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We present, without any assumption, a class of electric and magnetic 
at horizon �-dimension solutions for a speci�c class of�(�) = � + ��2, all of which behave asymptotically as Anti-de-Sitter spacetime.	e most interesting property of these solutions is
that the higher dimensions black holes,� > 4, always have constant electric and magnetic charges in contrast to what is known in
the literature. For � = 4, we show that the magnetic �eld participates in the metric on equal foot as the electric �eld participates.
Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to
calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that
the �rst law of thermodynamics is always satis�ed.

1. Introduction

	e most e�ective gravitational theory in the last century
is the theory of general relativity (GR). 	is theory is a
fully accepted one that depicts the macroscopic geometrical
properties of spacetime.Using an isotropic andhomogeneous
symmetry, the �eld equations of GR give Friedmann equa-
tions which depict the evolution of the universe with radi-
ation and then matter dominated epochs. However, recent
observations indicate that our universe goes through a phase
of accelerated expansion [1–3]. 	is fact cannot be explained
in the frame ofGRusing ordinarymatter as a source. Another
issue that GR cannot explain is the cosmological era which
is known as in
ation [4]. 	is phase of the universe is
believed to have occurred before the radiation era which
could relax some issues of cosmology like horizon, 
atness
singularities, and so on [5]. Moreover, using baryonic matter,
GR is not able to discuss the observed density limited by the
�tting of the standard Λ cold dark matter (ΛCDM) of the
Wilkinson Microwave Anisotropy Probe results for 7 years

of observations data (WMAP7) [6], the recent measurements
of Baryon Acoustic Oscillations (BAO) [7], and the Hubble
constant �0 [8]. 	erefore, GR needs to impose an extra
component known as the darkmatter (DM)which constitutes
about 23% of the energy content of the universe [7]. In
spite of the fact that there are many possible roots of such
component [9–18], DM is assumed in a form of thermal relics
which naturally freeze-out with the right abundance in the
extensions of the standardmodel of particles [19–31]. Coming
experiments enable us to distinguish between large number
of candidates and model by direct and indirect detection
prepared for their search [32–34], or even at large hadron
collider (LHC) where they could be produced [35–42].

Another puzzling issue is the one of the accelerated
expansion of our universe. Many explanations have been
setup to demonstrate such phenomena. Among these expla-
nations is the one which assumes the validity of GR and
suggests the presence of extra 
uid called dark energy (DE).
	e equation of state of DE takes the form � = 	
 (where �,
, and	 are pressure, density, and a dimensionless parameter,

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 7323574, 16 pages
https://doi.org/10.1155/2018/7323574

http://orcid.org/0000-0001-5544-1119
https://doi.org/10.1155/2018/7323574


2 Advances in High Energy Physics

resp.) with 	 < −1/3 to create an accelerated cosmic
expansion era [43–45]. 	ere is another model which could
explain the DE which includes the cosmological constant in
the �eld equations of GR and assumes the equation of state to
have the form 	 = −1. However, such model su�ers from the
discrepancy which comes from the fact that if we postulate
the cosmological constant to represent the quantum vacuum
energy then its value has higher orders of magnitude than
those of observations [46]. It has been shown that, in the
Palatini formalism of �(�) = �− �2/3� +�2/3�, � and � are

dimension parameters, the �2 term cannot lead to an early
time in
ation [47].

To overcome the problem of acceleration a modi�cation
of GR has been considered by modifying Einstein-Hilbert
action [48–62]. Some examples of these modi�cations are as
follows:

(i) Brans-Dicke theory whose interaction is considered
by GR tensor and scalar �eld [63]

(ii) String theory which include Gauss-Bonnet term [64]

(iii) Lovelock theories which are of second derivatives at
most [65].

(iv) 	e �(�) gravitational theory whose �eld equations
are of second order [66–80]

(v) 	e one known as�(�) theories whichwe focused the
present study on [81]

It is shown that �(�) gravitational theories are able to
describe the whole story of cosmology starting from in
ation
to the present accelerated expansion epoch [82]. Many
applications of �(�) gravitational theories have been carried
out [83, 84]. Also local tests on �(�) have been achieved to
constrain �(�) theories [85–88]. To study modi�ed theories
of gravity one requires to assure or reject their validity by
deriving solutions that could investigate the evolution of the
universe [89, 90] and the occurrence of GR astrophysical
prediction. 	ere are many BH derived in the frame of �(�)
by assuming a constant scalar curvature, � = �0 [91–93]. It is
the aim of the present study to abandon this condition� = �0
in a class of �(�) = � + ��2 and try to derive �-dimension
solutions for a 
at horizon metric spacetime.

	e arrangements of this study are as follows: In Section 2,
gradients elements of Maxwell-�(�) gravitational theory
are presented. In Section 3, a metric spacetime with one
unknown and two unknown functions is presented and
applied to the charged �eld equation of �(�). Exact classes of
charged black holes are derived in Section 3. In Section 4, the
relevant physics of these classes is discussed by calculating the
singularities. In Section 5, we calculate the conserved charges
related to each class by using Komar method. In Section 6,
we calculate the thermodynamical quantities like Hawking
temperature and entropy, and so on. Also in this section, we
have shown that the �rst law of thermodynamics is always
satis�ed for all the solutions derived in this study. 	e main
results are discussed in the �nal section.

