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HIGHER-DIMENSIONAL MULTIFRACTAL ANALYSIS

L. BARREIRA, B. SAUSSOL, AND J. SCHMELING

Abstract. We establish a higher-dimensional version of multifractal
analysis for several classes of hyperbolic dynamical systems. This means
that we consider multifractal decompositions which are associated to
multi-dimensional parameters. In particular, we obtain a conditional
variational principle, which shows that the topological entropy of the
level sets of pointwise dimensions, local entropies, and Lyapunov ex-
ponents can be simultaneously approximated by the entropy of ergodic
measures. A similar result holds for the Hausdorff dimension. This
study allows us to exhibit new nontrivial phenomena absent in the one-
dimensional multifractal analysis. In particular, while the domain of
definition of a one-dimensional spectrum is always an interval, we show
that for higher-dimensional spectra the domain may not be convex and
may even have empty interior, while still containing an uncountable
number of points. Furthermore, the interior of the domain of a higher-
dimensional spectrum has in general more than one connected compo-
nent.

1. Introduction

Consider a one-sided subshift of finite type σ : X → X. This means that
there exist a positive integer m, and an m×m matrix A, called the transfer
matrix of σ, whose entries aij are either 0 or 1, such that X is the set of
sequences (i1i2 · · · ) on m symbols satisfying aikik+1

= 1 for every k. The
shift map is defined by σ(i1i2 · · · ) = (i2i3 · · · ). Consider also a continuous
function ϕ : X → R. For each α ∈ R we define the corresponding level set
of the Birkhoff averages of ϕ by

Kα(ϕ) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

k=0

ϕ(σkx) = α

}
. (1)

By Birkhoff’s ergodic theorem, if µ is an ergodic σ-invariant probability
measure on X, and a =

∫
X ϕdµ, then µ(Ka(ϕ)) = 1. This does not mean

that the sets Kα(ϕ) are empty for other values of α. In fact, for several
classes of hyperbolic dynamical systems it has been established that:

1. if Kα(ϕ) 6= ∅, then Kα(ϕ) is a proper dense set;
2. the set {α ∈ R : Kα(ϕ) 6= ∅} is an interval;
3. the function α 7→ h(σ|Kα(ϕ)) is analytic and strictly convex, where
h(σ|K) denotes the topological entropy of σ|K (see Section 2 for the
definition).
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In particular, these statements imply that there exist uncountably many val-
ues of α such that Kα is a proper dense set with positive topological entropy.
This observation already reveals an extreme complexity of the structure of
Birkhoff averages. We refer the reader to the book [9] for references and full
details.

We want to establish a higher-dimensional version of this study. More
precisely we want to consider sets which are obtained as the intersection of
level sets of Birkhoff averages, such as

Kα,β = Kα(ϕ) ∩Kβ(ψ), (2)

and describe their multifractal properties, including their “size” in terms
of topological entropy and of Hausdorff dimension, thus providing a higher-
dimensional version of multifractal analysis. The term “higher-dimensional”
refers to the multi-dimensional parameter (α, β).

On the other hand, we shall demonstrate that the corresponding higher-
dimensional multifractal spectra exhibit several new nontrivial phenomena
clearly absent in the one-dimensional case. It turns out that the known
approaches to the study of one-dimensional multifractal spectra no longer
apply or have to be considerably modified to address this new situation.
This is done in this paper. Nevertheless a unifying theme will continue
being the use of the thermodynamic formalism.

We shall now illustrate our results with a rigorous statement in the special
case of subshifts of finite type. Let M(X) be the family of σ-invariant Borel
probability measures on X, and consider the set

D =

{(∫

X
ϕdµ,

∫

X
ψ dµ

)
∈ R

2 : µ ∈ M(X)

}
.

We denote by hµ(σ) the metric entropy of a measure µ ∈ M(X), and by
PX(ϕ) the topological pressure of the function ϕ (see Section 2 for the defini-
tion). The following statement provides a conditional variational principle
for the sets Kα,β when σ is topologically mixing, i.e., when Ak > 0 for
some k, where A is the transfer matrix of σ.

