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1 Introduction and summary

Compactifications of Type II string theories and M-theory on Calabi-Yau manifolds are

interesting from various interrelated perspectives reaching from phenomenologically moti-

vated model building to purely mathematical studies of quantum geometry. In particular,
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reductions on Calabi-Yau threefolds have been studied over several decades leading to in-

triguing discoveries such as mirror symmetry. Compactifications of Type IIA and Type

IIB string theory on Calabi-Yau threefolds result in four-dimensional effective theories that

admitN = 2 supersymmetry [57], or sixteen preserved four-dimensional supercharges. Sim-

ilarly the compactifications of M-theory on Calabi-Yau threefolds lead to five-dimensional

supersymmetric theories that preserve sixteen supercharges or five-dimensional N = 2.

Four-dimensional N = 1 supersymmetric effective theories are obtained from Calabi-Yau

threefold compactifications including D-branes and orientifold planes [55, 56]. So far, how-

ever, the effective actions arising in Calabi-Yau threefold compactifications are only fully

understood at the two-derivative level. In this work we aim to go beyond this and system-

atically include terms up to four derivatives into the effective action.

Our starting point for the compactifications are the ten- or eleven-dimensional low

energy effective action of Type II string theory or M-theory. At the two-derivative level

these are the well-known ten-dimensional Type IIA and Type IIB supergravity actions

with N = 2 supersymmetry, and the unique eleven-dimensional supergravity theory with

N = 1 supersymmetry. The Type II supergravity actions are modified by two types of

stringy. First, there are α′-corrections imprinted in higher-derivative terms. Second, the

worldsheet genus expansion in gs leading to higher dimensional operators in the effective

theory depending on higher orders of the dilaton. Using perturbative string theory these

corrections can be computed by explicitly evaluation string scattering amplitudes. While

this can be notoriously difficult, various corrections are known in the literature. For ex-

ample, it is well established that the R4-terms in Type II theories at order α′3 are the

complete set of purely gravitational eight-derivative terms [16, 36]. Additionally, there are

several known higher-derivative terms in ten dimensions involving the NS-NS two-form B2

and dilaton [2, 3, 12, 38–41, 52–54]. It was conjectured in [12] that the B2-completion of

the R4-terms can almost be completely captured by introducing a connection with torsion,

where H3 = dB2 acquires the role of the torsion. A strategy to extract corrections to the

eleven-dimensional supergravity action is to up-lift the Type IIA corrections computed by

string amplitudes. From the known Type IIA terms one can thus infer R4-terms [42, 44]

and terms involving the M-theory three-form C3 [12, 15]. The supersymmetry completions

of such terms have been studied in [7–9]. It is eminent that the only expansion parameter

in eleven dimensions is the eleven-dimensional Planck length ℓM .

Obtaining effective actions in four and five dimensions taking into account higher-

derivative corrections in ten or eleven dimensions is an important yet challenging task.1

Since the first corrections at order α′3 involve terms quartic in the Riemann tensor, the

derivation of the effective couplings of the geometric moduli constitutes a computationally

challenging task. Furthermore, although the R4-couplings in ten and eleven dimensions

are well established, less is known about the completion of the action at eight-derivative

level for the full NS-NS and R-R sector. Important partial results on the R-R sector can be

found, for example, in [64], but it is desirable to obtain a complete action via, for example,

1We extensively use the packages xAct, xTensor [4–6] for tensor computer algebra in Mathematica to

perform our computations.
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supersymmetric completion or comparison with scattering amplitudes. Another important

challenge is the construction of general higher-derivative supergravity theories in various

dimensions independent of their string theory origins. While many standard formulations

of supergravity at two derivatives are well established, there exist only partial results

beyond the two-derivative truncation. In the considered string compactifications a general

higher-derivative supergravity action would not only allow us to check consistency with

the expected preserved supersymmetry, but also suggest a clear systematics to determine

physical couplings in terms of geometric data of the compactification space.

Higher-derivative corrections in string theory and M-theory have led to interesting

modifications of the low energy dynamics and phenomenological models obtained in com-

pactifications. In the following we will only give a very incomplete list of past applica-

tions for which higher-derivative corrections play a prominent role. It is well known that

higher-derivative corrections give rise to corrections of the Kähler potential of N = 2

compactifications involving characteristic classes of the compactification Calabi-Yau three-

fold [27, 43, 59]. It was later argued in [29, 45] that some of these corrections survive the

truncation to N = 1 supergravity in compactifications including fluxes and an orientifold

projection. Although obtaining a general higher-derivative theory in five dimensions is not

yet available, an off-shell completion of R2-terms in five-dimensional N = 2 supergravity

and its on shell version for pure supergravity is known [26, 70]. These results were used

to study the effect of higher-derivative corrections on five-dimensional black holes as re-

viewed, for example, in [72]. Four-derivative N = 1 and N = 2 supergravity theories in

four spacetime dimensions are not yet completely understood. Recently, progress towards

classifying four-derivative superspace operators in the context of N = 1 supergravity was

made in [47]. This interest arose from the observation that higher-derivative terms in

Type IIB orientifolds might stabilize Kähler moduli [48, 79]. Let us emphasize that a first

complete treatment of the kinetic terms for the Kähler deformations originating from R4-

terms in eleven dimensions was presented in [10, 11, 19], where M-theory was compactified

to three dimensions on a Calabi-Yau fourfold.

Our goal in this work is to study various compactifications of M-theory and Type II

string theories on Calabi-Yau threefolds taking into account the known eight-derivative

terms. We review the considered known and conjectured terms in the ten and eleven-

dimensional action contributing at order α′3. This will allow us to solve the equations of

motion determining background solutions possessing a compact, six-dimensional manifold

which is topologically a Calabi-Yau threefold. We find that the modified solution in Type

IIA involves a non-trivial background of the dilaton given by the Euler density in six

dimensions on the lowest order Calabi-Yau geometry. Furthermore, the metric receives a

correction leading to a deviation from Ricci flatness, which, however, does not alter the

cohomology class of the curvature two-form. We then briefly comment on the relation

between M-theory and Type IIA at order α′3 and explain why adding a certain term in

eleven dimensions is necessary.

The main part of this work is devoted to a detailed discussion of the dimensional re-

duction of M-theory and Type II on Y3 including infinitesimal deformations of the Kähler

structure. In the M-theory reduction we also present results on the five-dimensional two-
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and four-derivative effective action also including vectors arsing from the M-theory three-

form, while in Type II theories we comment on including the dilaton and modes from

the NS-NS two-from. We first derive the five-dimensional two-derivative effective action

and show that eleven-dimensional eight-derivative terms only lead to a modification of the

scalar field corresponding to the overall classical volume of Y3 in accordance with [43].

Furthermore, we then derive the five-dimensional four-derivative terms originating from

the eleven-dimensional eight-derivative terms. Increasing computational complexity forces

us to restrict to terms quadratic in the fluctuation. The main couplings at four-derivative

level are found to be divisor integrals of the second Chern class of Y3 and two new ten-

sorial structures Zīkl̄, X (0)

aī , see (3.27) and (3.40), involving one and two Riemann tensors

on Y3. However, the physical significance of the latter two remains unclear, since there

might exist a field redefinition ambiguity in the description of higher-derivative theories.

We also preform the dimensional reduction of Type II ten-dimensional effective actions

with a focus the deformations of the Kähler structure and scalars ba arising from the zero

mode expansion of the NS-NS two-form. The two-derivative four-dimensional effective ac-

tion for the Kähler structure deformations contains the well known shift with the Euler

characteristic of Y3 [43]. In Type IIA reductions we then use the fact that the Kähler

structure deformations and the scalars from the NS-NS two-form combine into the com-

plexified Kähler moduli in N = 2 vector multiplets. In order to obtain their kinetic terms

from a N = 2 prepotential [27], we find that a string tree-level structure for the kinetic

terms of the scalars ba is missing. This forces us to add a minimal novel set of H3-terms

in ten dimensions. In other words, we use four-dimensional supersymmetry constraints to

suggest missing higher-derivative terms in the ten-dimensional action.

In the last part of this work we discuss the dimensional reduction when considering

only a single Kähler modulus u = logV , where V is the volume of Y3. In this case all

computations simplify significantly and can be preformed exactly without restricting to

quadratic order in the fluctuations. We derive all four-derivative couplings stemming from

the R4-terms in M-theory and both Type II theories. Furthermore, we discuss the pos-

sibility of higher-derivative field redefinitions. This allows us to show that there exists a

field basis in which the four-derivative effective actions can be chosen to only consist of

the Gauss-Bonnet term and a four-derivative interaction (∂u)4. We also comment on the

orientifold truncation of this N = 2 result to a minimal supersymmetric setting in four

dimensions. After truncation we aim to make contact to the proposal of [48] to stabilize

moduli using higher-derivative terms. Our reduction allows us to determine the exact co-

efficient of the (∂u)4-term. However, our findings do not indicate which supersymmetric

completion of this term has to be chosen. To clarify the phenomenological relevance of

higher-derivative terms for moduli stabilization a direct derivation of the scalar potential

appears to be crucial.

2 Higher derivatives and circle reduction

The purpose of this section is to introduce the bosonic low-energy effective actions of Type

IIA string theory and M-theory including known and conjectured eight-derivative terms.
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Furthermore, we comment on the duality of the Type IIA and M-theory low-energy effective

actions once eight-derivative terms are taken into account. As already mentioned in the

introduction many authors contributed significantly to the determination of the higher-

derivative corrections to these low-energy effective actions in the past. The most recent

results on these corrections were obtained in [12]. We will therefore follow this reference

closely, but also suggest new terms that seem to be required by supersymmetry arguments.

2.1 Ten-dimensional Type IIA supergravity action at eight derivatives

In the following we will use a tilde to denote a field or operator in ten dimensions and capital

letters at the beginning of the alphabet for tensor indices in ten dimensions. The bosonic

field content of ten-dimensional Type IIA supergravity is given by the ten-dimensional

metric g̃AB, the dilaton in ten dimensions φ̃ and the two-form B̃2 all of which descend as

massless modes from the NS-NS sector of the RNS superstring. These terms are augmented

by further fields from the R-R sector which however do not play a role in the following.

We will therefore restrict ourselves completely to the NS-NS fields.

The part of the N = 2 low energy effective action of the Type IIA superstring we are

considering takes the schematic form

SIIA = Sclass
IIA + αStree

R̃4 + αSloop

R̃4
+ αSH̃2 , (2.1)

where we already introduced the expansion parameter

α =
α′3

3 · 211 . (2.2)

The classical action at lowest order in the parameter α has for the NS-NS fields the form

2κ210S
class
IIA =

∫

M10

e−2φ̃

(

R̃ ∗̃ 1 + 4dφ̃ ∧ ∗̃ dφ̃− 1

2
H̃3 ∧ ∗̃ H̃3

)

, (2.3)

where M10 is the spacetime manifold, R̃ is the Ricci scalar in ten spacetime dimensions

and H̃3 = dB̃2 is the field strength of the NS-NS two-form. The gravitational coupling in

ten dimensions, denoted by κ10 is related to the Regge slope α′ by the relation

2κ210 = (2π)7α′4. (2.4)

At eight derivatives the action gets supplemented by additional terms quartic in the Rie-

mann tensor at both tree-level and one-loop in the string coupling gs. These pieces of the

action take the schematic form

2κ210S
tree
R̃4 = ζ(3)

∫

M10

e−2φ̃

(

t̃8t̃8 +
1

8
ǫ10ǫ10

)

R̃4 ∗̃ 1 , (2.5)

2κ210S
loop

R̃4
=

π2

3

∫

M10

(

t̃8t̃8 −
1

8
ǫ10ǫ10

)

R̃4 ∗̃ 1. (2.6)

For the detailed form of these terms and the definition of the tensor t8 in ten and eleven

dimensions we refer the reader to appendix B. Note that the relative sign flip of the one-

loop contribution compared to the tree-level piece is characteristic for Type IIA and does
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not appear in Type IIB. Additionally, there is an eight-derivative coupling involving the

NS-NS two-form B̃2 and four Riemann tensors, which will, however, not play a role in

the Type IIA discussion. Its M-theory counterpart will be taken into account when the

four-derivative couplings in five dimensions are computed.

It is furthermore conjectured in [12] that the completion of the eight-derivative terms

with respect to the NS-NS two-form is almost completely captured by introducing a con-

nection with torsion. It is then claimed that higher-derivative terms involving B̃2 can be

obtained from the R̃4 terms by computing the latter with respect to the aforementioned

torsionful connection. We will not collect all the structures emerging from this procedure

but outline the strategy how to get the eight-derivative terms we need for our discussion.

Both the tree-level and one-loop contributions to the R̃4 action can be expressed in

terms of the two ‘superinvariants’

J0 =

(

t̃8t̃8 +
1

8
ǫ10ǫ10

)

R̃4 , (2.7)

J1 = t̃8t̃8R̃
4 − 1

4
t̃8ǫ10B̃2R̃

4 (2.8)

such that the R̃4-terms read

2κ210S
tree
R̃4 = ζ(3)

∫

M10

e−2φ̃ J0∗̃1 (2.9)

2κ210S
loop

R̃4
=

π2

3

∫

M10

(2J1 − J0) ∗̃ 1. (2.10)

The last term in (2.8) corresponds to the eight-derivative coupling involving B̃2 that we do

not consider in the Type IIA context and is therefore also ignore in (2.10). The B̃2 field

completion at eight derivatives is according to [12] then given by the replacements

J0 → J0(Ω+) + ∆J0(Ω+, H̃3) =

=

(

t̃8t̃8 +
1

8
ǫ10ǫ10

)

R̃4(Ω+) +
1

3
ǫ10ǫ10H̃

2
3 R̃

3(Ω+) (2.11)

J1 → J1(Ω+) = t̃8t̃8R̃
4(Ω+)−

1

8
ǫ10 t̃8 B̃2

(

R̃4(Ω+) + R̃4(Ω−)
)

, (2.12)

where the Riemann tensor with respect to the connection with torsion Ω± is given in

components by

R̃(Ω±)
B1B2

A1A2
= R̃ B1B2

A1A2
± ∇̃[A1

H̃3A2]
B1B2 +

1

2
H̃3[A1

B1B3H̃3A2]B3

B2 . (2.13)

For the detailed structure of the coupling ǫ10ǫ10H̃
2
3 R̃

3 we again refer the reader to

appendix B. The terms generated by this replacement up to quadratic order in the NS-NS

three-form field strength are denoted by SH̃2 in (2.1).

