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Abstract. The complete structure of curvature squared terms is analyzed in the context of chirally extended
supergravity, with special emphasis on the gravitationally induced Fayet–Iliopoulos D–term. Coupling of
(chiral) matter is discussed in relation with a possible extension to U(1) supergravity of the equivalence
mechanism between R + αR2 and General Relativity coupled to a scalar.

Introduction

Higher derivative supergravity theories [1–5] have been
proposed as messengers for supersymmetry breaking
through gravitational effects [6]. More recently, the equiv-
alence of R+R2 theories to gravity coupled to a scalar [7],
in its supersymmetric version [8], has been advocated to
provide a supersymmetry breaking device as well [9–11].
All these scenarios are based on traditional supergravity.
On the other hand, in the presence of a chiral abelian
gauge structure, known as U(1) supergravity [12,13] a su-
pergravity induced D–term appears naturally [14,15].

In the present paper, we describe explicitly the com-
plete structure of curvature squared terms in U(1) super-
gravity, and discuss possibilities to extend the scheme of
[9] to this case.

In the first chapter we review shortly General Rela-
tivity [16] and Whitt’s mechanism [7]. After an outline of
U(1) superspace and the construction of the pure U(1)
supergravity action in Chapter 2 we turn to the complete
description of curvature squared actions for U(1) super-
gravity. Our description is based on methods of super-
space geometry as reviewed in [17]. The paper closes with
a discussion of matter coupling to U(1) supergravity with
curvature squared terms.

General Relativity
with curvature squared terms

It is known that pure General Relativity is a nonrenor-
malizable theory [18,19]. Adding quadratic terms in the
curvature tensor allows to construct renormalizable ac-
tions [20]. The most general action which contains fourth
order derivatives can be written as

S = γ

∫
d4x

√−g (R + α′R2 + β′RmnRmn

a Unité Propre de Recherche 7061

+cRmnpqRmnpq) , (1)

where γ is related to the gravitational constant, resp. the
Planck mass,

γ =
−1

16πGN
= −1

2
M2

P , (2)

whereas γα′, γβ′ and γc are dimensionless. Taking into
account the Gauss–Bonnet combination

SGB =
∫
d4x

√−g (R2 − 4RmnRmn

+RmnpqRmnpq) , (3)

which, as a topological invariant, does not depend on the
metric and, as a consequence, does not contribute to the
equations of motion, this action may be written as

S ′ = S − cγSGB

= γ

∫
d4x

√−g(R + αR2 + βRmnRmn

)
, (4)

with constants α = α′ − c, β = β′ + 4c. This theory de-
scribes [16,21] the graviton together with a massive spin
two “poltergeist” and a massive physical scalar field. For
β = 0 the poltergeist decouples [8] and the action

SR+R2 = γ

∫
d4x

√−g(R + αR2) , (5)

which, however, is no longer renormalizable [20], describes
a graviton coupled to a massive scalar field [7]. Following
[7], one starts from the action

SR+φ = γ

∫
d4x

√−g(R + 2αφR − αφ2) . (6)

On the one hand, varying with respect to φ reproduces the
action (5). On the other hand, performing a Weyl rescaling

gmn = (1 + 2αφ)−1
g′

mn , (7)
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yields

SR+φ = γ

∫
d4x

√
−g′ (R′ + 6α2(1 + 2αφ)−2

×∂′mφ∂′
mφ− α(1 + 2αφ)−2φ2) , (8)

where the presence of the massive scalar field is manifest.
It is in this sense that curvature squared gravity is said
to be equivalent to General Relativity coupled to a scalar
field [7].

U(1) superspace and supergravity

Supergravity is described in terms of the vielbein field
em

a(x) and the Rarita–Schwinger field ψm
α(x) together

with a set of auxiliary fields1 M,M and ba, i.e a complex
scalar and a vector. The latter are necessary to close the
algebra of local supersymmetry transformations. In con-
ventional supergravity which is given as the supersymmet-
ric generalization of the curvature scalar they describe non
propagating degrees of freedom.

On the other hand, in supersymmetric versions of the-
ories with curvature squared terms those fields acquire
derivatives and become propagating fields as well.

