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HIGHER-DIMENSIONAL MULTIFRACTAL ANALYSIS

L. BARREIRA, B. SAUSSOL, AND J. SCHMELING

ABSTRACT. We establish a higher-dimensional version of multifractal
analysis for several classes of hyperbolic dynamical systems. This means
that we consider multifractal decompositions which are associated to
multi-dimensional parameters. In particular, we obtain a conditional
variational principle, which shows that the topological entropy of the
level sets of pointwise dimensions, local entropies, and Lyapunov ex-
ponents can be simultaneously approximated by the entropy of ergodic
measures. A similar result holds for the Hausdorff dimension. This
study allows us to exhibit new nontrivial phenomena absent in the one-
dimensional multifractal analysis. In particular, while the domain of
definition of a one-dimensional spectrum is always an interval, we show
that for higher-dimensional spectra the domain may not be convex and
may even have empty interior, while still containing an uncountable
number of points. Furthermore, the interior of the domain of a higher-
dimensional spectrum has in general more than one connected compo-
nent.

1. INTRODUCTION

Consider a one-sided subshift of finite type o: X — X. This means that
there exist a positive integer m, and an m x m matrix A, called the transfer
matrix of o, whose entries a;; are either 0 or 1, such that X is the set of
sequences (i172---) on m symbols satisfying a;,;, ., = 1 for every k. The
shift map is defined by o(ijig---) = (igiz---). Consider also a continuous
function ¢: X — R. For each o € R we define the corresponding level set
of the Birkhoff averages of ¢ by

Ko(p)=<x € X : lim lZgo(akx) =a,. (1)

By Birkhoft’s ergodic theorem, if p is an ergodic o-invariant probability
measure on X, and a = [y ¢dpu, then u(K,(¢)) = 1. This does not mean
that the sets K,(p) are empty for other values of a. In fact, for several
classes of hyperbolic dynamical systems it has been established that:

1. if Ku(p) # @, then K,(p) is a proper dense set;

2. the set {o € R: K,(p) # @} is an interval;

3. the function a — h(o|K4(p)) is analytic and strictly convex, where
h(c|K') denotes the topological entropy of o|K (see Section 2 for the
definition).
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In particular, these statements imply that there exist uncountably many val-
ues of « such that K, is a proper dense set with positive topological entropy.
This observation already reveals an extreme complexity of the structure of
Birkhoff averages. We refer the reader to the book [9] for references and full
details.

We want to establish a higher-dimensional version of this study. More
precisely we want to consider sets which are obtained as the intersection of
level sets of Birkhoff averages, such as

Ka,,@ - Ka(‘:o) n Kﬁ(¢)? (2)

and describe their multifractal properties, including their “size” in terms
of topological entropy and of Hausdorff dimension, thus providing a higher-
dimensional version of multifractal analysis. The term “higher-dimensional”
refers to the multi-dimensional parameter (o, 3).

On the other hand, we shall demonstrate that the corresponding higher-
dimensional multifractal spectra exhibit several new nontrivial phenomena
clearly absent in the one-dimensional case. It turns out that the known
approaches to the study of one-dimensional multifractal spectra no longer
apply or have to be considerably modified to address this new situation.
This is done in this paper. Nevertheless a unifying theme will continue
being the use of the thermodynamic formalism.

We shall now illustrate our results with a rigorous statement in the special
case of subshifts of finite type. Let M(X) be the family of o-invariant Borel
probability measures on X, and consider the set

Dz{(/xapdu,/xz/zdu>6R2:MEM(X)}.

We denote by h,(c) the metric entropy of a measure € M(X), and by
Px () the topological pressure of the function ¢ (see Section 2 for the defini-
tion). The following statement provides a conditional variational principle
for the sets K, g when o is topologically mixing, i.e., when A* > 0 for
some k, where A is the transfer matrix of o.

Theorem 1. Let o|X be a topologically mixing subshift of finite type, and ¢
and v Hélder continuous functions on X. If (o, f) € int D then K, p # &,
and

h(o|Ka,p) :SUP{hu(U) € M(X) and </Xsodu,/xwdu> = (a,ﬁ)}

= inf { Px (p(¢ — @) + q(¢ = B)) : (p,q) € R*}.

Theorem 1 follows from the much more general results formulated in Sec-
tion 4. In particular we shall consider the intersection of any finite number
of level sets of Birkhoff averages, as well as other local quantities such as
pointwise dimensions, local entropies, and Lyapunov exponents. We shall
also consider the more general class of dynamical systems for which the
metric entropy is upper semi-continuous.

The following statement gives further detailed information about the sets
K, . In particular it provides a condition under which D = intD, and
thus such that the identities in Theorem 1 hold for an open and dense set of
pairs («a, 3) € D. In a certain sense this condition is optimal (see Section 4
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for a detailed discussion). Recall that two functions ¢ and v are said to
be cohomologous (with respect to o) if there exist a constant ¢ € R and a
continuous function g: X — R such that p —¢ =g —goo+con X.

Theorem 2. If o|X is a topologically mizing subshift of finite type, and
@ and ¥ are Holder continuous functions on X, then the following proper-
ties hold:
1. if (o, ) € D then Ko p = @;
2. if for each (p,q) € R? the function pyp + qi is cohomologous to no
constant, then D = int D;
3. the function (o, 3) — h(o|Kag) is analytic in int D;
4. there exists an ergodic Gibbs measure o 3 € M(X) with fX pdu =«
and fX Ydu = 0, such that

Maﬂ(Kaﬂ) =1 and h

a5 (0) = M| Kap).

The last statement in Theorem 2 says that the topological entropy of the
set K, g is in fact fully carried by a special ergodic measure on that same
set. Again, Theorem 2 follows from the more general results formulated in
the sections below.

Assume now that ¢ > 0 and set

Yk plotx) }
M, =<z X: lim SfF————FF=7v,.
{ n—oo 3 ko ¥(0*x)
The function v +— h(c|M,) is called a mized multifractal spectrum (see [2]
for a detailed related discussion). Set

S xedn _ Jxpdu
l—mf{wadu .,uGM(X)} and y—sup{fx¢du .,uGJV[(X)}.

The following statement establishes a precise relationship between the
two-dimensional spectrum (o, 3) — h(c|K, ) and the mixed multifractal
spectrum. We write S, = {(a, 3) e R x RT : o/ = ~}.

Theorem 3. Let o|X be a topologically mizing subshift of finite type, and
@ and ¢ Hélder continuous functions on X with 1) > 0. If v € (v,7), then

h(o|M,) = max{h(o|Ka5) : (@, ) € S, ).

Notice that M, D U(a,ﬁ)eSa, K, s and that this union is composed of an
uncountable number of pairwise disjoint nonempty sets. Theorem 3 shows
that surprisingly the topological entropy of M, is fully carried by some
subset K, g. This relationship provides a new insight to the study of mixed
multifractal spectra in [2]. A detailed discussion is given in Section 7.

As explained above we introduce in this paper a higher-dimensional ver-
sion of multifractal analysis. Besides its own interest and source for new
phenomena, this study has nontrivial applications to number theory. We
emphasize that the one-dimensional multifractal analysis is not sufficient for
these applications and that it is crucial to use the full force of the higher-
dimensional version introduced in this paper. The reason will become clear
shortly below.

We want to consider the base-m representation of real numbers, for a
fixed integer m > 1. This representation is unique except for countably
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many points, and since countable sets have zero Hausdorff dimension, the
nonuniqueness of the representation does not interfere with our study of
dimension. For each k € {0,...,m—1} and z = 0.z 22 -- - € [0, 1], whenever
there exists the limit

) 1.... T =
(@) = Tim card{i € {1,...,n}: z; = k}

n—00 n

it is called the frequency of the number k in the base-m representation of x.
Consider the sets

Fo(ag,...,om—1) ={x €[0,1] : () = for k=0, ..., m — 1},

whenever ag + -+ + ;-1 = 1 with «; € [0,1] for each i. One can show
that each of these sets is nonempty and hence is dense in [0,1] (note that
the limits 74 (z) only depend on the tail of the representation). In fact it is
straightforward to construct explicitly a point in F,(ag,...,am—1). In [5]
Eggleston computed the Hausdorff dimension

B S ay log oy, 3)
logm )

dimH Fm(ao, e ,Ozm_l) =

It is easy to see that this result is related to multifractal analysis. Observe
first that the action of the shift map on the set of sequences in {0,...,m—1}
can be identified with the action of the map x — maz (mod 1) on the base-
m representation in [0, 1]. After this identification, when m = 2 we have
Fy(ag, 1) = Ka,(p) (see (1)) for the characteristic function ¢ = x[o,1/2)-
This identity allows one to apply the one-dimensional multifractal analysis
to obtain a straightforward alternative proof of (3) when m = 2. We can
also consider the case when m > 2. However, it is now essential to use the
higher-dimensional multifractal analysis. For example, when m = 3 we have

Fs(ao,al,a2) = Kao(SD) N Kq, (¢) = Kao,oq

(see (2)) for the functions ¢ = xjo,1/3) and ¥ = X[1/3,2/3)- This observation
allows one to apply Theorem 1 to conclude that

s i~ (59 0£)) o[ 3)) -}

This readily implies the identity (3) when m = 3, since the supremum is
always attained at a Bernoulli measure (in this case with probabilities ay,
a1, and 1 —ap —ay = ag). The appropriate generalization of Theorem 1 for
an arbitrary finite number of functions (see Section 4), allows us to obtain
a straightforward alternative proof of (3) for an arbitrary m.