However, as we will explain in section 4, the replacements (2.11) and (2.12) appear

not consistent with four-dimensional supersymmetry. We therefore propose a corrected
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replacement given by

J0 → J0(Ω+) + ∆J0(Ω+, H̃3) + δJ

J1 → J1(Ω+) +
1

2
δJ , where

δJ = −2

∫

M10

t̃8 t̃8 H̃
2
3 R̃

3 ∗̃ 1 (2.14)

and the explicit index expression of (2.14) is given by

t̃8 t̃8 H̃
2
3 R̃

3 = t̃A1···A2
8 t̃8B1···B8 H̃3A1A2C H̃B1B2C

3 R̃B3B4
A3A4

· · · R̃B7B8
A7A8

. (2.15)

Notice, that the structure of the modified replacement (2.14) is such that the tree-level

terms get modified, whereas the one-loop terms remain untouched. Furthermore, note

that the index contraction of (2.15) is such that it cannot be obtained via the metric

replacement (2.13) applied to the R4-terms.

2.2 Corrected Y3 background solution at order α
′3 in Type IIA

At lowest order in α′ a solution of the equations of motion with a six-dimensional compact

internal space preserving four-dimensional N = 2 supersymmetry is simply given by a

product manifold M10 = M1,3 × Y3, a constant dilaton, and no background fluxes. Here

M1,3 is four-dimensional Minkowski space and Y3 is a Calabi-Yau manifold. Due to the

eight-derivative couplings at order α′3 we next look for a corrected solution to the modified

equations of motion. In doing that we demand that the corrected solution reduces to the

classical Y3 solution at lowest order in the expansion parameter α introduced in (2.2).

Therefore, we make the ansatz

〈ds̃2〉 = ηµνdx
µdxν +

(

g(0)
mn + αg(1)

mn

)

dymdyn , (2.16)

〈φ̃〉 = φ0 + α〈φ(1)(y)〉 ,
〈H̃3〉 = 0 .

In this ansatz ηµν denotes the four-dimensional Minkowski metric, g(0)
mn is the lowest order

Calabi-Yau metric and φ0 is a constant. The goal is now to fix the correction to the dilaton

〈φ(1)〉 as well as the correction to the metric g(1)
mn. Note that in this section we work entirely

with real indices m,n = 1, . . . , 6.

Varying the corrected action (2.1) with respect to the fields and evaluating the resulting

equations of motion on the ansatz (2.16) yields the following equations:

• external Einstein equation.

0 = g(0)mn
R(1)

mn + 4∇(0)
n ∇(0)n〈φ(1)(y)〉 (2.17)

• internal Einstein equations.

0 = R(1)
mn − 1

2
g(0)
mng

(0)klR(1)
kl − 2g(0)

mn∇(0)

k ∇(0) k〈φ(1)(y)〉+ 2∇(0)
m ∇(0)

n 〈φ(1)(y)〉 (2.18)

+ 768 (2π)3
(

ζ(3) +
π2

3
e2φ0

)

J (0) r
m J (0) s

n ∇(0)
r ∇(0)

s (∗(0)

6 c(0)3 ) .
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In (2.17) and (2.18) we have employed the definition Rmn(g
(0) +αg(1)) ≡ R(0)

mn+αR(1)
mn and

furthermore used the complex structure J (0) n
m , the Hodge star ∗(0)

6 and the third Chern class

c(0)3 all of which are evaluated on the zeroth order Calabi-Yau background. The equation

of motion for the NS-NS two-form is trivially satisfied and the equation of motion of the

dilaton coincides with the external Einstein equation in the string frame. Compatibility of

the external and internal Einstein equation is achieved by taking the trace of the internal

Einstein equation and comparing it to the external Einstein equation, which in turn fixes

the correction of the dilaton to

〈φ(1)(y)〉 = 384 (2π)3
(

ζ(3) +
π2

3
e2φ0

)

∗(0)

6 c(0)3 . (2.19)

Plugging (2.19) again into the internal Einstein equation results in

R(1)
mn = −768 (2π)3

(

ζ(3) +
π2

3
e2φ0

)

(

∇(0)
m ∇(0)

n + J (0) r
m J (0) s

n ∇(0)
r ∇(0)

s

)

∗(0)

6 c(0)3 . (2.20)

Going to complex indices in (2.20) shows that R(1)

ī ∼ ∂i∂̄̄(∗(0)

6 c(0)3 ), which in turn has a

solution g(1)

ī ∼ ∂i∂̄̄f(y) for some specific function f which depends on the compact manifold

and serves of as a Kähler potential. The holomorphic and antiholomorphic indices can take

the values i = 1, 2, 3 and ̄ = 1̄, 2̄, 3̄. The precise form of f can be computed explicitly,

which we will only do for the case of M-theory in section 2.4 since the procedure is the

same and the precise form of f is of no physical importance, as the metric correction turns

out to completely decouple from low energy dynamics.

2.3 Eleven-dimensional supergravity action at eight derivatives

The higher-derivative corrections obtained for the low-energy limit of Type IIA superstring

can be lifted to an eleven dimensions and are believed to comprise the low-energy effective

action of M-theory. Regarding notation we will use hats to indicate that a certain object is

defined in eleven dimensions and eleven-dimensional indices M,N, . . . from the middle of

the alphabet. At two-derivative level the effective action of M-theory is eleven-dimensional

N = 1 supergravity [14]. Its bosonic part is given by

Sclass
M =

1

2κ211

∫

M11

R̂ ∗̂ 1− 1

2
Ĝ4 ∧ ∗̂ Ĝ4 −

1

6
Ĉ3 ∧ Ĝ4 ∧ Ĝ4 . (2.21)

The dynamical degrees of freedom are the eleven-dimensional metric ĝMN and the M-theory

three-form Ĉ3 with its field strength Ĝ4 = dĈ3. As for the Type IIA action we introduce

an expansion parameter

α̂ =
(4πκ211)

2/3

(2π)432213
, (2.22)

where κ11 is related to the eleven-dimensional Planck length ℓM as κ211 = 1
2(2π)

8ℓ9M such

that α̂ ∝ ℓ6M . The eight-derivative action of M-theory up to terms quadratic in Ĝ4 takes

the following schematic form

SM = Sclass
M + α̂SR̂4 + α̂SĈX̂8

+ α̂SĜ2R̂3 + α̂S(∇̂Ĝ)2R̂2 . (2.23)
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Let us proceed by introducing the various pieces contributing to the eight-derivative ac-

tion (2.23). The most prominent part is the well known R̂4 combination, which is given by

SR̂4 =
1

2κ211

∫

M11

(

t̂8t̂8 −
1

24
ǫ11ǫ11

)

R̂4 ∗̂ 1 (2.24)

and gets supplemented by an R̂4 coupling to the M-theory three-form Ĉ3 via an eight-form

curvature polynomial X̂8, namely

SĈX̂8
= −32213

2κ211

∫

M11

Ĉ3 ∧ X̂8 . (2.25)

The sector involving the four-form field strength Ĝ4 is obtained by lifting the conjectured

terms, which we recalled in section 2.1, to eleven dimensions [12]. The terms we are con-

sidering are the ones quadratic in Ĝ4 and their corresponding actions in (2.23) are

S
Ĝ2R̂3 = − 1

2κ211

∫

M11

(

t̂8t̂8 +
1

96
ǫ11ǫ11

)

Ĝ2
4R̂

3 ∗̂ 1, (2.26)

S
(∇̂Ĝ)2R̂2 =

1

2κ211

∫

M11

ŝ18(∇̂Ĝ4)
2R̂2 ∗̂ 1 . (2.27)

For the detailed structure of all the terms in (2.23) we once again refer the reader to

appendix B. Note however that the new tensorial structure ŝ18 is not fully known but

contains six unfixed coefficients ai [15, 16]. The reason for this ambiguity is that the analysis

carried out in [15] is sensitive only to terms which do not vanish at the level of the four point

function. However, there are six independent combinations of contractions which require

a five point function analysis to fix their corresponding coefficient in the effective action.

Let us stress that we will argue in section 2.5 that we need to add another term

quadratic in Ĝ4 to the eleven-dimensional effective action to ensure compatibility of the

M-theory and Type IIA reductions for the considered backgrounds.

2.4 Corrected Y3 background solution at order ℓ
6

M
in M-theory

We now apply a similar strategy as in section 2.2 for the case of Type IIA and determine

a background solution of M-theory at eight derivatives. This solution should again have

the property that it reduces to the classical direct product solution of five-dimensional

Minkowski spacetime and a compact Calabi-Yau threefold Mclass
11 = M1,4 × Y3 as α̂ → 0

considered in [58]. This problem was already solved in the case of a three-dimensional

Minkowski spacetime and a complex four-dimensional compact internal space, which is

at lowest order a Calabi-Yau fourfold [1, 17, 19], a Spin(7) holonomy manifold [18] or an

internal manifold with G2 holonomy [20].

The ansatz for the fourfold solution in [17, 19] involves a warp factor, fluxes and an

overall Weyl rescaling. The necessity for warping and fluxes can be traced back to the fact,

that the eight-form curvature polynomial X̂8 does not vanish on the internal Calabi-Yau

manifold and one therefore has to take into account fluxes in order to ensure, that the Ĉ3

equation of motion is satisfied. In our case the situation is different, since the eight-form
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X̂8 trivially vanishes on the Calabi-Yau threefold Y3. Thus the modified ansatz for the

background solution can be taken to have the following form

〈dŝ2〉 = eα̂〈Φ
(1)(ym)〉

(

ηµνdx
µdxν +

(

g(0)
mn + α̂g(1)

mn

)

dymdyn
)

, (2.28)

〈Ĝ4〉 = 0.

The variation of the quantum corrected action (2.23) then gives rise to the following con-

ditions on the corrections 〈Φ(1)(ym)〉 and g(1)
mn(ym):

• external Einstein equation.

g(0)mnR(1)
mn − 9g(0)mn∇(0)

m ∇(0)
n 〈Φ(1)〉 = 0 (2.29)

• internal Einstein equation.

0 = R(1)
mn − 1

2
g(0)
mng

(0)klR(1)

kl −
9

2
∇m∇n〈Φ(1)〉+ 9

2
g(0)
mn∇k∇k〈Φ(1)〉 (2.30)

+ 768(2π)3J (0)l
m J (0)k

n ∇l∇k(∗(0)
6 c(0)3 ) .

In order to fix the global Weyl factor 〈Φ(1)〉 one again takes the trace over the internal Ein-

stein equation and eliminates all expressions involving R
(1))
mn by making use of the external

Einstein equation resulting in

〈Φ(1)〉 = −512

3
(2π)3 ∗(0)

6 c(0)3 , (2.31)

R(1)
mn = −768(2π)3

(

∇(0)
m ∇(0)

n + J (0)l
m J (0)k

n ∇(0)

l ∇(0)

k

)

∗(0)
6 c(0)3 . (2.32)

It is important to notice that the correction to the internal Ricci tensor is governed by an

expression which is twice a covariant derivative of the Hodge dual of the third Chern form.

The strategy to solve this equation is to split ∗(0)
6 c(0)3 into a part which is constant on the

internal space and therefore drops out of the equation of motion and a part which varies

non trivially over Y3. To make this separation one uses the fact that the third Chern form

satisfies dc(0)3 = 0 but d†c(0)3 6= 0 and can therefore be expanded as

c(0)3 = ΠHc(0)3 + i∂∂̄ξ (2.33)

by applying the ∂∂̄-Lemma, where ΠHc(0) is the harmonic part of c(0)3 which is unique by

virtue of the Hodge decomposition theorem and ξ is a (2,2)-form satisfying ∂†ξ = ∂̄†ξ = 0.

The unspecified (2,2)- form clearly parametrizes the non-harmonicity of the third Chern

form. Since ΠHc(0)3 is harmonic by definition and [∆d, ∗6] = 0 it follows immediately that

the scalar function h(ym) ≡ ∗(0)

6 ΠHc(0)3 is constant on the compact Y3 and can therefore

be ignored in the equation of motion. Furthermore, using that on a Kähler manifold the

Laplacian satisfies ∆d = 2∆∂ = 2∆∂̄ one shows that

i ∗(0)
6 ∂∂̄ξ = −1

2
∆(0) ∗(0)

6

(

J (0) ∧ ξ
)

, (2.34)
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where J (0) is the Kähler form of Y3 and ∆(0) = ∇(0)

k ∇(0)k is the Laplace-Beltrami operator.

Having determined the non-trivial part of the correction to the internal Ricci tensor the

equation determining g(1) reads

R(1)
mn = 384(2π)3

(

∇(0)
m ∇(0)

n ∇(0)

k ∇(0)k + J (0)r
m J (0)s

n ∇(0)
r ∇(0)

s ∇(0)

k ∇(0)k
)

∗(0)
6

(

J (0) ∧ ξ
)

(2.35)

whose solution can be checked to be

g(1)
mn = −768(2π)3

(

J (0)k
m J (0)l

n ∇k∇l +∇m∇n

)

∗(0)
6

(

J (0) ∧ ξ
)

. (2.36)

We again observe in (2.36), that the correction to the metric is twice the derivative of

a scalar function. We once more want to stress, that one of the key ingredients for the

derivation of consistent two-derivative effective actions from dimensional reduction is the

interplay between higher-derivative corrections and the fully backreacted background so-

lution, as we will see in section 3.

2.5 Comments on M-theory — Type IIA duality on Calabi-Yau backgrounds

at eight-derivative level

In the following we argue that we need to include another term in the eleven-dimensional

action in order to obtain after compactification a five-dimensional effective action that is

consistent with N = 2 supergravity. Such a term is necessary due to the fact that the

considered background solutions include a non-trivial correction to the ten-dimensional

dilaton (2.19). The additional part of the action then compensates for the absence of the

dilaton in eleven dimensions. For the discussion in this section we will closely follow [20]

and extend it by including the M-theory three-form. The additional piece of the eight-

derivative action at order α̂ we need is

2κ211∆SM = 256

∫

M11

Ẑ Ĝ4 ∧ ∗̂ Ĝ4 , (2.37)

where Ẑ is the generalization of the six-dimensional Euler density to eleven dimensions

Ẑ =
1

12

(

R̂ M3M4
M1M2

R̂ M5M6
M3M4

R̂ M1M2
M5M6

− 2R̂ M2 M4
M1 M3

R̂ M5 M6
M2 M4

R̂ M1 M2
M5 M6

)

.