2. Fundamentals of Maxwell-�(�)
Gravitational Theories

	e Lagrangian of �(�) theory has the form
L fl L� +L��, (1)

withL� representing the gravitational Lagrangian given by

L� fl
12 ∫���√−� (� (�) − Λ) , (2)

with Λ being the cosmological constant and  being the �-
dimensional gravitational constant de�ned as  = 2(� −3)Ω�−1��, where �� is the Newton’s constant in �-
dimensions (the units for the �-dimensional gravitational
constant are �� = �4��−4, where �4 is the gravitational
constant in 4-spacetime dimensions and � is a unit of length).
Here Ω�−1 refers to the volume of (� − 1)-dimensional unit
sphere that is de�ned as

Ω�−1 = 2�(�−1)/2Γ ((� − 1) /2) , (3)

where Γ is the gamma function of the argument (for � = 4,
one gets 2(� − 3)Ω�−1 = 8�), � is the Ricci scalar of the
spacetime, � is the determinant of the metric, and �(�) is the
analytic function of the considered theory. In this study ���
refers to the action of Maxwell �eld that is de�ned as

��� fl −12�∧⋆�, where � = ��, (4)

with � = ����� being the 1-form electromagnetic potential
[94].

By carrying out variations of (2)with respect to themetric
tensor ��] and the vector potential �� one can obtain the
following �eld equations of�(�) gravitational theory [95, 96]:

��]�� − 12��]� (�) − 2��]Λ + ��]◻�� − ∇�∇]
��

= 2��], (5)

�
]
(√−���]) = 0, (6)

with ��] being the Ricci tensor de�ned by

��] = �	�	] = �	Γ	�] − �
]
Γ	�	 + Γ		
Γ
�] − Γ	

]
Γ
�	
= 2Γ	�[],	] + 2Γ	
[	Γ
]]�, (7)

where Γ	�] is the Christo�el symbols second kind and the
square brackets mean

� [�,]] = 12 (��,] − �
],�) . (8)

	e D’Alembert operator ◻ is de�ned as ◻ = ∇�∇�, where∇�"
 is the covariant derivatives of the vector "
 and �� =��(�)/��. In this study ��] is de�ned as

��] fl �	��]	��� − 14#�]�	������	�, (9)
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which is the energymomentum tensor of the electromagnetic
�eld.

	e trace of (5) yields

��� − 2� (�) − 8Λ + 3◻�� = 0. (10)

Nowwe are going to discuss some basic property of the above�(�) theories.
2.1. �(�)-Gravitational �eories and�eir Viable Conditions.
	e most important conditions and restrictions [81] that are
usually put on �(�) gravitational theories to give consistency
on both of gravitational and cosmological evolutions are as
follows.

(a) 	e �rst condition is given by

��� (�) ≥ 0, when � ≥ ��� (�) , (11)

which represents the stability condition for curvature [97].
Condition (11) represents the existence of amatter dominated
era in cosmological evolution. 	e relevant physics of (11) is
that if the constant,

�e� = ��� (�) , (12)

has a de�ned value, then ��e�/�� is �xed by the sign of���(�).
(b) 	e condition ��(�) > 0 guarantees the positivity

of the e�ective gravitational constant. 	is condition from
quantum point of view avoids the graviton from becoming
a ghost [98, 99].

(c) 	e condition ��(�) < 0 ensures the recovery of GR
behavior at early times.

3. Analytic Solution in �(�)=�+��2
In this section, we are going to apply the �eld equations of
Maxwell-�(�) with cosmological constant to two di�erent
metric spacetimes having 
at horizon:

3.1. Flat HorizonMetric with One Variable. Let us assume the
�rst metric spacetime possessing one unknown function has
the form

�%2 = −& (') �*2 + 1& (')�'2 + '2�−2∑
�=1

�52�, (13)

where &(') is an unknown function of the radial coordinate,'. Using (13) we get the Ricci scalar in the form

� = −'2&�� + 2 (� − 2) '&� + (� − 2) (� − 3) &'2 , (14)

where &� = �&(')/�' and &�� = �2&(')/�'2.	e nonvanishing
components of theMaxwell-�(�) �eld equations, (5) and (6),

when�(�) = �+��2 take the form (the detailed calculations
of the Ricci curvature tensor are given in Appendix B)

ℵ�� = 12'4 ([�'4&��2 − 4'4Λ + 2'49�2 + 2%2��−4] − (�
− 2) '2 [2'�&�&�� − '&� − & (� − 3)] − 4�'2&&�� (�
− 2) (3� − 11) − 4�'&&� [�3 − 10�2 + 24� − 4]
− 4�&2 (4� − 11) − 2�'3 {&��� ['&� + 6& (� − 2)]
+ 2'&&����} − 2�'2&�2 (� − 2) (� − 5)) = 0,

ℵ�� = 12'4 ([�'4&��2 − 4'4Λ + 2'49�2 + 2%2��−4] − (�
− 2) '2 [2'�&�&�� − '&� − & (� − 3)] − 8�'2&&�� (�
− 2)2 − 4�'&&� [�3 − 7�2 + 9� + 8] − 4�&2 (2�
− 1) (2� − 7) − 2�'3&��� ['&� + 2& (� − 2)]
− 2�'2&�2 (� − 2) (� − 5)) = 0,

ℵ�1�1 = F�2�2 = ⋅ ⋅ ⋅ = F��−2��−2 = 12'4 ('4 (�&�� − 1) &��
+ 4'4Λ + 2'49�2 + 2%2��−4 + 4�'3&�&�� (3� − 7)
− 2 (� − 3) '3&� − '2�&�2 (� − 2) (2� − 9)
− 4�'3 {&��� ['&� + & (3� − 7)] + '&&����}
− 2�& [8 {�2 − 13� + 34} '&�
− & (2� − 1) (� − 3) (� − 6)]) = 0,

