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Introduction

Finite automata together with regular languages form one of the cornerstones of

theoretical computer science. They are actively investigated mathematical objects

which are of unquestionable importance both from a theoretical and practical point

of view [RS97]. Their widespread use is mainly due to two facts. First, words

can serve as models for a wide range of sequential systems, as they can simulate

sequential behavior quite naturally. Second, the concept of regular word languages

can be defined in several different, but equivalent ways. To establish the terms

and notations of the concepts which we will work with, we will fix the following

terminology:

• Regularity will mean acceptance by finite automata.

• Recognizability will mean algebraic recognizability by finite algebras or finite-

index congruences.

• Rationality will mean expressibility by rational (also called regular) expres-

sions.

• MSO-definability will mean definability by monadic second-order logical for-

mulas.

In the following we will use these concepts not just for word languages, but also for

languages of other structures. In addition, we shall employ the following notations

for the corresponding language classes: Reg, Rec, Rat and MSO. The classical results

of automata theory (due to Büchi, Kleene, Myhill and Nerode) demonstrate that the

equalities Reg = Rec = Rat = MSO hold for languages of finite words.

It should be emphasized here that these four concepts are not simply four different

ways of defining the same class of word languages, but rather each of them contains

the essence of this class from a different perspective. In certain situations one of them

may have some advantage and be better suited than the other three.

Of course, there are many other computational models that have more complex

structures than finite words. These include infinite words [PP04, Wil94], trees [GS84],

traces [DR95], partially ordered sets (posets for short) [Pra86, LW98, LW00, Kus03a],

message sequence charts[Kus03b] and graphs [Cou91, CW05]. These models were

introduced and applied to capture other computational aspects like timing and con-

currency.

When investigating these more complex models the natural question arises – which

is of crucial importance – about what results of the classical theory of words can be

generalized and how. In many important cases the above notions can be suitably

defined and are known to be equivalent. But sometimes we are faced with serious
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problems. It is not always clear how to choose an appropriate algebraic or logical

framework. And, for instance, for graphs, for posets, and even for sp-posets in general,

the concept of an automaton that captures recognizability is not known. For a general

overview of this topic, we refer to the paper by Weil [Wei04a] which surveys the

concept of recognizability in computer science.

The subject of this thesis is about the generalization of the fundamental results

of classical automata theory to higher dimensions. Both finite and infinite higher

dimensional words and their languages will be defined and investigated.

Fortunately, we can restrict our studies to just the two-dimensional case, since

both our concept and results can be readily generalized to any finite number of

dimensions. For the generalization we adopted an algebraic approach, namely we

considered languages over free binoids – a generalization of monoids, where two inde-

pendent associative operations are defined and they have a common identity element.

Let us continue with a brief overview of the related literature. One of our starting

points will be the concept of (m, n)-structures introduced by Ésik in [Ési00], where

m and n are nonnegative integers. They will provide us with a description of the

elements of the free binoids we will work with. This realization of binoid languages

is essential for extending logical definability.

Our study was influenced to a great extent by the work of Lodaya and Weil

[LW98, LW00, LW01] and Kuske [Kus03a] on automata operating on series-parallel

posets (sp-posets for short). Sp-poset languages can be regarded as a two-dimensional

generalization of the classical theory of words in which two independent associative

operations are defined, but one of them is commutative as well. Also, sp-posets

may be characterized as those posets that does not contain an induced subgraph

isomorphic to the “N” directed graph [Gra81]. Moreover, sp-posets may serve as

models of modularly constructed concurrent systems [Pra86].

Our investigation also owes much to the work of Hoogeboom and ten Pas [HtP96,

HtP97] on text languages. In particular, we will use their result which establishes

the equality Rec = MSO for text languages in order to show that the same equality

holds for binoid languages as well.

Automata and languages over free binoids have also been studied independently

by Hashiguchi et al. [HIJ00, HWJ03, HSJ04]. However they employed a totally

different approach, namely they used ordinary finite automata to define regular binoid

languages. We make a detailed comparison between their concepts of regularity and

ours.

