ − |∂A|2

)]
+ (2T )−1D̄AW̄ = 0 . (A.1)

It is possible to rewrite (A.1) as a cubic equation with real coefficients after performing the

field redefinition

F = f(A, Ā) D̄AW̄ , (A.2)

where f is the new auxiliary field variable and we assume W 6= 0. Inserted into (A.1) we

obtain

f
[
|f |2 |DAW |2+e−K/3

(
(2T )−1GAĀ − |∂A|2

)]
+ (2T )−1 = 0 . (A.3)
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Since T and the expression in the square bracket are real we see that also f has to be real.

Therefore (A.3) is of the form

f3 + pf + q = 0 (A.4)

with

p =
e−K/3

|DAW |2
(
GAĀ

2T
− |∂A|2

)
, q =

1

2T |DAW |2 . (A.5)

In the case of global supersymmetry it necessary to note that the Kähler potential has

mass dimension two, so that in the limit Mp → ∞ we get

p→ 1

|W,A|2
(
GAĀ

2T
− |∂A|2

)
, q → 1

2T |W,A|2
. (A.6)

Eq. (A.4) is a cubic equation with real coefficients p, q and its solutions are known.

However, in general only one out of the three possible solutions is real. There are different

regimes of interest [10]:

(1) p > 0: in this case only one real solution exists given by

f(1) = −2

√
p

3
sinh

[
1

3
arsinh

(√
x
)]

, (A.7)

where we defined

x ≡ 27q2

4p3
. (A.8)

(2) p < 0 and 4p3 + 27q2 > 0: here also only one real solution exists, which reads

f(2) = −2 sign(q)

√
−p
3
cosh

[
1

3
arcosh

(√
−x
)]

, (A.9)

(3) p < 0 and 4p3 + 27q2 < 0: in this regime all three solutions are real and can be

expressed as follows

f(3),k = 2

√
−p
3
cos

[
1

3
arccos

(√
−x
)
− 2π k

3

]
, k = 0, 1, 2 . (A.10)

In terms of the variable x defined in (A.8) the different regimes can be expressed by

(1) : x > 0 , (2) : x < −1 , (3) : −1 < x < 0 . (A.11)

Let us make a few remarks regarding the different regimes. Suppose that T is a

constant. Then, for T < 0 we have p < 0 and so one is always in regime (2) or (3). For

simplicity let us assume that the contribution of the kinetic terms in p is negligible, then

the difference between the regions is characterized by

27|DAW |2≷ −2T−1e−KG3
AĀ . (A.12)

If we take the kinetic contribution into account, one can directly see that for large kinetic

terms p becomes large and negative so that one always reaches regime (3). For T > 0 one
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can be in all three regions. Note, that if we would restrict ourselves to the discussion of

the non-derivative component of F , the condition T > 0 could only be supported in region

(1). Moreover, we see that the different regions are dynamically connected. For instance a

theory with T > 0 could describe a dynamical field with initially small kinetic terms, thus,

being described by the appropriate theory in regime (1). However, it could be that the

kinetic terms are growing with the evolution of the field and hence one reaches regimes (2)

and finally (3).

A.2 Analysis of kinetic terms

In this appendix we will demonstrate the absence of ghosts in the on-shell theories in all

three regimes. To this end we compute the sign of the ordinary kinetic term in the on-shell

Lagrangian. We will conduct the analysis in the context of supergravity and the results

extrapolate directly to the case of global supersymmetry. Eliminating the auxiliary field

F from (3.5) and keeping only terms which contribute to the standard kinetic term we

arrive at
L√−g ⊃ −GAĀ|∂A|2+f e2K/3 |DAW |2−T e2K/3 f4 |DAW |4 , (A.13)

where f was determined in the previous section and via (A.5) depends on ∂A. Let us

expand the above terms in |∂A|2 assuming that they are sufficiently small. The coefficient

Σ of the first term in the expansion determines the sign of the ordinary kinetic term.