In the present paper we will extend this scenario to the
case of U(1) supergravity, describing an enlarged multiplet
with additional components Am, λα and D. This theory
has an additional gauged chiral U(1) symmetry with Am

as gauge potential, λα the gaugino superpartner and D
the auxiliary field. One of its interesting features is that
it allows the construction of a particular supersymmetric
Fayet–Iliopoulos [22] term in the context of supergravity
[15].

The superspace formulation of U(1) supergravity [12,
13] is a generalization of that of conventional supergravity
[23]: in addition to the Lorentz group in the superspace
structure group it contains a chiral U(1). In order to be
more explicit we review shortly the salient features of U(1)
superspace geometry, following closely [24,17]. The basic
objects are the vielbein EA, the Lorentz connection φB

A

and the U(1) connection A. They are all one–forms in
superspace:

EA = dzMEM
A , (9)

φB
A = dzMφMB

A , (10)

A = dzMAM . (11)

Correspondingly, one defines the torsion TA, the Lorentz
curvature RB

A, and the U(1) fieldstrength F :

TA = dEA + EBφB
A + ω(EA)EAA , (12)

RB
A = dφB

A + φB
CφC

A , (13)
F = dA , (14)

1 This set of auxiliary fields corresponds to the so called
“old–minimal” formulation. Other choices are possible, as for
instance “new–minimal” and “non–minimal” formulations, but
they will not be considered here

which are two–forms in superspace. The chiral weights of
the vielbein are defined to be

ω(Ea) = 0 , ω(Eα) = 1 , ω(Eα̇) = −1 . (15)

The basic covariant superfields which completely describe
torsion, curvature and U(1) fieldstrength are

R , R† , Ga , Wαβγ
^

, W
α̇β̇γ̇
^ , and Xα , X α̇ .

(16)
Component fields are defined as lowest components of su-
perfields in the usual way

Em
a| = em

a(x) , Em
α| =

1
2
ψm

α(x) , Am| = Am(x) ,

(17)
for the gauge fields. In particular the metric tensor is de-
fined as gmn = em

aen
bηab, with ηab = diag(−,+,+,+).

Moreover one has the usual definitions

R| = −M

6
, R†| = −M

6
, Ga| = −ba

3
, (18)

in the gravity sector and

Xα| = −iλα , X
α̇| = iλ̄α̇ , DαXα| = −2D , (19)

in the U(1) sector. We also define a gauge potential2 Ãm

which is related to Am by

Ãm ≡ Am +
i

2
bm , (20)

and which will be used as the basic component field from
now on. Correspondingly, we define the U(1) covariant
derivative D̃mX

D̃mX = ∂mX+ω(X)ÃmX = DmX+
i

2
w(X)bmX . (21)

The supergravity action is given in compact form as the
volume element of U(1) superspace, i.e3

S1 = −3
∫
E . (22)

The corresponding component field expression is most con-
veniently extracted from the generic lagrangian [24]:

e−1L1 = −1
4
D2r| − r|(M + ψ̄mσ̄

mnψ̄n)

+
i

2
(
ψ̄mα̇σ̄

mα̇α
)Dαr| + hc , (23)

with the choice
r = −3R . (24)

2 This definition takes into account the constraint: F β̇
α =

−3Gβ̇
α which is used in [24]

3 Action and lagrangian are related by the relation: S =∫
d4xL
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Using the explicit component field form of DαR|, D2R|,
one obtains4

e−1L1 = −M2
P

2
R +

1
2
εmnpq

(
ψ̄mσ̄nD̃pψq − ψmσnD̃pψ̄q

)

−M2
P

3
(
MM − baba

)

+
1
2
(
ψ̄mσ̄

mλ− ψmσ
mλ̄

)
MP + DM2

P . (25)

Clearly, this lagrangian exhibits the usual Einstein term
together with a kinetic term for the gravitino and the aux-
iliary field terms forM ,M and ba as in usual supergravity.
One of the new features due to the chiral U(1) is the ap-
pearance of Ãm in the covariant derivative of the gravitino
field

D̃mψn
α = ∂mψn

α + ψn
βωmβ

α + ψn
αÃm . (26)