This example already illustrates how the higher-dimensional version of
multifractal analysis can be used to obtain a very simple proof of a known
result. On the other hand our techniques can also be used to study the
Hausdorff dimension of several new classes of sets. We now present a few se-
lected examples from our work [3] that illustrate the applications to number
theory that we have in mind:

1. Consider m = 3, and the set G; = {zx € [0,1] : 71 (x) = 279(z)}. This
is the set of numbers in [0, 1] such that its base-3 representation has
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a percentage of ones which is two times the percentage of zeros. The
percentage of twos is arbitrary. We have

Gi= |J Fsa,20,1-30), (4)
a€l0,1/3]
and thus
log(1 V4
dimy G; > max dimyg F3(a,2a,1 —3a) = og(—l——?)/\/—). (5)

a€l0,1/3] log 3

The theory developed in this paper allows us to show that the inequal-
ity in (5) is in fact an identity, that is, there exists a € [0,1/3] such
that F3(a,2a,1 —3a) C Gy and dimpy F3(a, 20,1 — 3a) = dimy Gy.
The difficulties have to do with the fact that the disjoint union in
(4) is not countable. Further difficulties occur when m > 3 since the
identity in (4) must be replaced by a proper inclusion (see also the
following example).

2. Consider m = 4, and the set G2 = {z € [0,1] : (19(z) +71(x))/2 = a}.
We can show that

dimp G = log, |2 (20 oLz (6)
152 =084 12\ 1 "0 2 '

Now

GQD U U F4(ﬂ,20&—5,’7,1—20&—7),

B€[0,20a] vE[0,1—20]

and the inclusion is proper (contrarily to what happensin (4)). Again,
the easy part is to show that the right-hand side in (6) is a lower bound
for dimy Gs.

3. Consider m = 2, and the set G3 of points x € [0, 1] such that the base-
2 representation has a frequency of the block 00 equal to that of the
block 111. We can show that dimy G5 = 0.26078 - - - (in base 10) and
this number can be computed with an arbitrary precision, although
we are not aware of an explicit expression. Contrarily to what may be
though, this example illustrates another advantage of our approach:
the value of the Hausdorff dimension does not need to be guessed a
priori. In some works this a priori knowledge is required in order to
construct a certain measure sitting on the set, which is then used to
show that the guess was correct.

These examples are particular cases of the general theory presented in [3].

We can also consider the representation of real numbers with continued
fractions. Similar methods lead to related results concerning the frequencies
of a finite number of digits in the continued fraction representation. Further-
more, we believe that this study can be generalized to an infinite number of
digits as long as the involved potentials (representing the functional relations
between frequencies) are sufficiently “well behaved”.

The structure of the paper is as follows. Section 2 briefly recalls the no-
tions of topological pressure and u-dimension. In Section 3 we formulate
our results in the case of repellers. This provides a model for more general
situations with the advantage of avoiding extra technical details. Section 4
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establishes a conditional variational principle for higher-dimensional mul-
tifractal spectra when the entropy is upper semi-continuous. This work is
used in Section 5 to study the regularity and nondegeneracy of multifractal
spectra, and in Section 6 to study the associated irregular sets. In Section 7
we look at the finer structure of multifractal spectra, and, in particular, show
that mixed spectra can be expressed in terms of higher-dimensional “non-
mixed” spectra. The proofs are based on the thermodynamic formalism and
are collected in Section 8.

2. TOPOLOGICAL PRESSURE AND %-DIMENSION

2.1. Topological pressure. Let f: X — X be a continuous map of the
compact metric space X, and U a finite open cover of X. We denote by

W,,(U) the collection of words U = (Uy, ..., U,) € U of length m(U) = n,
and define the open set
XU)={zeX:ffeecU,fork=0,...,n}.

Let ¢: X — R be a continuous function. Given U € W,,(U) with X(U) # @
set

m(U)
©(U) = sup o(fFz).
zeX(U) ];)

For each set Z C X and each real number «, we define
M(Z,a,0,U) = lim inf Z exp(—am(U) + ¢(U)),
n—oo I'
ver
where the infimum is taken over all finite or countable collections I' C

Uksn Wk(U) such that Uyer X(U) D Z. The topological pressure of ¢
on the set Z (with respect to f) is defined by

Pz(p) = lim  Pz(pl0),

where
Pz(p,U) = inf{a: M(Z,a,p,U) = 0}.
We call h(f|Z) = Pz(0) the topological entropy of f on Z.

2.2. The notion of u-dimension. We recall a Carathéodory dimension
characteristic introduced by Barreira and Schmeling in [4]. Let u: X — R
be a continuous function with u > 0. For each set Z C X and each real
number «, we define

M(Z — lim inf -
(Z,0,u,U) = lim in Uzezrexp( ou(U)), (7)

where the infimum is taken over all finite or countable collections I' C
Ursn Wik(U) such that Jyer X(U) D Z. Set

dim,  Z = inf{a: M(Z,a,u,U) = 0}.

The limit

. def . .
dim, Z =< lim dim,yZ
diam U—0 ’

exists, and is called the u-dimension of Z. For example, if u = 1, then
dim,, Z coincides with the topological entropy of f on Z.
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The following result expresses a relation between the u-dimension and the
topological pressure, and follows easily from the definitions.

Proposition 4. We have dim, Z = «, where « is the unique root of the
equation Pz(—au) = 0.

For every Borel probability measure p on X, let
dimy, o p = inf{dim,  Z: p(Z) = 1}.

The limit

. def . .
dim, g = lim dim,
u bl diam U—0 wU K

exists, and is called the u-dimension of u. When p € M(X) is ergodic, one
can show that (see [4])

dimu,u:hu(f)//xud,u. (8)

3. REPELLERS

3.1. Preliminaries. Let f: M — M be a C! map of a smooth Riemannian
manifold. We assume that f is a local diffeomorphism at each point of some
f-invariant subset X C M. Let also y be an f-invariant probability measure
on M. We shall consider several quantities of local nature:

1. The (top) Lyapunov exponent of the point x € M is given by
def s 1 n
Mz) = lim —logflds f"| (9)

whenever the limit exists.
2. The pointwise dimension of u at the point x € M is defined by

o .. log u(B(z,
r—0 log r

(10)
whenever the limit exists, where B(x,r) C M denotes the ball of
radius r centered at x.

3. For each finite measurable partition £ of M, we define the u-local
entropy of f at the point x € M (with respect to £) by

de de . 1
h(@) = hu(f, & 2) < lim —— log p(én (@) (11)
n—oo n
whenever the limit exists, where &,(x) is the atom of the partition
Vi—o %€ which contains z (which is well-defined mod 0).

By Kingman’s sub-additive ergodic theorem and the Shannon—-McMillan—
Breiman theorem, the functions A and h, are well-defined p-almost every-
where. For hyperbolic measures invariant under a C1T¢ diffeomorphism on
a compact manifold it was shown in [1] that the function d, is well-defined
p-almost everywhere. In the case of repellers the corresponding statement
is established in [13]. One can easily verify that each of the functions in (9),
(10), and (11) has an f-invariant domain, and that they are f-invariant on
the respective domain of definition. In addition, if £ is a generating partition
of M (ie., a partition such that \/;2, f~F¢ generates the Borel o-algebra
of M) and p is ergodic, then h,(f) = hu(f, &, x) for p-almost every x € M,
where h,(f) is the measure-theoretic entropy of f (with respect to u).
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We shall consider intersections of level sets of the functions in (9), (10),
and (11). The following results describe the “size” of these intersections
in terms of topological entropy and Hausdorff dimension. Given a subset
Z C M we denote by dimy Z the Hausdorff dimension of the set Z, and by
h(f|Z) the topological entropy of f on Z.

We briefly recall the notion of Hausdorff dimension. Let X be a metric
space and consider a subset Z C X. Given a > 0, we set

m(Z, a) = lim inf %(diam U),

where the infimum is taken over all finite or countable cover U of Z by sets
of diameter at most . There exists a unique value of a at which m(Z, «)
jumps from 400 to 0. This value is called Hausdorff dimension of Z and is
denoted by dimy Z. We have

dimy Z = inf{a : m(Z, ) = 0}.

3.2. Formulation of the results. Consider a compact f-invariant set X C
M. We say that f is ezxpanding on X, and that X is a repeller of f if there
exist constants ¢ > 0 and 3 > 1 such that ||dg f"ul| > ¢8"||ul| for all z € X,
uw €T, M, and n > 1.