Making use of (A.4) Σ is given by

L = ΣGAĀ|∂A|2
√−g + . . . , Σ = −

[
1 +

∂f

∂p

∣∣∣
0

(
2f0 + 3

p0
q

)]
. (A.14)

Here the subscript zero denotes that a quantity is evaluated at |∂A|2= 0. Using the

solutions for f in the three regimes given in eqs. (A.7) to (A.10) it is always possible to

express Σ as a function of x0 (defined in (A.8)) only. More precisely, in each regime one

finds the following:

(1) x > 0: one obtains

Σ(1) = −
{
1 +

[
−sinh

(
1

3
arsinh(

√
x0)

)
+

√
x0

1 + x0
cosh

(
1

3
arsinh(

√
x0)

)]

×
[
−4

3
sinh

(
1

3
arsinh(

√
x0)

)
+

2

3

√
x0

]}
(A.15)

Inspecting (A.5) and (A.8) one finds that in this regime T > 0 has to hold in order to

ensure x > 0. Thus, we necessarily also have x0 > 0 and then numerical evaluation

shows that Σ is always negative implying that this region is ghost-free.

(2) x < −1: the computation in this case has to be done more carefully, since x < −1 can

occur for T < 0 and T > 0. From (A.5) we see that in the latter case the kinetic term
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has to be large and an expansion around zero is not meaningful. For T < 0 we have

that x0 < 0 and computing Σ yields

Σ(2) = −
{
1 +

[
cosh

(
1

3
arcosh(

√−x0)
)
+

√
x0

1 + x0
sinh

(
1

3
arcosh(

√−x0)
)]

×
[
4

3
cosh

(
1

3
arcosh(

√−x0)
)
+

2

3

√−x0
]}

. (A.16)

Σ(2) is discontinuous at x0 = −1, but numerical evaluation shows that it is negative

for all x0 < 0, which again implies the absence of ghosts.

(3) −1 < x < 0: here one finds that

Σ(3),k=−
{
1+

[
cos

(
1

3
arccos(

√−x0)−
2π k

3

)
+

√
−x0
1 + x0

sin

(
1

3
arccos(

√−x0)−
2π k

3

)]

×
[
4

3
cos

(
1

3
arccos(

√−x0)−
2π k

3

)
− sign(T )

2

3

√−x0
]}

. (A.17)

Again there are two cases to discuss: for T < 0, we always have −1 < x < x0 < 0 and

all branches are ghost-free. On the other hand for T > 0 we have that x0 > 0. It is

not expected that Σ is defined here, since this corresponds to large |∂A|2.

Let us make some additional comments about the appearance of ghosts in those the-

ories, where we truncate the theory to linear order in T . In region (1), the auxiliary field

is analytic in T and the lowest order contributions to the Lagrangian generated by the

auxiliary can be obtained as in (2.9) and are given by25

L(1) ⊃ −eKGAĀ|DAW |2+T
[(

eKGAĀ|DAW |2
)2

− 2GAĀ|∂A|2eKGAĀ|DAW |2
]
+O(T 2) .

(A.18)

In region (2) on the other hand the auxiliary field has a pole at T → 0 and hence is not

analytic. The respective contributions to the Lagrangian are of the form

L(2) ⊃ −4T−1 +

(
1

2
eKGAĀ|DAW |2+GAĀ|∂A|2

)
+O(

√
T ) . (A.19)

The fact that there exists a region in which the Lagrangian is not analytic in T is not

surprising, since the limit T → 0 with fixed K,W automatically implies that one must

exit region (2) and enter region (3) as can be seen from (A.5). In the third region the

Lagrangian coincides with L(2) for k = 0, 2 and with L(1) for k = 1.

Inspecting L(1) we observe that the theory becomes ghost-like, once

2
(
eKGAĀ|DAW |2

)2
T . −1 . (A.20)

25In contrast to the previous appendices here we introduced additional factors of the Kähler metric

according to eq. (2.25).
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Equivalently this reads x0 . −27/4. However, such values of x0 correspond to regime (2),

where no analytic Lagrangian exists. This indicates that the expansion of the analytic

solution fails to converge around values where the theory becomes ghostlike. In the above

we have treated the solutions to all orders in T . This is sensible only, if we know that

all higher-order contributions to the EAFP vanish. However, even in the situation where

we know the EAFP only up to four-derivative level, we expect that the theory becomes

unreliable near x0 ∼ −1, which coincides with the threshold, where the kinetic term starts

to behave ghostlike.