Theorem 1. Let σ|X be a topologically mixing subshift of finite type, and ϕ
and ψ Hölder continuous functions on X. If (α, β) ∈ intD then Kα,β 6= ∅,
and

h(σ|Kα,β) = sup

{
hµ(σ) : µ ∈ M(X) and

(∫

X
ϕdµ,

∫

X
ψ dµ

)
= (α, β)

}

= inf
{
PX(p(ϕ− α) + q(ψ − β)) : (p, q) ∈ R

2
}
.

Theorem 1 follows from the much more general results formulated in Sec-
tion 4. In particular we shall consider the intersection of any finite number
of level sets of Birkhoff averages, as well as other local quantities such as
pointwise dimensions, local entropies, and Lyapunov exponents. We shall
also consider the more general class of dynamical systems for which the
metric entropy is upper semi-continuous.

The following statement gives further detailed information about the sets
Kα,β. In particular it provides a condition under which D = intD, and
thus such that the identities in Theorem 1 hold for an open and dense set of
pairs (α, β) ∈ D. In a certain sense this condition is optimal (see Section 4
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for a detailed discussion). Recall that two functions ϕ and ψ are said to
be cohomologous (with respect to σ) if there exist a constant c ∈ R and a
continuous function g : X → R such that ϕ− ψ = g − g ◦ σ + c on X.

Theorem 2. If σ|X is a topologically mixing subshift of finite type, and
ϕ and ψ are Hölder continuous functions on X, then the following proper-
ties hold:

1. if (α, β) 6∈ D then Kα,β = ∅;
2. if for each (p, q) ∈ R

2 the function pϕ + qψ is cohomologous to no
constant, then D = int D;

3. the function (α, β) 7→ h(σ|Kα,β) is analytic in intD;
4. there exists an ergodic Gibbs measure µα,β ∈ M(X) with

∫
X ϕdµ = α

and
∫
X ψ dµ = β, such that

µα,β(Kα,β) = 1 and hµα,β
(σ) = h(σ|Kα,β).

The last statement in Theorem 2 says that the topological entropy of the
set Kα,β is in fact fully carried by a special ergodic measure on that same
set. Again, Theorem 2 follows from the more general results formulated in
the sections below.

Assume now that ψ > 0 and set

Mγ =

{
x ∈ X : lim

n→∞

∑n
k=0 ϕ(σkx)∑n
k=0 ψ(σkx)

= γ

}
.

The function γ 7→ h(σ|Mγ) is called a mixed multifractal spectrum (see [2]
for a detailed related discussion). Set

γ = inf

{∫
X ϕdµ∫
X ψ dµ

: µ ∈ M(X)

}
and γ = sup

{∫
X ϕdµ∫
X ψ dµ

: µ ∈ M(X)

}
.

The following statement establishes a precise relationship between the
two-dimensional spectrum (α, β) 7→ h(σ|Kα,β) and the mixed multifractal
spectrum. We write Sγ = {(α, β) ∈ R × R

+ : α/β = γ}.
Theorem 3. Let σ|X be a topologically mixing subshift of finite type, and
ϕ and ψ Hölder continuous functions on X with ψ > 0. If γ ∈ (γ, γ), then

h(σ|Mγ) = max{h(σ|Kα,β) : (α, β) ∈ Sγ}.
Notice that Mγ ⊃ ⋃(α,β)∈Sγ

Kα,β and that this union is composed of an

uncountable number of pairwise disjoint nonempty sets. Theorem 3 shows
that surprisingly the topological entropy of Mγ is fully carried by some
subset Kα,β . This relationship provides a new insight to the study of mixed
multifractal spectra in [2]. A detailed discussion is given in Section 7.

As explained above we introduce in this paper a higher-dimensional ver-
sion of multifractal analysis. Besides its own interest and source for new
phenomena, this study has nontrivial applications to number theory. We
emphasize that the one-dimensional multifractal analysis is not sufficient for
these applications and that it is crucial to use the full force of the higher-
dimensional version introduced in this paper. The reason will become clear
shortly below.