A different two-dimensional generalization of the classical framework is provided

by picture languages [GR97]. In [Dol05], Dolinka demonstrated that picture languages
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and binoid languages satisfy the same identities (for the operations of union, the two

products, the two (Kleene) iterations of the two products and some constants). See

[Dol07] too for more details about the axiomatization of the equational theory of

binoid languages. Binoid languages are also closely related to visibly pushdown and

nested word languages [AM04, AM06].

Results of the Thesis

Biwords and their Representations

It is generally agreed that automata models operate on elements of some free algebra.

Thus if we want to generalize the notion of automata to higher dimensions, it is

natural to ask how they can operate on the elements of the free binoids.

Let Σ be an alphabet (i.e. a finite nonempty set). We can consider the free binoid

over Σ, which we will be denoted by Σ∗(•, ◦). This is well-defined from universal

algebraic considerations. The two product operations will be called the horizontal

product (•) and the vertical product (◦). In the following the elements of Σ∗(•, ◦) will

be called biwords, while the subsets of Σ∗(•, ◦) will be binoid languages (over Σ). The

identity of Σ∗(•, ◦) will be called the empty biword, denoted by ε.

It is usual to describe biwords by terms using the letters of Σ, parentheses and two

operation symbols, but we will also find that biwords can be represented in several

other equivalent ways. First we consider perhaps the most intuitive one of them,

which will be called the two-dimensional word representation.

To construct two-dimensional words from the letters of Σ, we need two indepen-

dent concatenation operations. The first one will be called the horizontal concate-

nation (denoted by •), while the second one will be called the vertical concatenation

(denoted by ◦).

We will build two-dimensional words inductively from smaller elements called

blocks. Initially we can use just the letters of Σ as blocks, then we can form more

complex blocks by using the two concatenation operations. Naturally, the horizontal

concatenation places some finite number of blocks to the left/right of each other,

while the vertical concatenation places the blocks above/beneath each other. Now

two-dimensional words are defined as those blocks that can be obtained from the

elements of Σ by a finite number of applications of the two concatenations. We also

have an empty two-dimensional word ε, which has no letters.

Another representation of biwords can be given by using biposets. A biposet is a

relational structure of the form (P, <h, <v), where <h and <v are arbitrary partial

order relations on the set P . If we add a labeling function λ : P → Σ, where Σ is
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an alphabet, then (P, <h, <v, λ) is a labeled biposet. The relation <h is called the

horizontal order, while <v is the vertical order relation.

The two partial order relations naturally induce two product operations on the

set of (labeled) biposets. If we consider two biposets, their horizontal product (resp.

vertical product) is defined by taking the disjoint union of them and letting all the

elements of the first biposet be horizontally (resp. vertically) less than all the ele-

ments of the second biposet. Of course the original order relations remain unchanged

inside the two operands. Now sp-biposets1 are those that can be generated from the

singletons by the two product operations.

It can be proved that both the algebra of two-dimensional words and the algebra

of sp-biposets over an alphabet Σ are isomorphic to Σ∗(•, ◦). As usual, terms can

be represented by ordered unranked trees, hence we obtain another representation,

that of the tree representation of biwords. The above-mentioned representations of a

biword are illustrated in the figure below.

a
b

c d

e

f

(a)

a

b

c d

e

f

(b)

a

b

c d

e f

•

•

◦◦

(c)

Figure 1: The two-dimensional word representation (a); the biposet representation (b); and

the tree representation (c) of the biword a • (b ◦ (c • d)) • (e ◦ f).

Parenthesizing Automata

In the following we investigate the possibility of extending the four basic concepts

(namely recognizability, logical definability, regularity and rationality) to binoid lan-

guages. Let us begin with regularity. To achieve an extension we introduce the

concept of parenthesizing automata. Let Ω denote some finite set of parentheses.

Of course, Ω and Σ are always disjoint, and elements of Ω are usually written as

〈1, 〉1, 〈2, 〉2, . . .