A.3 Analytic solution in arbitrary dimensions

To complete the discussion of the four-derivative operator let us analyse eq. (3.6) for arbi-

trary dimension. If we assume that the coupling tensor is given by eq. (2.25) and we only

look for analytic solutions, then the task is feasible and the answer unique. Inspecting the

equations of motion for the F i shows that all analytic solutions have to be of the form

F i = eK/3Gij̄D̄j̄W̄f , (A.21)

where f is analytic in T .26 Inserted into eq. (3.6) yields

2|f |2fT (eKGij̄DiWD̄j̄W̄ ) + f + 1 = 0 , (A.22)

where for simplicity we ignore the dependence on the derivatives of the scalar fields. As

in section A.1 we obtain the additional condition that f has to be real-valued and, hence,

the cubic equation reduces to

f3 + pf + p = 0 , where p = (2T eKGij̄DiWD̄j̄W̄ )−1 . (A.23)

Thus, the exact solution is be given by

F i = eK/3Gij̄D̄j̄W̄

√
−4p

3
cos

[
1

3
arccos

(√
−27

4p

)
− 2π

3

]
. (A.24)

B Higher-derivatives for Kähler moduli from string-theoretic

α
′-corrections

In this appendix we discuss how to compute four-derivative terms for Kähler class deforma-

tions from (α′)3R4 corrections to the action of IIB in the context of flux compactifications

on Calabi-Yau orientifolds. These corrections were already presented in eq. (4.5). Notably

J0 generates the ξ̂-correction to the Kähler potential in eq. (4.7) as shown in [19]. The

following derivation is many ways analogous to the computation in this reference.

Before turning to the explicit analysis let us stress that we will focus on obtaining the

overall functional form of the coupling tensor and omit the details of numerical factors. A

proper treatment of these factors lies outside the scope of this paper as a complete discussion

26One can directly show via induction that the solution must reduce to this by assuming a general analytic

expansion in T .
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of the four-derivative bosonic action is required. Specifically a full understanding of all off-

shell operators in four dimensions is necessary, that contribute four-derivative terms for the

scalar fields. For instance off-shell higher-derivative operators exist, which mix with (∂V)4,
but do not correct the scalar potential. Note that the operator in eq. (3.3) is the only

higher-derivative operator, that receives four-derivative terms from J0 and can contribute

to the scalar potential at order O(α′3), as we will demonstrate elsewhere.

The necessary terms of the 10-dimensional string-frame action for this appendix are

given by27 [25]

S(10) ⊃ − 1

κ210

∫
d10x

√
−g(10)e−2φ

(
R+ 4(∂φ)2 +

(α′)3ζ(3)

3 · 211 J0

)
. (B.1)

Here R denotes Ricci scalar, φ the ten-dimensional dilaton, g(10) the metric and J0 was

given in eq. (4.5).28 There exists a basis of 26 independent contractions of four Riemann

tensors, in which J0 necessarily has to expand [54]. Here we do not compute the exact

coefficients of this expansion, but simply argue within this basis of the 26 terms to obtain

the functional form of the possible four-derivative terms.

We will not compute the coupling of gravity to the higher-derivatives of the Kähler

moduli and, therefore, set the four-dimensional piece of the metric to a Minkowski-form.

Furthermore we will neglect the warping-factor, which is non-trivial in the presence of

background-fluxes. For simplicity we will conduct the analysis with a single Kähler-type

deformation turned on. Altogether the ten-dimensional metric then reads

ds2(10) = gMNdxMdxN = ηµνdx
µdxν + gmndy

mdyn , (B.2)

where M,N = 0, . . . , 9, the ym,m = 1, . . . , 6 are real coordinates on the compact manifold

M3 and gmn = e2u(x)g̃mn(y). The volume measured by the background metric g̃mn is

normalized to unity, i.e. we choose (2πα′) = 1. This way the Planck constants in ten and

four dimensions can be directly related to each other as κ−2
10 = κ−2

4 . The single volume

modulus in the string-frame is normalized as e6u = V̂.
Note that the higher-curvature terms in eq. (B.1) modify the Einstein equations. More

precisely the Einstein equations along the internal directions read [55]