Moreover there is a term linear in D, which clearly shows
that this theory in itself cannot be complete. It is com-
pleted in adding a kinetic term for the U(1) gauge mul-
tiplet. In this case the term linear in D can play the role
of a Fayet–Iliopoulos term [15]. The superfield action is
defined as

SX2 =
1
8

∫
E

R
XαXα +

1
8

∫
E

R†X α̇X
α̇
. (27)

Taking r = 1
4X

αXα in the generic construction (23), one
derives the component field expression

e−1LX2 =
1
2
D2 + F̃mnF̃mn

− i

2
λσmD̃mλ̄

− i

2
λ̄σ̄mD̃mλ

+other fermionic terms . (28)

These two lagrangians are separately invariant under the
following supersymmetry transformations (as derived from
superspace geometry in the usual way)

δξem
a = i(ξσaψ̄m + ξ̄σ̄aψm)M−1

P , (29)

δξψm
α =

(
2D̃mξ

α − iξαbm

− i

3
(ξσaσ̄m)αba +

i

3
(ξ̄σ̄m)αM

)
MP , (30)

δξψ̄mα̇ =
(
2D̃mξ̄α̇ + iξ̄α̇bm

+
i

3
(ξ̄σ̄aσm)α̇ba +

i

3
(ξσm)α̇M

)
MP , (31)

δξM = −2i(ξλ)
(
+4(ξσmnD̃mψn)

4 In this part, one introduces the Planck mass in order to
see how it appears in the lagrangian and also in the super-
symmetry transformations. In particular, one can notice that
a cosmological constant appears with M4

P . In the following, we
will take MP ≡ 1

+i(ψmξ)bm + i(ψ̄mσ̄
mξ)M

)
M−1

P , (32)

δξM = 2i(ξ̄λ̄)
(
+4(ξ̄σ̄mnD̃mψ̄n)

−i(ψ̄mξ̄)bm − i(ξ̄σ̄mψm)M
)
M−1

P , (33)

δξba =
(

1
2
(ξσaσ̄

mnD̃mψ̄n) +
1
2
(ξσaσ̄

mnψ̄n)bm

)
M−1

P(
−3

2
(ξσmnσaD̃mψ̄n) − 3

2
(ξσmnψ̄n)bm

)
M−1

P(
− i

2
ea

m(ξσdψ̄m)bd +
i

2
ea

m(ξψm)M
)
M−1

P

+i(ξσaλ̄) + h.c , (34)

δξD = (ξ̄σ̄mD̃mλ) − (ξσmD̃mλ̄) − i

2
(ξσmλ̄+ ξ̄σ̄mλ)bm

+
1
2
(ψmσ

klσmξ̄ − ψ̄mσ̄
klσ̄mξ)

×(2iF̃klM
−1
P + iψkσlλ̄M

−2
P + iψ̄kσ̄lλM

−2
P )

+
i

2
(ψ̄mσ̄

mξ + ψmσ
mξ̄)DM−1

P , (35)

δξÃm =
1
2
(λ̄σmξ + λσ̄mξ̄) , (36)

δξλ
α = (ξσnm)α(2iF̃nm + ψnσmλ̄M

−1
P

+ψ̄nσ̄mλM
−1
P ) + iξαD , (37)

δξλ̄α̇ = (ξ̄σ̄nm)α̇(2iF̃nm + ψnσmλ̄M
−1
P

+ψ̄nσ̄mλM
−1
P ) − iξ̄α̇D . (38)

Here the U(1) fieldstrength

F̃kl = ∂kÃl − ∂lÃk , (39)

and the covariant derivatives

D̃mλ
α = ∂mλ

α + λβωmβ
α + λαÃm , (40)

D̃mλ̄α̇ = ∂mλ̄α̇ + λ̄β̇ωm
β̇
α̇ − λ̄α̇Ãm . (41)

as well as

D̃mξ
α = ∂mξ

α + ξβωmβ
α + ξαÃm , (42)

D̃mξ̄α̇ = ∂mξ̄α̇ + ξ̄β̇ωm
β̇
α̇ − ξ̄α̇Ãm , (43)

occur.
Observe that the sum of L1 and LX2 , which might be

referred to as pure U(1) supergravity, gives rise to a cos-
mological constant after diagonalization in the field D, as
discussed in [15,14,25]. In our case this action provides
the starting point for the discussion of curvature squared
terms and diagonalization should only be performed af-
terwards.