(2.38)

We will now argue that the corrected dilaton in ten dimensions can not be identified with

the overall Weyl factor (2.31) but requires the inclusion of (2.37). This indicates that

the M-theory-Type IIA duality at eight derivatives has to be modified and thus deviates

from the simple S1 reduction of the classical case. As we showed in section 2.4 the cor-

rected background solution in M-theory requires a Weyl factor (2.31) whereas the Type

IIA equations of motion can be solved without the latter. We therefore move to a frame

in eleven dimensions which leads to the same Einstein equations for the backgrounds we

are considering. This is achieved by the redefinition

ĝMN → e−
512
3

α̂Ẑ ĝMN , (2.39)
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such that the classical action picks up two additional terms from this field redefinition

2κ211S
class
M → 2κ211S

class
M −

∫

M11

768 α̂Ẑ R̂ ∗̂ 1− 128α̂ Ẑ Ĝ4 ∧ ∗̂ Ĝ4 . (2.40)

It is now easy to check, that the equations of motion for an ansatz involving five-dimensional

Minkowski spacetime and a compact complex dimension three internal space in this frame

can be solved by a direct product

〈dŝ2〉 = ηµνdx
µdxν + 2

(

g(0)

ī + α̂g(1)

ī

)

dzidz̄ ̄ , (2.41)

〈Ĝ4〉 = 0 , (2.42)

where g(1)

ī is simply (2.36) in complex indices. The additional term in (2.40) induces terms

that become backreaction effects in the frame in which the Weyl factor has to be included.

Therefore, the expectation is that with the choice M10 = M1,3 × Y3 the circle reduction

of (2.40) is equivalent to the classical Type IIA action up to a possible field redefinition of

the dilaton. This redefinition of the dilaton is expected, since the background solution of

Type IIA includes a non-constant dilaton (2.19). Concretely, we will consider an eleven-

dimensional ansatz of the form

dŝ2 = e−
2
3
φ̃g̃ABdx

AdxB + e
4
3
φ̃dy2 , (2.43)

Ĝ4 = H̃3 ∧ dy , (2.44)

with the circle coordinate y ∼ y + 1 and the ten-dimensional metric g̃AB given by (2.41)

with three-dimensional Minkowski spacetime. We will furthermore keep terms linear in

the dilaton, since these are not expected to occur at higher-derivative level in the string

frame and should therefore be captured by a field redefinition. The reduced action (2.40)

including linear dilaton terms and the correction ∆SM then reads

2κ211S
(10) =

∫

M10

e−2φ̃

(

R̃ ∗̃ 1 + 4dφ̃ ∧ ∗̃ dφ̃− 1

2
H̃3 ∧ ∗̃ H̃3

)

(2.45)

−
∫

M10

768α̂ Z̃ R̃ ∗̃ 1 + 3072α̂ Z̃ �̃φ̃ ∗̃ 1− 128α̂ Z̃ H̃3 ∧ ∗̃ H̃3 +∆SM . (2.46)

We then notice that we can recover the classical Type IIA action if we perform a redefinition

of the dilaton according to

φ → φ− 384α̂ Z̃ (2.47)

and if we identify ∆SM with the expression (2.37). Consequently, the additional part

of the eleven-dimensional action (2.37) captures a part of the effect which the corrected

dilaton has on the low energy effective action. We stress that this analysis relies on the

background geometry stated in this section explicitly. It is therefore expected, that the

general analysis requires more complicated structures. However, the analysis of [20] for

the case, where the internal space is a G2 manifold, shows the same properties with the

quantity Ẑ playing a major role. From now on we will consider the action (2.37) as a part

of the full eleven-dimensional action (2.23).
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multiplet bosonic field content # of multiplets

gravity multiplet metric gµν , graviphoton A0
µ 1

tensor multiplet tensor Bµν , real scalar φ nT

vector multiplet vector Aa
µ, real scalar Φ

a nV

hypermultiplet four real scalars qu=1,··· ,4 nH

Table 1. Multiplets of five-dimensional N = 2 supergravity and their field content.

3 M-theory on Calabi-Yau threefolds

We study the dimensional reduction of M-theory on the background solution found in

section 2.4 preserving N = 2 supersymmetry in five dimensions. We perturb the back-

ground solution and derive the two-derivative effective action as well as four-derivative

operators quadratic in the lower dimensional fields.

3.1 N = 2 supergravity in five dimensions

For later reference the basic ingredients of five-dimensional N = 2 ungauged supergravity

are collected. In the dimensional reduction of M-theory we focus entirely on the massless

sector. For this reason, the relevant massless multiplets are given in table 1. Note that the

entire tensor multiplet can be dualized into a vector multiplet since in five dimensions a

two form B is dual to a vector. Let us now turn to the geometry of the scalar field space in

the various multiplets. Since the main focus will lie on the vector- and gravity multiplet,

we will only briefly discuss the hypermultiplet sector. The scalar field space Mscalar is

locally given as the direct product [49]

Mscalar = Mreal sp. ×Mquat. Käh., (3.1)

where Mquat. Käh. is a quaternionic Kähler manifold parametrized by the hypermultiplet

scalars. The vector multiplet scalar geometry is encoded in a real very special manifold

Mreal sp. with metric encoded by a cubic potential. This sector is highly restrictive and

allows for precise tests of higher-derivative couplings based on supersymmetry. The vector

multiplet scalar geometry is describe by the (nV + 1) very special coordinates La, where

a = 0, . . . , nV exceeds the number counting the actual vector multiplet scalars by one.

However in the end, the scalars La parametrize only nV degrees of freedom. This can be

understood in a geometric way as follows. The scalar sector of the vectormultiplet can be

interpreted as a nV dimensional submanifold embedded in an ambient (nV +1)−dimensional

manifold with coordinates La. The hypersurface spanned by the vector multiplet scalars

is defined by a cubic polynomial, which in general takes the form

N (L) =
1

3!
CabcL

aLbLc, (3.2)
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where Cabc is a constant and symmetric tensor. The hypersurface constraint that has to

be satisfied by the very special coordinates La is then simply given by

N (L) =
1

3!
CabcL

aLbLc = 1 . (3.3)

The canonicalN =2 supergravity action in the bosonic sector can then be written as [21, 22]

S(5)
can. =

∫

M5

1

2
R ⋆ 1− 1

2
Gab dL

a ∧ ⋆ dLb − huv dq
u ∧ ⋆ dqv (3.4)

− 1

2
GabF

a ∧ ⋆F b − 1

6
CabcA

a ∧ F b ∧ F c.

The notation indicates that the vector in the gravity multiplet A0 was included in a col-

lective notation such that the index a = 0, . . . , nV . The hypermultiplet metric huv does

not play a role in the following and will therefore not be treated. The restrictive nature of

N = 2 supergravity in five dimensions follows from the constraint (3.3) and the fact that

the metric for the vector multiplet scalars is determined from the cubic polynomial N as

Gab = −1

2
∂La∂Lb logN

∣

∣

∣

∣

N=1

= −1

2
Nab +

1

2
NaNb

∣

∣

∣

∣

N=1

, (3.5)

where the notation Na ≡ ∂LaN was introduced. Thus, the geometry of the vector multiplet

space is fully determined by the cubic potential N .

3.2 The two-derivative effective action

The first step in our analysis will be the derivation of the two-derivative effective action

for the gravity- and vectormultiplet fields as well as a hypermultiplet scalar, which in the

classical case is the volume modulus of Y3. To perform the dimensional reduction of M-

theory we perturb the background solution found in section 2.4. A crucial observation is the

fact, that the correction to the Calabi-Yau metric g(1)

ī drops out of the final expression, since

it can be written as twice the derivative of a scalar function and therefore only contributes

as a total derivative. So effectively the dimensional reduction of (2.23) is performed on the

metric background

dŝ2 = eα̂Φ
(1)
(

gµνdx
µdxν +

(

g(0)

ī − iδvaωa ī

)

dzidz̄ ̄
)

, (3.6)

Φ(1) = −512

3
(2π)3 ∗6 c3 = 〈Φ(1)〉+ 〈∂aΦ(2)〉δva + 1

2
〈∂a∂bΦ(1)〉δvaδvb +O(δv3) ,

where the deformations of the Kähler class of Y3 parametrized by δva are expanded in a

real basis ωa ∈ H1,1

∂̄
(Y3), a = 1, . . . , h1,1 as

δgī = −iδvaωaī , (3.7)

and we have introduced the notation ∂a ≡ ∂δva . In the M-theory three-form zero-mode

expansion we only keep terms contributing to the vector and gravity multiplet in five
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dimensions. More precisely, we only take into account modes giving rise to vectors Aa in

five dimensions. The expansion is thus

Ĉ3 = Aa ∧ ωa , (3.8)

Ĝ4 = dĈ3 = F a ∧ ωa ,

i.e. along the H1,1

∂̄
(Y3) cohomology. In principle, the massless modes in the effective theory

do not have to coincide with the ones from the classical reduction. The reason for this is

the fact, that the linearized equations of motion, which are solved by the massless modes,

can receive non-trivial corrections. Along the lines of [11], using the fact that the massless

deformations of the corrected background in the compactification ansatz should preserve

the Kähler condition as well as the Bianchi identity for the four-form field strength in the

absence of M5-branes, it is possible to show on general grounds that the possible corrections

to the massless fields at most contribute as total derivatives to the effective action and

therefore decouple. Thus, we will ignore these corrections in the following and treat the

perturbations as the ones of the classical M-theory reduction on a Calabi-Yau threefold.

We will proceed by recording the results of the contributions of the classical and the eight-

derivative action to the kinetic terms separately. Finally we will consider all contributions

at quadratic order without any five-dimensional derivative, i.e. terms contributing to a

scalar potential.

Classical action. First let us perform the dimensional reduction of the classical Einstein-

Hilbert term on the perturbed and α′-corrected background (3.6). Focusing on terms

carrying two derivatives in five dimensions up to second order in the fluctuations we obtain

∫

M11

R̂ ∗̂ 1
∣

∣

∣

kin.
=

∫

M5

(

VM − 768 (2π)3 α̂ χ(Y3)
)

R ⋆ 1 (3.9)

+

∫

M5

dδva ∧ ⋆ dδvb
∫

Y3

(

1

2
ωa ī ω

̄i
b − ω i

a i ω j
b j

)

∗(0)

6 1

−
∫

M5

768 α̂

(

1

2
Rab + Tab

)

dδva ∧ ⋆ dδvb ,

where we made use of the shorthand notation

VM =

∫

Y3

[

1− iδvaω i
a i +

1

2

(

ωa ī ω
̄i

b − ω i
a i ω

j
b j

)

δvaδvb
]

∗(0)

6 1, (3.10)

Rab = (2π)3
∫

Y3

ωa ī ω
̄i

b c(0)3 , (3.11)

Tab = (2π)3
∫

Y3

ω i
a i ω

j
b j c(0)3 , (3.12)

which we will use extensively throughout this work. From the classical action we further-

more pick up a correction to the kinetic terms of the vectors and a Chern-Simons term in
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five dimensions
∫

M11

−1

2
Ĝ ∧ ∗̂ Ĝ4 −

1

6
Ĉ3 ∧ Ĝ4 ∧ Ĝ4

∣

∣

∣

kin.+C.S.
=

∫

M5

1

2
F a ∧ ⋆F b

∫

Y3

ωa ī ω
̄i

b ∗(0)

6 1

−
∫

M5

128 α̂Rab F
a ∧ ⋆F b

+

∫

M5

1

6
KabcA

a ∧ F b ∧ F c , (3.13)

where we introduced the triple intersection numbers Kabc =
∫

Y3
ωa ∧ ωb ∧ ωc on Y3, which

appear as the coefficients of the Chern-Simons term. We furthermore record the reduction

of (2.37) yielding

∆SM

∣

∣

kin
= −

∫

M5

256 α̂Rab F
a ∧ ⋆F b . (3.14)

Eight-derivative action. We obtain further contributions to the kinetic terms of the

five-dimensional theory by reducing the eight-derivative terms in the action (2.23) on the

lowest order Calabi-Yau background. The R4-terms (2.24) lead to a correction to the

kinetic term of the Kähler class deformations and a correction to the Ricci scalar

2κ211SR̂4

∣

∣

kin.
=

∫

M5

768 (2π)3 χ(Y3)R ⋆ 1 + 384Rab dδv
a ∧ ⋆ dδvb , (3.15)

and from (2.26) and (2.27) we obtain the corrections to the kinetic terms of the vectors

2κ211
(

SĜ2R̂3 + S(∇̂Ĝ)2R2

)∣

∣

kin.
=

∫

M5

384Rab F
a ∧ ⋆ F b. (3.16)

Note that in order to obtain the result (3.16) we had to fix a1 = a2 in ŝ18. This is

necessary to arrive at an expression, which is solely built of internal space Riemann tensors

and harmonic (1,1)-forms without explicit derivatives after applying internal space total

derivative identities. Then the final result can be shown to be independent of the unfixed

coefficients an by applying Schouten identities. Before putting the results obtained in this

section together to obtain the five-dimensional two-derivative effective action we briefly

comment on the scalar potential.

Scalar potential. Let us consider the higher curvature terms proportional to R̂4 once

again. The dimensional reduction of these, focusing on the zero external derivative contri-

butions gives

2κ211 SR̂4

∣

∣

sc. p.
= −768(2π)3

∫

M5

δvaδvb ⋆ 1

∫

Y3

∇k∇k(∗(0)

6 c(0)3 )ωa ī ω
̄i

b ∗(0)

6 1 . (3.17)

This indeed looks like a mass term arising for the fluctuations δva. Another potential source

for a scalar potential is the classical Einstein-Hilbert action, since it is possible to pick up

a mass term if one performs the dimensional reduction on the α̂-corrected background

solution (3.6). The reduced Einstein-Hilbert term then reads
∫

M11

R̂ ∗̂ 1
∣

∣

∣

sc. p.
= 768(2π)3 α2

∫

M5

δvaδvb ⋆ 1

∫

Y3

∇k∇k(∗(0)

6 c(0)3 )ωa ī ω
̄i

b ∗(0)

6 1 , (3.18)
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which is exactly the contribution needed to cancel the one coming from the higher curvature

terms (3.17). From the reduction results (3.17) and (3.18) it is also possible to see that

their contribution entirely stems from the non-harmonicity of the third Chern class given

by i∂∂̄ξ. Moreover this cancellation shows that taking into account the backreaction and

expanding the perturbations around a consistent background solution is crucial for the

five-dimensional effective action. Note that this cancellation is already expected from a

previous analysis on a fourfold in [10].