Rαβ̄ ∼ (α′)3∂α∂β̄Q , (B.3)

where we introduced local complex coordinates (zα, z̄β̄) with α, β̄ = 1, 2, 3 on the internal

manifold. Furthermore Q denotes the six-dimensional Euler integrand, i.e.
∫
d6y

√
gQ =

χ(M3). As a consequence of eq. (B.3) the background metric in eq. (B.2) is in general not

Ricci-flat. Eq. (B.3) is formally solved by

g̃mn = g̃ (0)
mn + (α′)3g̃ (1)

mn , (B.4)

27For brevity we do not display the terms for the RR and NSNS field strength forms here.
28Note that the dilaton receives higher-derivative corrections [39]. In the following, we shall consider the

dilaton only at the two-derivative level and hence stick to the results of [19].
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where g̃
(0)
mn is a Ricci-flat metric solving the zeroth-order Einstein equations and g̃

(1)
mn solves

eq. (B.3) at order (α′)3. When reducing J0 it is not necessary to take into account the

correction g̃
(1)
mn as it enters at order (α′)6. The leading (α′)0 terms in eq. (B.1) on the other

hand induce (α′)3-corrections via g̃
(1)
mn. However, the respective correction coming from the

standard Einstein-Hilbert term is a total derivative. The remaining terms do not correct

the kinetic terms. Hence, we will in the following ignore the correction g̃
(1)
mn and treat g̃mn

as Ricci-flat.

To determine the curvature terms inside J0 we need to compute the components of the

Riemann tensor. In the following we use the conventions

RM
NPQ = ∂PΓ

M
QN − ∂QΓ

M
PN + ΓR

QNΓM
PR − ΓR

PNΓM
QR ,

ΓM
PN =

1

2
gMQ (∂P gNQ + ∂NgPQ − ∂QgPN ) .

(B.5)

Up to symmetries there are only two non-vanishing independent pieces of the Riemann

tensor computed with respect to the metric in eq. (B.2). They are given by

Rmµnν = −gmn(∂µu∂νu+ ∂µ∂νu) ,

Rkmnp = e2uR̃kmnp + (∂u)2(gkpgmn − gkngpm) .
(B.6)

Here R̃kmnp denotes the Riemann tensor components of the background metric g̃mn. From

the Riemann tensor we can furthermore compute the Ricci-tensor as well as the scalar

curvature

Rµν = −6(∂µu∂νu+ ∂µ∂νu) , Rmn = −gmn(6(∂u)
2 +�u) , R = −42(∂u)2 − 12�u .

(B.7)

It is evident that in the reduction of eq. (4.5) one obtains terms with up to eight derivatives

of u. Here we are solely interested in the terms with four-derivatives. Computation of all

26 basis elements in [54] shows that one obtains the following four-derivative terms

J0 ⊃ e−4u
[
α1(∂u)

4 + α2�u(∂u)
2 + α3(�u)

2 + α4(∂µ∂νu)(∂
µ∂νu)

+ α5(∂µ∂νu)(∂
µu)(∂νu)

]
R̃kmnpR̃

kmnp ,
(B.8)

for some constants αi. Since for a Calabi-Yau R̃mn = 0, the only non-vanishing contraction

of two Riemann tensors is given by R̃kmnpR̃
kmnp. We see that five different four-derivative

terms appear here. However, in the four-dimensional action these terms are not indepen-

dent and related by partial integration.29 For the purpose of keeping track of the proper

coefficients it would be necessary to discuss all five operators in eq. (B.8) jointly. Here we

are interested only in the functional behaviour and, thus, confine our attention to the first

term in eq. (B.8), since this is the only four-derivative term, which can be matched to the

Lagrangian in eq. (3.8). It is convenient to express the Riemann-tensor square with respect

to gmn again. Up to derivatives we have

RkmnpR
kmnp = e−4uR̃kmnpR̃

kmnp + . . . (B.9)

29For example partial integration reveals that (∂µ∂νu)(∂
µu)(∂νu) can be recast into a combination of

(∂u)4 and �u(∂u)2.
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In the action we obtain at order (α′)3

S(∂u)4 = − 1

2κ24

∫
d4x

√−g e−2φ0 α1 (∂u)
4

∫

M3

d6y
√
g RkmnpR

kmnp . (B.10)

It is convenient to rewrite the integral over the compact dimensions as follows
∫