Curvature squared terms
and U(1) supergravity

As is well known [1] curvature squared terms in tradi-
tional supergravity are identified in the highest superfield



184 R. Le Dû: Higher-derivative supergravity in U(1) superspace

components of the combinations WαβγWαβγ , GaGa and
RR† of basic supergravity superfields. In the case of U(1)
supergravity a number of modifications arise due to the
presence of the U(1) sector in the geometry, as explained
in detail in [17]. In order to fix our notations we shall
consider here the three superspace actions5

SW 2 =
∫

E

2R

(
W

αβγ
^Wαβγ

^

)
+ h.c , (44)

SG2+2RR† =
∫
E

(
GaGa + 2RR†) , (45)

SRR† = −3
∫
E

(
36RR†) . (46)

Complete component field expressions can be evaluated
in using the generic component field action (23) with the
identifications, respectively6,

rW 2 = W
αβγ
^Wαβγ

^
, (47)

rG2+2RR† = −1
8
(D̄2 − 8R

)(
GaGa + 2RR†) , (48)

rRR† =
3
8
(D̄2 − 8R

)(
36RR†) , (49)

for the generic chiral superfield r.
In what follows we shall only discuss the purely bosonic

contributions of these actions. Following [17] one obtains

e−1LW 2

=
1
8
Wdc,baWdc,ba +

1
3
(FmnFmn) , (50)

e−1LG2+2RR†

= −1
8
R̃baR̃ba +

1
96

R2 − 1
6
D2

−1
6

(
FmnFmn + 2F̃mnF̃mn

)
, (51)

e−1LRR†

= −3
4
(R − 2D)2 +

(
bmbm +

1
2
MM

)

×R − 2
(
bmbm + 2MM

)
D

+3D̃mMD̃mM − 3
(
ea

mD̃mb
a
)2

+ibm
(
MD̃mM −MD̃mM

)

−1
3
(
(MM)2 +MMbaba + (baba)2

)
, (52)

with the conventions

Fmn=F̃mn +
i

2
Bmn , (53)

Bmn=∂mbn − ∂nbm , (54)
5 The combination GaGa + 2RR† which appears in the sec-

ond action is particularly convenient for discussion of the su-
persymmetric Gauss–Bonnet invariant

6 Component formulation of a lagrangian
∫

EX, where X is
a real and U(1) invariant superfield, is obtained by using the
generic lagrangian (23), with r = − 1

8

(
D̄2 − 8R

)
X,

(
D̄2 − 8R

)
is called the chiral projector

and where the Weyl tensor Wdc,ba, the Ricci tensor R̃ca

and the curvature scalar R are identified as usual in the
decomposition of the Riemann tensor Rdc,ba:

Rdc,ba

= Wdc,ba +
1
2

(
ηdbR̃ca − ηdaR̃cb − ηcbR̃da + ηcaR̃db

)

+
1
12

(ηdbηca − ηdaηcb)R . (55)

With the first two lagrangians (50) and (51), one can
obtain the supersymmetric version of the pure Gauss–
Bonnet invariant (3) plus terms involving D2 and
F̃mnF̃mn. These new contributions are due to the addi-
tional U(1) sector, they can be cancelled by adding LX2 .
As a result, the pure super–Gauss–Bonnet combination is:

LGB=8LW 2 + 16LG2+2RR† +
16
3

LX2 . (56)

In terms of component fields this reproduces exactly the
combination of equation (3), i.e:

e−1LGB=Wdc,baWdc,ba − 2R̃baR̃ba +
1
6
R2 . (57)

In order to discuss the most general form of U(1) super-
gravity with curvature squared terms we shall consider the
combination7

Ltot=a1L1 + a2LX2 + a3LRR†

+aGLG2+2RR† + aW LW 2 (58)

with L1 and LX2 defined in the previous section. Inspec-
tion of the individual contributions shows that diagonal-
ization in the auxiliary field D of the U(1) sector will in-
troduce additional curvature scalar squared terms. More
precisely, defining