(15)

where %��−4 = �%(5�−4)/�5�−4 and 9� = �9(')/�' with 9(')
and %(5) being two unknown functions related to the electric
and magnetic charges of the system and de�ned from the
gauge potential as

� def .= 9 (') �* + % (5�−4) �5�−4. (16)

	e solution of the di�erential equations (15) has the form

9 (') = H1 + #44 H2' ,
% (5�−4) = H3 + #44H45�−4,
& (') = (2'2Λ3 + H5' + H22 + H42'2 (1 − 16�Λ)) #44

+ #ℎℎ [[[
(� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2]2� (� − 1) (� − 4) �'�−3

+ H6'�−3]]] ,

(17)
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where ℎ ≥ 5 and H�, U = 1 ⋅ ⋅ ⋅ 6 are constants. Solution
(17) is decomposed into two parts one for � = 4 and
the other for � ≥ 0. 	e reason for this decomposition
is the electromagnetic �eld. In the four dimensions there
is a charged solution; however, for � ≥ 5 there is no
charged solution. In fact this is in con
ict with the spherically
symmetric case [91]. It is important to mention here that
solution (17) when � = 0 will reduce to the well known
AdS/dS solution in the case of � = 4. However, in the case

of � > 4 this solution does not allow the parameter � to
be vanishing; therefore, it has no analogue in GR. In the
noncharged case and when � = 4 solution (17) coincides
with what is know in GR. However, when � > 4 and as
long as � and Λ have no relation between them solution
(17) has no analogue in GR but when Λ = 1/16� it will
coincide with what is known in GR; that is, it behaves as
Ads/dS.

	e metric of solutions (17) has the form

�%2 = −{{{{{(2'2Λ3 + H5' + H22 + H42'2 (1 − 16�Λ)) #44 + #ℎℎ [[[
(� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2]2� (� − 1) (� − 4) �'�−3 + H6'�−3]]]

}}}}}�*2

+ �'2(2'2Λ/3 + H5/' + (H22 + H42) /'2 (1 − 16�Λ)) #44 + #ℎℎ [(� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] /2� (� − 1) (� − 4) �'�−3 + H6/'�−3]
+ '2�−2∑
�=1

�52�.

(18)

3.2. Metric with Two Variables. 	e metric of a 
at horizon
with two unknown functions has the form

�%2 = −& (') �*2 + 1^ (')�'2 + '2�−2∑
�=1

�52�, (19)

where &(') and ^(') are two unknown functions of the radial
coordinate, '. Using (19) we get the Ricci scalar in the form

� = −(&�^�2& + ^&��& − ^&�22&2 + (� − 2) ^&�&'
+ (� − 2) ^�' + (� − 2) (� − 3) ^'2 ) . (20)

Using (19) we get the nonvanishing components of the �eld

equations, (5) and (6), when �(�) = � + ��2 in the form

ℵ�� = 18'4&4 (36�'4&2^2&��2 − 2�'3^ (&&�3 [29'^� + 26 (� − 2) ^] + 8'^&3&����) + 8&3 [&%2��−4 + '4^9�2] + 49�'4^2&�4
+ �'2&�2&2 {2^ (� − 2) [2 (5� − 18) ^ + 30'^�] + 9'2^�2} − 8�&2^'3 {&^��� [2 (� − 2) & + '&�]
− 2&��� [3'^&� − & (2 (� − 2) ^ + 3'^�)]} + 4'2�&&�� {'^&� [& {27'^� + 22 (� − 2) ^} − 29'^&�]
− &2 [16 (� − 2) '^^� + 3^�2 + 4 (� − 2) (� − 4) ^2]} − 4'2&2�^�� [2 (� − 2) &2 (2 (2� − 7) ^ + '^�)
+ '&&� [6 (� − 2) ^ + '^�] − 6'2^&�2] − 8 (� − 2) '�&3&� ['^� + 2 (� − 4) ^] ['^� − ^] − 4&3 (� − 2)
⋅ '&^� [(3� − 10) �'^� − '2 − {2 (3� − 11) (� − 4) + 4 (3� − 10) (� − 5)} �^
+ & (4'4Λ − (� − 2) (� − 3) '2^ − 4 (4� − 11) �^2)]) = 0,