In order to define the local entropies we shall always consider a Markov
(and thus generating) partition £ of X (with respect to f) of sufficiently
small diameter.

Let M(X) denote the family of f-invariant probability measures on X.

Given i1, ..., g € M(X) and o = (ay, ..., aq) € R?, we consider the set
d
E, = ﬂ{x € X :hy(x) = a4},
i=1
and given Holder continuous functions ¢, ..., @4 on X we consider the
vector

Sd(u)z(—/Xtmdu,---,—/xwdu>

for each p € M(X). The following statement describes the higher-dimen-
sional spectrum o« — h(f|Eq).

Theorem 5. Let X be a repeller of a topologically mizing C'+® expanding
map f, for some a > 0, and let py, ..., pug be the equilibrium measures of
Holder continuous functions 1, ..., q on X such that Px(p1) = -+ =
Px(pq) = 0. Then the following properties hold:

1. ifa g EqM(X)) then E, = &;

2. if a € int Eg(M(X)) then E, # &, and

h(f|Ea) = max{hy(f) : €a(p) = a}; (12)
3. the map o — h(f|E) is analytic in int €y(M(X));
4. if the functions 1, ©1, ..., @q are linearly independent as cohomology

classes then
EaM(X)) = int E4(M(X)).



HIGHER-DIMENSIONAL MULTIFRACTAL ANALYSIS 9

The identity in (12) provides a higher-dimensional conditional variational
principle for the local entropies of 1, ..., ugq.
We now consider the sets
d
Dg = ﬂ{x €X:dy(zr)=0} and L,={zecX:\x)=r},
=1
where 8 = (B1,...,0q4). Write u(z) = log||d, f||. Let also

o fX w1 du fX ©qdp
Dd(l’L) - _77 ] - r 7
Jx wdp Jxwdp
and L(pu) = [y udp for each p € M(X). We say that f is conformal on X

if d,f is a multiple of an isometry for every x € X. We shall now obtain
further conditional variational principles in the case of conformal maps, for
the topological entropy and for the Hausdorff dimension.

Theorem 6. Let X be a repeller of a topologically mizing C'+® expanding

map f, for some o > 0, such that f is conformal on X, and let py, ..., pq
be the equilibrium measures of Holder continuous functions @1, ..., pqg on X
such that Px(p1) = --- = Px(¢q) = 0. Then the following properties hold:
1. if B € int Dy(M(X)) then Dg # @, and
h(f|Dg) = max {hu(f) : Da(p) = B}, (13)
: hu(f)
dimg D :max{ K’ : Dalp :ﬁ}; 14
2. if (a,y) € int(Eq, L)(M(X)) then Eo N Ly # @, and
h(f|Ea N Ly) = max{h,(f) : (€a,L) (1) = (@, 7)}, (15)

dimpy(Ey N Ly) = max {fhﬂiif)
X

€t =@} (9
3. if (B,7) € int(Dg, L)(M(X)) then DgN L, # &, and

h(f1Dp N Ly) = max{h,(f) : (Da, £)(1) = (8,7)}, (17)
ding(Dy 01 1) = max { #2400+ 0,000 = B0 |5 )
4. ifd=1 and (o, B) € int(E1,D1)(M(X)) then E, N Dg # @, and

(€1, D) (p) = (. )}, (19)

h(f|Eo N Dg) = max{h,(f
(€2, D)) = <a,ﬂ>}. (20)

M
) :
dimpy (Ey N Dg) = max huu(f)
Jxwdp

We remark that each of the expressions in (13)—(20) is analytic on «, 3,
~ in the interior of the corresponding domain of definition, as a consequence
of more general results formulated below (see Section 5 for details).

One can certainly consider other intersections of level sets besides those
in Theorem 6 (see Section 4 for a related discussion), such as E, N Dg for
d > 1. We note that the intersection E, N Dg is nonempty if and only if
a = 7 for some v € L(M(X)) such that DgN L, # @. In this case we have
K,3NDg = DgNL~, and thus one can apply Statement 3 in Theorem 6 to the
set int (€4, Dg)(M(X)). However, one can show that int(€4,Dg)(M(X)) = @
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whenever d > 1 (see Section 4 for details) and thus Theorem 6 provides no
information in this situation.

We shall now provide sufficient conditions for the interiors considered in
Theorem 6 to be dense, and thus such that each of the conditional varia-
tional principles in (13)—(20) is valid in an open and dense subset of the
corresponding domain. The results in Section 4 indicate that these are in a
sense optimal assumptions.

Theorem 7. Under the hypotheses of Theorem 6 the following proper-
ties hold:
1. if the functions @1, ..., pq, u are linearly independent as cohomology
classes then
Dy(M(X)) = it Da(V(X));
2. if the functions 1, @1, ..., @q,u are linearly independent as cohomol-
ogy classes then

(€, L)YM(X)) = int(€q, L)(M(X))

and

(Da, L)M(X)) = int(Dg, £)(M(X));
3. if d =1 and the functions 1, 1, u are linearly independent as coho-
mology classes then

(€1, D1)(M(X)) = int(E1, Dy)(M(X)).

4. CONDITIONAL VARIATIONAL PRINCIPLE

4.1. Preliminaries. Let now f: X — X be a continuous map on the com-
pact metric space X. We denote by C'(X) the space of continuous functions
¢: X — R. Consider a pair of vectors (®,¥) € C(X)¢ x C(X)? and write

= (p1,..,0a) and W= (1,... 1)

We shall always assume that ¢; > 0 for each ¢ = 1, ..., d. Given a =
(a1,...,aq) € R we set
d
Ko = Ko (®,0) =) {:c € X : lim 90”22 - ai} , (21)
i=1 el
where
n—1 n—1
Pin(x) =Y @i(ffz) and gin(z) =D di(fFx). (22)
k=0 k=0

We continue to denote by M(X) the family of f-invariant Borel probability
measures on X, and define a continuous function P = P(®¥): M(X) — R?

by
‘[X(Pldlu' ‘[dedlu'>
P(p) (Ile " [ badn) (23)
Since M(X) is compact and connected, and P is continuous, the set P(M(X))
is also compact and connected.
Given a positive function v € C'(X) we denote by dim,, Z the u-dimension
of the set Z C X (see Section 2 for the definition). For example:

1. if w = 1, then dim, Z = h(f|Z);
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2. if u = log||df|| for a conformal expanding map on X, then dim, Z =
dimy Z for every Z C X.

The function F, = 3"1(;1)’\1}) defined by
Fu(a) = dim, K, (P, V) (24)

is called the u-dimension spectrum for the pair (®, V).

We denote by D(X) C C(X) the family of continuous functions with
a unique equilibrium measure. Recall that if the metric entropy is upper
semi-continuous, or, more precisely, if the map p — h,(f) is upper semi-
continuous, then:

1. every function ¢ € C'(X) has an equilibrium measure;

2. given ¢ € C(X), the function R > t — Px (¢ + tv) is differentiable
at t = 0 for each ¢» € C'(X) if and only if ¢ € D(X); in this case the
unique equilibrium measure p, of ¢ is ergodic, and

d
GPs e+ tla= [ v (25)

3. if ¢, ¥ € C(X) are such that span{y, v} C D(X), then the function
t — Px(p + ty) is differentiable in R, and is in fact of class C'! (see
[8, Theorem 4.2.11]).

For example, when f: X — X is a one-sided or two-sided topologically
mixing subshift of finite type, or an expansive homeomorphism, then the
metric entropy is upper semi-continuous. Furthermore, if f: X — X is a
one-sided or two-sided topologically mixing subshift of finite type, or an
expansive homeomorphism which satisfies specification, and ¢ € C¢(X),
then it has a unique equilibrium measure. Here Cf(X) C C(X) is the
family of continuous functions ¢: X — R for which there exist ¢ > 0 and
K > 0 such that

n—1 n—1
D oe(ffa) = e(ffy)| < s
k=0 k=0

whenever d(f*z, f¥y) < e for every k = 0, ..., n — 1. On the other hand,
all B-shifts are expansive, and thus the entropy is upper semi-continuous
(see [8] for details), but for § in a residual set of full Lebesgue measure the
corresponding (-shift does not satisfy specification (see [11]).

4.2. Conditional variational principle. In this section we establish a
conditional variational principle for the spectrum F,. Given vectors a =
(a1,...,aq) ERTand ® = (¢1,...,pq) € C(X)?* we shall write

d
ax® = (a1p1,...,0qpq) € C(X)? and (o, ®) = Zaigoi € C(X).
i=1

We now present the main result of this section.