We are now in a position to collect the various pieces (3.9), (3.13), (3.14), (3.15), (3.16)

and merge them into the five-dimensional two-derivative effective action

2κ211S
(5) =

∫

M5

VMR ⋆ 1 +

∫

M5

dδva ∧ ⋆ dδvb
∫

Y3

(

1

2
ωaīω

̄i
b − ω i

ai ω
j

bj

)

∗(0)

6 1 (3.19)

−
∫

M5

768 α̂Tab dδv
a ∧ ⋆ dδvb − 1

2

∫

M5

F a ∧ ⋆F b

∫

Y3

ωa ∧ ⋆ωb

−
∫

M5

1

6
KabcA

a ∧ F b ∧ F c .

Note that all terms involving the coupling Rab in (3.19) canceled. These cancellations are

in fact crucial for compatibility with N = 2 supergravity in five dimensions, as the coupling

Rab is not proportional to the Euler characteristic χ(Y3), since the non-harmonic part of

the third Chern class prevents us from performing an integral split. The surviving coupling

Tab however satisfies

Tab = −(2π)3
χ(Y3)

V (0)
K(0)

a K(0)

b , (3.20)

since the traces of the harmonic (1,1)-forms are constant. The quantity V (0) in (3.20) de-

notes the volume of the zeroth order Calabi-Yau manifold and K(0)
a , K(0)

ab are contractions

of the intersection numbers with the Kähler moduli evaluated in the background, whose

precise form can be found in appendix A. In the following we will denote quantities evalu-

ated in the background with a zero superscript. We now perform a Weyl rescaling of (3.19)

according to gµν → V−2/3
M gµν and the uplift from infinitesimal Kähler class deformations

to finite fields va leading to the action in Einstein frame

2κ211S
(5) =

∫

M5

[

R ⋆ 1 +
1

2V

(

Kab −
5

3VKaKb

)

dva ∧ ⋆ dvb (3.21)

+
1

2V 1
3

(

Kab −
1

2VKaKb

)

F a ∧ ⋆F b − 1

6
KabcA

a ∧ F b ∧ F c

+ 768(2π)3 α̂
χ(Y3)

V3
KaKbdv

a ∧ ⋆ dvb
]

.

In (3.21) we used the definition of the Calabi-Yau volume V = 1
3!Kabcv

avbvc. We will

now make contact with N = 2 supergravity outlined in section 3.1. It is already clear

from (3.4) that we make the identification Cabc = Kabc, since there is no correction to the

Chern-Simons term in five dimensions, leading to the cubic constraint

N (L) =
1

3!
KabcL

aLbLc , (3.22)
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which the physical scalars in the vectormultiplet La have to obey. This constraint is

obviously solved by La = V− 1
3 va which is equivalent to the classical case. Due to the

relation (3.5) this data is enough to completely fix the geometry on the vectormultiplet

and shows, that there are no quantum corrections present in this sector. The correction

∼ χ(Y3) in (3.21) must therefore be the one of a hypermultiplet. Using the explicit form

of the physical scalars La one can show that (3.21) is equivalent to

κ211S
(5) =

∫

M5

1

2
R ⋆ 1− 1

2
Gab(L) dL

a ∧ ⋆ dLb − 1

2
Gab(L)F

a ∧ ⋆F b − 1

4
d logV ∧ ⋆ d logV

+

∫

M5

384 α̂
χ(Y3)

V d logV ∧ ⋆ d logV − 1

6
KabcA

a ∧ F b ∧ F c , (3.23)

where we used the metric Gab derived from the cubic potential (3.22) given by

Gab = −1

2
∂a∂b logN (L)

∣

∣

∣

N=1
= −1

2
KabcL

c +
1

8
KacdKbefL

cLdLeLf . (3.24)

Classically one identifies one of the hypermultiplet scalars D with D = −1
2 logV [21],

whereas when taking quantum corrections into account we find the corrected hypermultiplet

scalar

D = −1

2
log

(

V + 768 α̂ χ(Y3)
)

, (3.25)

such that the final action is

κ211S
(5) =

∫

M5

1

2
R ⋆ 1− 1

2
Gab(L) dL

a ∧ ⋆ dLb − 1

2
Gab(L)F

a ∧ ⋆F b − dD ∧ ⋆ dD

−
∫

M5

1

6
KabcA

a ∧ F b ∧ F c . (3.26)

We have thus shown that our dimensional reduction of M-theory at two-derivative level

is compatible with N = 2 supergravity. The metric of the vectormultiplet coincides with

the one of the classical reduction, such that the only net effect at two derivatives is a

corrected field identification of one hypermultiplet scalar. This can in turn be interpreted

as a renormalization of the volume of Y3 at order α̂, see (3.25).

3.3 Four-derivative terms of the Kähler moduli

We now aim to include four-derivative terms in the effective action including at most two

fluctuations δva. Obviously this truncation misses e.g. the four-derivative interaction of

the form (∂va)4 since this would require at least an analysis up to order δv4, which is

however technically very involved. In this section we therefore consider the background

perturbations (3.7) up to second order. We now introduce the coupling capturing the four-

derivative terms we find for the Kähler deformations as well as most of the four-derivative

terms of the vectors in five dimensions derived in section 3.4. It is a non-topological,

co-closed (2,2)-form Z whose components are given by

Zīkl̄ = εīi1 ̄1i2j̄2 εkl̄k1 l̄1k2 l̄2 R
̄1i1 l̄1k1 R̄2i2 l̄2k2 (3.27)

– 18 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
7

satisfying the relations

Z k
īk = −2i(2π)2 (∗6 c2)ī , (3.28)

Z l k
l k = 2(2π)2 ∗6 (c2 ∧ J) , (3.29)

Z k
īk ω ̄i

a = 2i(2π)2 ∗6 (c2 ∧ ωa) . (3.30)

This object was already recognized to play a role in the context of N = 2 four-derivative

couplings arising from string compactifications in [23, 24]. The four-derivative couplings

from the R̂4 terms we find by reducing them in a straightforward way to five dimensions

are then

2κ211SR̂4

∣

∣

four der.
=

∫

M5

192(2π)2
[

R2⋆1−4RµνR
µν⋆1−16Tr R∧⋆R

]

∫

Y3

c(0)2 ∧J (3.31)

−
∫

M5

96Z (0)

ab

[

Rdδva∧⋆dδvb−4Rµν∂µδv
a∂νδv

b⋆1+2(�δva)(�δvb)⋆1
]

,

where we performed external spacetime integrations by parts and defined � ≡ ∇µ∇µ.

Additionally, we introduced the five-dimensional curvature two-form Rµ
ν satisfying

RµνρσR
µνρσ ⋆ 1 = −8Tr R∧ ⋆R and the shorthand notation

Zab =

∫

Y3

Zīkl̄ ω
j̄i

a ω l̄k
b ∗6 1 , (3.32)

Za = (2π)2
∫

Y3

c2 ∧ ωa ,

Z = (2π)2
∫

Y3

c2 ∧ J ,

which we will use frequently in the following.2 Note that the Kähler form in (3.31) coupling

to the second Chern class of Y3 is with respect to the fluctuated metric J = J (0)+δvaωa and

the second order fluctuations of the terms built of two Riemann tensors in five dimensions

cancel in a non-trivial way.

In the following we will discuss the Riemann squared terms in (3.31) when moving

to the five-dimensional Einstein frame. Note that the second line in (3.31) is already

second order in the fluctuations δva such that the Weyl rescaling simply leads to an overall

factor proportional to the zeroth order Calabi-Yau volume V (0). The terms involving two

five-dimensional Riemann tensors however come with at most linear terms in δva and get

therefore a less trivial modification from the Weyl rescaling considering terms up to order

δv2. The explicit form of the action after the Weyl rescaling in terms of the fluctuations

is very involved and we will not display it here. Since we are in the end interested in the

corresponding action of the finite fields we will give an action, which precisely reproduces

the Weyl rescaled action when expanding it in infinitesimal fluctuations. We therefore

introduce the scalar

u = logV with V =
1

3!
Kabcv

avbvc . (3.33)

2Note that we always denote evaluation on the background with a zero superscript.
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The Riemann squared action in Einstein frame then reads

2κ211S
Einst.

R2 =

∫

M5

192 α̂Ze−u/3
[

R2 ⋆ 1− 4RµνR
µν ⋆ 1− 16Tr R∧ ⋆R

]

(3.34)

+

∫

M5

1

3
α̂Z e−u/3

[

1536R (�u) ⋆ 1− 1536Rµν ∇µ∇νu ⋆ 1− 512R du ∧ ⋆ du

+ 256Rµν ∂µu ∂νu ⋆ 1 + 1024 (�u)2 ⋆ 1
]

,

where we now have the moduli dependent coupling

Z ≡ Z(va) = (2π)2
∫

Y3

c2 ∧ J , with J = vaωa . (3.35)

The uplift of the terms in the second line in (3.31) is however not obvious, due to

the non-topological nature of the coupling Z (0)

ab . The naive guess would be to promote

Z (0)

ab → Zab ≡ Zab(v
a) to its moduli dependent counterpart and to lift δva → va. A higher

order analysis in the fluctuations δva might provide further evidence for this claim.

3.4 Four-derivative terms of the five-dimensional vectors

Before we continue with the results of the four-derivative terms involving five-dimensional

vectors, or rather two powers of their field strength to be more precise, let is note that it

is well known that there is also a five-dimensional gauge-gravitational Chern-Simons term

present [21, 25, 43]. This contribution to the five-dimensional effective action arises upon

dimensional reduction of (2.25) and is in our conventions

SĈX̂8
= 768

∫

M5

Z (0)
a Aa ∧ Tr R∧R. (3.36)

It was worked out in [26] that the coefficients of this gauge-gravitational Chern-Simons

term and the coefficient of the RµνρσR
µνρσ term in (3.31) are related by supersymmetry

and matches our computation. This known fact serves as a crosscheck at this point.

We proceed by dimensionally reducing the action

SĜ4
= SĜ2R̂2 + S(∇̂Ĝ)2R̂2 (3.37)

keeping terms containing four derivatives in M5 and up two five-dimensional field strengths

F a = dAa. We will keep the coefficients an completely generic, however keeping in mind

that the discussion of the two-derivative action forced us to impose a1 = a2.

The part of the five-dimensional effective action containing the Ricci scalar and two

field strengths of the vectors is

2κ211SĜ4

∣

∣

∣

RFa∧⋆F b
= −96

∫

M5

Z (0)

ab RF a ∧ ⋆F b (3.38)

and the terms involving the five-dimensional Ricci tensor reduce to

2κ211SĜ4

∣

∣

∣

Rµν FaF b
= 192

∫

M5

Z (0)

ab Rµν F a
ρµF

b ρ
ν ⋆ 1. (3.39)
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The treatment of the terms containing one five-dimensional Riemann tensor fully contracted

on two field strength tensors F a is however more complicated. In addition to internal space

total derivative identities we made use of the first Bianchi identity for the five-dimensional

Riemann tensor and introduced a new object X (0)
a = X (0)

aī dz
i ∧ dz̄ ̄ whose components are

given by

X (0)

aī = R(0)

īkl̄
ω l̄k
a . (3.40)

It is interesting to note, that with this new building block the reduction can be performed

without having to fix any of the parameters an. We will therefore give the general result,

however keeping in mind that a1 = a2. We then obtain the following additional coupling

of the vectors to the five-dimensional Riemann tensor

2κ211SĜ4

∣

∣

RµνρσFaF b =

∫

M5

RµνρσF a
µν F

b
ρσ ⋆1 (3.41)

×
∫

Y3

[

f (α)

1 X (0)

aīX
(0) ̄i
b +f (α)

2 Z(0)k
īk ω ̄n

a ω i
bn +f (α)

3 Z(0)k l
k l ωaī ω

̄i
b

+f (α)

4 Z(0)k
īk ω ̄i

a ω l
b l +f (α)

5 Z(0)k l
k l ω i

ai ω j
bj +f (α)

6 Z(0)

īkl̄
ω ̄i
a ω l̄k

b

]

∗(0)

6 1.

The coefficients f (α)

i , i = 1, . . . , 6 depend on the unfixed an from the definition of the tensor

ŝ18 and are given by the linear relations

f (α)

1 = −96a1 + 24a2 − 36a3 − 24a4 + 4a5 − 2a6 , (3.42)

f (α)

2 = −192a1 + 72a2 − 66a3 − 48a4 + 6a5 − 4a6 ,

f (α)

3 = 48 + 96a1 − 24a2 + 36a3 + 24a4 − 4a5 + 2a6 ,

f (α)

4 = 96a1 − 24a2 + 36a3 + 24a4 − 4a5 + 2a6 ,

f (α)

5 = −48a1 + 12a2 − 18a3 − 12a4 + 2a5 − a6 ,

f (α)

6 = −48 + 48a1 − 36a2 + 12a3 + 12a4 + a6 .