ℵ�� = 18'4&4 (4�'4&2^2&��2 + 2�'3^&&�3 [3'^� − 4 (� − 2) ^] + 8&3 [&%2��−4 + '4^9�2] − 7�'4^2&�4 + �'2&�2&2 {'2^�2
+ 4^ (� − 2) [(3� − 4) ^ + '^�]} − 8�&2^2'3&��� [2& (� − 2) + '&�]
− 4'2�&^ {&�� ('&� [2& {'^� − 3 (� − 2) ^} − 3'^&�] + 4 (� − 2) &2 ['^� + (� − 2) ^]) + &^�� [2 (� − 2) & + '&�]2}
− 4 (� − 2) '&3&� [2 (3� − 8) �'^^� − '2^ − 4�^2 − �'2^�2] + 4&3 {(� − 2)2 �'2&^�2
− & [4'4Λ + (� − 2) [4'^� (� − 2) (� − 4) − (� − 3) '2^ − 4 (4� − 9) �^2]]}) = 0,
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ℵ�1�1 = ℵ�2�2 = ⋅ ⋅ ⋅ = ℵ��−2��−2 = 18'4&4 (28�'4&2^2&��2 − 2�'3^ (&&�3 [23'^� + 6 (3� − 7) ^] + 8'^&3&����)
− 8&3 [&%2��−4 + '4^9�2] + 39�'4^2&�4
+ �'2&�2&2 {2^ (� − 2) [{2 (� − 2) (� − 5) + (2� − 5) (� − 4)} ^ + 4 (3� − 7) '^�] + 7'2^�2 − 2'2^� }
− 8�&2^'3 {&^��� [(2 (� − 2) & + '&�)] − &��� [5'^&� − & (2 (2� − 5) ^ + 6'^�)]}
+ 4'2�&&�� {'^&� [& {2 (8� − 19) ^ + 22'^�} − 23'^&�]
− &2 [2 (9� − 22) '^^� + 3'2^�2 − 4 [2 (� − 3) (� − 5) − (� − 4)] ^2 − '2�̂ − 8'2&2^^��]}
− 4'2&2�^�� [2 (� − 2) &2 (4 (� − 4) ^ + '^�) + '&&� [2 (4� − 9) ^ + '^�] − 5'2^&�2] + 2'&3&� ['3^� + 2 (� − 3) '2^
− 4 [2 (� − 1) (� − 5) + (� − 4) (3� − 11)] �'^^� − 2 (3� − 7) '2�^�2 + 8 (5� − 19) �^2]
− 4&3 [3 (� − 4) (� − 2) �'2&^�2 − (� − 3) '&^� ['2 + 4 (2� − 1) �^]
+ & (4'4Λ − {(� − 4) (� − 3) '2^ − 2 [(� − 6) (� − 3) (2� − 1) − � (� − 4) (� − 5)] �^2})]) = 0.

(21)

	e above system of di�erential equations (21) has the
following solution:

(1) 9 (') = H7,
% (5�−4) = H8 + #44H95�−4,
& (') = H10 (' [2'3Λ + 3H11] (16�Λ − 1) − 3H122)'2 #44 + #ℎℎH20

⋅ (� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1] ± H13'�−3 ,
^ (') = ' [2'3Λ + 3H11] (16�Λ − 1) − 3H1223'2 (16�Λ − 1) #44

+ #ℎℎ [[[
(� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1]2� (� − 1) (� − 4) �'�−3

± H13'�−3]]] ,
(2) 9 (') = H14 + #44 H15' ,
% (5�−4) = H16 + #44H175�−4,

& (') = H152 (2Λ'4 + 3 (H18 + 'H19))3'2 (H172 + H18 [16�Λ − 1]) #44 + #ℎℎH20
⋅ (� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1] ± H13'�−3 ,

^ (') = 3 (H18 + 'H19) + 2'2Λ3'2 #44
+ #ℎℎ [[[

(� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1]2� (� − 1) (� − 4) �'�−3
± H13'�−3]]] ,

(22)

where ℎ ≥ 5. We must mention here that solution (22) has
the same property of solution (17); that is, when � = 0 it will
reduce to the well known AdS/dS solution in the case of � =4. However, in the case of � > 4 this solution does not allow
the parameter � to be vanishing; therefore, this solution has
no analogue in GR. In the noncharged case and when � = 4
and � ̸= 0 solution (22) coincides with what is known in GR.
However, when� > 4 and as long as � andΛ have no relation
between them solution (22) has no analogue in GR but whenΛ = 1/16� it will coincide with GR solution that behaves as
Ads/dS.	emetric spacetimes of solutions (22) have the form
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(1) �%2 = −[[[
H102 (32'4�Λ2 + 48H11�Λ' − 2'4Λ + 3H122 + 3H11')'2 #44

+ #ℎℎH20 (� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1] ± H13'�−3 ]]]�*2

+ {{{{{
32'4�Λ2 + 48H11�Λ' − 2'4Λ − 3H122 − 3H11'3'2 (16�Λ − 1) #44

+ #ℎℎ [[[
(� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2]2� (� − 1) (� − 4) �'�−3 ± H13'�−3]]]

}}}}}
−1

�'2 + '2�−2∑
�=1

�52�,

(2) �%2 = −(H152 (2Λ'4 + 3 (H18 + 'H19))3'2 (H172 + H18 [16�Λ − 1]) #44 + #ℎℎH20 (� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] ± H13'�−3 )�*2

+ [[[
3 (H18 + 'H19) + 2'2Λ3'2 #44 + #ℎℎ{{{{{

(� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1]2� (� − 1) (� − 4) �'�−3 ± H13'�−3}}}}}
]]]
−1

�'2

+ '2�−2∑
�=1

�52�,

(23)

where H�, U = 6 ⋅ ⋅ ⋅ 19 are constants.
4. Physical Properties of the Analytic Solutions

4.1. Metric with One Variable. From (18) we can deduce the
following properties.

(i) In case of 4 dimensions we get

�%2
= −(2'2Λ3 + H5' + H22 + H42'2 (1 − 16�Λ))�*2

+ �'2(2'2Λ/3 + H5/' + (H22 + H42) /'2 (1 − 16�Λ))+ '2 (�521 + �522) ,
(24)

from which it is clear that the metric behaves asymptotically
as dS/AdS. Equation (24) shows that the e�ect of the higher
dimension curvature is related to the electric �eld as well as
the magnetic �eld and also

Λ ̸= 116� . (25)

(ii) In case of more than 4 dimensions we get

�%2 = −(� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] + 2� (� − 1) (� − 4) �H62� (� − 1) (� − 4) �'�−3 �*2
+ 2� (� − 1) (� − 4) �'�−3�'2(� − 2) '�−1 [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] + 2� (� − 1) (� − 4) �H6 + '2�−2∑

�=1
�52�.