Theorem 8. Assume that the metric entropy of f is upper semi-continuous,
and that span{@1,¥1, ..., ¢4, Y, u} C D(X). If o & P(M(X)) then K, =
@. Furthermore, if o € int P(M(X)) then K, # @ and the following prop-
erties hold:
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1. Fu(a) satisfies the conditional variational principle

hu(f) }
Fula) = max { 2 € M(X) and P(p) = ap; 26
(@) = mae {24 € () and 900 (26)
2. Fu(a) = inf{Tyu(q) : ¢ € RY}, where Ty(q) is the unique number
satisfying

Px((q,® — a* V) — T,(q)u) = 0;

3. there exists an ergodic equilibrium measure po € M(X) with P(pe) =
a and po(Ky) =1 such that

dimy, pto = 7}%‘1 (f) = Fu(a). (27)
Jx wdpa
When d = 1 the statements in Theorem 8 were established by Barreira
and Saussol in [2]. In Statement 2 the formula for the spectrum ¥, can be
seen as a Legendre-type transform (see [2] for a related discussion in the
case d = 1).
In particular Theorem 8 implies that:

1. The u-dimension of the set K, can be arbitrarily approximated by
the u-dimension of measures p € M(X) with P(u) = a.

2. There exists an equilibrium measure in M(X) (the measure p,) with
the same u-dimension as K,. The measure p, can be obtained in the
following manner. It follows from the proof of Theorem 8 that there
exists a vector ¢(a) € R? such that

Px({g(a),® — ax V) — F,(a)u) = 0.
Then p,, is the equilibrium measure of (¢(a),® — a * V) — F,(a)u.

Furthermore, Theorem 8 gives very detailed information about the mul-
tifractal spectrum inside int P(M(X)). It is therefore crucial to discuss the
properties of this open set, and in particular to establish under which con-
ditions it is nonempty. The following statement provides a characterization
of the points in int P(M(X)) and in a certain sense it is optimal.

For each ¢, a € R%, we consider the function Sga: R — R defined by

Sya(t) = Px(tg, ® — a « U)).

When f|X is a subshift with the specification property, and ® — a * ¥ €
C¢(X)?, the function Sy, has the following interpretation. Let

n—1
Eqa(B) = h <f| {w €X: lim % > (g, ® —axU)(fre) = ﬁ}) .

k=0
Using (25) we obtain

Bualt) ™ =Sjalt) = = [ (0.0~ W) iy,
and it follows from work in [4] that

€qa(Bgalt)) = Sqa(t) + tFga(t)

for every t. This shows that S, is the Legendre transform of €.
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Theorem 9. Assume that f has finite topological entropy, and that the vec-
tors ® and ¥ are composed of continuous functions on X. If a € P(M(X))
then:

L. if Sya is constant for no g € R%, then o € int P(M(X));

2. if Sya is constant for some q € R?, then a ¢ int P(M(X)).

A noteworthy consequence of Theorem 9 is that if the topological pressure
is strictly convex, that is, if for any ¢ € R? and o € P(M(X)) the function
Sqa 1s strictly convex, then

PM(X)) = int P(M(X)).
For example, if f: X — X is a subshift which satisfies specification, and

i, ¥ € Cp(X) for i =1, ..., d, then for each a € P(M(X)) the following

properties are equivalent:

1. the function g — Px({(q, ® — a % ¥)) is strictly convex;

2. the function Sy, is constant for no ¢ € RY:

3. the functions ¢; — a;1; for i = 1, ..., d are linearly independent as
cohomology classes.

For each ¢ € §24-1 < {5 e R2 : ||z]| = 1} we set

[(q) = 0 {P(pyq@,w)) : t € R},
where 0A denotes the boundary of the set A.

Theorem 10. Let f: X — X be a subshift which satisfies specification, and
wi, ;i € Cp(X) fori=1, ..., d. Then

oPM(X) c |J T,
qes2d—1

and if, in addition, the functions 1, @1, ..., @4, Y1, ..., Yq are linearly
independent as cohomology classes, then P(M(X)) = int P(M(X)).

4.3. New phenomena observed in higher-dimensional spectra. In
the case d = 1, the connectedness of P(M(X)) implies that only one of the
following two exclusive alternatives can occur:

1. The spectrum is degenerated: in this case P(M(X)) = {a} for some
a € R. Furthermore, K, = X and K, = & for every o # a.

2. The spectrum is nondegenerated: in this case P(M(X)) = [a,a] for
some real numbers ¢ < @. In particular P(M(X)) has nonempty
interior, and P(M(X)) = int P(M(X)).

When d > 1, that is, in the case of higher-dimensional multifractal spectra,
several new phenomena can occur. Namely:

1. P(M(X)) may not be convex;

2. int P(M(X)) may have more than one connected component;

3. P(M(X)) may have empty interior, but still contain an uncountable
number of points.

See Examples 1 and 2 below for explicit constructions. We emphasize that
neither of these three situations occurs when d = 1.

When d = 1 the existence of a cohomology relation between the functions
 and ¥ immediately implies that the domain of the spectrum is composed
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o5 Qg,
1

aq aq

—1

FIGURE 1. Two sets P(M(X)) for which the interior has two
connected components, due to the presence of a cohomology
relation. The curves in the pictures represent the boundary

of P(M(X)).

of only one point. In the case of higher-dimensional multifractal spectra this
may not be the case, as illustrated in the following example.

Example 1. Consider a subshift of finite type f: X — X and set d = 2.
Let ¢, ¢ € C¢(X) be such that ¢, ¢, and 1 are linearly independent as
cohomology classes. We assume that [ « @dp = 0 for some measure p €
M(X) and that ¢ > 0.

Setting 1 = ¢, Y2 = ¢, ¥1 = 1, and Py = 1 we obtain 0 € P(M(X))
(since [y @du = 0) and (@1 —0-1h1) — (w2 —0-1p2) = 0. On the other hand, it
is easy to see that @1 — a1 and Y9 — oo are linearly independent as coho-
mology classes whenever a # 0, and hence P* = P(M(X))\ {0} is nonempty
(by Theorem 9). In fact, it follows from Theorem 9 that P* C int P(M(X)).
Since P(M(X)) is closed, we conclude that P(M(X)) = int P(M(X)). This
shows that even though there exists a cohomology relation, the set P(M (X))
is composed of uncountably many points. Furthermore it has nonempty in-
terior.

The first picture in Figure 1 provides an explicit example when f is the
Bernoulli shift on 3 symbols. In this example we took the linear combinations
of characteristic functions

e=x1—x2 and ¢ =x1+ x2+2x3,

where x; is the characteristic function of the cylinder C; of length 1. Observe
that in this particular case int P(M(X)) has two connected components.
Furthermore, the set P(M(X)) is not convex, but each of the connected
components of int P(M(X)) is convex.

The second picture in Figure 1 is obtained in a similar manner for the
Bernoulli shift on 3 symbols, with the functions

o1 = —4x1 +4x2 +8x3 and 2 = —06x1 — 3x2 + 5x3,

1 =2x1+9x2 +2x3 and o = 6x1 + X2 + 2x3.

Again the set int P(M(X)) has two connected components. We note that
contrarily to what happens in the previous construction, there exists now a
component of int P(M (X)) which is not convex. O
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We now illustrate that P(M (X)) may have empty interior, but still contain
uncountably many points.

Example 2. Consider the Bernoulli shift on 2 symbols and set d = 2. In a
similar way to that in Example 1 we define functions

w1 =aix1 +bixa and @2 = asx1 + baxa,

and 11 = 2 = u = 1, where Yx; is the characteristic function of the cylinder
C; of length 1. We assume that a1bs—bias = 1. The case when a1bs —byas #
1 can be treated in a similar manner. Observe that

baor —bipz = x1 and  aips — azpr = xa.
Since x1 + x2 = 1 we obtain

Ka1,00) = Kbyar—bras (X1) = Kayas—azar (X2)5
and
boavy — biog +ajag —asa; = 1 (28)
for every (a1, az) € R2. It follows from Theorem 8 and (28) that

h(f’K(al,az)) :Sup{hu(f) 1 11(Ch) = by — bran}
= — (bQOél — blag) log(bgc)q — bloég)
— (a12 — agay) log(aj e — asar).

Furthermore, the domain of the spectrum (a1, a2) — h(f[K(q;a,)) is &
segment contained in the line defined by (28). O

We remark that in some sense the situation described in Example 2 should
be considered degenerated. In fact, Theorem 9 implies that the “degeneracy”
in Example 2 is due to the presence of cohomology relations. When this
happens one can replace the 2d functions in the vectors ® and ¥ by a
maximal set of independent ones, without changing the level sets (up to a
change of variables), and in such a way that after the reduction the domain of
the spectrum will have nonempty interior with respect to the new functions.

The spectrum itself may not be convex even when d = 1 (see [2] for an
explicit example).

4.4. The case of the entropy. We now consider the particular case of a
conditional variational principle for the topological entropy. The following
statement is an immediate consequence of Theorem 8 by setting u = 1.