1The horizontal/vertical product is also called the series/paralell product, hence the reason for

the abbreviation.
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Definition 3.12 ([ÉN04]) A (nondeterministic) parenthesizing automaton, PA for

short, is a 9-tuple A := (S, H, V, Σ, Ω, δ, γ, I, F ), where S is a nonempty, finite set

of states; H and V are the sets of horizontal and vertical states which give a dis-

joint partition of S, Σ is the input alphabet and Ω is a finite set of parentheses.

Furthermore

• δ ⊆ (H × Σ × H) ∪ (V × Σ × V ) is the labeling transition relation,

• γ ⊆ (H × Ω × V ) ∪ (V × Ω × H) is the parenthesizing transition relation,and

• I, F ⊆ S are the sets of initial and final states, respectively.

Example 3.2 A simple illustration of a PA is given in Figure 2. The horizontal states are

those labeled by Hi and the vertical states are those labeled by Vj , for some i and j. There

is a single initial state H1, and a single final state H7. After defining the notion of a run, we

see that this automaton has a single run from H1 to H7, hence the automaton just accepts

the biword a • (b ◦ (c • d)) • e. Of course, if the automaton had cycles, the accepted binoid

language would be more complicated than in our example.

H H

H H

V VV

H

H H1 2

1 2 3

3 4 5

6 7

〈1

〈2

〉1

〉2

a

b

c d

e

Figure 2: A PA accepting { a • (b ◦ (c • d)) • e }.

Our next goal is to define the operation of parenthesizing automata formally. Let

A = (S, H, V, Σ, Ω, δ, γ, I, F ) be a PA. If t = (p, x, q) is a labeling or parenthesizing

transition of A, i.e. t ∈ δ ∪ γ, then the starting and the ending state of t will be

denoted by start(t) := p and end(t) := q, respectively. Two transitions t1 and t2

are adjacent (in this order) if end(t1) = start(t2). The words from (δ ∪ γ)∗ will be

called transition sequences, but we will demand that in any transition sequence the

consecutive transitions be adjacent. The concatenation of two transition sequences

r1 and r2 will be denoted by r1r2, as usual. If r = t1t2 . . . tn ∈ (δ ∪ γ)∗ is a transition

sequence, then let start(r) := start(t1) and end(r) := end(tn). Here we say that two

2The numbering of the definitions and theorems in this abstract follows that of the thesis.
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parenthesizing transitions t1 = (p, ω1, q) and t2 = (s, ω2, t) ∈ γ form a parenthesizing

transition pair if ω1 is an opening parenthesis and ω2 is the corresponding closing

parenthesis.

Definition 3.7 ([Ném07]) Let A be a PA. The set of its runs, Runs(A), is the least

set of transition sequences that contains

(i) the singleton runs: (p, σ, q), for all (p, σ, q) ∈ δ;

(ii) the direct runs: r1r2, for every r1, r2 ∈ Runs(A) with end(r1) = start(r2);

(iii) the indirect runs: t1r t2, for every direct run r ∈ Runs(A), and parenthesizing

transition pair t1, t2 with end(t1) = start(r) and end(r) = start(t2).

Definition 3.8 ([Ném07]) Suppose that A is a PA and r ∈ Runs(A). Then the

label of r is a biword from Σ∗(•, ◦) defined inductively as follows:

(i) If r = (p, σ, q), then Label(r) := σ.

(ii) If r is a direct run, and r = r1r2 for some r1, r2 ∈ Runs(A), then

- if end(r1) ∈ H, then Label(r) := Label(r1) • Label(r2);

- if end(r1) ∈ V , then Label(r) := Label(r1) ◦ Label(r2).

(iii) If r is an indirect run r = t1r
′ t2, then Label(r) := Label(r′).

Since • and ◦ are associative, the definition of Label(r) does not depend on the

choice of factorization in case (ii) above. The binoid language accepted by a PA is

defined as the labels of runs from an initial to a final state, as usual. Moreover, if

there is state that belongs to both the initial and final states, the empty biword also

belongs to the language of the PA. Of course a binoid language is regular if it can be

accepted by a PA.

In the thesis we prove that every PA is equivalent to one in normal form, i.e. with

a single initial and a single final state. These two states can be chosen to be two

horizontal as well as two vertical states.