(26)
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Equation (26) shows that the dimensional parameter � must
not be equal to zero; otherwise, wewill have a singularmetric.
Also the spacetime of metric (26) behaves as dS/AdS and
when the cosmological constant Λ takes the form

Λ = (� − 2)216� (� − 4) � , (27)

then, (26) reduces to

�%2 = −(� − 2) '�−1 + 2� (� − 1) (� − 4) �H62� (� − 1) (� − 4) �'�−3 �*2
+ 2� (� − 1) (� − 4) �'�−3�'2(� − 2) '�−1 + 2� (� − 1) (� − 4) �H6
+ '2�−2∑
�=1

�52�,
(28)

which is asymptotically dS/AdS and cannot reduce to
GR.

4.2. Metric with Two Variables. From (23), we can show the
following.

(iii) In case of 4 dimensions we get

(1) �%2
= −H102 [2'4Λ (16�Λ − 1) + 48H11�Λ' + 3H122 + 3H11']'2 �*2

+ 3'2 (16�Λ − 1)2'4Λ (16�Λ − 1) + 48H11�Λ' − 3H122 − 3H11'�'2
+ '2 (�521 + �522) .

(2) �%2
= −H152 [2Λ'4 + 3 (H18 + 'H19)]3'2 (H162 + H18 [16�Λ − 1]) �*2

+ 3'23 (H18 + 'H19) + 2'4Λ�'2 + '2 (�521 + �522) .

(29)

First set of equations (29) shows that Λ ̸= 1/16� and when

the constant H10 = 1/√3(16�Λ − 1) then the metric behaves

as dS/AdS. For the second set, it is allowed to put Λ = 1/16�
and whenthe constant H15 = H16 then the second equation of

(29) behaves as dS/AdS.

(iv) In case of more than 4 dimensions we get from (23)

the two sets

�%2 = −{{{{{
(� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1] ± H13'�−3 }}}}}�*2

+ [[[
(� − 2) '�−1 [√1 − 16� (� − 4) �Λ/ (� − 2)2 ± 1]2� (� − 1) (� − 4) �'�−3 ± H13'�−3]]]

−1

�'2 + '2�−2∑
�=1

�52�.
(30)

Equation (30) shows that the dimensional parameter � must
not be equal to zero; otherwise, wewill have a singularmetric.
	e asymptotes of (30) behave as dS/AdS. It is important
to stress that metric (30) cannot reduce to that of GR and
hence we can say that solution (22) is a new solution. Using
condition given by (27) in (30) we get(1) �%2

= −{± (� − 2) '�−1 ± H13'�−3 }�*2
+ [ ± (� − 2) '�−12� (� − 1) (� − 4) �'�−3 ± H13'�−3]

−1 �'2
+ '2�−2∑
�=1

�52�.
(31)

We can conclude from the above discussion of the metrics

given by (30) or (31) that there is no charged solution for the

form of �(�) = � + ��2. Also spacetime metrics of (30) or

(31) instruct us that the dimension parameter � must not be

equal zero.

4.3. Singularities. Now, let us explain the singularities and

the horizons of solutions (17) and (22). For this reason,

we have to �nd at which values of ' do the functions&(') and ^(') turn out to be zero or in�nity, due to the

fact that singularities may be coordinate ones which are

physical singularities. Usually, to study singularities one

calculates all the invariants constructed from Riemann

tensor and its contractions. 	e curvature invariants that

arise from solution (17), in case of 4 dimensions, have the

form
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��]	��]	 = 4'2 (1 − 16�Λ)2 [8Λ2'6 + 9H52] + 24 (H22 + H42) [6 (1 − 16�Λ) + 7 (H22 + H42)]3'8 (1 − 16�Λ)2 ,
��]��] = 4 [4'8Λ2 (1 − 16�Λ)2 + (H22 + H42)2]'8 (1 − 16�Λ)2 , � = −8Λ.

(32)

And in case of more than 4 dimensions we get

��]	��]	 = '4&�� + 2 (� − 2) '2&l2 + 2 (� − 2) (� − 3) &2'4 ,
��]��] = � (� − 2) '2&�2 + 2 (� − 2) '3&�&�� + '4&�� + 4 (� − 2) (� − 3) '&&� + (� − 2) (� − 3)2 &22'4 ,

� = −2 (� − 2) '&� + '2&�� + (� − 2) (� − 3) &'4 .
(33)

Equation (32), for the 4 dimensions case, shows the following.
(a) Λ ̸= 1/16�; otherwise, we will have a singularity for

both invariants ��]	��]	 and ��]��].
(b) Also (32) tells us that there is a singularity at ' = 0

which can not be removed for the invariants ��]	��]	 and��]��].
When� > 4 and by using (17), we can show the following.
(c) We have a true singularity at ' = 0.
(d) From (33), a�er using (17), we can show that the

dimension parameter �must not be equal to zero; otherwise,
we get a singularity.

(e) Finally, (33) shows that there is a singularity at

H6 = − (� − 2) '(�−1)2� (� − 1) (� − 4) � [1
± √1 − 16� (� − 4) �Λ(� − 2)2 ] , (34)

and when constraint (27) is used, (34) takes the form

H6 = − (� − 2) '(�−1)2� (� − 1) (� − 4) � . (35)

Repeating the same calculations for solution (22) we get
for� = 4

(1) ��]	��]	 = 4'2 (1 − 16�Λ)2 [8Λ2'6 + 9H112] + 9H11H122' (1 − 16�Λ) + 168H1143'8 (1 − 16�Λ)2 ,
(2) ��]	��]	 = 36'2H19 + 144'H19H18 + 168H184 + 32'8Λ23'8 ,

(1) ��]��] = 4 [H124 − 128'8Λ3� (1 − 8�Λ) + 4'8Λ2]'8 (1 − 16�Λ)2 ,
(2) ��]��] = 4 [H182 + 4'8Λ2]'8 ,

(1) � = −8Λ
(2) � = −8Λ.