Theorem 11. Assume that the metric entropy is upper semi-continuous,
and that span{y1, Y1, ...,¢04,Ya} C D(X). If a € P(M(X)) then K, = @.
Furthermore, if a € int P(M(X)) then K, # @ and the following properties
hold:

1. we have the conditional variational principle
B(f1Ka) = max{hy(f) : p € M(X) and P() = (29)

2. h(f|K,) =inf{Px((g,® — ax¥)):qeR;
3. there exists an ergodic equilibrium measure pq € M(X) with P(pa) =
a and po(Ky) =1 such that hy, (f) = h(f|Ka).
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When d = 1 the statement in Theorem 11 was established by Barreira and
Saussol in [2]. When ¥ = (1,...,1) and f is a topologically mixing subshift
of finite type, Fan, Feng and Wu [6] showed that (29) holds for an arbitrary
continuous function ®. Takens and Verbitskiy recently observed in [14] that
their statement also holds when ¥ = (1,...,1) and f satisfies specification
(provided that the maximum in (29) is replaced by a supremum). We recall
that there exist plenty transformations not satisfying specification for which
the entropy is upper semi-continuous. Furthermore, when the entropy is
upper semi-continuous the family D(X) is dense in C(X). We refer to
Section 4.1 and [2] for a detailed discussion. See also [7] for results of related
nature when ¥ = (1,..., 1), even though no mention is made to the sets K.

5. REGULARITY AND NONDEGENERACY OF THE SPECTRUM

We continue to assume that f: X — X is a continuous map on the
compact metric space X. For a broad class of dynamical systems we shall
now formulate conditions to obtain the regularity and the nondegeneracy of
the spectrum, as an application of Theorems 8 and 9. This includes the case
of uniformly hyperbolic dynamical systems.

We first study the regularity of the spectrum.

Theorem 12. Assume that:

1. the metric entropy of f is upper semi-continuous;
2. the topological pressure of f is of class C* for some k > 2.

If o € int P(M(X)) is such that the second derivative of the function q —
Px({q,® —ax¥)) is a positive definite bilinear form for each q € RY, then:
1. F, is of class C*~1 in some open neighborhood of a;
2. if the topological pressure is analytic then Fy, is analytic in some open
neighborhood of «.

Assume now that f: X — X is topologically mixing, and that it is either
a subshift of finite type, an axiom A C'*¢ diffeomorphism, or a C''*¢ ex-
panding map. By Theorem 9 (see also the discussion after Theorem 9), if
a € int P(M(X)), and the functions @1, ..., @q, ¢1, ..., g are in C¢(X),
then the functions ; —a;1; fori = 1, ..., d are linearly independent as coho-
mology classes. Therefore, using Ruelle’s formula for the second derivative
of the topological pressure (see [10]), we conclude that 92 Px ({g, ® —ax¥)) is
a positive definite bilinear form for each ¢. This readily implies the following
statement.

Theorem 13. Let f be a subshift of finite type, an axiom A C1T¢ diffeo-
morphism, or a C'T¢ expanding map, which is topologically mixing. If the
the functions (®,%¥) and u are Hdélder continuous, then Fy, is analytic in
int P(M(X)).

We now study the nondegeneracy of the spectrum. We denote by Hy
the set of Holder continuous functions ¢: X — R with exponent . The

next theorem asserts that typically the spectrum F, is nondegenerated for
potentials in Hy.

Theorem 14. Let f be a subshift of finite type, an axiom A C1T¢ diffeo-
morphism, or a CY¢ expanding map, which is topologically mizing. There
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exists a residual subset © C Hp? x Hy? such that if (®,¥) € © and u are
Holder continuous then:

1. POM(X)) = int P(M(X));

2. Fula) =0 for every a € OP(M(X)).

When d = 1 the statement in Theorem 14 was established by Schmeling in
[12]. In this case the set 0P(M(X)) is composed by either one or two points,
respectively if it is degenerated or nondegenerated. On the other hand,
when d > 1 and thus in the general case considered in Theorem 14 the set
OP(M(X)) may consist of uncountably many points (see Examples 1 and 2
for explicit constructions), and indeed by Statement 1 in the theorem this is
the generic situation. Correspondingly the second statement in Theorem 14
requires a much more detailed study of the structure of the set 9P(M(X)).

6. IRREGULAR SETS
We consider the setup of Section 4.1. In particular, given functions
(@,0) € C(X)? x C(X)? we define the sets K, = Kq(®,¥) as in (21).
We also define the sets

and

I(pis i) = {x € X : liminf Pin (@) < lim %’n@) } ,

n—00 z,n(x) n—00 T;Z)l n(x)

where ¢; ,, and 1); ,, are as in (22). Set

=in f{fX(p’ ueM(X)}

Jx Yidp
and f J
_ Pi apb
a; = sup{m tpE JV[(X)} .
x %
We have
a; €[y, ;)

and this union is composed of pairwise disjoint sets.
Let € be the collection of nonempty subsets of {1,...,d} distinct from
{1,...,d}. Intersecting the decompositions in (30) for i =1, ..., d we obtain

X= |J Kau@ U U M (®,0)UI(®, W), (31)
a€P(M(X)) a€P(M(X)),LEC
where
Mo, £(®, %) = () Koy (1, %:) 0[] 103, %),
i€l €L
and [(®,¥) = ﬂ?zl I(pi, ;). We remark that the decomposition in (31)
is composed of pairwise disjoint sets. We call this decomposition the mul-
tifractal decomposition associated to the vector (®,W). The set I(®, V) is
called the irregular set associated to the vector (®, ¥).
We want to give a complete description of multifractal decompositions
from the point of view of dimension theory. Accordingly, we must consider
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each of the sets in (31). The sets K, are considered in the former sections.
We now consider the remaining sets in (31).

It is an immediate consequence of Birkhoff’s ergodic theorem that the
sets My, 1,(®,¥) and I(®P, ¥) have zero measure with respect to any invariant
measure. Nevertheless we shall show that generically, with respect to (®, ¥),
they have full u-dimension.

The following statement was established by Barreira and Schmeling.

Theorem 15 ([4]). Let f: X — X be a topologically mixing subshift of finite

type, and @1, ..., @4, V1, ..., g, w Holder continuous functions on X. If
foreachi =1, ..., d the function @; is not cohomologous to any multiple of
P, then

dim,, I(®,¥) = dim,, X.

See [4, 2] for extensions of this result to more general classes of maps.

Theorem 15 shows that from the point of view of dimension theory (and
in particular from the point of view of entropy theory, by setting u = 1)
the irregular sets of multifractal decompositions are as large as the whole

space. The following statement shows that the corresponding statement is
also valid for each of the sets M, 1 (®, V).

Theorem 16. Let f: X — X be a topologically mizing subshift of finite type,
and ©1, ..., ©d, Y1, ..., Yq, u Holder continuous functions on X. If the
functions 1, o1, ..., wq, U1, ..., Wq are linearly independent as cohomology
classes, then
dim,, M, (®,¥) = dim, ﬂ Ko, (9i,0;)
€L
for every o € P(M(X)) and every L € C.

Observe that My (2, V) C (e Ko, (wi,%i). Therefore, Theorem 16
shows that the set M, 1(®,¥) (which has zero measure with respect to
any invariant measure) has full u-dimension in (,c; Ka,(¢s, ;). This is a
surprising phenomenon since by Theorem 8 the set ();c; Ka,(@s, ;) has full
measure with respect to some ergodic equilibrium measure, contrarily to the
set My, 1,(P,¥).

For example, assume that ¢ and v are Holder continuous functions such
that 1, ¢, and 9 are linearly independent as cohomology classes. For topolog-
ically mixing subshifts of finite type the properties of the sets K (¢)NKg(v))
are described in the introduction. Let

I(y) = {x €X: 1%2{2%2”:1/;(]%) < limsup%zn:w(ka)}.
k=0 e =0
For each v € R we have
Ka(p) = |J (Kale) N Ka()) U (Ka() N 1(9)),

BeR
and this union is composed of pairwise disjoint sets. It follows from Theo-
rem 16 that
dimu(Ka((P) n IW)) = dim,, Ka(@)
for every a € R and every Holder continuous positive function u. This
reveals an extreme complexity hidden by Birkhoff’s ergodic theorem.
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7. FINER STRUCTURE OF THE SPECTRUM

We now want to have an even closer look at the fine structure of the
level sets K, in (21). In particular, we shall show that the u-dimension
of the level set K, is entirely carried by a certain level set strictly inside
K, corresponding to a new higher-dimensional parameter, at the expense
of considering new vectors ® and W.

Let f: X — X be a topologically mixing subshift of finite type. Fix
Holder continuous functions ¢;, v; for i = 1, ..., d, and u on X such that
Y; for i =1, ..., d, and u are positive.

Given a € R? and p € M(X) we define K, and P(M(X)) respectively
as in (21) and (23). We consider also the multifractal spectrum F,, defined
by (24). We shall refer to this spectrum as a mized spectrum, due to the
noncoincidence in general of the functions ; and wu.