D̂ ≡ D +
c

2
(
a1 + 3a3R − 4a3MM − 2a3b

mbm
)
, (59)

with
c =

(
−3a3 +

a2

2
− aG

6

)−1
, (60)

gives rises to the component field lagrangian

e−1Ltot=−a1

2
(1 + 3a3c)R − a1

3
(1 − 6a3c)MM

+
a1

3
(1 + 3a3c)baba

+
aW

8
Wdc,baWdc,ba − aG

8
R̃baR̃ba

+
(

−3a3

4
(1 + 3a3c) +

aG

96

)
R2

+
(
a2 − aG

3

)
F̃mnF̃mn +

1
6
(2aW − aG)FmnFmn

+3a3D̃mMD̃mM + c−1D̂2

−3a3

(
ea

mD̃mb
a
)2

7 ai are real constants
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+ia3b
m

(
MD̃mM −MD̃mM

)

+
a3

2
(1 + 12a3c)RMM

+a3(1 + 3a3c)Rbaba − a2
1c

4
−a3

3
(1 + 12a3c)

(
(MM)2 +MMbaba

)

−a3

3
(1 + 3a3c)(baba)2 . (61)

The Lorentz and U(1) covariant derivatives appearing here
are defined as

D̃mM=∂mM + 2ÃmM , (62)

D̃mb
a=∂mb

a + bcωmc
a , (63)

according to the chiral weights:

ω(M) = 2 , ω(ba) = 0 . (64)

This is the (bosonic part) of the component field lagrangian
which is relevant for the discussion of curvature squared
terms in U(1) supergravity. As a first observation consider
the special case

aG = 2aW , (65)

which adjusts the relative factor between the squares of
the Weyl and the Ricci tensors to that occurring in the
Gauss–Bonnet combination. In this case the general action
is specified to

e−1Ltot=−a1

2
(1 + 3a3c)R

−a1

3
(1 − 6a3c)MM +

a1

3
(1 + 3a3c)baba

+
aW

8

(
Wdc,baWdc,ba − 2R̃baR̃ba +

1
6
R2

)

−3a3

4
(1 + 3a3c)R2 + 2c−1(1 + 3a3c)F̃mnF̃mn

+3a3D̃mMD̃mM + c−1D̂2 − 3a3

(
ea

mD̃mb
a
)2

+ia3b
m

(
MD̃mM −MD̃mM

)

−a3

3
(1 + 12a3c)

(
(MM)2 +MMbaba

)

−a3

3
(1 + 3a3c)(baba)2

+
a3

2
(1 + 12a3c)RMM

+a3(1 + 3a3c)Rbaba − a2
1c

4
. (66)

This action is the U(1) supergravity analogue of the case
β = 0 discussed for the non–supersymmetric case (5).

As an aside, note that in order to obtain the Gauss–
Bonnet combination of curvature squared terms one has
to cancel the additional R2 term. This can be done by
choosing either a3 = 0 or (1 + 3a3c) = 0. In the first case,
the lagrangian is reduced to

e−1Ltot=−a1

2
R − a1

3
MM +

a1

3
baba

+2c−1F̃mnF̃mn + c−1D̂2 − a2
1c

4

+
aW

8

(
Wdc,baWdc,ba − 2R̃baR̃ba +

1
6
R2

)
,(67)

and in the second case one obtains

e−1Ltot=−a1MM − 3a3

2
MMR + 3a3D̃mMD̃mM

−3a3D̂2 − 3a3

(
ea

mD̃mb
a
)2

+ia3b
m

(
MD̃mM −MD̃mM

)

+
a2
1

12a3
+ a3

(
(MM)2 +MMbaba

)

+
aW

8

(
Wdc,baWdc,ba − 2R̃baR̃ba +

1
6
R2

)
.

(68)

Clearly, the first case describes a generalization of a su-
pergravity action with a correctly normalized (for a1 = 1)
curvature scalar term.

The interpretation of the second case is more subtle in
that a Weyl rescaling in MM should be performed [6,9]
to arrive at a correctly normalized Einstein term.

Finally, the coupling of curvature squared term to tra-
ditional supergravity can be recovered from equation (61)
in simply switching off the U(1) sector, i.e taking a2 = 0,
Ãm = 0 and substituting D̂ ≡ c

2 (a1 + 3a3R−
4a3MM − 2a3b

mbm), which eliminates the c–dependence
in (61).