M3

d6y
√
g RkmnpR

kmnp ∼
∫

M3

c2 ∧ J , (B.11)

where c2 is the second Chern class of the Calabi-Yau threefold and J its Kähler form. This

can be checked directly using local complex coordinates. With respect to these coordinates

we have

c2 =
1

2

(
TrR2 − (TrR)2

)
, J = igαβ̄dz

α ∧ dz̄β̄ , (B.12)

where R is the curvature two-form. The traces of the curvature two-form are given by

TrR = Rα
αβγ̄ dz

β ∧ dz̄γ̄ , TrR2 = Rα
βγδ̄R

β
αǫζ̄ dz

γ ∧ dz̄δ̄ ∧ dzǫ ∧ dz̄ζ̄ . (B.13)

On a Calabi-Yau the first Chern class vanishes and, hence, we have TrR = 0.30

From eq. (B.11) it is evident that
∫

M3

c2 ∧ J ≥ 0 . (B.14)

Here equality holds, if and only if M3 has constant holomorphic sectional curvature [56].

For Kähler manifolds with constant holomorphic sectional curvature c the Riemann tensor

must necessarily take the form [57]

Rαβ̄γδ̄ = − c
2

(
gαβ̄gγδ̄ + gαδ̄gγβ̄

)
(B.15)

and, thus, for Calabi-Yau manifolds c = 0 = Rαβ̄γδ̄. This is only possible if M3 is a

torus T 6.

The term in eq. (B.10) is expressed in the string frame. In order to transform to the

Einstein frame note that the two-derivative part of the bosonic action is given by [19]31

S = − 1

2κ24

∫
d4x

√−g e−2φ0

(
e6u +

ξ

2

)
R(4) + . . . (B.16)

where ξ parametrizes the leading α′-corrections and is given in eq. (4.11) and R(4) denotes

the scalar curvature in four dimensions.

The next step is to transform into the four-dimensional Einstein frame via a Weyl

rescaling. Simultaneously one has to rediagonalize the kinetic terms for the scalar fields.

This is achieved by the redefinitions

g(E)
µν = e−φ0/2

(
V +

ξ̂

2

)
gµν , V = V̂e−3φ0/2 = e−3φ0/2e6u . (B.17)

30To prove eq. (B.11) it is also helpful to note the relation
√

det(g̃mn) = det(gαβ̄), which links the volume

forms of the two different coordinate systems to each other.
31We promote ηµν to an arbitrary Lorentzian metric gµν here.
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where ξ̂ is defined in (4.11). Here one observes that also couplings of the four-dimensional

Riemann tensor to the Kähler deformation contribute to the four-derivative term for u

after the Weyl rescaling.32

Even though we considered only a single volume modulus so far, in the following the

results can be generalized to the situation of arbitrarily many Kähler moduli. The proper

N = 1 field variables are [19]

T i =
1

3

(
gi + iV i

)
, τ = l + ie−φ0 , (B.18)

where l is the R-R scalar and gi originate from the R-R four-form. The imaginary compo-

nents of T i are given by rescaled four-cycle volumes as follows

V i = τi =
∂V
∂ti

, where ti = t̂ie−φ0/2 , (B.19)

denote the Einstein-frame two-cycle volumes. Furthermore t̂i are the two-cycle volumes

measured in the string-frame. These are related to the overall volume via eq. (4.8). For a

generic Calabi-Yau threefold we can expand J =
∑h1,1

i=1 t̂
iD̂i, where D̂i form a basis of the

Dolbeault cohomology H1,1(M3,Z). Hence, the integral on the r.h.s. of eq. (B.11) can be

understood as ∫

M3

c2 ∧ J = t̂i
∫

M3

c2 ∧ D̂i ≡ Πi t̂
i , (B.20)

where Πi is a number encoding the topological information of the second chern class.