For each (q1,¢2) € R? x R, we consider the unique number T'(q1,¢2)
satisfying

Px({q1,®) + (g2, V) — T'(q1, g2)u) = 0,
and denote by fi4, 4, the equilibrium measure of (g1, ®) + (g2, ¥) —T'(¢1, ¢2)u.
Set
B(q1,42) = Vo Tq1,q2) and (g1, q2) <= Vg, T(q1, 02)-

For each (3,v) € R? x R?, we consider the set K 8,y of points z € X such

that
n . k n . k
lim —anzo %(fk 7) = and lim —anzo w’(fk z) =
n—oo 3 o u(f*z) n—o0 3 p_ou(frx)
for every i = 1, ..., d. We now establish a precise relationship between the
d-dimensional mixed spectrum and the 2d-dimensional spectrum

Hu(B, ) = dimy, Kz .
Theorem 17. The following properties hold:
L pig.0 (K p(q1,92) 1(a1.42)) = 1 and
j_Cu(/g(qla q2)7 ’Y(fha QQ)) - dlmu Mql,qg
=T(q1,92) — {q1,8(q1,42)) — (@2, (a1, 92));
2. if a € intP(M(X)), then there exists v € R such that Fy(a) =
Hula v, 7).

Observe that H,, is the Legendre transform of the function 7.

Clearly, for each v € R? we have Kosy~ C Ko. Therefore, the second
statement in Theorem 17 says that the u-dimension of the set K, is fully
carried by some subset K., of K, (among the uncountable number of
pairwise disjoint subsets Kq.,~). In particular, the mixed spectrum F, can
be obtained from the non-mixed (but 2d-dimensional) spectrum H,, by

Fu(a) = max{H,(a *v,7) : v € R%} (32)
for each a € int P(M(X)). This consequence is particularly unexpected
since the inclusion U7 Kosyy C K, is never an identity, and since the u-
dimension of an uncountable union Uw I, may in general be strictly larger
then sup,, dim,, I,.

We now provide an application of Theorem 17.
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Theorem 18. If for some a € int P(M(X)) the mazimum in (32) is attained
at a point (ax7,7) € R* in the interior of the domain of definition of H.,,
then F, has at most one local mazimum in a neighborhood of c.

For example, assume that d = 1 and that the functions ¢1, 11, and u are
linearly independent as cohomology classes. In this case, the function H,
is strictly convex, and its maximum is attained in the interior of its domain
of definition (and coincides with the maximum of F,). The measure of
maximal dimension is the equilibrium measure with potential —7'(0,0)u. If
d =1 and ¢1, Y1, and u are linearly independent as cohomology classes, then
the spectrum F, has only one maximum, and it follows from Theorem 18
that it is strictly convex in an open neighborhood of this maximum. We
note that however ¥, may not be convex (everywhere). An example of a
nonconvex spectrum is given in [2].

8. PROOFS

8.1. Proofs of the results in Section 4. We begin with some preparatory
lemmas. Let |q| = |q1| + - - - + |qa| be the norm of a vector g € R%.
Lemma 1. If o € P(M(X)) then

inf Px((¢,® —ax¥) —F,(a)u) > 0.
q€R?

Proof of Lemma 1. Assume first that F,(«) = 0. By the definition of P
there exists p € M(X) such that [y ®du = [y a* ¥du. Then

Pxlla® = 9)) 2 hy(9) + (o, [ (@ ax W) du) = h(f) > 0.

We shall now use a modification of an argument in [2] and the notations
of Section 2. Assume that F,(«) > 0. By Proposition 4 the number F,(«)
is equal to the unique root ¢ of the equation Pk, (—du) = 0. Given 6 > 0
and 7 € N consider the sets

Ls; ={z € X : || ®y(2) — aV¥,(x)| < én for every n > 7},

where
n—1 n—1
@nzzq)ofk and ‘I'nzz\lfofk.
k=0 k=0

Since ¥ > 0 one can easily show that Ko C (559 Uren Ls,r- Let now U
be an open cover of X with sufficiently small diameter such that if n is
sufficiently large, U € U, Wr(U), and x € X(U), then

[2(U) = @puy ()| < 0m(U)  and  [[W(U) = Wy (2) || < 6m(U).
Hence, if U € >, Wr(U) and X (U) N Ly # @ then
12(U) — a®(U)[| < (2 + [a])dm(0).
Thus
Prs (=Fu(@)u,U) < Pr; ((¢,® — ax ¥) = Fy(a)u, U) + (2 + |af)d]q|.
Letting the diameter of U going to zero yields
Prs (=Fu(@)u) < Px((¢; ® — o+ W) — Fy(a)u) + (2 + |a])d|q],



HIGHER-DIMENSIONAL MULTIFRACTAL ANALYSIS 21

and hence,

0< Ry Fu(a)u) = sup Pr; (=Fy(a)u)

TEN
< Px({q,® —ax¥) — Fy(a)u) + (2 + |a])dql.

T7EN L‘sﬂ' (_

Since § is arbitrary, we obtain

inf Px((q¢,® —ax¥) —F,(a)u) > 0.
q€R?

This completes the proof of the lemma. O
Lemma 2. If o € int P(M(X)) then

inf Px({(q,® —ax¥) — F,(a)u) =0,

qER4

and there exists an ergodic equilibrium measure po € M(X) with P(uq) = «
and o (Ky) =1 such that dimy, pg = Fy ().

Proof of Lemma 2. Let
r = dist(R?\ P(M(X)), ) >0

(with the distance given by |- |). We claim that the infimum over ¢ € R? of
the function

F(q) = Px({¢,® — a* ¥) — Fy(a)u)
is attained inside the ball of radius
dim, X - supu + F(0)
r min; inf 1); '
Let ¢ € R? such that |g] > R. We shall prove that F(q) > F(0). Let
a € (0,1) and 3 € R? such that 3; = o; + arsgng;. Clearly 3 € P(M(X)),

and hence there exists € M(X) such that [, ®dp = [ f* Udu. We
obtain

R=

F@) 2 10+ (o [ @ axwydu) 5@ [ udn

> q,/(ﬁ—a)*\lfd,u>—dimuX-supu
b's

> |g|lar min inf ¢»; — dim,, X - supu
7

> adim, X - supu + F(0) — dim, X - supu.

We obtain the claim by letting a — 1.

Since F is of class C! its minimum is attained at a point ¢ = q(a) with
lg(o)| < R and satisfying 0,F (¢(c)) = 0. Let 1 be the equilibrium measure
of the function (g(a),® — a * ¥) — F,(o)u. Then

/ (® —ax*xV)du, = 0,F(q(a)) =0,
X
and hence P(uy) = a. Furthermore,

Hm%ﬂ%m—%@/umy

X
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By Lemma 1 we have F(g(«)) > 0 and thus
h
dimy, pto = M > Fu(a).
Jx wdpa

On the other hand, since pu, is ergodic and fX Sdu, = fXa * Wdp, it
follows from Birkhofl’s ergodic theorem that po(K,) = 1. Therefore

g:u(a) > dlmu Ko
and thus dim,, g = Fy(a). This completes the proof of the lemma. O

Proof of Theorem 8. Let o € R? with K, # @, and take z € K,. The
sequence of measures

1 n—1
=0 O
k=0

has an accumulation point, say u, which is invariant. Moreover, for all 1 = 1,
..., d we have [ ¢;duy/ [y ¥ dun — a; when n — co. This implies that

[ i) [ vidu=a

foralli=1, ..., d. Hence o € P(M(X)), which proves the first statement.
Let now a € int P(M(X)). For any p € M(X) such that P(u) = «
Lemma 2 implies that

0= qieand Px((q,® —ax¥) — Fy(a)u) > hy(f) — Fu(a) /X udp.

Therefore
m(9)/ [ widn <3 0).

On the other hand, again by Lemma 2 there exists an ergodic measure fi,
such that pq(Ky) =1, P(ua) = «, and
hyua (f)
Jx wdpa
(using ergodicity and the identity in (8)). This establishes the identities in

(26) and (27). Statement 2 is an immediate consequence of Lemma 2. This
completes the proof of the theorem. O

Fula) = dimy o =

Proof of Theorem 9. Changing if necessary ® by ® — a * ¥V, we may assume
that a = 0 without loss of generality. Note that this corresponds to a
translation of the set P(M(X)) by the vector —a.

We now establish the first statement. Since « = 0 € P(M(X)) there
exists a measure mg € M(X) such that f x ®dmg = 0. Moreover, the map
m — [, ®dm is affine on the convex set M(X), and hence

M(®) < {/X@dm:meM(X)}

is convex. We shall show that its interior is nonempty. If int M(®) = @
then M(®) is contained in some hyperplane, and hence there exists ¢ € R?
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such that (g, [y ®dm) = 0 for any m € M(X). This implies that for any
real number ¢ we have

Px(ta. o) = swp (mn()+¢ [ o8 an)
meM(X) X
= sup hn(f) = Px(0).
meM(X)
This contradicts the hypotheses in the theorem. Therefore int M(®) # @
and one can find d measures my, ..., mg such that the vectors fX ® dm,

.oy [x ®dmg form a basis of R%.
Consider the set

A:{pERdzogpiforeachizl,...,dandp1+---+pd§1}.