(36)
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We can apply the same discussion applied for solution (17).
In case of� > 4 we get

��]	��]	 = � (')
'2(�−1)�2 ((� − 2) '(�−1) [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] ± 2� (� − 1) (� − 4) �H13)2 ,

��]��] = �1 (')�2 ((� − 2) '(�−1) [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] ± 2� (� − 1) (� − 4) �H13)2 ,
� = �2 (')� ((� − 2) '(�−1) [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2] ± 2� (� − 1) (� − 4) �H13) ,

(37)

where �('), �1('), and �2(') are lengthy functions of '. Using
(27) in (37) we get

��]	��]	
= (� − 2)2 ['2(�−1) + 2� (� − 1)2 (� − 3) (� − 4)2 �2H132]2� (� − 1) (� − 4)2 �2 ,
��]��] = (� − 2)24� (� − 4)2 �2 ,
� = − (� − 2)2 (� − 4) � ,

(38)

which indicates that the parameter � must not be equal to
zero.

	e horizons of solutions (17) and (22) are the zeros of
the metric ���; therefore, all the above singularities are far
from these horizons. 	e study of perturbations of solutions
(17) and (22) is an important issue to study their stability and
then discuss the formulation of weak cosmic censorship.	is
problem will be discussed elsewhere.

5. Total Conserved Charge

In this section, we are going to study the conserved quantities
of the solutions derived in Section 3. For this purpose we
are going to make a brief review of the geometry used in
this calculations. 	e Lagrangian of Einstein-Cartan theory
is de�ned by [100] (the fundamental entities of this theory
Appendix A)

F (r�, ���) fl − 12 (��� ∧ s�� − 2Λs) , (39)

where r� is the one-form coframe and ��� is the two-form
curvature tensor. Carrying out variation of (39) with respect

to the coframes r� and ��� lead to [100, 101]

t� fl − �F�r� = − 12 (��� ∧ s��� − 2Λs�) ,
u�� fl − �F��� = 12v��,

(40)

which are the canonical energy-momentum and rota-
tional gauge �eld momentum, respectively. 	e translational
momentum and the spin 2-forms are de�ned as

�� fl − �F��� = 0,
t�� fl −r[� ∧ ��] = 0. (41)

	e conserved quantity of the gravitational �eld has the form
[100]

w [y] = 12� {∗ [�| + y⌋ (r� ∧ ��)]} ,
where | = y�r�, y� = y⌋ r�, (42)

with ∗ being the Hodge duality, y being a vector �eld y =y���, and y� being � parameters y0, y1, . . . , y�−1. For the
solutions having spinless matter or vacuum ones, the torsion
is vanishing, ��, and therefore the total charge of (42) takes
the form

Q [y] = 12 ∫
��
∗�|. (43)

	is invariant conserved quantity Q[y] was given before in
[102–106].

Now let us apply (43) to solution (17) and calculate the
necessary components; we �nally get

r0 = √& (')�*,
r1 = �'√& (') ,r2 = '�51,r3 = '�52,...

r�−1 = '�5�−2.

(44)

Using (44) in (42) we get
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| = &2 (') y0�* − y1�' − '2& (') (y2�52 + y3�52 + ⋅ ⋅ ⋅ + y�−2�5�−2)& (') . (45)

	e total derivative of (45) gives

�| = y0&� (') (�' ∧ �*) − 2' [y2 (�' ∧ �51)+ y3 (�' ∧ �52) + ⋅ ⋅ ⋅ + y�−1 (�' ∧ �5�−2)] . (46)

Calculating the inverse of (46) and using it in (46) and (43)
a�er applying the Hodge-dual to the output of �|, we get
conservation of the charge in the form

Q [y�] = (� − 2)Ω�−2�8� ,
Q [y�] = Q [y�1] = ⋅ ⋅ ⋅ = Q [y��−2] = 0, (47)

where Ω�−2 is the volume of the unit (� − 2)-sphere; we
have substitute H5 = −2� and have used the regularization
method, by putting the physical quantities vanishing, and
subtract the resulting expression from the original one to
remove any divergence term [100] (physical quantities mean
the constants H2, H4, H5, and H6 for solution (17); constants 10,11, 12, and 13 of �rst solution of (22); and constants 13, 15, 18,
and H18 of the second solution of (22)).

Applying the same above techniques we get for the �rst
solution of (22) in case of� = 4

Q [y�] = �√1 − 16�Λ,
Q [y�] = Q [y�1] = ⋅ ⋅ ⋅ = Q [y��−2] = 0, (48)

where H11 = −2�/√H10 and for the second one we get

Q [y�] = �√H18 (1 − 16�Λ) − H172 ,
Q [y�] = Q [y�1] = ⋅ ⋅ ⋅ = Q [y��−2] = 0, (49)

where H19 = −2�/H15.
In case� > 4 we get

Q [y�] = (� − 2)Ω�−2�√�8� ,
Q [y�] = Q [y�1] = ⋅ ⋅ ⋅ = Q [y��−2] = 0, (50)

where

H13 = −2�√�� (� − 3) (� − 4)√H15 . (51)