Coupling to matter

As chirally extended U(1) supergravity provides a natu-
ral framework for a gravity coupled Fayet–Iliopoulos term
[14,15], it is interesting to investigate couplings to chiral
matter in this context. This discussion serves at the same
time as a prerequisite for the generalization of the Whitt
mechanism, as alluded to in the first section, to the case
of U(1) supergravity.

To begin with, we consider a single chiral superfield Φ
of U(1) weight ω(Φ) = ω, and, correspondingly Φ̄ of U(1)
weight ω(Φ̄) = −ω. Evaluating the supersymmetric action

S=a1S1 + a2SX2 + a4

∫
Ef(Φ, Φ̄)

+a5

(∫
E

2R
Φx +

∫
E

2R† Φ̄
x

)
, (69)

where x is given in term of the chiral weight: x = ω(R)
ω(Φ) for

ω(Φ) 6= 0. In terms of component fields, one finds, for the
purely bosonic contribution,

e−1L=
(
a1 + a4f(A,A)

)(−1
2
R − 1

3
MM +

1
3
bmbm

)

+
(
a1 + a4f(A,A) − 3

4
a4ω

(
fAA+ fAA

))
D
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+
a2

2
D2 + a2F̃

mnF̃mn

+ia4b
m

(
fAD̃mA− fAD̃mA

)

+3a4fAA

(
D̃mAD̃mA− FF

)

+a4
(
fAMF + fAMF

)
+a5x

(
FA(x−1) + FA

(x−1)
)
, (70)

with the definitions

Φ| = A , D2Φ| = −4F . (71)

Clearly, this provides a generalization of the Fayet–
Iliopoulos term to the case of matter–coupled chirally ex-
tended supergravity, and possible applications to symme-
try breaking mechanisms deserve further study.

On the other hand, this action is the starting point for
the generalization of the Whitt’s mechanism as well. In
order to establish the relation between curvature squared
U(1) supergravity with its matter coupled counterpart,
linear in the curvature scalar, we shall start from (66)
with the particular choice aG = aW = 0, i.e

L = a1L1 + a2LX2 + a3LRR† , (72)

which is a supersymmetric version of (5). As to the super-
symmetric analogue of (6) we consider

S=a1S1 + a2SX2 + a3

(
−3

∫
E

(
ΦΦ̄+ Λ+ Λ̄

)

+
∫

E

2R
ΛΦ+

∫
E

2R† Λ̄Φ̄
)
, (73)

which has the same appearance as the corresponding ac-
tion in traditional supergravity [8]. However, in the present
context a number of new features appear. In particular,
for reasons of consistency with the U(1) gauge structure,
the U(1) weights of the chiral superfields Φ and Λ are
determined to be:

ω(Φ) = 2 , ω(Λ) = 0 . (74)

Evaluation of the purely bosonic part of this action in
terms of component fields gives

e−1L=
(
a1 + a3

(
AA+B +B

))

×
(

−1
2
R − 1

3
MM +

1
3
bmbm

)

+
(
a1 + a3

(
1 − 3

2
ω(Φ)

)
AA+ a3

(
B +B

))
D

+
a2

2
D2 + a2F̃

mnF̃mn

+ia3b
m

(
AD̃mA−AD̃mA+ D̃mB − D̃mB

)

+3a3D̃mAD̃mA

+a3
(−3FF +AMF +AMF + FB + FB

)
+a3

(
G(M +A) +G(M +A)

−ABM −ABM
)
, (75)

with the definitions:

Λ|=B , D2Λ| = −4G . (76)

Taking into account the equations of motion8

A=−M , (77)

F=AM +
1
2
R − 1

3
bmbm

+
1
3
MM + iea

mD̃mb
a − D , (78)

reproduces exactly the lagrangian (66) of curvature
squared U(1) supergravity.

On the other hand, performing appropriately a Weyl
rescaling in the supersymmetric context [23,9], this action
will describe supergravity, with a properly normalized cur-
vature scalar, coupled to two chiral matter multiplets in
the presence of a Fayet–Iliopoulos term.

In conclusion, we expect that this mechanism might
open new possibilities for scenarios of gravity induced su-
persymmetry breaking in the presence of curvature
squared terms [9].
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