We want to consider the base-m representation of real numbers, for a
fixed integer m > 1. This representation is unique except for countably
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many points, and since countable sets have zero Hausdorff dimension, the
nonuniqueness of the representation does not interfere with our study of
dimension. For each k ∈ {0, . . . ,m−1} and x = 0.x1x2 · · · ∈ [0, 1], whenever
there exists the limit

τk(x) = lim
n→∞

card{i ∈ {1, . . . , n} : xi = k}
n

it is called the frequency of the number k in the base-m representation of x.
Consider the sets

Fm(α0, . . . , αm−1) = {x ∈ [0, 1] : τk(x) = αk for k = 0, . . ., m− 1} ,

whenever α0 + · · · + αm−1 = 1 with αi ∈ [0, 1] for each i. One can show
that each of these sets is nonempty and hence is dense in [0, 1] (note that
the limits τk(x) only depend on the tail of the representation). In fact it is
straightforward to construct explicitly a point in Fm(α0, . . . , αm−1). In [5]
Eggleston computed the Hausdorff dimension

dimH Fm(α0, . . . , αm−1) = −
∑m−1

k=0 αk log αk
logm

. (3)

It is easy to see that this result is related to multifractal analysis. Observe
first that the action of the shift map on the set of sequences in {0, . . . ,m−1}
can be identified with the action of the map x 7→ mx (mod 1) on the base-
m representation in [0, 1]. After this identification, when m = 2 we have
F2(α0, α1) = Kα0

(ϕ) (see (1)) for the characteristic function ϕ = χ[0,1/2).
This identity allows one to apply the one-dimensional multifractal analysis
to obtain a straightforward alternative proof of (3) when m = 2. We can
also consider the case when m > 2. However, it is now essential to use the
higher-dimensional multifractal analysis. For example, when m = 3 we have

F3(α0, α1, α2) = Kα0
(ϕ) ∩Kα1

(ψ) = Kα0,α1

(see (2)) for the functions ϕ = χ[0,1/3) and ψ = χ[1/3,2/3). This observation
allows one to apply Theorem 1 to conclude that

dimH F3(α0, α1, α2) = sup

{
hµ(σ)

log 3
: µ

([
0,

1

3

))
= α0, µ

([
1

3
,
2

3

))
= α1

}
.

This readily implies the identity (3) when m = 3, since the supremum is
always attained at a Bernoulli measure (in this case with probabilities α0,
α1, and 1−α0 −α1 = α2). The appropriate generalization of Theorem 1 for
an arbitrary finite number of functions (see Section 4), allows us to obtain
a straightforward alternative proof of (3) for an arbitrary m.

This example already illustrates how the higher-dimensional version of
multifractal analysis can be used to obtain a very simple proof of a known
result. On the other hand our techniques can also be used to study the
Hausdorff dimension of several new classes of sets. We now present a few se-
lected examples from our work [3] that illustrate the applications to number
theory that we have in mind:

1. Consider m = 3, and the set G1 = {x ∈ [0, 1] : τ1(x) = 2τ0(x)}. This
is the set of numbers in [0, 1] such that its base-3 representation has
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a percentage of ones which is two times the percentage of zeros. The
percentage of twos is arbitrary. We have

G1 =
⋃

α∈[0,1/3]

F3(α, 2α, 1 − 3α), (4)

and thus

dimH G1 ≥ max
α∈[0,1/3]

dimH F3(α, 2α, 1 − 3α) =
log(1 + 3/ 3

√
4)

log 3
. (5)

The theory developed in this paper allows us to show that the inequal-
ity in (5) is in fact an identity, that is, there exists α ∈ [0, 1/3] such
that F3(α, 2α, 1 − 3α) ⊂ G1 and dimH F3(α, 2α, 1 − 3α) = dimH G1.
The difficulties have to do with the fact that the disjoint union in
(4) is not countable. Further difficulties occur when m > 3 since the
identity in (4) must be replaced by a proper inclusion (see also the
following example).

2. Consider m = 4, and the set G2 = {x ∈ [0, 1] : (τ0(x)+τ1(x))/2 = α}.
We can show that

dimH G2 = log4

[
2

(
2α

1 − 2α

)1−2α

+ 2

(
1 − 2α

2α

)2α
]
. (6)

Now

G2 ⊃
⋃

β∈[0,2α]

⋃

γ∈[0,1−2α]

F4(β, 2α − β, γ, 1 − 2α − γ),

and the inclusion is proper (contrarily to what happens in (4)). Again,
the easy part is to show that the right-hand side in (6) is a lower bound
for dimH G2.