For each p € A let

d

tp = Pp1ma + -+ + pgmq + (1 - Zm) mp € M(X).
i=1

We define the map 5: A — R¢ by

(Jxprduy Ix soddup>
ﬂ(p)_(fxwldup"“’fxwddup '

Since fX ® dmgy = 0 we have

0 (fx%dupN :fX‘Pidmj_fX‘PidmO‘
p=0 fx¢idﬂp p=0

@ fX Vi dpyp
Uy vidmy — [y idmo) [y oidpy |
2
(fX (05 d:“p) p=0
_ fx pi dm
Jx i dmg
The map 3 is of class C'', and its derivative at p = 0 is given by
fX<Pldm1 fxcpldmd
fX 1/’1 dmO fX 1,[)1 dmo
dof = : . :
Jx %a dmo Tx admo

We denote by M = (M;;);; the d x d matrix with entries M;; = fX ©; dm;.
Then

1
d
detdo = | [ / p;dmg | det M.
j=17%

Since the vectors f x @dmy, ..., f x ®dmy are linearly independent, the
matrix M is invertible, and thus 3 is a local diffeomorphism at 0. Thus
there exist open sets U C A and D = B(U) such that 0 € U and 3 is a

diffeomorphism from U to D. Accordingly, 0 € D. In particular,
a=0¢cintB(A) C int P(M(X)).
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We now prove the second statement. We still assume that a« = 0. There
exists ¢ € R? such that Py (t(g,®)) = Px(0) for any t € R. We want to
show that

{sq:s € RENPM(X)) = {0},
which immediately implies the statement in the theorem. Let s # 0. If
sq € P(M(X)) then there exists p such that [, ®du = sq* [ ¥du. Thus
for any ¢ > 0 we have

Px(0) = Px(t(sq,®)) > hu(f) +t <sq,/ <I>d,u> > t|sq|? inf inf 1);.
X (2
This gives a contradiction if ¢ is sufficiently large. Therefore o = 0 &
int P(M(X)). This completes the proof of the theorem. O

Proof of Theorem 10. The second statement follows immediately from The-

orem 9. Let now
Eaa(p) = — (/ ‘1>du,/ \I’du>
X X

7= {5 s a9 € oEas00) ).
It follows from Theorem 5 tl:lat

E2a(M(X)) = int E24(M(X).
The proof consists of three claims.
Claim 1. 0P(M(X)) C P.

Let (o, 8) € int E94(M(X)). This means that («, 3) + & € E9¢(M(X)) for
all sufficiently small € € R??, and thus by Theorem 5 there exists an ergodic
measure p. with P(u.) = («, ) + . Hence for all sufficiently small § € R?
the d-neighborhood of (a1/01, ..., aq/B4) is entirely contained in P(M(X)).
This establishes the claim.

Claim 2. The set E9q(M(X)) is convex.

and

The claim follows immediately from the convexity of M(X) and the con-
vexity of the functional €94 on this space.
For each g € S??~1 we set

Wy = { [ @) dusueno}.

Claim 3. For each (o, 3) € 0€9q(M(X)) there exists a vector ¢ € S23~1
such that ((a, ), q) € OW,,.

Since €94(M(X)) is a convex set each of its boundary points has a sup-
porting plane. Let («,3) € 0€93(M(X)), and denote by P the orthogonal
projection of E94(M(X)) onto the normal to the supporting plane at («, ).
The point (o, 3) is mapped by P into a boundary point of the interval
P(E94(M(X))). The orthogonal projection of a point («, 3) onto the line
in the direction of a normal vector ¢ € S?¢~! is given by ((c, 3),¢). This
establishes the claim since W, is the image of €94(M (X)) under this projec-
tion.
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Now we are ready to prove the proposition. Let (a,) € R?? be such
that (a1/fB1,...,aq/B4) € P. This means that (o, B) € 0E2q(M(X)). Hence
there is a point ¢ € S?¢~1 such that ((a, 3),q) € OW,. This concludes the
proof. O

8.2. Proofs of the results in Section 5.

Proof of Theorem 12. Let a € int P(M(X)) and put
Q(57Q7a) = PX(<q7(I) —Qk \I}> _6u)

Proceeding as in the proof of Lemma 2 one can show that there exist ¢(«) €
R? and an ergodic equilibrium measure s, such that ¢ — Q(F,(a),q,a)
attains a minimum at ¢ = ¢(«), and thus

0,Q(Fu(),q(e), ) = /X(<I> —axU)du, =0.
By Lemma 2 we have Q(F, (), ¢(r),a)) = 0.
Consider the system of equations

Q(6,¢,a) =0 and 0,Q(d,q,c) =0.

We want to apply the implicit function theorem to establish the uniqueness
of the solution (0, q) = (Fy(a), ¢(e)) for this system, and its regularity in a.
In particular this will establish the regularity of the spectrum. Let

G(Qa 57 Oé) = (Q(é, Q7 O‘)? am Q((Sa Q7 Oé), e aaqu(57 Q7 Oé))

It is enough to show that the matrix

95Q  0504,Q -+ 0504,Q

0, Q 04,05,Q -+ 040,,Q
(86’ aql’ cet 78Qd)tG = ql " ql .. " qd (33)

aqu anaQIQ T ananQ
is invertible at (¢(c),Fy(a), ). Denote by piq5 the unique equilibrium
measure of the function (g, ® — a * ) — du. For each ¢ = 1,...,d we have

00, Q(Fu(a),q(a),a) = 0, and § = F,(a). Hence the first column of the
matrix in (33) is zero at (g(a),F,(«), ), with the exception of the first
term which is

0sQ(Fu(a),q(a), ) = — /X udptgs.a < 0.

Therefore, it suffices to check that the remaining right lower d x d matrix, say
H, is invertible. The second derivative of the pressure at ¢(«) is a bilinear
symmetric form B: R? x R — R and we have

8Q¢aq]'Q(gju(a)7 Q(a)a a) = B(eia ej)

where (€;)i=1,... 4 denotes the canonical basis in R?. By hypothesis B is
positive definite. If H were not invertible, then some nontrivial linear com-
bination of its columns would be zero, and thus there would exist A € R4\ {0}
such that

d
> N\iBlei e;) =0
j=1
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for i =1,...,d. Hence, setting g = 2?21 Aie; we would obtain

d d
B(g,g) = Z )\i Z )\jB(ei, ej) = 0.
=1 7j=1

Since g # 0 this contradicts the positive definiteness of B. Thus H is
invertible. By the implicit function theorem the functions () and g(«)
must be at least as regular as the function G, which is of class C*~1 (or
analytic if the pressure is analytic). This completes the proof of the theorem.

O

Proof of Theorem 13. Let G = ® — a x ¥ and define F(q) = Px({(¢g,G)).
Ruelle’s formula for the second derivative of the topological pressure shows
that for any p € R? (see [10]) we have

2 _ 2 c- _ o
aqF<p,p>—/X<p,G> duq+2n21/x<p,e> (1, G o f") dug > 0,

where ji, denotes the unique equilibrium measure of the function (g, G).
We shall prove that 3q2F(p,p) > 0 whenever p # 0. Suppose on the
contrary that 6q2F (p,p) is zero. In this case the function (p, G) must be co-
homologous to some constant c¢. Since o € P(M(X)) there exists a measure
p € M(X) such that [, Gdu = 0. This implies that ¢ = 0. Since (p, G) is
cohomologous to zero we conclude that ¢ — Px (t(p, G)) is constant. By The-
orem 9 this never happens when a € int P(M(X)) and thus 87F(p,p) > 0.
The desired statement follows now immediately from Theorem 12. g

We now need an auxiliary statement.

Lemma 3. The set of vectors (¢1,...,¢p4) € Hp? such that D1y -y Pq aTE
linearly independent as cohomology classes is residual in Hg®.

Proof of Lemma 3. Consider d distinct periodic orbits z1, ..., zg of period
respectively ni, ..., ng. We set

1 n;—1
Sij = — > oi(fFw).
! k=0

By the Livschitz theorem, if the d x d-matrix with entries S;; has full rank,

then the functions @1, . .., ¢4 are linearly independent as cohomology classes.
The desired statement follows now from the fact that this is a generic con-
dition. [

Proof of Theorem 14. Set
u=min{u(x):x € X} and u=max{u(z):z e X}.
It follows from (7) below that
M(Z,ou,1,U) < M(Z,o,u,U) < M(Z,0u,1,U).

Therefore
di Z di A
CTLUZ < dim, g 2 < 22
U U
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and hence h(f|Z)/u < dim, Z < h(f|Z)/u. This shows that F;(a) = 0 if
and only if F,(«) = 0. Hence it is sufficient to prove that the topological
entropy vanishes at the boundary of P(M(X)).