Observe that we have f (α)

1 = −f (α)

4 = 2f (α)

5 . The last contribution we are lacking is

the structure with the schematic form ∇F a∇F b. The reduction reveals, that there are

two different structures present, which are however related o each other by exploiting

the Bianchi identity of the vectors Aa given by dF a = 0. In components this means

3∇[ρF
a
µν] = 0 giving us the identity

3∇µF aνρ∇[µF
b
νρ] = 0 ⇒ ∇νF

a
µρ∇ρF bµν =

1

2
∇µF

a
νρ∇µF bνρ , (3.43)

which allows us to eliminate one of the two structures. The resulting piece in the five-

dimensional Lagrangian is then

2κ211SG4

∣

∣

∇Fa∇F b =

∫

M5

∇µF
a
ρσ∇µF bρσ⋆1 (3.44)

×
∫

Y3

[

f (β)

1 X (0)

aīX
(0) ̄i
b +f (β)

2 Z(0)k
īk ω ̄l

a ω i
b l +f (β)

3 Z(0)k l
k l ωaī ω

j̄i
b

+f (β)

4 Z(0)k
īk ω ̄i

a ω l
b l +f (β)

5 Z(0)k l
k l ω i

ai ω j
bj +f (β)

6 Z(0)

īkl̄
ω ̄i
a ω l̄k

b

]

∗(0)

6 1
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and its corresponding coefficients in terms of the an are

f (β)

1 = −48a1 − 24a3 − 12a4 + 4a5 , (3.45)

f (β)

2 = −72a1 + 24a2 − 24a3 − 12a4 ,

f (β)

3 = 24a1 + 12a3 + 6a4 ,

f (β)

4 = 24a1 + 12a3 ,

f (β)

5 = 12a1 + 6a3 ,

f (β)

6 = −12 + 24a1 − 24a2 + 6a3 + 6a4 ,

where we again find a linear relation among the coefficients f (β)

4 = 2f (β)

5 . We can now put

the results together and use the identities (3.28)–(3.30) to obtain the four-derivative acion

of the vectors quadratic in F a

2κ211S
(5)

F =

∫

M5

ζab
[

192Rµν F a
ρµF

bρ
ν⋆1−96RF a∧⋆F b

]

(3.46)

+

∫

M5

RµνρσF a
µν F

b
ρσ ⋆1

∫

Y3

(2π)2
[

−f̃ (α)

1 X (0)
a ∧∗(0)

6 X (0)

b −2if (α)

2 c(0)2 īω
̄k

a ω i
bk ∗(0)

6 1

+2f (α)

3 ωbī ω
ī

b c(0)2 ∧J (0)+2if (α)

4 ω l
b l c

(0)

2 ∧ωa

+2f (α)

5 ω i
b i ω j

bj c(0)2 ∧J (0)+f̃ (α)

6 Z(0)

īkl̄
ω ̄i
a ω l̄k

b ∗(0)

6 1
]

+

∫

M5

∇µF
a
ρσ∇µF bρσ⋆1

∫

Y3

(2π)2
[

−f̃ (β)

1 X (0)
a ∧∗(0)

6 X (0)

b −2if (β)

2 c(0)2 īω
̄k

a ω i
bk ∗(0)

6 1

+2f (β)

3 ωaī ω
̄i

b c(0)2 ∧J (0)+2if (β)

4 ω l
b l c

(0)

2 ∧ωa

+2f (β)

5 ω i
b i ω j

bj c(0)2 ∧J (0)+f̃ (β)

6 Z(0)

īkl̄
ω ̄i
a ω l̄k

b ∗(0)

6 1
]

.

We furthermore introduced f̃ (α,β)

1 = (2π)−2f (α,β)

1 . A general four-derivative N = 2 su-

pergravity theory combined with taking into account the possibility to perform higher-

derivative field redefinitions could in principle, if available, be used to constrain or even

completely fix the coefficients an.

4 Type IIA supergravity on Calabi-Yau threefolds

In this section we derive the four dimensional two-derivative effective action of Type IIA su-

pergravity including both tree-level and one-loop eight-derivative terms in ten dimensions.

We stress that higher-derivative terms of the ten-dimensional dilaton and the RR-fields are

not known and therefore not taken into account. We therefore focus on the R4 terms in ten

dimensions and the conjectured H̃3 completion of the one-loop Type IIA terms from [12].

Since these conjectured terms are based on introducing a connection with torsion, upon

which the superinvariants J0,1 are evaluated, we assume for this section that the tree-level

terms are completed in the same fashion. We already saw in the context of the M-theory Y3
reduction, that the one-loop terms are compatible with N = 2 supegravity in five dimen-

sions. One consistency check of our computations will be, that we obtain the correction to
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the prepotential, from which the metric of the complexified Kähler moduli ta = ba + iva

derives, which takes the form

f(t) = fclass(t)− i
ζ(3)

2(2π)3
χ(Y3) =

1

3!
Kabct

atbtc − i
ζ(3)

2(2π)3
χ(Y3) + . . . , (4.1)

where the ellipses denote terms ∼ kabt
atb + cat

a, which however do not contribute to

the Kähler potential, as well as non-perturbative contributions stemming from worldsheet

instantons. This correction is well known [27, 28, 43], we however show a first derivation

which is solely based on a dimensional reduction of Type IIA supergravity.

4.1 The two-derivative effective action

The purpose of this section is to dimensionally reduce the ten-dimensional Type IIA super-

gravity action including the eight-derivative corrections introduced in section 2.1 to four

dimensions. We are considering the modified Y3 solution (2.16) including deformations of

the Kähler class parametrized by the fluctuations δva as before and in addition scalars ba

from the zero-mode expansion of the NS-NS two-form

B̃2 = baωa (4.2)

in harmonic (1, 1)-forms. Our focus will lie on the kinetic terms of these scalar modes,

since they combine into the complexified Kähler moduli ta = ba + iva and the geometry

on the space of these is specified by a prepotential f(ta). We will split again the reduction

into two separate parts: the reduction of the classical Type IIA action on the corrected

background (2.16) and the reduction of the eight-derivative terms in ten dimensions on the

lowest order Calabi-Yau background.

Classical action. The classical action gives rise to the following contribution to the

kinetic terms in four dimensions

2κ210S
class
IIA

∣

∣

kin.
=

∫

M4

[

VM−1536(2π)3αχ(Y3)(ℓ0+ℓ1)
]

R⋆1 (4.3)

+

∫

M4

e−2φ0 dδva∧⋆dδvb
∫

Y3

(

1

2
ωaī ω

̄i
b −ω i

ai ω
j

bj

)

∗(0)

6 1

−
∫

M4

768α(ℓ0+ℓ1)

(

Tab+
1

2
Rab

)

dδva∧⋆dδvb

+

∫

M4

1

2
e−2φ0dba∧⋆dbb

∫

Y3

ωaī ω
̄i

b ∗(0)

6 1−384α(ℓ0+ℓ1)Rabdb
a∧⋆dbb ,

where we defined the constants

ℓ0 = ζ(3)e−2φ0 , ℓ1 =
π2

3
(4.4)

and made use of the definition (3.10).
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Eight-derivative action. The reduction of the eight-derivative terms in ten dimensions

yields the action

2κ210
(

Stree
R̃4 + Sloop

R̃4
+ SH̃2

)∣

∣

kin.
=

∫

M4

−768 (2π)2 (ℓ0 − ℓ1)χ(Y3)R ⋆ 1 (4.5)

+

∫

M4

384 (ℓ0 + ℓ1)Rab db
a ∧ ⋆ dbb

+

∫

M4

384 (ℓ0 + ℓ1)Rab dδv
a ∧ ⋆ dδvb ,

which again has the property that, combining it with the reduction from the classical

action (4.3), all couplings involving Rab cancel, such that the four-dimensional action

is independent of it. Summing up the two pieces (4.3) and (4.5) of the action in four

dimensions leads to

2κ210 S
(4) =

∫

M4

VIIAR ⋆ 1 +
1

2
e−2φ0

(

K(0)

ab − 1

V (0)
K(0)

a K(0)

b

)

dba ∧ ⋆dbb (4.6)

+

∫

M4

1

2
e−2φ0

(

K(0)

ab +
1

V (0)
K(0)

a K(0)

b

)

dδva ∧ ⋆dδvb

+

∫

M4

768 (2π)3 (ℓ0 + ℓ1)
χ(Y3)

V (0)2
K(0)

a K(0)

b dδva ∧ ⋆dδvb .

We furthermore introduced the notation for the prefactor of the four-dimensional Ricci

scalar

VIIA = VMe−2φ0 − 1536 (2π)3 α ℓ0 χ(Y3) , (4.7)

which can be removed by a Weyl rescaling of the metric gµν → V−1
IIA gµν . Performing this

rescaling as well as the uplift from infinitesimal to finite fields va leads to the effective

action in Einstein frame

S(4) = S(4)

α′0 + α′3 S(4)

α′3 , (4.8)

where we have restored the explicit α′-dependence by using (2.2). We split the action (4.8)

into a classical and quantum (tree-level and one-loop) corrected part which are explicitly

given by

2κ210S
(4)

α′0 =

∫

M4

R ⋆ 1 +
1

2V

(

Kab −
1

VKaKb

)

dba ∧ ⋆ dbb (4.9)

+

∫

M4

1

V

(

1

2
Kab −

1

VKaKb

)

dva ∧ ⋆ dvb

and

2κ210S
(4)

α′3 =

∫

M4

χ(Y3) ζ(3)π
3

V2

(

Kab −
1

VKaKb

)

dba ∧ ⋆ dbb (4.10)

+

∫

M4

χ(Y3) ζ(3)π
3

V2

(

Kab −
4

VKaKb

)

dva ∧ ⋆ dvb

+

∫

M4

χ(Y3)π
5

3V3
e2φ0 KaKb dv

a ∧ ⋆ dvb.
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Let us now comment on the origin of the various corrections. It is evident in (4.6) that

the corrections to the kinetic term of the scalars ba cancel and can thus only come from

the Weyl rescaling. This in turn implies, that the correction is at tree-level in gs, since the

contributions to the Ricci scalar for the one-loop terms precisely cancel. This in turn can be

traced back to the fact, that the R4 terms in Type IIA suffer from a relative sign flip when

comparing tree-level to one-loop. The Kähler moduli receive both tree-level and one-loop

corrections. The one-loop corrections are marked in (4.10) with a factor proportional to

the dilaton vev.

Now let us discuss the possible corrections of the vectormultiplets containing the com-

plexified Kähler moduli ta. The vectormultiplet metric can not depend on a scalar in a

hypermultiplet, in particular the dilaton, which identifies the term ∼ e2φ0 in (4.10) as a

correction to a hypermultiplet. It is furthermore well known, that the prepotential in Type

IIA obtains a tree-level (in gs) correction of the prepotential according to

f(t) =
1

3!
Kabc t

atbtc − i a χ(Y3) , a ∈ R . (4.11)

The constant a is already completely fixed from the terms ∼ Kab in (4.10), while terms

∼ KaKb dv
a∧⋆ dvb can in principle be absorbed in the definition of a hypermultiplet scalar.

One can then compute the metric following from the prepotential (4.11) and compare the

coefficient with the one of the ∼ Kab terms in (4.10) which leads to

a = 4α′3 π3 ζ(3). (4.12)

Choosing units as ℓs = 2π
√
α′ = 1 one obtains the desired result for the prepotential

correction

f(t) =
1

3!
Kabct

atbtc − i
ζ(3)

2(2π)3
χ(Y3) . (4.13)

Note however, that a correction ∼ KaKb db
a ∧ ⋆ dbb cannot be absorbed in the definition

of a hypermultiplet scalar φ4 with e.g. a contribution φ4 = φ̃ + Kab
a + . . ., thus spoiling

the shift symmetry of ba. In order to match also the ba sector with the metric derived

from (4.13) we therefore need the additional contribution

∆S(4)

b = −
∫

M4

ζ(3)

8(2π)3
χ(Y3)V−3KaKb db

a ∧ ⋆ dbb (4.14)

from the reduction of the tree-level eight-derivative terms including H̃3. This missing

structure strongly indicates, that the logic of obtaining the B̃2 field completion of the

eight-derivative terms employed in [12] cannot be applied to the tree-level terms. However,

if one considers the modified replacement (2.14) the new structure t̃8t̃8H̃
2
3 R̃

3 gives precisely

the lacking contribution (4.14).

4.2 Four-derivative terms of the Kähler moduli

We proceed by determining the four-derivative terms of Type IIA supergravity in a similar

way to section 3.3. Due to the lack of a complete eight-derivative action of the dilaton in

ten dimensions we do not take into account the latter. We thus consider the action

SIIA
R̃4

= Stree
R̃4 + Sloop

R̃4
, (4.15)
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since the classical action does not lead to any four-derivative coupling in five dimensions.

However, let us add two comments on the impact of the classical action on the four-

derivative couplings. After the reduction, the four-derivative terms at order α′3 are not

in Einstein frame. Performing a Weyl rescaling of the Einstein-Hilbert term after the

reduction given by ∼ e−2φVR one obtains the Einstein frame four-derivative couplings.

Notice that any order α′3 contribution to the Ricci scalar does not alter the form of the

four-derivative terms at order α′3.

Tree-level terms. The tree-level terms give rise to the four-derivative couplings

2κ210 ℓ
−1
0 Stree

R̃4

∣

∣

four der.
=

∫

M4

768Z (0)
a

[

R (�δva)− 2Rµν ∇µ∇νδv
a
]

⋆ 1

+

∫

M4

768 (2π)2
[

RµνR
µν − 4R2

]

⋆ 1

∫

Y3

c(0)2 ∧ J (4.16)

+

∫

M4

96Z (0)

ab

[

R dδva ∧ ⋆ dδvb − 4Rµν ∂µδv
a∂νδv

b ⋆ 1
]

+

∫

M4

192Z (0)

ab

[

(�δva)(�δvb) ⋆ 1− 2∇µ∇νδv
a∇µ∇νδvb

]

⋆ 1 ,

where J = J (0) + δvaωa. Notice that the terms in the first line in (4.16) coupling to divisor

integrals of the second Chern class vanish up to derivative terms of the dilaton by virtue

of the contracted second Bianchi identity. Performing the Weyl rescaling gµν → e2φV−1gµν
one obtains the effective action in Einstein frame. Due to the appearance of the R2 terms in

four dimensions the Weyl rescaling is rather involved. We therefore refrain from spelling out

the effective action in terms of fluctuations but rather give an action in terms of the fields

after the uplift, which precisely reproduces the action obtained in terms of the fluctuations

δva. By defining Gµν = Rµν − 1
4Rgµν , in close analogy to the Einstein tensor3 one finds

2κ210 ℓ
−1
0 Stree

R̃4

∣

∣

four der.
=

∫

M4

768α

[

GµνGµνZ +
2

VKaZ Gµν ∇ν∇µva
]

⋆ 1

−
∫

M4

768α

(

1

2
Zab −

2

VKabZ +
1

V2
KaKbZ

)

Gµν ∇µva∇νvb

+

∫

M4

192α

(

Zab −
1

V2
KaKbZ

)

(�va) (�vb) ⋆ 1

−
∫

M4

384α

(

Zab −
2

V2
KaKbZ

)

∇µ∇νv
a ∇µ∇νvb ⋆ 1

+

∫

M4

768αZa

[

R (�va)− 2Rµν ∇µ∇νv
a
]

⋆ 1 . (4.17)

The last line in (4.17) involving the coupling to the divisor integrals of the second Chern

class again vanishes up to dilaton terms upon integrating by parts. We once more stress,

that the trivial uplift Z (0)

ab → Zab is not necessarily the complete answer and the role the

tensor Z(0)

īkl̄
plays both from a mathematical and a physical point of view is not clear.