3. Consider m = 2, and the set G3 of points x ∈ [0, 1] such that the base-
2 representation has a frequency of the block 00 equal to that of the
block 111. We can show that dimH G3 = 0.26078 · · · (in base 10) and
this number can be computed with an arbitrary precision, although
we are not aware of an explicit expression. Contrarily to what may be
though, this example illustrates another advantage of our approach:
the value of the Hausdorff dimension does not need to be guessed a
priori. In some works this a priori knowledge is required in order to
construct a certain measure sitting on the set, which is then used to
show that the guess was correct.

These examples are particular cases of the general theory presented in [3].
We can also consider the representation of real numbers with continued

fractions. Similar methods lead to related results concerning the frequencies
of a finite number of digits in the continued fraction representation. Further-
more, we believe that this study can be generalized to an infinite number of
digits as long as the involved potentials (representing the functional relations
between frequencies) are sufficiently “well behaved”.

The structure of the paper is as follows. Section 2 briefly recalls the no-
tions of topological pressure and u-dimension. In Section 3 we formulate
our results in the case of repellers. This provides a model for more general
situations with the advantage of avoiding extra technical details. Section 4
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establishes a conditional variational principle for higher-dimensional mul-
tifractal spectra when the entropy is upper semi-continuous. This work is
used in Section 5 to study the regularity and nondegeneracy of multifractal
spectra, and in Section 6 to study the associated irregular sets. In Section 7
we look at the finer structure of multifractal spectra, and, in particular, show
that mixed spectra can be expressed in terms of higher-dimensional “non-
mixed” spectra. The proofs are based on the thermodynamic formalism and
are collected in Section 8.

2. Topological pressure and u-dimension

2.1. Topological pressure. Let f : X → X be a continuous map of the
compact metric space X, and U a finite open cover of X. We denote by
Wn(U) the collection of words U = (U0, . . . , Un) ∈ Un+1 of lengthm(U) = n,
and define the open set

X(U) = {x ∈ X : fkx ∈ Uk for k = 0, . . . , n}.
Let ϕ : X → R be a continuous function. Given U ∈ Wn(U) with X(U) 6= ∅

set

ϕ(U) = sup
x∈X(U)

m(U)∑

k=0

ϕ(fkx).

For each set Z ⊂ X and each real number α, we define

M(Z,α, ϕ,U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αm(U) + ϕ(U)),

where the infimum is taken over all finite or countable collections Γ ⊂⋃
k≥nWk(U) such that

⋃
U∈ΓX(U) ⊃ Z. The topological pressure of ϕ

on the set Z (with respect to f) is defined by

PZ(ϕ)
def
= lim

diamU→0
PZ(ϕ,U),

where
PZ(ϕ,U) = inf{α : M(Z,α, ϕ,U) = 0}.

We call h(f |Z) = PZ(0) the topological entropy of f on Z.

2.2. The notion of u-dimension. We recall a Carathéodory dimension
characteristic introduced by Barreira and Schmeling in [4]. Let u : X → R

be a continuous function with u > 0. For each set Z ⊂ X and each real
number α, we define

M(Z,α, u,U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αu(U)), (7)

where the infimum is taken over all finite or countable collections Γ ⊂⋃
k≥nWk(U) such that

⋃
U∈ΓX(U) ⊃ Z. Set

dimu,U Z = inf{α : M(Z,α, u,U) = 0}.
The limit

dimu Z
def
= lim

diam U→0
dimu,UZ

exists, and is called the u-dimension of Z. For example, if u = 1, then
dimu Z coincides with the topological entropy of f on Z.
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The following result expresses a relation between the u-dimension and the
topological pressure, and follows easily from the definitions.

Proposition 4. We have dimu Z = α, where α is the unique root of the
equation PZ(−αu) = 0.