The horizontal and vertical products can be naturally extended from biwords to

binoid languages, and one can define the Kleene-iterations of the two products in

the usual way, as well. Now assume that L1, L2 ⊆ Σ∗(•, ◦) and let ξ ∈ Σ, the ξ-

substitution of L2 into L1 be denoted by L1[L2/ξ]. It is obtained by non-uniformly

substituting biwords in L2 for ξ in the members of L1 (cf. [GS84]).

Theorem 3.25 ([ÉN04]) The class Reg of regular binoid languages is (effectively)

closed under ξ-substitution, i.e. if L1 ⊆ (Σ∪ { ξ })∗(•, ◦), L2 ⊆ Σ∗(•, ◦), then L1, L2 ∈

Reg implies L1[L2/ξ] ∈ Reg.
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Using the above theorem we can immediately derive some further closure proper-

ties of Reg.

Corollary 3.26 ([ÉN04]) The class Reg of regular binoid languages is (effectively)

closed under horizontal and vertical products, horizontal and vertical iterations, and

homomorphisms.

An important feature of parenthesizing automata that an automata may possess

any finite number of parenthesis pairs. Let Regi stand for the class of those regu-

lar binoid languages which can be accepted by a PA which has at most i pairs of

parenthesis symbols (i ≥ 0).

Theorem 3.32 ([Ném04]) The classes Reg0 ( Reg1 ( Reg2 ( . . . form a strict

hierarchy of regular (i.e. recognizable) binoid languages.

Recognizability, MSO-definability and Rationality

The concept of recognizable binoid languages, i.e. recognizable subsets of Σ∗(•, ◦) can

be derived from standard general notions of universal algebra (cf. [GS84]).

Definition 3.34 A binoid language L ⊆ Σ∗(•, ◦) is recognizable if there is a finite

binoid B, a homomorphism h : Σ∗(•, ◦) → B, and a set F ⊆ B with L = h−1(F ).

Formulating the concept of logical definability is not as straightforward as recog-

nizability, but it can be done with the help the sp-biposet representation. Indeed

biposets, and also their special cases – sp-biposets – are relation structures, and this

allows us to interpret logical formulas on them, as in biposets the horizontal and

vertical order relations are explicitly present.

Next, we consider several rational classes of binoid languages, whose definitions

depend on what operations are allowed from the following list: Boolean operations

(union, intersection, complementation), horizontal product (•), vertical product (◦),

horizontal iteration (∗•) and vertical iteration (∗◦). Let Fin[op1, . . . , opn] denote the

class of those binoid languages that can be generated from the finite binoid languages

by a finite number of applications of the operations op
1
,. . . ,opn. In the thesis the

following classes are defined

• HRat = Fin[∪, •, ∗•, ◦ ] the horizontal rational languages,

• VRat = Fin[∪, ◦, ∗◦, • ] the vertical rational languages,

• BRat = Fin[∪, •, ∗•, ◦, ∗◦ ], the birational languages,

• GRat = Fin[∪, •, ∗•, ◦, ∗◦,¯], the generalized birational languages, where ,̄ is the

operation of taking the complement.
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As usual, a binoid language is called finite if it contains a finite number of biwords.

Similarly, a binoid language L ⊆ Σ∗(•, ◦) is cofinite if its complementer with respect

to Σ∗(•, ◦) is finite. We denote the class of finite languages by Fin.

A Comparison of the Basic Classes

Our main results for binoid languages are the following.

Theorem 3.35 ([ÉN04]) Rec = Reg, i.e. a binoid language L ⊆ Σ∗(•, ◦) is recog-

nizable if and only if L is regular.

Theorem 3.70 ([ÉN04]) Rec = MSO, i.e. a binoid language L ⊆ Σ∗(•, ◦) is recog-

nizable if and only if L is MSO-definable.

Theorem 3.59 ([ÉN04]) It is decidable whether a regular binoid language is finite,

cofinite, birational, horizontal rational or vertical rational.

It is usual, and sometimes even necessary, to apply some restrictions on the struc-

tures under study. These restrictions sometimes naturally arise due to practical lim-

itations – e.g. the finite number of the available processors. Here we will study three

such restricted classes of binoid languages: HB – the class of horizontally bounded

languages, VB – the class of vertically bounded languages, and BD – the class of

bounded (alternation) depth languages.