3The Einstein tensor is given by Gµν = Rµν − 1
2
Rgµν .
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One-loop terms. The one-loop terms in ten dimensions give rise to the four-derivative

terms

2κ210 ℓ
−1
1 Sloop

R̃4

∣

∣

four der.
=

∫

M4

768Z (0)
a

[

2Rµν ∇µ∇νδv
a −R (�δva)

]

⋆ 1

+

∫

M4

192 (2π)2
[

2RµνρσR
µνρσ − 4RµνR

µν +R2
]

⋆ 1

∫

Y3

c(0)2 ∧ J

−
∫

M4

96Z (0)

ab

[

R dδva ∧ ⋆ dδvb − 4Rµν ∂µδv
a∂νδv

b ⋆ 1

+ 2(�δva)(�δvb)
]

. (4.18)

In the following we will again consider the Weyl rescaling of the squared Riemann terms

in (4.18). To do this we redefine the metric as gµν → e2φV−1gµν leading to a canonically

normalized Einstein-Hilbert term. Performing the rescaling and the uplift to finite fields

one obtains

2κ210 ℓ
−1
1 Sloop

R̃4

∣

∣

four der.
=

∫

M4

384Z
[

RµνρσR
µνρσ+

1

VRKa (�va)−2GµνGµν

]

⋆1

+

∫

M4

384

[

ZabGµν+
1

VZRKabgµν−
3

2V2
ZRKaKbgµν

]

∇µva∇νvb⋆1

−
∫

M4

192

[

Zab−
3

V2
ZKaKb

]

(�va)(�vb)⋆1 . (4.19)

4.3 Type IIB supergravity on Calabi-Yau threefolds at four derivatives

In this section we summarize the four-derivative couplings involving Kähler moduli derived

in [24] via the same logic as in the previous section but starting from type IIB supergravity

in ten dimensions. The intention is to present a complete discussion in this work. The two-

derivative discussion of type IIB supergravity at order α′3 was recently revisited in [29] for

generic h1,1, and reproduces the well known Euler-characteristic correction to the Kähler

potential [45]. This discussion involves the parametrisation of the higher-derivative dilaton

action and is thus beyond the treatment in this work. However, let us note that the

complete axio-dilaton dependence of the R4-terms in type IIB is known to be

SIIB
R̃4 =

1

4κ210

∫

E(τ, τ̄)3/2
(

t̃8t̃8 +
1

8
ǫ10ǫ10

)

R̃4∗̃1 , (4.20)

where E(τ, τ̄)3/2 is the SL(2,Z)-invariant Eisenstein series given by

E(τ, τ̄)3/2 =
∑

(m,n) 6=(0,0)

τ
3/2
2

|m+ n τ |3 , (4.21)

with τ = C̃0 + ie−φ̃ := τ1 + iτ2 the axio-dilaton. When performing the large τ2 limit,

corresponding to the small string coupling limit (4.21) becomes

E(τ, τ̄)3/2 = 2ζ(3) τ
3/2
2 +

2π2

3
τ
−1/2
2 +O(e−2πτ2) . (4.22)
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In the following discussion, we will use this approximation in (4.20) and only consider the

leading order gs contribution, given by

SIIB
R̃4 =

1

2κ210

∫

e−
3
2
φ̃

(

t̃8t̃8 +
1

8
ǫ10ǫ10

)

R̃4∗̃1 . (4.23)

The four-derivative corrections arising from the ten-dimensional R4-terms result in

2κ210ℓ
−1
0 SIIB

R̃4

∣

∣

four der.
= 192

∫

M4

(2π)2e−
3
2
φ̃
[

4RµνR
µν −R2

]

⋆ 1

∫

Y3

c(0)2 ∧ J (4.24)

+ 192

∫

M4

e−
3
2
φ̃Z (0)

ab

[(

−2Rµν +
1

2
Rgµν

)

∇µδva∇νδvb
]

⋆ 1

+ 192

∫

M4

e−
3
2
φ̃Z (0)

ab

[

(�δva) (�δvb)− 2∇µ∇νδv
a ∇µ∇νδvb

]

⋆ 1 ,

where we once again have J = J (0) + δvaωa and we have dropped the tilde on φ̃ to indicate

that it is now a four-dimensional field. The final result is derived by combing the Weyl

rescaling of the reduction of tyhe classical Einstein-Hilbert action, with the uplift of the

reduction result (4.24). The action one obtains is then

2κ210ℓ
−1
0 S(4)

kin =

∫

M4

R+
1

V

(

1

2
Kab −

1

VKaKb

)

dva ∧ ⋆ dvb

+

∫

M4

768α e−
3
2
φ̃

[

GµνGµνZ +
2

VKaZ Gµν ∇ν∇µva
]

⋆ 1

−
∫

M4

768α e−
3
2
φ̃

(

1

2
Zab −

2

VKabZ +
1

V2
KaKbZ

)

Gµν ∇µva∇νvb

+

∫

M4

192α e−
3
2
φ̃

(

Zab −
1

V2
KaKbZ

)

(�va) (�vb) ⋆ 1

−
∫

M4

384α e−
3
2
φ̃

(

Zab −
2

V2
KaKbZ

)

∇µ∇νv
a ∇µ∇νvb ⋆ 1 . (4.25)

As expected, since the tree-level R4-terms of both Type IIA and Type IIB have the same

structure, the results of the dimensional reduction coincide, see (4.17) and (4.25). On the

other hand, compared to the one-loop R4-terms in Type IIB, the corresponding one-loop

R4-terms in Type IIA suffer from a relative sign flip between the two basic structures given

by t̃8t̃8R̃
4 and ǫ10ǫ10R̃

4. The two main differences between one-loop contribution to the

four dimensional action at four derivatives are: the appearance of a R2
µνρσ term in Type

IIA, whereas this term is not present in the case of Type IIB and the lack of a term with

the structure ∇µ∇νv
a∇µ∇νvb in the case of Type IIA compared to Type IIB. Both cases

can be traced back to the different sign structures of the one-loop terms in ten dimensions

leading to non-trivial cancellations.

5 Threefold reduction up to four derivatives — the one modulus case

In the following we simplify the discussion and assume that the background geometries

under consideration have only one modulus. The advantage of the simplified discussion is,
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that all computations can be done exactly yet leading to non-trivial results. We consider

the R4-terms in M-theory and both Type II theories, where for the latter we consider

tree-level and one-loop terms.

5.1 M-theory one modulus reduction

In this section we comment on the M-theory compactification on a Calabi-Yau threefold

including higher-derivative terms for the case of a single (volume) modulus. We only

consider the gravitational terms in eleven dimensions in the following discussion. The

compactification ansatz for the metric is then given by

dŝ211 = eα̂Φ
(1)

(

gµνdx
µdxν + 2eu/3g(0)

ī dz
idz̄ ̄

)

, (5.1)

Φ(1) = −512

3
(2π)3 ∗(0)

6 c(0)3 , (5.2)

where in (5.1) the Weyl factor Φ(1) is computed using the metric gī = eu/3g(0)

ī . The metric

gī is furthermore normalized to unit volume, such that the relation

∫

Y3

∗61 =

∫

Y3

d6y
√
g = eu

∫

Y3

d6y
√

g(0) = eu (5.3)

holds. Note that the scalar field u(x) is related to the volume modulus by u(x) = logV(x).
As a first step we dimensionally reduce the action on the background (5.1) including the

R4-terms in eleven dimensions up to four external spacetime derivatives. One obtains in

five dimensions the following action

2κ211S
(5) =

∫

M5

euR ⋆ 1 +
5

6
eudu ∧ ⋆ du+ 768(2π)3 α̂χ(Y3)du ∧ ⋆ du (5.4)

+

∫

M5

α̂Z (0) eu/3
[

384RµνρσR
µνρσ − 768RµνR

µν + 192R2
]

⋆ 1

+

∫

M5

α̂Z (0) eu/3
[

256

3
Rµν ∂µu ∂νu ⋆ 1 + 512Rµν∇µ∇νu ⋆ 1

− 256R (�u) ⋆ 1− 64R du ∧ ⋆ du

]

+

∫

M5

α̂Z (0) eu/3
[

128

3
(�u)2 ⋆ 1 +

128

9
(�u) du ∧ ⋆ du+

80

9
(∂u)4 ⋆ 1

]

.

Note that the quantity Z (0) is computed using the metric g(0)

ī which is normalized to unit

volume. We furthermore made use of the schematic notation (∂u)4 ≡ ∂µu ∂
µu ∂νu ∂

νu.

For a canonical normalization of the five-dimensional Einstein-Hilbert term we perform a

Weyl rescaling

gµν → eσgµν , (5.5)

σ = −2

3
u,
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which results in the action

2κ211S
(5) =

∫

M5

R ⋆ 1− 1

2
du ∧ ⋆ du+ 768(2π)3 α̂χ(Y3)e

−udu ∧ ⋆ du (5.6)

+

∫

M5

α̂Z (0)
[

384RµνρσR
µνρσ − 768RµνR

µν + 192R2
]

⋆ 1

+

∫

M5

α̂Z (0)

[

384 (�u)2 ⋆ 1− 1280

3
(�u) du ∧ ⋆ du+

368

3
(∂u)4 ⋆ 1

]

+

∫

M5

α̂Z (0)

[

256R (�u) ⋆ 1− 448

3
R du ∧ ⋆ du

]

in Einstein frame, where we have furthermore performed integrations by parts. It is clear,

that higher-derivative actions of the form (5.6) suffer from ambiguities due to the possibility

of performing higher-derivative field redefinitions and integrations by parts. Nevertheless,

we will propose new field variables such that the action (5.6) takes a rather simple form.

If one redefines the five-dimensional metric gµν and the scalars u as

gµν → gµν + a(M)

1 αZ (0) (�u) gµν + a(M)

2 α̂Z (0) (∂u)2 gµν + a(M)

3 α̂Z (0) Rgµν (5.7)

+ a(M)

4 α̂Z (0) Rµν + a(M)

5 α̂Z (0) ∂µu ∂νu+ a(M)

6 αZ (0) ∇µ∇νu ,

u → u+ a(M)

7 α̂Z (0) (�u) + a(M)

8 α̂Z (0) (∂u)2 + a(M)

9 α̂Z (0) R , (5.8)

where the nine coefficients a(M)

i take the values

a(M)

1 = −512

3
a(M)

2 =
320

9
a(M)

3 = −128

a(M)

4 = 768 a(M)

5 = 384 a(M)

6 = 0

a(M)

7 = −384 a(M)

8 =
896

3
a(M)

9 = 0 ,

(5.9)

the five-dimensional action boils down to

2κ211S
(5) =

∫

M5

R ⋆ 1− 1

2
du ∧ ⋆ du+ 768(2π)3 α̂χ(Y3)e

−udu ∧ ⋆ du (5.10)

+

∫

M5

384 α̂Z (0)
[

RµνρσR
µνρσ − 4RµνR

µν +R2
]

⋆ 1

+

∫

M5

192 α̂Z (0) (∂u)4 ⋆ 1.

The only four-derivative couplings in (5.10) surviving this field redefinition are the squared

Riemann terms in the Gauss-Bonnet combination and the (∂u)4 interaction which leads to

a particularly simple form of the effective action. Effectively, one obtains a massless scalar

field u coupled to Gauss-Bonnet (super-)gravity and a (∂u)4 like interaction term. The

four-derivative terms couple to the theory by means of the divisor integral

Z (0) =

∫

Y3

c(0)2 ∧ J (0) =

∫

D
c(0)2 , (5.11)
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where D ≡ [J ]PD is the divisor Poincare dual to J . At this stage the coupling Z (0) is

independent of the modulus u = logV , since it is computed using the metric gī. The

modulus dependent coupling Z

Z =

∫

Y3

c2 ∧ J = eu/3
∫

Y3

c(0)2 ∧ J (0) = eu/3Z (0) , (5.12)

where the quantities c2 and J are now associated to the metric gī = eu/3g(0)

ī , can now be

implemented in (5.10) in a straightforward way using (5.12).