For every Borel probability measure µ on X, let

dimu,U µ = inf{dimu,UZ : µ(Z) = 1}.
The limit

dimu µ
def
= lim

diam U→0
dimu,U µ

exists, and is called the u-dimension of µ. When µ ∈ M(X) is ergodic, one
can show that (see [4])

dimu µ = hµ(f)
/∫

X
u dµ. (8)

3. Repellers

3.1. Preliminaries. Let f : M →M be a C1 map of a smooth Riemannian
manifold. We assume that f is a local diffeomorphism at each point of some
f -invariant subset X ⊂M . Let also µ be an f -invariant probability measure
on M . We shall consider several quantities of local nature:

1. The (top) Lyapunov exponent of the point x ∈M is given by

λ(x)
def
= lim

n→+∞

1

n
log‖dxfn‖ (9)

whenever the limit exists.
2. The pointwise dimension of µ at the point x ∈M is defined by

dµ(x)
def
= lim

r→0

log µ(B(x, r))

log r
(10)

whenever the limit exists, where B(x, r) ⊂ M denotes the ball of
radius r centered at x.

3. For each finite measurable partition ξ of M , we define the µ-local
entropy of f at the point x ∈M (with respect to ξ) by

hµ(x)
def
= hµ(f, ξ, x)

def
= lim

n→∞
− 1

n
log µ(ξn(x)) (11)

whenever the limit exists, where ξn(x) is the atom of the partition∨n
k=0 f

−kξ which contains x (which is well-defined mod 0).

By Kingman’s sub-additive ergodic theorem and the Shannon–McMillan–
Breiman theorem, the functions λ and hµ are well-defined µ-almost every-
where. For hyperbolic measures invariant under a C 1+α diffeomorphism on
a compact manifold it was shown in [1] that the function dµ is well-defined
µ-almost everywhere. In the case of repellers the corresponding statement
is established in [13]. One can easily verify that each of the functions in (9),
(10), and (11) has an f -invariant domain, and that they are f -invariant on
the respective domain of definition. In addition, if ξ is a generating partition
of M (i.e., a partition such that

∨∞
k=0 f

−kξ generates the Borel σ-algebra
of M) and µ is ergodic, then hµ(f) = hµ(f, ξ, x) for µ-almost every x ∈M ,
where hµ(f) is the measure-theoretic entropy of f (with respect to µ).
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We shall consider intersections of level sets of the functions in (9), (10),
and (11). The following results describe the “size” of these intersections
in terms of topological entropy and Hausdorff dimension. Given a subset
Z ⊂M we denote by dimH Z the Hausdorff dimension of the set Z, and by
h(f |Z) the topological entropy of f on Z.

We briefly recall the notion of Hausdorff dimension. Let X be a metric
space and consider a subset Z ⊂ X. Given α > 0, we set

m(Z,α) = lim
δ→0

inf
U

∑

U∈U

(diamU)α,

where the infimum is taken over all finite or countable cover U of Z by sets
of diameter at most δ. There exists a unique value of α at which m(Z,α)
jumps from +∞ to 0. This value is called Hausdorff dimension of Z and is
denoted by dimH Z. We have

dimH Z = inf{α : m(Z,α) = 0}.

3.2. Formulation of the results. Consider a compact f -invariant setX ⊂
M . We say that f is expanding on X, and that X is a repeller of f if there
exist constants c > 0 and β > 1 such that ‖dxfnu‖ ≥ cβn‖u‖ for all x ∈ X,
u ∈ TxM , and n ≥ 1.

In order to define the local entropies we shall always consider a Markov
(and thus generating) partition ξ of X (with respect to f) of sufficiently
small diameter.

Let M(X) denote the family of f -invariant probability measures on X.
Given µ1, . . ., µd ∈ M(X) and α = (α1, . . . , αd) ∈ R

d, we consider the set

Eα =
d⋂

i=1

{x ∈ X : hµi
(x) = αi},

and given Hölder continuous functions ϕ1, . . ., ϕd on X we consider the
vector

Ed(µ) =

(
−
∫

X
ϕ1 dµ, . . . ,−

∫

X
ϕd dµ

)

for each µ ∈ M(X). The following statement describes the higher-dimen-
sional spectrum α 7→ h(f |Eα).