As for the definitions, the easiest way to define horizontally and vertically bounded

binoid languages is through their sp-biposet representations. Recall that a chain in a

poset is a subset in which each pair of elements is comparable, i.e. a totally ordered

subset. The height of a poset is the cardinality of a longest (maximum cardinality)

chain. If (P, <h, <v, λ) is a biposet, let its horizontal height be the height of the

poset (P, <h). Similarly, let its vertical height be the height of the poset (P, <v).

Now a binoid language is horizontally (resp. vertically) bounded if there is an upper

bound for the horizontal (resp. vertical) height of the sp-biposet representations of

its elements.

We say that a binoid language L has a bounded depth if there is an integer K such

that, for every biword w ∈ L, the maximal depth of nested parenthesization in the

term representation of w is at most K. Let BD denote the class of binoid languages

that have a bounded depth.

We established the inclusion relations among the considered classes. These can

be summarized in Figure 3. Moreover, we proved that all inclusions suggested by the

figure are strict.
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Figure 3: A comparison of language classes of finite biwords.

Therefore for binoid languages of bounded depth the equivalence of regularity,

recognizability and MSO-definability can be extended with two additional character-

izations of rationality.

Corollary 3.71 ([ÉN04]) The following conditions are equivalent for a language

L ⊆ Σ∗(•, ◦) of bounded depth:

1. L is recognizable.

2. L is regular.

3. L is birational.

4. L is generalized birational.

5. L is MSO-definable.

When L is vertically bounded, the above conditions are also equivalent to the condition

that L is horizontal rational.

In the thesis we relate our notion of automata and regularity to that of Hashiguchi

et al. We find that their notion of regularity is less general than ours. Moreover, we

are able to extend their monoid approach to our broader class of regular binoid

languages. This means that with appropriate definitions ordinary finite automata

are also capable of capturing the same concept of regularity. This gives a fourth

equivalent characterization of the class Reg in the general unbounded depth case.
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(a) (b)

Figure 4: An upward comb (a) and a downward comb (b).

Languages of Infinite Biwords

In Chapter 4 of the thesis we extend our investigations to infinite biwords. First we

define ω-bisemigroups in the pattern of ω-semigroups related to infinite words [PP04].

Now ω-biwords as abstract objects are just the elements of the free ω-bisemigroups.

Similarly to the finite case, we can represent ω-biwords by certain infinite biposets.

For this notice that the products – • and ◦ – of two finite biposets can obviously be

extended to the product of a finite biposet with an infinite one. Moreover, the two

product operations also give rise to two ω-ary product operations. This means that we

can define both the horizontal and the vertical product of a countably infinite number

of finite biposets. We call a Σ-labeled biposet constructible if it can be generated from

the singleton Σ-labeled biposets by the binary and the ω-ary product operations. In

the thesis we show that the elements of the free ω-bisemigroups can be described

by constructible ω-biposets. Then we present a graph-theoretic characterization of

infinite constructible ω-biposets. This can be stated as follows:

Theorem 4.3 ([ÉN05]) An infinite biposet (P, <h, <v, λ) is a constructible biposet

if and only if P is complete, and both posets (P, <h) and (P, <v)

(i) are N-free,

(ii) are free of “upward combs”3,

(iii) are free of “downward combs”, and

(iv) all of their principal ideals4 are finite.

Afterwards, we examine the tree and term representations of ω-biwords. It is

followed by the extension of recognizability, MSO-definability and regularity to ω-

binoid languages. To extend regularity we also need to define the concept and the

3“Upward comb” and “downward comb” are certain infinite posets which are depicted in Figure 4.
4A principle ideal is a collection of all elements which are less than or equal to a given element.
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operation of parenthesizing Büchi-automata. The main result for ω-binoid languages

is the generalization of the equivalences from the finite case.

Theorem 4.25 ([Ném06]) Let L be an ω-binoid language. Then L is recognizable

if and only if L is regular if and only if L is MSO-definable.