Up to terms involving derivatives of the dilaton we can use the above coordinates to

rewrite eq. (B.10)

S(∂u)4 ∼ − 1

2κ24

∫
d4x

√
−g(E) (Πm t

m)

[
1

2i
(τ − τ̄)

]3/2

×K(0),iK(0),jK(0),kK(0),l (∂µτi∂
µτj)(∂ντk∂

ντl) ,

(B.21)

where K(0) = −2 ln(V̂) denotes the classical Kähler potential of the underlying N = 1

geometry. Finally we can match this result to the Lagrangian in eq. (3.8) and read off the

coupling tensor

Tijk̄l̄ = λ(α′)3(Πm t
m)

[
1

2i
(τ − τ̄)

]3/2
K(0),iK(0),jK(0),k̄K(0),l̄ , (B.22)

where λ denotes the overall unknown numerical factor. Its computation is beyond the

scope of this paper as we discussed at the beginning of this appendix.

In the last steps we generalized to the case of arbitrarily many Kähler moduli even

though we took into account only a single modulus during the compactification. When

arbitrarily many Kähler-class deformations are switched on the coupling tensor might differ

32A coupling of the N = 2 vector multiplets to four-dimensional curvature invariants is forbidden by

supersymmetry [25] and, hence, one might expect these couplings also to be absent in the N = 1 sector.

However, a coupling of the four dimensional Riemann-tensor to derivatives of the Kähler moduli might be

present. Similarly one expects corrections also to the two-derivative term in eq. (4.24).
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from eq. (B.22). For instance, just as for the ordinary kinetic term, the Kähler metric

K(0),ij̄ could appear. Even though the coupling tensor computed for arbitrary h1,1 could

be different from eq. (B.22), there is evidence that the induced correction to the scalar

potential can be inferred from the computation with h1,1 = 1 without loss of generality. To

see this we will make use of the results of appendix C, which we will briefly summarize now.

In the large volume limit the correction to the scalar potential in eq. (4.17) behaves as

V(1) = −|W |4
V4

T(0)
īj̄klK(0),̄iK(0),j̄K(0),kK(0),l + . . . , (B.23)

where T(0) is the coupling tensor truncated to the leading order term in the large volume

limit. From the above index structure it is clear that T(0) is a tensor in the geometry

defined by the Kähler potential K(0). We assume that its tensor structure is derived

from K(0), which means that any indexed quantity appearing within T(0) is related to

derivatives ofK(0) and possibly contractions with the inverse Kähler metric, see appendix C

for more details. In appendix C we study eq. (B.23) in detail and provide evidence for the

following statement: if T(0) does not involve any scalar function and, hence, only consists of

objects with at least one index, then V(1) ∼ V−4 up to some constant. Thus, an additional

dependence of V(1) upon V or τi can only be generated by scalar functions appearing

within T(0).

When reducing J0 with an arbitrary number of Kähler-type deformations turned on,

the four-derivative terms are again obtained from those contractions where two out of the

four Riemann tensors have indices along the internal directions and, thus, contribute a

factor
∫
c2 ∧ J . The remaining indices yield contracted metrics or derivatives. We infer

that the general coupling tensor should be of the form

Tijk̄l̄ ∼ (Πm t
m)Tijk̄l̄ (B.24)

where T is a tensor, that consists purely of indexed quantities. As we consider only terms

at order (α′)3 this tensor is a tensor in the geometry defined by K(0). Thus, we can apply

the results of the appendix C and conclude that the functional behaviour of eq. (B.23) is

captured by
∫
c2 ∧ J , which was already present in the computation with h1,1 = 1.

C Kähler moduli space and coupling tensor

In this appendix we study the correction to the scalar potential induced by the higher-

derivative operator in eq. (B.23) for the geometry of the Kähler moduli at leading order in

the large volume limit, that is for K(0) = −2 ln(V), W = const. and V given by eq. (4.8).33

Within this appendix we set K(0) = K and T(0) = T for brevity. Up to factors the relevant

object of study is given by

Z ≡ Tijk̄l̄K
iKjK k̄K l̄ , (C.1)

where Ki = Kij̄Kj̄ and K
ij̄ denotes the inverse Kähler metric. Due to the shift-symmetry

of K in the following we replace anti-holomorphic by holomorphic indices.

33Some of the below results can also be found in [58].
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We will now provide evidence, but not a rigorous proof, for the following claim: if Tijkl
purely consists of quantities carrying at least one index, that is no scalar functions appear,

then Z is a constant. If, one the other hand, explicit scalar quantities, such as K or the

curvature R appear, in general this no longer holds.