6. Thermodynamics of Black Holes

In this section, we are going to study the thermodynamical
quantities of solutions (17) and (22). 	e temperature of

Hawking of any solution can be derived by requiring the
singularity at the horizon to be vanishing in the Euclidean
continuation of the black hole solutions. One can obtain the
temperature of the outer event horizon at ' = 'ℎ, for solution
(17) in case of� = 4 in the form

� = 14� (���� (r)�' )
�ℎ

= 14� [2'ℎΛ + H22 + H24(16�Λ − 1) '3ℎ] , (52)

and in case of� > 4 we get
� = 14� (���� (')�' )

�ℎ

= 'ℎ4� [[[
(� − 2) [1 ± √1 − 16� (� − 4) �Λ/ (� − 2)2]2� (� − 4) � ]]] . (53)

For the �rst solution of (22) in case � = 4, we get the
Hawking temperature as

� = 14� (���� (')�' )
�ℎ

= 14� [3H10 [2Λ'4ℎ (1 − 16�Λ) + H112]'3ℎ ] , (54)

and for the second solution of (22) in case of� = 4, we get
� = 14� (���� (')�' )

�ℎ

= 14� [ H152 [(H18 − 2Λ'4ℎ)]'3ℎ [H18 (16�Λ − 1) + H216]] . (55)

In the case of� > 4 we get
� = 14� (���� (')�' )

�ℎ

= 'ℎH13 (� − 1) (� − 2)4� [√1 − 16� (� − 4) �Λ(� − 2)2
± 1] .

(56)

We give a brief discussion of the entropy of black hole in�(�)
gravity. For this purpose, we use the arguments presented in
[107]. From theNoethermethod used to calculate the entropy
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associated with black holes in �(�) theory that have constant
Ricci scalar, one �nds [95]

F = �4� �� (�)������=�ℎ , (57)

where � is the area of the event horizon. Using solution (17)
we get for� = 4

F = (1 − 16Λ�) �'ℎ2, (58)

and for� > 4 we get
F = 'ℎ�−2Ω�−24 [1

− (� − 2)(� − 4) {1 + √1 − 16� (� − 4) �Λ(� − 2)2 }] . (59)

Using (17) and (27) in (59) we get the entropy in the form

F = 'ℎ�−2Ω�−22 (� − 4) . (60)

For solution (22) and in case of � = 4 we get the same
expression of entropy as given by (58) and in case � > 4 we
get

F = 'ℎ�−2Ω�−24 {1 + 2�� ('ℎ)} . (61)

When (27) is used we get the entropy in the form of (60).

Utilizing (52) and (58), the Smarr relation in the extended
phase space can be obtained in the case� = 4 of solution (17)
as

� = 2�F + Φ�,
where Φ = √ (H22 + H42) (1 − Λ�)'ℎ , � = √(H22 + H42) (1 − Λ�). (62)

For the �rst solution of (22) we get the the Smarr relation in
the extended phase as

� = 2�F + Φ�,
where Φ = H11'√(1 − 2Λ�) , � = H11√1 − 2Λ�, (63)

where we have put H10 = 1/3(1−2Λ�)2. Finally, for the second
solution of (22) we get the Smarr relation as

� = 2�F + Φ�, where Φ = √2H18'ℎ , � = √2H18, (64)

where we have put H15 = √(H18(1 − 16�Λ) − H216)/(16�Λ − 1).
In the case � > 4, we introduce the extended phase

space where the cosmological constant is identi�ed as the
thermodynamic pressure while the conjugate quantity is
regarded as the thermodynamic volume. We adopt the
following de�nition of pressure that is commonly used in the
literatures of extended phase space [108]

� = −(� − 1) (� − 2)Λ48� . (65)

Using solution (17) in the case� > 4we get the Smarr relation
in the extended phase as [108]

� = � − 2� − 3�F − 2� − 3"�, where � is given by Eq. (65) and " has the form

" = 3 (� − 2) 'ℎ�−1Ω�−2 (2 + (� − 2)√1 − 16� (� − 4) �Λ/ (� − 2)2)(1 + √1 − 16� (� − 4) �Λ/ (� − 2)2)4�Λ� (� − 1) (� − 4)2 .
(66)

It is important to note that Smarr relation given by (66) has
no charge term because the higher dimension solution given
by Eq. (17) has constant electric and magnetic charges. Using
constrains (27) in (66) we get

" = 24'ℎ�−1Ω�−2(� − 1) (� − 2) (� − 4) . (67)

Using the same above procedure we get for solution (22)
in case of� > 4 the the Smarr relation in the extended phase
as given by (66) where the volume has the form

" = 2'ℎ�−1Ω�−2(� − 4) . (68)

7. Main Results and Discussion

In this study, we have presented Maxwell-�(�) gravity in�-dimensions and have checked the 
at horizon solutions.
We have applied two metrics, the �rst with one unknown
and the second with two unknown functions to Maxwell-�(�) �eld equations using the special case �(�) = � + ��2.
	e resulting di�erential equations are solved analytically
without any assumption and general solutions containing
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three classes have been obtained. 	ese classes are classi�ed
as follows.

(i) For the metric with one unknown, the electric and
magnetic charges of this class are not constant for� = 4 and are constants for� > 4.

(ii) For the metric with two unknowns, we have two sets.
	e �rst one has a constant charge and a nontrivial
magnetic �eld for � = 4 and for � > 4 we have
constant electric and magnetic charges.

(iii) For the second set of solutions (22) and for� = 4 the
electric and magnetic charges are not trivial and are
constants for� > 4.