We shall reduce our problem to a one-dimensional problem. For each
¢,a € R% and each (®,0) € Hy? x Hy? we consider the function ey =
(¢, ® —axW¥). In [12] (in the proof of Proposition 5.3) it is shown that there
is an open and dense subset ©° C Hy such that if xy € ©¢ then

h(f!{meX:,}Lrgo%gx(f”w)G{Q,B}D <e, (34)
k=0

where

@zinf{/xxdu:ueM(X)} and BZSUP{/XXCZ,LL:MGM(X)}.

Therefore for each fixed ¢, & € R? the set
O, = {(®, V) € Hy? x Hy" : xou € O} (35)

is open and dense in Hy? x Hp?.

It follows from Lemma 3 that by changing O, slightly but leaving it
still open and dense we may assume that there is no cohomology relation
between the functions ¢; — «a;¢; for ¢ = 1, ..., d. This implies that there
is an open neighborhood U(q,a) C R% x R of (¢, a) such that there is an
open and dense subset O, of Hy? x Hy? without cohomology relations such
that (®,¥) € O, for every (¢',a’) € U(g,a). Now we choose a sequence

(qn, i) such that | J02, U(gn, ay) = R x R and set

0= (1 L_Jl CH (36)

By construction the set © is residual and for every (®, V) € O there are no
cohomology relations (see Theorem 9 and the discussion after this theorem).
This establishes the first assertion of the theorem.

By Theorem 10, for each (®,¥) € © the boundary points of P(M(X))
are contained in (J,cg2a-1 I'(¢). By construction of the set © (see (34)-(36))
the spectrum vanishes at these points. This completes the proof of the
theorem. O

8.3. Proofs of the results in Section 6.

Proof of Theorem 16. The following is an immediate consequence of a result
of Barreira and Schmeling (see [4, Theorem 7.2]).

Lemma 4. For a subshift f: X — X with the specification property, and
an f-invariant set K C X, if for each i € L there exist measures u}, ,u% €
Mg(K) such that

fX(PZd:uZQ
fX’l/}idl’LZZ’

fX Pi dILL’Ll

”
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then

dim, | KN ﬂ I(piybi) | > min{dim, p},dim, p? :i & L}.
il
We want to apply Lemma 4 with K = ;. Kq,(i,%:). By Theorem 8
there exists an ergodic measure p € Mg(K) with p(K) = 1 and dim, p =

dim, K. By Birkhoff’s ergodic theorem, for each i =1, ..., d there exists a
constant (; such that

. Pin (v) )
ﬁ%wﬂwﬁ@

for p-almost every € K. Clearly 8; = «; for each i € L, and M, (®, V) =
Mg 1(®,V) where 5 = (B4, ..., q). Furthermore,

dim, K > dim, K3 > dim,, ¢ = dim,, K,

and thus dim, Kg = dim,, K.

By Theorem 12 the spectrum F, is analytic, and thus the function ; —
Fu(7) is also analytic for each ¢ ¢ L, where v; = o for every j € L and y; =
Bj for every j & LU {i}. By Theorem 10 we have P(M(X)) = int P(M(X)).
This implies that for each € > 0 and each i & L, there exists -y; sufficiently
close to 3; (but different from ;) and an ergodic measure u; such that

pi(Ky) =1, P(pi) = v, and
dim,, p; > dim, Kg — ¢ = dim,, K — €.
Since p;(K) > pi(K,) and

~ Jxwidu

foDid,ui_ ' '
_VZ#ﬁl_wald‘Lﬂ

fX ¢z d,ui

it follows from Lemma 4 that

dim, [ KN ﬂ I(gi, ;) | > dim, K —e.
igL

The arbitrariness of € implies the desired result. U

8.4. Proofs of the results in Section 7.

Proof of Theorem 17. With a straightforward modification of the standard
one-dimensional multifractal analysis (or applying Theorem 8 with ¥ =
(1,...,1)), we have

Hara2(Ks(aq1,02) 7(qra2) = 1 and - Hu(B(a1,42),7(a1, 42)) = dimy f1g,,4o-
Furthermore

_ fX P dﬂQl,QQ
fX wdfig, g

_ Jx Yduge

Jlar.2) a fX udpigy g, .

and ’Y(CJ1,Q2)
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We obtain
Piigy an (f)
dimy, pig, g = i 27
e fX U d,LthqQ
_ = Jx (a1, ®) + (92, V) = T(q1,92)w) dpigy

Jx wdtig, g
=T(q1,q2) — {q1, B(q1,42)) — (q2,7(q1, q2))-
This completes the proof of the first statement.
We now establish the second statement. By Theorem 8 there exists a
measure of maximal u-dimension p, on K,. Then for p,-almost every
x € X there exist the limits

. he O(frx) _ _ fxq)d“a
R Sy Bl ey
Z:oq’(fkw) _ fX Vdpa

= s = o) = )
n—0oo Zk:o u(ka) ( ) fX U d,uoz
and B(a) = a * y(a). Therefore
,U'oz(Kﬁ(a),'y(a)) - :ua(Ka*’y(a),'y(a)) =1
This implies that
dimy, Kouy(a)y(a)

On the other hand K.y, C K, for every v € R9, and thus dim,, Koy y <
dim,, K,. We conclude that

> dimy, g = dim, K.

dim, K, = sup{dimy Kqsy y : 7} = dim, Koy (a) (a) -

This completes the proof of the second statement. O

Proof of Theorem 18. Fix ag € R? in the domain of definition of F,, and
let (cg * 70,70) be a point in the interior of the domain of definition of H,
such that
Hul@o *70,70) = sup{Hu(ag *7,7) : v € R

Then there exists a ball B = B((ag * Y0,%),7) C R?? such that whenever
|a — ay| is sufficiently small the maximum of v +— H,(a * v,7) is attained
at a point « such that (a x~,v) € B. Since H, is analytic and strictly
convex, the maxima will be attained on a smooth d-dimensional submanifold
I' transversal to the family of d-dimensional planes {(a *v,7) : v € R4}
These planes foliate the space R%. Furthermore each of them is tangent
to the level set H, = F,(«a) and to no other level set (see Figure 2). If
¢ < max H, then the corresponding level set J,, = ¢ is an analytic compact
convex (2d — 1)-dimensional submanifold. This level set divides the space
R?? into the sets

Hing = {z € R??: Hy(z) > ¢} and  Hexy = {z € R : H,y(z) < ¢}

Let a. be such that F,(a.) = c¢. Since the curve I' is transversal to the
plane {(ae *,7) : v € R} at the point (. * e, ve) of tangency to H,, any
neighborhood of (a. *7¢,7.) in I' contains points in Hiy as well as in Feyt.
This yields that there cannot be a local maximum at «.. This proves the
theorem. 0
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F1GURE 2. Looking for the maxima of mixed spectra. Each
plane v — (a % 7,7) is tangent to the level set of 3, given
by H, = Fy(a). The maxima are attained in the curve T'.

8.5. Proofs of the results in Sections 1 and 3. Let u be a Gibbs mea-
sure of the function ¢ with respect to the dynamical system f|X. Without
loss of generality we can assume that Px(¢) = 0. Then the pointwise di-
mension and local entropy can be written respectively as

n—1 k
du(ac) — lim — %klzo ()O(f 1’)
n—oo Y ko loglld gk, £l

and
1 n—1
. k
hy () = lim. _ﬁgo@(f z).

Furthermore, if f is differentiable and conformal on X, then
1 n—1
Aw) = lim ~ kZ_Olongme-

Therefore, the results in Theorems 1-3 and Theorems 5-7 can be reformu-
lated using the notions introduced in Sections 2 and 4.

Proof of Theorem 1. Considering the vectors ® = (p,1) and ¥ = (1,1),
and the function v = 1, the desired statement follows immediately from
Theorem 8. U

Proofs of Theorem 2. Proceeding as in the proof of Theorem 1, the desired
statements are immediate consequences of Theorems 8, 9, and 13. U

Proof of Theorem 3. The theorem is an immediate consequence of the sec-
ond statement in Theorem 17. U

Proof of Theorems 5, 6, and 7. Considering v = 1 in the case of the topo-
logical entropy, and u = a, where a = log||df||, in the case of the Haus-
dorff dimension, the desired statements are immediate consequences of The-
orems 8, 9, and 13, by making an appropriate choice of the vectors ® and
¥ in Section 4:
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1. &= —(p1,...,04) and ¥ = (1,...,1) for Eg;
2. =—(¢1,...,4) and ¥ = (a,...,a) for Dg;
3. &= (—p1,...,—pg,a) and ¥ = (1,...,1,1) for (4, L);
4. & = (—p1,...,—pg,a) and ¥ = (a,...,a,1) for (Dg,L);
5. ® = —(¢1,p1) and ¥ = (1,a) for (€1,D1);
This completes the proof of the theorem. O
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