Publications of the Results

Much of the material of this thesis is based on the following publications:

[ÉN04] Z. Ésik and Z. L. Németh, Higher dimensional automata. J. of Autom.

Lang. Comb. 9 (2004), 3–29.

[ÉN05] Z. Ésik and Z. L. Németh, Algebraic and graph-theoretic properties of

infinite n-posets. Theoret. Informatics Appl. 39 (2005), 305–322.

[Ném04] Z. L. Németh, A hierarchy theorem for regular languages over free

bisemigroups. Acta Cybern. 16 (2004), 567–577.

[Ném06] Z. L. Németh, Automata on infinite biposets. Acta Cybern. 18 (2006),

765–797.

[Ném07] Z. L. Németh, On the regularity of binoid languages: a comparative

approach. In: preproc. 1st Int. Conf. on Language and Automata Theory

and Appl., LATA’07, March 29 – April 4, 2007, Tarragona, Spain.

Chapter 2 contains several ideas taken from the introductory parts of three papers

[ÉN04, Ném06, Ném07]. The primary source of Chapter 3 is [ÉN04], but two sections

of it, namely Section 3.8 and 3.12 present the results given in [Ném04] and [Ném07],

respectively. Finally, Chapter 4 is based on the concepts and results given in [ÉN05]

and [Ném06].

The thesis seeks to provide more than just the enumeration of the results of the

above papers. It attempts to offer a precise account of the subject of regular binoid

languages, with more detailed proofs and examples, along with justifications of the

new concepts and conclusions. It also offers a new outlook on solved and unsolved

problems, and suggests possible future directions of research.

Conclusions

In this thesis we laid the foundations for a two-dimensional theory of automata and

languages. For the generalization from the one-dimensional case of words we adopted

an algebraic approach, namely we considered languages over free binoids. It is a

generalization of monoids where two independent associative operations are defined
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and they share a common identity element. We managed to generalize the equiv-

alence of regularity, recognizability and MSO-definability from word languages to

binoid languages and to ω-binoid languages as well. We also introduced various con-

cepts of rational binoid languages and examined their relationships. All the results

can be generalized to higher dimensions, i.e. to free algebras where three or more

independent associative operations are present.

For the concept of regularity we introduced a new automata model called paren-

thesizing automata. This model is one of the main contributions of the thesis. The

equivalence of regularity with recognizability and MSO-definability can be interpreted

as a justification of the point that our concept of PA captures an essential and robust

class of binoid languages. From this equivalence some closure properties of recogniz-

able languages can be readily derived. Moreover, with the help of the new automata

model we gave a more refined classification of regular binoid languages, since – by our

hierarchy theorem (Theorem 3.32) – the minimal number of parentheses in automata

needed to accept a given binoid language provides a complexity measure on the class

of regular binoid languages.

We cannot deny that the results of this thesis are really just the first steps in

the investigations of binoid languages. Not surprisingly, several problems remain

open. We managed to generalize the equivalence of regularity, recognizability and

MSO-definability from word languages to binoid languages, but we only succeeded in

defining an equivalent concept of rationality in the bounded depth case. But what

are the operations on binoid languages that capture the behavior of PA? We did

not deal with first-order definable binoid languages. Their decidability and algebraic

characterization are open problems as well. Two fundamental algorithms of classical

automata theory are the determinization and minimization of automata. Can they

be extended to parenthesizing automata?

In the thesis we mostly concentrate on the general theory of regularity, but we

believe that the concept of binoid languages is sufficiently general to have some prac-

tical applications as well. The reader can peruse the study by Hashiguchi et al. on

bicodes [HKJ02] and on a modified RSA cryptosystem based on bicodes [HHJ03]. In

the future biwords may also be used in modeling the behaviors of concurrent systems,

like sp-posets, which often serve as models for the behavior of modularly constructed

concurrent systems (cf. [Pra86]). It would also be good to look for other concrete ap-

plications of our theory. Since the special feature of biwords and their n-dimensional

generalizations is that they are naturally equipped with some nested structures, it

seems obvious to look for applications where some nestedness (of arbitrary depth) is

present, e.g. in XML databases and in modeling recursive function calls.
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