To understand the physics of these solutions we wrote the
metric of each solution and have shown the following.

(a) We have shown that the metric behaves asymptoti-
cally as dS/AdS for the �rst solution for � = 4 and
it is not allowed to put Λ = 1/16�. When � > 4
the metric also behaves asymptotically as dS/AdS and
have shown that the following relation between the
cosmological constant and the dimension parameter� holds Λ = (� − 2)2/16�(� − 4)�.

(b) For the metric with two unknowns, when � = 4,
we have shown that the metric behaves as dS/Ads for
both sets. However, for the �rst solution Λ ̸= 1/16�
but for the second one Λ = 1/16�.

(c) When � > 4, for solution (22), we have shown that
the parameter� can not be equal to zero and therefore
this solution is new.

We have calculated the singularities of each class by cal-
culating the invariants of curvature. For the �rst solution we
have shown that the invariants of curvature have singularity at' = 0 and Λ = 1/16�. However, when � > 4 we have shown
that there is singularities at ' = 0 and � = 0. For the �rst
set of (22) the same discussion of solution (17) can be applied
for the invariants of curvature. However, for the second set
the invariants of curvature have a singularity at ' = 0 which
represents horizon. For� > 4 the same discussion of solution
(17) can be applied for the two sets.

To understand the meaning of the constants of each
solution we have calculated the conserved quantities. In the
case of � = 4 we have shown that the only nonvanishing
physical quantity is the energy. We have shown that the value
of energy of solution (17) is not a�ected by the dimension
parameter � while it is a�ected for solution (22) and reduces
to the well known formula of ADMwhen � = 0. When� > 4
the energy of solution (17) does not depend on the parameter�while it depends on it for solution (22) and can not be equal
to zero.

Finally, we have calculated the thermodynamical quan-
tities like Hawking temperature, entropy, and so on. For
solution (17) and when � = 4 we have shown that the
temperature depends on the electric and magnetic charges
and for � > 4 the parameter � is not allowed to be zero;
otherwise, the temperature will be inde�nite. We have shown
that the entropy, for solution (17), depends on � andwhen it is

vanishing we return to GR. For this solution, we have shown
that the �rst law of thermodynamics is satis�ed for general� ≥ 4 using the extended phase space [108].

For solution (22) we have shown that temperature will
be �nite if � = 0 and will return to GR a�er rescaling the
constants of integration. For the entropy and when� = 4 the
same discussion of solution (17) can be applied. 	e entropy
will have a �nite value only when the constraint (27) is used.
Finally we have shown that the �rst law of thermodynamics
is satis�ed for general� ≥ 4.
Appendix

A. Notation

	e indices U, �, . . . are employed for (co)frame components
while�, �, . . . are used for spacetime coordinates.	e exterior
product is represented by ∧ and the interior product is

denoted by y⌋Ψ. 	e coframe r� is de�ned as r� = ^����� and
the frame �̂ is de�ned as �̂ = �̂��� with ^�� and �̂� being the
covariant and contravariant components of the tetrad �eld.

	e volume is de�ned as s fl r0̂ ∧ r1̂ ∧ r2̂ ∧ r3̂. Using the
interior product one can de�ne

s� fl �̂⌋ s = 13!�����r� ∧ r� ∧ r�, (A.1)

with ����� being completely antisymmetric.

B. The Nonvanishing Components of the
Christoffel Symbols Second Kind and Ricci
Curvature Tensor

Using (13) we get the following nonvanishing components
of the Christo�el symbols second kind and Ricci curvature
tensor:

Γ��� = −Γ��� = &�2& ,Γ��� = &&�2 ,
Γ�1 ��1 = Γ�2 ��2 ⋅ ⋅ ⋅ Γ��−2 ���−2 = 1' ,Γ��1�1 = Γ��2�2 ⋅ ⋅ ⋅ Γ���−2��−2 = −'&.
����� = &��2 ,
���1��1 = ���2��2 = ⋅ ⋅ ⋅ = ����−2���−2 = '&&�2 ,
���1��1 = ���2��2 = ⋅ ⋅ ⋅ = ����−2���−2 = −'&�2& ,
��1�2�1�2 = ��1�2�1�2 = ⋅ ⋅ ⋅ = ��1��−2�1��−2 = ��2�3�2�3= ��2�4�2�4 ⋅ ⋅ ⋅ ��2��−2�2��−2 ⋅ ⋅ ⋅ ���−3��−2��−3��−2= −'2&.

(B.1)
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Using (19) we get the following nonvanishing components
of the Christo�el symbols second kind and Ricci curvature
tensor:

Γ��� = &�2&
Γ��� = ^�2^ ,
Γ��� = &&�2 ,
Γ�1 ��1 = Γ�2 ��2 ⋅ ⋅ ⋅ Γ��−2 ���−2 = 1' ,Γ��1�1 = Γ��2�2 ⋅ ⋅ ⋅ Γ���−2��−2 = −'^.
����� = &��2 − &�24& + &�^�4^ ,
���1��1 = ���2��2 = ⋅ ⋅ ⋅ = ����−2���−2 = '^&�2 ,
���1��1 = ���2��2 = ⋅ ⋅ ⋅ = ����−2���−2 = −'^�2^ ,
��1�2�1�2 = ��1�2�1�2 = ⋅ ⋅ ⋅ = ��1��−2�1��−2 = ��2�3�2�3= ��2�4�2�4 ⋅ ⋅ ⋅ ��2��−2�2��−2 ⋅ ⋅ ⋅ ���−3��−2��−3��−2= −'2^.

(B.2)
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