Let us begin by investigating the possible structure of Tijkl. Since the superpotential

is a constant, we can assume that the coupling tensor is built entirely out of derivatives

of K. The following list contains the simplest conceivable objects that can be constructed

this way:

Tijkl = KikKjl +KilKjk (C.2)

Tijkl = KiKjKkKl (C.3)

Tijkl = KiKkKjl + symmetrized (C.4)

Tijkl = Rijkl = Kijkl −KijmK
mnKnkl (C.5)

Tijkl = RikRjl +RilRjk (C.6)

Tijkl = RikKjl + symmetrized (C.7)

Tijkl = RikKjKl + symmetrized (C.8)

Tijkl = Kj∇lRik + symmetrized (C.9)

Tijkl = ∇j∇lRik + symmetrized (C.10)

HereRijkl denotes the Riemann tensor, Rij the Ricci tensor and∇k the covariant derivative.

We will show that for any four-tensor in the upper list of choices Z is a constant. For the

tensors in eq. (C.2) to eq. (C.4) this simply follows from the no-scale condition KiKi = 3.

Note that, if we choose Tijkl according to eq. (C.5), then Z describes the holomorphic

sectional curvature along Ki.

The following identity is essential in order to prove our claim

Ki1...inj1...jmK
i1 . . .Kin ∝ Kj1...jm . (C.11)

This relation can be shown stepwise. To begin with note that V is a homogeneous function

of degree (3/2) in the four-cycle volumes τi. According to Euler’s theorem for homogeneous

functions it, thus, has to satisfy
3

2
V =

∑

i

τiVi . (C.12)

Taking iterative derivatives of this equation we obtain

∑

i

τiVij1...jn =
3− 2n

2
Vj1...jn . (C.13)

With this we can prove the following auxiliary result34

Ki1...inK
i1 . . .Kin = const . (C.14)

34For n = 2 this simply corresponds to the no-scale condition.
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First note that we have

Ki = KijKj = −τi . (C.15)

In general the derivative is of the form

Ki1...in = − 2

V Vi1...in +
2

V2
(Vi1...in−1Vin +symm.)+ · · ·+2

(−1)n(n− 1)!

Vn
Vi1 . . .Vin . (C.16)

For each term a successive insertion of eq. (C.13) yields precisely the correct power of V ,
since there are always as many products of derivatives of V in the numerator as there are

powers of V in the denominator. Thus, one is left with a combinatorial constant for each

term. We conclude that eq. (C.14) is satisfied.

Now we are in a position to show the following

Ki1...injK
i1 . . .Kin ∝ Kj . (C.17)

This can be seen via induction in n. For n = 1 the above can simply be checked using

eq. (C.13). Suppose the statement is true for (n − 1). Then, taking the derivative of

eq. (C.14) with respect to τj , we obtain

Ki1...injK
i1 . . .Kin = −Kji2...inK

i2 . . .Kin −Ki1ji3...inK
i1Ki3 . . .Kin − . . . (C.18)

Thus, since the statement is true for (n− 1), one infers that eq. (C.17) holds. Now we are

in a position to generalize this statement for eq. (C.11). Again the proof uses induction:

for n = 1 this can be directly deduced by taking derivatives of eq. (C.17). For arbitrary n

successive differentiation of eq. (C.17) yields eq. (C.11), if eq. (C.11) holds for (n− 1).

Now let us consider for example Z with Tijkl given by eq. (C.5), then iterative use of

eq. (C.11) yields

Z ∝ KiK
ijKj + const. , (C.19)

which again gives a constant due to the no-scale property. Similarly one can show that

Z is a constant for the choices in eq. (C.6), (C.7), (C.8). The cases of eq. (C.9) and

eq. (C.10) require a little more effort, but can be derived making use of properties, such as

(∂kK
ij)Kij = −KijKijk.