Theorem 5. Let X be a repeller of a topologically mixing C 1+α expanding
map f , for some α > 0, and let µ1, . . ., µd be the equilibrium measures of
Hölder continuous functions ϕ1, . . ., ϕd on X such that PX(ϕ1) = · · · =
PX(ϕd) = 0. Then the following properties hold:

1. if α 6∈ Ed(M(X)) then Eα = ∅;
2. if α ∈ int Ed(M(X)) then Eα 6= ∅, and

h(f |Eα) = max{hµ(f) : Ed(µ) = α}; (12)

3. the map α 7→ h(f |Eα) is analytic in intEd(M(X));
4. if the functions 1, ϕ1, . . ., ϕd are linearly independent as cohomology

classes then

Ed(M(X)) = int Ed(M(X)).
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The identity in (12) provides a higher-dimensional conditional variational
principle for the local entropies of µ1, . . ., µd.

We now consider the sets

Dβ =
d⋂

i=1

{x ∈ X : dµi
(x) = βi} and Lγ = {x ∈ X : λ(x) = γ},

where β = (β1, . . . , βd). Write u(x) = log‖dxf‖. Let also

Dd(µ) =

(
−
∫
X ϕ1 dµ∫
X u dµ

, . . . ,−
∫
X ϕd dµ∫
X u dµ

)

and L(µ) =
∫
X u dµ for each µ ∈ M(X). We say that f is conformal on X

if dxf is a multiple of an isometry for every x ∈ X. We shall now obtain
further conditional variational principles in the case of conformal maps, for
the topological entropy and for the Hausdorff dimension.

Theorem 6. Let X be a repeller of a topologically mixing C 1+α expanding
map f , for some α > 0, such that f is conformal on X, and let µ1, . . ., µd
be the equilibrium measures of Hölder continuous functions ϕ1, . . ., ϕd on X
such that PX(ϕ1) = · · · = PX(ϕd) = 0. Then the following properties hold:

1. if β ∈ int Dd(M(X)) then Dβ 6= ∅, and

h(f |Dβ) = max {hµ(f) : Dd(µ) = β} , (13)

dimH Dβ = max

{
hµ(f)∫
X u dµ

: Dd(µ) = β

}
; (14)

2. if (α, γ) ∈ int(Ed,L)(M(X)) then Eα ∩ Lγ 6= ∅, and

h(f |Eα ∩ Lγ) = max{hµ(f) : (Ed,L)(µ) = (α, γ)}, (15)

dimH(Eα ∩ Lγ) = max

{
hµ(f)∫
X u dµ

: (Ed,L)(µ) = (α, γ)

}
; (16)

3. if (β, γ) ∈ int(Dd,L)(M(X)) then Dβ ∩ Lγ 6= ∅, and

h(f |Dβ ∩ Lγ) = max{hµ(f) : (Dd,L)(µ) = (β, γ)}, (17)

dimH(Dβ ∩ Lγ) = max

{
hµ(f)∫
X u dµ

: (Dd,L)(µ) = (β, γ)

}
; (18)

4. if d = 1 and (α, β) ∈ int(E1,D1)(M(X)) then Eα ∩Dβ 6= ∅, and

h(f |Eα ∩Dβ) = max{hµ(f) : (E1,D1)(µ) = (α, β)}, (19)

dimH(Eα ∩Dβ) = max

{
hµ(f)∫
X u dµ

: (E1,D1)(µ) = (α, β)

}
. (20)

We remark that each of the expressions in (13)–(20) is analytic on α, β,
γ in the interior of the corresponding domain of definition, as a consequence
of more general results formulated below (see Section 5 for details).

One can certainly consider other intersections of level sets besides those
in Theorem 6 (see Section 4 for a related discussion), such as Eα ∩Dβ for
d > 1. We note that the intersection Eα ∩ Dβ is nonempty if and only if
α = γβ for some γ ∈ L(M(X)) such that Dβ ∩Lγ 6= ∅. In this case we have
Kγβ∩Dβ = Dβ∩Lγ, and thus one can apply Statement 3 in Theorem 6 to the
set int(Ed,Dd)(M(X)). However, one can show that int(Ed,Dd)(M(X)) = ∅
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whenever d > 1 (see Section 4 for details) and thus Theorem 6 provides no
information in this situation.

We shall now provide sufficient conditions for the interiors considered in
Theorem 6 to be dense, and thus such that each of the conditional varia-
tional principles in (13)–(20) is valid in an open and dense subset of the
corresponding domain. The results in Section 4 indicate that these are in a
sense optimal assumptions.