5.2 Type IIA one modulus reduction

Now we turn to the discussion of the one-modulus case in Type IIA. We therefore consider

in a similar fashion as in the M-theory context shown above the ansatz for the metric

ds̃210 = gµνdx
µdxν + 2eu/3g(0)

ī dz
idz̄ ̄ , (5.13)

φ̃ = φ0 + α 〈φ(1)〉 , (5.14)

where we again compute 〈φ(1)〉 given in (2.16) using the metric gī = eu/3g(0)

ī . Perform-

ing the dimensional reduction of the Type IIA action including tree-level and one-loop

corrections results in a four-dimensional effective action of the form

S(4) = S(4)

2 der. + αS(4)

R2 + αS(4)

Ru + αS(4)
u . (5.15)

The various contributions to (5.15) are the two-derivative action S(4)

2 der., the piece containing

the quadratic Riemann tensor terms S(4)

R2 , the part of the action containing the mixed

Riemann tensor and u terms S(4)

Ru and finally the contribution where all four derivatives act

on the u scalars, denoted by S(4)
u . The various pieces are

2κ210S
(4)

2 der.=

∫

M4

[

e−2φ0eu−1536α(2π)3χ(Y3)ℓ0
]

R⋆1+
5

6
e−2φ0 eudu∧⋆du

+768α(ℓ0+ℓ1)χ(Y3)(2π)
3du∧⋆du

]

, (5.16)

2κ210S
(4)

R2 =

∫

M4

Z
[

384ℓ1RµνρσR
µνρσ+(ℓ0−ℓ1)RµνR

µν−192(ℓ0−ℓ1)R
2
]

⋆1 , (5.17)

2κ210S
(4)

Ru=

∫

M4

Z
[

− 256

3
(ℓ0−ℓ1)R

µν∂µu∂νu⋆1−512(ℓ0−ℓ1)R
µν∇µ∇νu

+256(ℓ0−ℓ1)R (�u)⋆1+64(ℓ0−ℓ1)Rdu∧⋆du
]

, (5.18)

2κ210S
(4)
u =

∫

M4

Z
[

− 128

3
(ℓ0−ℓ1)(�u)2⋆1− 128

9
(ℓ0−ℓ1)(�u)du∧⋆du

+
80

9
(ℓ0+ℓ1)(∂u)

4⋆1+
256

9
ℓ0∂

µu∇µ∇νu∂
νu⋆1

+
256

3
ℓ0∇µ∇νu∇µ∇νu⋆1

]

, (5.19)

where we made use of the shorthand notation (4.4) and (5.12). A Weyl rescaling accord-

ing to

gµν →
[

e−2φ0eu − 1536α (2π)3 χ(Y3)ℓ0
]−1

gµν (5.20)
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transforms the action (5.15) into the four dimesnional Einstein frame action

S(4)

IIA = S(4)

class + α ℓ0 S
(4)

tree + α ℓ1 S
(4)

loop , (5.21)

where we split the action (5.21) in a classical piece S(4)

class, a tree-level (in gs) part S
(4)

tree and

a one-loop correction S(4)

loop. Using external space total derivative identities on can show

that the relations
∫

M4

d4x
√−g eu/3∇µu∇µ∇νu∇νu = −1

2

∫

M4

d4x
√−g eu/3

[

1

3
(∂u)4+(�u) (∂u)2

]

(5.22)

as well as
∫

M4

d4x
√−g eu/3∇µ∇νu∇µ∇νu =

∫

M4

d4x
√−g eu/3

[

(�u)2 +
1

2
(�u) (∂u)2 (5.23)

+
1

18
(∂u)4 −Rµν ∂µu ∂νu

]

hold. The constituents of (5.21) can then be shown to take the form

2κ210S
(4)

class =

∫

M4

R ⋆ 1− 2

3
du ∧ ⋆ du , (5.24)

2κ210S
(4)

tree =

∫

M4

Z
[

768RµνR
µν − 192R2

]

⋆ 1− 2560 (2π)3 χ(Y3) e
2φ0 e−u du ∧ ⋆ du

+

∫

M4

Z
[

6592

9
(�u)2 ⋆ 1− 128 (�u) du ∧ ⋆ du+

2048

81
(∂u)4 ⋆ 1

]

+

∫

M4

Z
[

2048

9
Rµν ∂µu ∂νu ⋆ 1 + 1024Rµν∇µ∇νu ⋆ 1

− 128R (�u) ⋆ 1− 128R du ∧ ⋆ du

]

, (5.25)

2κ210S
(4)

loop =

∫

M4

Z
[

384RµνρσR
µνρσ − 768RµνR

µν + 192R2
]

⋆ 1

+

∫

M4

768 (2π)3 e2φ0 χ(Y3) e
−u du ∧ ⋆ du

+

∫

M4

Z
[

448(�u)2 ⋆ 1− 6016

9
(�u) du ∧ ⋆ du+

4928

27
(∂u4) ⋆ 1

]

+

∫

M4

Z
[

− 256Rµν ∂µu∂νu ⋆ 1 + 512Rµν∇µ∇νu ⋆ 1

+ 128R (�u) ⋆ 1− 256R du ∧ ⋆ du
]

. (5.26)

Similar to the M-theory discussion in section 5.1 we can again consider higher-derivative

field redefinitions. The general ansatz for these redefinitions reads

gµν → gµν + a(A)

1 αZ (0) eu/3 (�u) gµν + a(A)

2 α̂Z (0) eu/3 (∂u)2 gµν + a(M)

3 α̂Z (0) eu/3Rgµν

+ a(A)

4 α̂Z (0) eu/3Rµν + a(A)

5 α̂Z (0) eu/3 ∂µu ∂νu+ a(A)

6 αZ (0) eu/3∇µ∇νu , (5.27)

u → u+ a(A)

7 α̂Z (0) eu/3 (�u) + a(A)

8 α̂Z (0) eu/3 (∂u)2 + a(A)

9 α̂Z (0) eu/3R . (5.28)
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i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

αi −384 2048
9 −192 768 512

9 1024 −3184
3 −96 0

βi −384 1280
3 −192 768 −256

3 512 −592 928
3 0

Table 2. Our choice of the coefficients in the field redefinitions.

The coefficients a(A)

i can then have tree-level and one-loop contributions proportional to

ζ(3)e−2φ0 and π2/3 respectively which we again choose in a way, such that the action

takes a particularly simple form. The factors multiplying these tree-level and one-loop

coefficients in the various parameters a(A)

i ≡ αi ℓ0 + βi ℓ1 are listed in table 2.

The various pieces in the four-dimensional action we obtain after these redefinitions

are then

2κ210S
(4)

class =

∫

M4

R ⋆ 1− 2

3
du ∧ ⋆ du , (5.29)

2κ210S
(4)

tree = −
∫

M4

2560 (2π)3 χ(Y3) e
2φ0 e−u du ∧ ⋆ du +

5632

81
Z (∂u)4 ⋆ 1, (5.30)

2κ210S
(4)

loop =

∫

M4

384Z
[

RµνρσR
µνρσ − 4RµνR

µν +R2
]

⋆ 1 (5.31)

+

∫

M4

768 (2π)3 e2φ0 χ(Y3) e
−u du ∧ ⋆ du− 3008

27
Z (∂u)4 ⋆ 1 .

5.3 Type IIB one modulus reduction

We finally aim to include the eight-derivative R4-terms for the case of one modulus in

Type IIB. We will take into account the classical Einstein-Hilbert action, which is included

in Type IIB supergravity, as well as the tree-level and one-loop R4-corrections in ten

dimensions. Since the higher-derivative terms of the dilaton and the NS-NS two-form are

not known in Type IIB, we do not include them as dynamical fields. The action we are

considering thus takes the form

SIIB = SIIB
class + αSIIB

R̃4 , (5.32)

with the classical action

SIIB
class =

∫

M10

R̃ ∗̃ 1− 1

2τ22
dτ ∧ ∗̃ dτ̄ + . . . . (5.33)

and the leading order R4-action defined in (4.20). The ellipses in (5.33) stand for the

NS-NS two-form and the R-R fields which we do not display here. The ansatz for the

ten-dimensional fields is the background solution found in [29]

ds̃2 = eαΦ
(1)
(

gµνdx
µdxν + 2eu/3g(0)

ī dz
idz̄ ̄

)

(5.34)

Φ(1) = −192 (2π)3 Y (∗(0)

6 c(0)3 )

φ̃ = φ0 +O(α) ,
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where we have defined

Y ≡ ζ(3) e−3φ0/2 +
π2

3
eφ0/2 . (5.35)

As in the M-theory and Type IIA reduction, we introduced the modulus u, such that the

internal Calabi-Yau metric g(0)

ī is normalized to unit volume and the overall Weyl factor

Φ(1) is again computed using gī = eu/3g(0)

ī . There is furthermore a correction to the dilaton

φ̃(1) ∼ ∗6 c3, which however only contributes at order α2 to the action and can therefore

be ignored.

The results of the dimensional reduction are very similar to the tree-level terms of

Type IIA presented in section 5.2. We therefore refrain from giving the results before the

Weyl rescaling and simply state the result in Einstein frame. The four dimension effective

action is then

2κ210S
(4)

IIB =

∫

M4

R ⋆ 1− 2

3
du ∧ ⋆ du− 2560 (2π)3 αχ(Y3)Y e−u du ∧ ⋆ du (5.36)

+

∫

M4

αZ Y
[

768RµνR
µν − 192R2

]

⋆ 1

+

∫

M4

αZ Y

[

2048

9
Rµν ∂µu ∂νu ⋆ 1 + 1024Rµν∇µ∇νu ⋆ 1

− 128R (�u) ⋆ 1− 128R du ∧ ⋆ du

]

+

∫

M4

αZ Y

[

6592

9
(�u)2 ⋆ 1− 128 (�u) du ∧ ⋆ du+

2048

81
(∂u)4 ⋆ 1

]

.

We can furthermore use the field redefinitions (5.27) and (5.28) and the coefficients in the

first column of table 2 to simplify (5.36). Note that we also have to replace ζ(3) e−2φ0 → Y .

This finally leads to the action

2κ210S
(4)

IIB =

∫

M4

R ⋆ 1− 2

3
du ∧ ⋆ du− 2560 (2π)3 αχ(Y3)Y e−u du ∧ ⋆ du

−
∫

M4

α
5632

81
Z Y (∂u)4 ⋆ 1 . (5.37)

Note that compared to (5.15) the couplings in the action (5.36) involve different powers

of the dilaton vev φ0. This is due to the fact, that we started on the one hand in the

ten-dimensional string frame for Type IIA, whereas on the other hand our starting point

for Type IIB was already the Einstein frame in ten dimensions. We can obtain the same

powers of the dilaton as in (5.15) if we perform the shift u → u− 3
2φ0.

5.4 Comments on the N = 1 orientifold truncation

In this final subsection we will discuss the orientifold truncation of the N = 2 compactifica-

tion performed in the previous subsection. The resulting theory is expected to be a N = 1

supergravity theory and we will focus on the subsector of the theory involving the Kähler

structure deformations. In addition to this restricted focus we will not try to complete

the compactification to a fully consistent N = 1 setup. In fact, the presence of orientifold
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planes would require a more complete treatment involving D-branes, which themselves

eventually contribute higher-derivative terms to the four-dimensional theory. With these

caveats in mind we can nevertheless try to push our N = 2 results and comment on the

recent proposal of [48] to stabilize moduli. This procedure of direct truncation from N = 2

to N = 1 has been used before in the determination of corrections to the N = 1 Kähler

potential in [29, 45].

In the N = 1 settings one faces similar difficulties as for in the discussion of the

N = 2 Calabi-Yau threefold compactifications of the previous sections. In particular, a

general N = 1 four-derivative on-shell action to which one can compare the effective action

after performing a reduction is currently not available. There are, however, partial results

extracted by expanding certain four-derivative terms in superspace [63]. Therefore, it is

tempting to compare the N = 1 truncated one modulus reduction of section 5.3 to the

action of [63] as suggested in [48]. We will therefore briefly review the required results.

The main idea is to take into account a four-derivative N = 1 Lagrangian and infer from

the four-derivative coupling a corresponding scalar potential. The relevant four-derivative

Lagrangian is [48, 63]

Lbos.√−g
=

1

2
R−Gī(A, Ā) ∂µA

i∂µĀ̄ − 2eK T l̄ k
i ̄DkW Dl̄W ∂µA

i∂µĀ̄ (5.38)

+ Tijk̄l̄ ∂µA
i∂µAj ∂νĀ

k̄∂νĀl̄ − V (A, Ā) .

In (5.38) Ai are complex scalars in chiral multiplets, W is the holomorphic superpotential,

Tijk̄l̄ is the coupling tensor for the four-derivative interaction and Dj is the Kähler covariant

derivative. Additionally, the Kähler metric Gī is given in terms of a Kähler potential

Gī=∂i∂̄K(A, Ā). The scalar potential in (5.38) consists of two terms V (A, Ā)=V(0)+V(1),

where

V(0) = eK
(

GīDiW D̄W − 3|W |2
)

,

V(1) = −e2KT ı̄̄klDı̄W D̄W DkW DlW . (5.39)

In a simplified setup with only a single Kähler modulus sitting in a chiral multiplet after

the N = 1 truncation we have to compare (5.38) with the reduction result (5.37).

In order to perform the suggested comparison we first have to determine the correct

N = 1 coordinates. It is well-known [30, 45, 62] that at leading order one has to introduce

complex fields A ≡ ρ + i e
2
3
u, where ρ is the appropriately re-scaled scalar arising from

the R-R four-form and we recall u = logV is the logarithm of the Einstein-frame volume

of Y3 as seen in (5.3). Taking into account the order α′3 corrections at the two-derivative

level they potentially correct the N = 1 coordinates. However, it was argued in [29, 45]

that the above A and the complex dilaton-axion τ = C0 + ie−φ are still the correct N = 1

coordinates. In the following we will freeze τ and only consider the dynamics of the field A.

In order to match the action (5.38) with the reduction result (5.37) we now have to

assume, that the complexified coordinates A, especially the scalars ρ, arrange themselves

in way, such that only the contribution (∂A)2(∂Ā)2 enters the four dimensional action.
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Comparing the action in the correct field variables with (5.38) leads to4

TAAĀĀ = − 11

384

(2π)−4

V8/3
ζ(3)

(

Imτ
)3/2

∫

Y3

c2 ∧ J . (5.40)

This fixes, at least under the stated assumptions, the numerical factor discussed in [48].

Let us stress two points. First, we have used a non-trivial coordinate redefinition to ob-

tain (5.37) and it would be desirable to study its significance in this N = 1 truncated

scenario. Second, it would be desirable to compute the terms involving ρ in order to justify

the crucial assumption about the dependence on the complex moduli A. In this compu-

tation one would have to use the same non-trivial coordinate redefinition, which would

provide a non-trivial check.

Let us close this section by some further comments. So far we have failed to generalize

the derivation of Tijk̄l̄ or other couplings for the kinetic terms of vi for more than one

modulus, since the computational complexity increases significantly. Also the derivation

of the actual scalar potential seems currently difficult, since many of the required higher-

derivative terms in ten dimensions are not known. While (5.40) seems to suggest that a

potential V(1) given in (5.38) is induced if a non-trivial superpotential is included, we are

not able to give any further evidence for that. It has been shown, for example, in [61] that

it can happen in string reductions that the potential vanishes if one finds other structures

for the kinetic terms not appearing in (5.38). It would be desirable to explore this further.
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A Definitions and conventions

The metric signature of the ten and eleven-dimensional spacetime is (−,+, . . . ,+). Our

conventions for the totally antisymmetric tensor in Lorentzian signature in an orthonormal

frame are ǫ012...9(10) = ǫ0123(4) = +1. The epsilon tensor in d dimensions then satisfies

ǫR1···RpN1...Nd−pǫR1...RpM1...Md−p
= (−1)s(d− p)!p!δN1

[M1
. . . δNd−p

Md−p] , (A.1)

where s = 0 if the metric has Euclidean signature and s = 1 for a Lorentzian metric.