D Proof of non-Kähler structure of new α
′-correction

In this appendix we provide a proof that V(1) as given by eq. (4.21) cannot be captured

or induced by a correction to the two-derivative theory, that is to K and/or W . Suppose

V(1) could be described as a correction to the two-derivative theory, then possibly only via

a new contribution to the Kähler potential since W has to be holomorphic. In addition

we have to guarantee Kähler-invariance. Hence, the correction to the Kähler potential has

to be a function of G ≡ K + lnW + ln W̄ . The corrected Kähler potential Kc is then of

the form

Kc = K0 + (α′)3K(Q, T + T̄ ) , (D.1)

where K0 = −2 ln(V) is the tree-level Kähler potential. Here we chose for convenience

Q ≡ eG and T collectively denotes the Kähler moduli. Note that in eq. (D.1) we do not
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need to include the ξ̂-correction since it already is of order (α′)3. From now on we set

α′ = 1 for simplicity. We will assume that K is an analytic function. In order to reproduce

the scalar potential for the theory at O(|W |2) the lowest order coefficient of the series

expansion in Q has to vanish, such that

K(Q, T + T̄ ) = QK(1)(T + T̄ ) +O(Q2) . (D.2)

Including solely the Kähler moduli and ignoring again the ξ̂-correction the scalar potential

has the form35

V = eKc |W |2(Kij
c Kc,iKc,j − 3) . (D.3)

We now want to compute the terms in V which are quartic in |W |. In other words these

are all terms of order O(Q2). To this end we compute the following expansion

eKc |W |2= Q+Q2K(1) +O(Q3) . (D.4)

Furthermore, the Kähler metric reads

Kc,ij = K0,ij+Q(K0,ijK(1)+K0,iK0,jK(1)+K0,iK(1),j+K0,jK(1),i+K(1),ij)+O(Q2) . (D.5)

We find that the inverse Kähler metric is given by

Kij
c = Kij

0 −Q(Kij
0 K(1)+K

i
0K

j
0K(1)+K

i
0K

jk
0 K(1),k+K

j
0K

ik
0 K(1),k+K

ik
0 K

jl
0 K(1),ij)+O(Q2) .

(D.6)

Now we are in a position to determine the scalar potential at order Q2. We find that

VQ2 = −Q2(6K(1) + 4Ki
0K(1),i +Ki

0K
j
0K(1),ij) , (D.7)

where we made extensive use of the no-scale property of K0. Now, VQ2 has to match V(1)
as given by eq. (4.21). This yields

6K(1) + 4Ki
0K(1),i +Ki

0K
j
0K(1),ij = λ̂

∫
c2 ∧ J . (D.8)

We read this equation as an inhomogeneous linear partial differential equation for K(1). The

solution can always be decomposed into an arbitrary solution to the respective homogeneous

differential equation as well as a particular solution to the inhomogeneous one. A particular

solution to the inhomogeneous differential equation is given by

K(1) =
4

31
λ̂Πkt

k . (D.9)

To check that eq. (D.9) indeed solves eq. (D.8) we have to make use of the identity

τ i
∂tj

∂τ i
=

1

2
tj , (D.10)

35As in the previous appendix we do not need to distinguish between holomorphic and antiholomorphic

indices.
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which can be checked by using

K0,ij =
1

2

titj

V2
− 1

V
∂tj

∂τ i
(D.11)

as well as

Ki
0 = −τ i (D.12)

and finally it is also necessary to note that

K0,i = − t
i

V . (D.13)

So far we have found that the correction in eq. (D.9) indeed reproduces V(1) in eq. (4.21).

However, it demands also a new correction to the two-derivative kinetic term via the formula

of the Kähler metric in eq. (D.5). In particular this includes a term in the Lagrangian

e−1L ⊃ 4

31
λ̂
(
∂µT

i∂µT̄ j̄
)
∂T i∂T̄ j̄

[∫
c2 ∧ J

]
. (D.14)

However, this term cannot be obtained by KK-reducing the action in eq. (4.3). The reason

for this is, that the action in 10d does not include any terms with derivatives acting on

the Riemann-tensor and
∫
c2 ∧ J can only descend from contractions of Riemann tensors

in 10D. Note, that it is indeed possible to obtain first-derivatives of
∫
c2 ∧ J via partial

integration of terms such as
∫
c2 ∧ J �u, but it is not possible to obtain double-derivatives

acting on
∫
c2 ∧ J this way. Thus, we have found a contradiction.

One might wonder, whether it is possible to circumvent this argument by allowing for

a more general solution to eq. (D.8). This is not possible, since the general solution to the

homogeneous differential equation does not entail
∫
c2∧J and so could not cancel the term

∂T i∂T̄ j̄

∫
c2 ∧ J in the Kähler metric.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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