Theorem 7. Under the hypotheses of Theorem 6 the following proper-
ties hold:

1. if the functions ϕ1, . . ., ϕd, u are linearly independent as cohomology
classes then

Dd(M(X)) = int Dd(M(X));

2. if the functions 1, ϕ1, . . ., ϕd, u are linearly independent as cohomol-
ogy classes then

(Ed,L)(M(X)) = int(Ed,L)(M(X))

and
(Dd,L)(M(X)) = int(Dd,L)(M(X));

3. if d = 1 and the functions 1, ϕ1, u are linearly independent as coho-
mology classes then

(E1,D1)(M(X)) = int(E1,D1)(M(X)).

4. Conditional variational principle

4.1. Preliminaries. Let now f : X → X be a continuous map on the com-
pact metric space X. We denote by C(X) the space of continuous functions
ϕ : X → R. Consider a pair of vectors (Φ,Ψ) ∈ C(X)d × C(X)d and write

Φ = (ϕ1, . . . , ϕd) and Ψ = (ψ1, . . . , ψd).

We shall always assume that ψi > 0 for each i = 1, . . ., d. Given α =
(α1, . . . , αd) ∈ R

d we set

Kα = Kα(Φ,Ψ) =

d⋂

i=1

{
x ∈ X : lim

n→∞

ϕi,n(x)

ψi,n(x)
= αi

}
, (21)

where

ϕi,n(x) =
n−1∑

k=0

ϕi(f
kx) and ψi,n(x) =

n−1∑

k=0

ψi(f
kx). (22)

We continue to denote by M(X) the family of f -invariant Borel probability

measures on X, and define a continuous function P = P(Φ,Ψ) : M(X) → R
d

by

P(µ) =

(∫
X ϕ1 dµ∫
X ψ1 dµ

, . . . ,

∫
X ϕd dµ∫
X ψd dµ

)
. (23)

Since M(X) is compact and connected, and P is continuous, the set P(M(X))
is also compact and connected.

Given a positive function u ∈ C(X) we denote by dimu Z the u-dimension
of the set Z ⊂ X (see Section 2 for the definition). For example:

1. if u = 1, then dimu Z = h(f |Z);
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2. if u = log‖df‖ for a conformal expanding map on X, then dimu Z =
dimH Z for every Z ⊂ X.

The function Fu = F
(Φ,Ψ)
u defined by

Fu(α) = dimuKα(Φ,Ψ) (24)

is called the u-dimension spectrum for the pair (Φ,Ψ).
We denote by D(X) ⊂ C(X) the family of continuous functions with

a unique equilibrium measure. Recall that if the metric entropy is upper
semi-continuous, or, more precisely, if the map µ 7→ hµ(f) is upper semi-
continuous, then:

1. every function ϕ ∈ C(X) has an equilibrium measure;
2. given ϕ ∈ C(X), the function R 3 t 7→ PX(ϕ + tψ) is differentiable

at t = 0 for each ψ ∈ C(X) if and only if ϕ ∈ D(X); in this case the
unique equilibrium measure µϕ of ϕ is ergodic, and

d

dt
PX(ϕ+ tψ)|t=0 =

∫

X
ψ dµϕ; (25)

3. if ϕ, ψ ∈ C(X) are such that span{ϕ,ψ} ⊂ D(X), then the function
t 7→ PX(ϕ + tψ) is differentiable in R, and is in fact of class C 1 (see
[8, Theorem 4.2.11]).

For example, when f : X → X is a one-sided or two-sided topologically
mixing subshift of finite type, or an expansive homeomorphism, then the
metric entropy is upper semi-continuous. Furthermore, if f : X → X is a
one-sided or two-sided topologically mixing subshift of finite type, or an
expansive homeomorphism which satisfies specification, and ϕ ∈ Cf (X),
then it has a unique equilibrium measure. Here Cf (X) ⊂ C(X) is the
family of continuous functions ϕ : X → R for which there exist ε > 0 and
κ > 0 such that ∣∣∣∣∣

n−1∑

k=0

ϕ(fkx) −
n−1∑

k=0

ϕ(fky)

∣∣∣∣∣ < κ

whenever d(fkx, fky) < ε for every k = 0, . . ., n − 1. On the other hand,
all β-shifts are expansive, and thus the entropy is upper semi-continuous
(see [8] for details), but for β in a residual set of full Lebesgue measure the
corresponding β-shift does not satisfy specification (see [11]).