We adopt the following conventions for the Christoffel symbols and Riemann tensor

ΓR
MN =

1

2
gRS(∂MgNS+∂NgMS−∂SgMN ) , RMN =RR

MRN ,

RM
NRS = ∂RΓ

M
SN−∂SΓ

M
RN+ΓM

RTΓ
T
SN−ΓM

STΓ
T
RN , R=RMNgMN , (A.2)

4In this expression we have set 2π
√
α′ = 1.
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with equivalent definitions on the internal and external spaces. Written in components,

the first and second Bianchi identity are

RO
PMN +RO

MNP +RO
NPM = 0

∇LR
O
PMN +∇MRO

PNL +∇NRO
PLM = 0 . (A.3)

Differential p-forms are expanded in a basis of differential one-forms as

Λ =
1

p!
ΛM1...Mpdx

M1 ∧ . . . ∧ dxMp . (A.4)

The wedge product between a p-form Λ(p) and a q-form Λ(q) is given by

(Λ(p) ∧ Λ(q))M1...Mp+q
=

(p+ q)!

p!q!
Λ
(p)
[M1...Mp

Λ
(q)
M1...Mq ]

. (A.5)

Furthermore, the exterior derivative on a p-form Λ reads

(dΛ)NM1...Mp = (p+ 1)∂[NΛM1...Mp] , (A.6)

while the Hodge star of p-form Λ in d real coordinates is given by

(∗dΛ)N1...Nd−p
=

1

p!
ΛM1...MpǫM1...MpN1...Nd−p

. (A.7)

Moreover, the identity

Λ(1) ∧ ∗Λ(2) =
1

p!
Λ
(1)
M1...Mp

Λ(2)M1...Mp ∗ 1 (A.8)

holds for two arbitrary p-forms Λ(1) and Λ(2).

Let us specify in more detail our conventions regarding complex coordinates in the in-

ternal space. For a complex Hermitian manifold M with complex dimension n the complex

coordinates z1, . . . , zn and the underlying real coordinates ξ1, . . . , ξ2n are related by

(z1, . . . , zn) =

(

1√
2
(ξ1 + iξ2), . . . ,

1√
2
(ξ2n−1 + iξ2n)

)

. (A.9)

Using these conventions one finds

√
gdξ1 ∧ . . . ∧ dξ2n =

√
g(−1)

(n−1)n
2 indz1 ∧ . . . ∧ dzn ∧ dz̄1 ∧ . . . ∧ dz̄n =

1

n!
Jn , (A.10)

with g the determinant of the metric in real coordinates and
√
det gmn = det gij̄ . The

Kähler form is given by

J = igīdz
i ∧ dz̄ ̄ . (A.11)

Let ωp,q be a (p, q)-form, then its Hodge dual is the (n− q, n− p) form

∗ωp,q =
(−1)

n(n−1)
2 in (−1)pn

p!q!(n− p)!(n− q)!
ωm1...mpn̄1...n̄qǫ

m1...mp

r̄1...r̄n−p

× ǫ
n̄1...n̄q

s1...sn−q
dzs1 ∧ · · · ∧ dzsn−q ∧ dz̄r̄1 ∧ · · · ∧ dz̄r̄

n−p

. (A.12)
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Finally, let us record our conventions regarding Chern forms. To begin with, we define

the curvature two-form for Hermitian manifolds to be

Ri
j = Ri

jkl̄ dz
k ∧ dz̄ l̄ (A.13)

and we set

Tr R = Rm
mrs̄ dz

r ∧ dz̄s̄ ,

Tr R2 = Rm
nrs̄R

n
mr1s̄1 dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ,

Tr R3 = Rm
nrs̄R

n
n1r1s̄1R

n1
mr2s̄2 dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 . (A.14)

The Chern forms can then be expressed in terms of the curvature two-form as

c0 = 1 ,

c1 =
i

2π
Tr R ,

c2 =
1

(2π)2
1

2

(

Tr R2 − (Tr R)2
)

, (A.15)

c3 =
1

3
c1 ∧ c2 +

1

(2π)2
1

3
c1 ∧ Tr R2 − 1

(2π)3
i

3
Tr R3 ,

c4 =
1

24

(

c41 −
6

(2π)2
c21 ∧ Tr R2 − 8i

(2π)3
c1 ∧ Tr R3

)

+
1

(2π)4
1

8

(

(Tr R2)2 − 2Tr R4
)

.

The Chern forms of an n-dimensional Calabi-Yau manifold Yn reduce to

c3(Yn≥3) = − 1

(2π)3
i

3
Tr R3 and c4(Yn≥4) =

1

(2π)4
1

8

(

(Tr R2)2 − 2Tr R4
)

. (A.16)

We furthermore introduce the intersection numbers Kabc as

Kabc = Da ·Db ·Dc =

∫

Y3

ωa ∧ ωb ∧ ωc , (A.17)

where Da = [ωa]PD are divisors Poincare dual to the harmonic (1,1)-forms ωa. Contractions

of the intersection numbers with Kähler moduli va, such as the four-cycle volumes Ka are

defined as

Ka =
1

2
Kabcv

bvc (A.18)

Kab = Kabcv
c .

The corresponding quantities on the backgroud Calabi-Yau are denoted by K(0)

ab , K
(0)
a are

defined in an analogous way.

B Eight-derivative terms in ten and eleven dimensions

B.1 Eight-derivative terms in ten dimensions

Here we collect the explicit forms of the eight-derivative terms relevant for the discussion

in the main part. The relevant structures containing four Riemann tensors are the familiar
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t̃8t̃8R̃
4 and ǫ10ǫ10R̃

4 combinations. Their explicit form in terms of ten-dimensional indices is

t̃8t̃8R̃
4 = t̃A1···A8 t̃B1···B8

R̃B1B2
A1A2

· · · R̃B7B8
A7A8

(B.1)

ǫ10ǫ10R̃
4 = ǫ10

C1C2A1···A8ǫ10 C1C2B1···B8
R̃B1B2

A1A2
· · · R̃B7B8

A7A8
, (B.2)

where ǫ10 is the ten-dimensional curved spacetime Levi-Civita tensor and the tensor t̃8 has

the explicit representation in terms of the metric tensor

t̃A1···A8
8 =

1

16

[

−2
(

g̃A1A3 g̃A2A4 g̃A5A7 g̃A6A8+g̃A1A5 g̃A2A6 g̃A3A7 g̃A4A8+g̃A1A7 g̃A2A8 g̃A3A5 g̃A4A6
)

+8
(

g̃A2A3 g̃A4A5 g̃A6A7 g̃A8A1+g̃A2A5 g̃A6A3 g̃A4A7 g̃A8A1+g̃A2A5 g̃A6A7 g̃A8A3 g̃A4A1
)

−(A1↔A2)−(A3↔A4)−(A5↔A6)−(A7↔A8)
]

. (B.3)

The B̃2 completion is then obtained by introducing the connection with torsion as outlined

in section 2.1

Ω±
αβ

A = Ω αβ
A ± 1

2
H̃3A

αβ , (B.4)

where ΩA
αβ are the components of the so(1, 9)-valued connection one-form correspond-

ing to the Levi-Civita connection. In this notation α, β are flat tangent space indices

of M10. The structure ǫ10ǫ10H̃
2
3 R̃

3 which enters the replacement in section 2.1 has the

component form

ǫ10ǫ10H̃
2
3 R̃

3(Ω±) = ǫ10C1A0···A8 ǫ
C1B0···B8
10 H̃3

A1A2
B0H̃3B1B2

A0 (B.5)

× R̃(Ω+)
A3A4

B3B4
· · · R̃(Ω+)

A7A8

B7B8
.

B.2 Eight-derivative terms in eleven dimensions

The classical eleven-dimensional supergravity action gets corrected by different contribu-

tions which should be discussed in the following. The most prominent higher curvature

term in M-theory is the sector containing four Riemann tensors. These involve two different

structures namely

SR4 =
1

2κ211

∫

M11

(

t̂8t̂8 −
1

24
ǫ11ǫ11

)

R̂4∗̂1. (B.6)

In (B.6) the two quantities t̂8 t̂8R̂
4 and ǫ11 ǫ11R̂

4 have the index representation

t̂8 t̂8R̂
4 = t8

M1···M8t8N1···N8
R̂N1N2

M1M2
· · · R̂N7N8

M7M8
(B.7)

ǫ11ǫ11R̂
4 = ǫ11

R1R2R3M1···M8ǫ11R1R2R3N1···N8
R̂N1N2

M1M2
· · · R̂N7N8

M7M8
. (B.8)

The tensor t̂8 is defined in a completely analogous way as in (B.3). These R4-terms are

furthermore supplemented by another term quartic in the Riemann tensor. This term

however also comprises a three form Ĉ3. This piece of the higher-derivative action then

has the form

SC3X8 = −32213

2κ211

∫

M11

Ĉ3 ∧ X̂8 (B.9)
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where eight form X̂8 is defined as

X̂8 =
1

192

[

Tr R̂4 − 1

4

(

Tr R̂2
)2

]

(B.10)

which is in terms of the (real) curvature two form

R̂M
N =

1

2
R̂M

NN1N2
dxN1 ∧ dxN2 . (B.11)

In addition to these quartic Riemann tensor terms it was conjectured in [12] that the

complete Ĝ4 dependence at O(Ĝ2
4) is captured by introducing

t̂8 t̂8 Ĝ
2
4R̂

3= t̂M1···M8
8 t̂8N1···N8Ĝ4

N1
M1R1R2Ĝ4

N2
M2

R1R2R̂N3N4
M3M4

· · ·R̂N7N8
M7M8

(B.12)

ǫ11ǫ11Ĝ
2
4R

3= ǫ11
RM1···M10ǫ11RN1···N10

Ĝ4
N1N2

M1M2Ĝ4
N3N4

M3M4R̂
N5N6

M5M6
· · ·R̂N9N10

M9M10
.

(B.13)

The last eleven-dimensional eight-derivative contribution involves the tensor ŝ18
parametrized by six unknown coefficients an ∈ R. We then have the additional coupling of

the form

ŝ18(∇̂Ĝ4)
2R̂2 = ŝ18

N1···N18R̂N1···N4
R̂N5···N8

∇̂N9Ĝ4N10···N13∇̂N14Ĝ4N15···N18

= A+
6

∑

n=1

anZn , (B.14)

where the quantities A,Zn are defined by

A = −24B5 − 48B8 − 24B10 − 6B12 − 12B13 + 12B14 + 8B16 − 4B20 +B22 + 4B23 +B24

Z1 = 48B1 + 48B2 − 48B3 + 36B4 + 96B6 + 48B7 − 48B8 + 96B10 + 12B12 + 24B13

Z2 = −48B1 − 48B2 − 24B4 − 24B5 + 48B6 − 48B8 − 24B9 − 72B10 − 24B13 + 24B14

−B22 + 4B23

Z3 = 12B1 + 12B2 − 24B3 + 9B4 + 48B6 + 24B7 − 24B8 + 24B10 + 6B12 + 6B13 + 4B15

− 4B17 + 3B19 + 2B21

Z4 = 12B1 + 12B2 − 12B3 + 9B4 + 24B6 + 12B7 − 12B8 + 24B10 + 3B12 + 6B13

+ 4B15 − 4B17 + 2B20

Z5 = 4B3 − 8B6 − 4B7 + 4B8 −B12 − 2B14 + 4B18

Z6 = B4 + 2B11. (B.15)
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The elements Bi form a basis of the terms with the structure (∇̂Ĝ4)
2R̂2 given in (B.16).

B1 = RN1N2N3N4
RN5N6N7N8

∇N5GN1N7N8
N9

∇N3GN2N4N6N9

B2 = RN1N2N3N4
RN5N6N7N8

∇N5GN1N3N7
N9

∇N8GN2N4N6N9

B3 = RN1N2N3N4
RN5N6N7N8

∇N5GN1N3N7
N9

∇N6GN2N4N8N9

B4 = RN1N2N3N4
RN5N6N7N8

∇N9G
N3N4N7N8∇N6GN9N1N2N5

B5 = RN1N2N3N4
R N4

N5N6N7
∇N1GN2N3

N8N9
∇N5GN6N7N8N9

B6 = RN1N2N3N4
R N4

N5N6N7
∇N1GN2N5

N8N9
∇N3GN6N7N8N9

B7 = RN1N2N3N4
R N4

N5N6N7
∇N1GN2N5

N8N9
∇N7GN3N6N8N9

B8 = RN1N2N3N4
R N4

N5N6N7
∇N1GN3N5

N8N9
∇N2GN6N7N8N9

B9 = RN1N2N3N4
R N4

N5N6N7
∇N1GN3N5

N8N9
∇N6GN2N7N8N9

B10 = RN1N2N3N4
R N4

N5N6N7
∇N9G

N3N5N7
N8

∇N9GN1N2N6N8

B11 = RN1N2N3N4
R N4

N5N6N7
∇N8G

N1N2N6
N9

∇N9GN3N5N7N8

B12 = RN1N2N3N4
R N4

N5N6N7
∇N3GN5N6

N8N9
∇N7GN2N1N8N9

B13 = RN1N2N3N4
R N1 N3

N5 N6
∇N9G

N2N6
N7N8

∇N9GN4N5N7N8

B14 = RN1N2N3N4
R N1 N3

N5 N6
∇N9G

N2N4
N7N8

∇N5GN4N7N8N9

B15 = RN1N2N3N4
R N1 N3

N5 N6
∇N2GN6

N7N8N9
∇N5GN4N7N8N9

B16 = RN1N2N3N4
R N1 N3

N5 N6
∇N2GN4

N7N8N9
∇N5GN6N7N8N9

B17 = RN1N2N3N4
R N1 N3

N5 N6
∇N2GN5

N7N8N9
∇N4GN6N7N8N9

B18 = RN1N2N3N4
R N1 N3

N5 N6
∇N9G

N5N6
N7N8

∇N4GN2N7N8N9

B19 = RN1N2N3N4
R N3N4

N5N6
∇N9G

N1N5
N7N8

∇N9GN2N6N7N8

B20 = RN1N2N3N4
R N3N4

N5N6
∇N1GN5

N7N8N9
∇N2GN6N7N8N9

B21 = RN1N2N3N4
R N3N4

N5N6
∇N1GN5

N7N8N9
∇N6GN2N7N8N9

B22 = RN1N2N3N4
R N1N3N4

N5
∇N2GN6N7N8N9

∇N5GN6N7N8N9

B23 = RN1N2N3N4
R N1N3N4

N5
∇N9G

N2
N6N7N8

∇N9GN5N6N7N8

B24 = RN1N2N3N4
RN1N2N3N4∇N5GN6N7N8

∇N6GN5N7N8N9 (B.16)
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