4.2. Conditional variational principle. In this section we establish a
conditional variational principle for the spectrum Fu. Given vectors α =
(α1, . . . , αd) ∈ R

d and Φ = (ϕ1, . . . , ϕd) ∈ C(X)d we shall write

α ∗ Φ = (α1ϕ1, . . . , αdϕd) ∈ C(X)d and 〈α,Φ〉 =

d∑

i=1

αiϕi ∈ C(X).

We now present the main result of this section.

Theorem 8. Assume that the metric entropy of f is upper semi-continuous,
and that span{ϕ1, ψ1, . . . , ϕd, ψd, u} ⊂ D(X). If α 6∈ P(M(X)) then Kα =
∅. Furthermore, if α ∈ int P(M(X)) then Kα 6= ∅ and the following prop-
erties hold:
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1. Fu(α) satisfies the conditional variational principle

Fu(α) = max

{
hµ(f)∫
X u dµ

: µ ∈ M(X) and P(µ) = α

}
; (26)

2. Fu(α) = inf{Tu(q) : q ∈ R
d}, where Tu(q) is the unique number

satisfying

PX(〈q,Φ − α ∗ Ψ〉 − Tu(q)u) = 0;

3. there exists an ergodic equilibrium measure µα ∈ M(X) with P(µα) =
α and µα(Kα) = 1 such that

dimu µα =
hµα(f)∫
X u dµα

= Fu(α). (27)

When d = 1 the statements in Theorem 8 were established by Barreira
and Saussol in [2]. In Statement 2 the formula for the spectrum Fu can be
seen as a Legendre-type transform (see [2] for a related discussion in the
case d = 1).

In particular Theorem 8 implies that:

1. The u-dimension of the set Kα can be arbitrarily approximated by
the u-dimension of measures µ ∈ M(X) with P(µ) = α.

2. There exists an equilibrium measure in M(X) (the measure µα) with
the same u-dimension as Kα. The measure µα can be obtained in the
following manner. It follows from the proof of Theorem 8 that there
exists a vector q(α) ∈ R

d such that

PX(〈q(α),Φ − α ∗ Ψ〉 − Fu(α)u) = 0.

Then µα is the equilibrium measure of 〈q(α),Φ − α ∗ Ψ〉 − Fu(α)u.

Furthermore, Theorem 8 gives very detailed information about the mul-
tifractal spectrum inside int P(M(X)). It is therefore crucial to discuss the
properties of this open set, and in particular to establish under which con-
ditions it is nonempty. The following statement provides a characterization
of the points in int P(M(X)) and in a certain sense it is optimal.

For each q, α ∈ R
d, we consider the function Sqα : R → R defined by

Sqα(t) = PX(t〈q,Φ − α ∗ Ψ〉).
When f |X is a subshift with the specification property, and Φ − α ∗ Ψ ∈
Cf (X)d, the function Sqα has the following interpretation. Let

Eqα(β) = h

(
f |
{
x ∈ X : lim

n→∞

1

n

n−1∑

k=0

〈q,Φ − α ∗ Ψ〉(fkx) = β

})
.

Using (25) we obtain

βqα(t)
def
= −S′

qα(t) = −
∫

X
〈q,Φ − α ∗ Ψ〉 dµt〈q,Φ−α∗Ψ〉,

and it follows from work in [4] that

Eqα(βqα(t)) = Sqα(t) + tβqα(t)

for every t. This shows that Sqα is the Legendre transform of Eqα.
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Theorem 9. Assume that f has finite topological entropy, and that the vec-
tors Φ and Ψ are composed of continuous functions on X. If α ∈ P(M(X))
then:

1. if Sqα is constant for no q ∈ R
d, then α ∈ intP(M(X));

2. if Sqα is constant for some q ∈ R
d, then α 6∈ int P(M(X)).

A noteworthy consequence of Theorem 9 is that if the topological pressure
is strictly convex, that is, if for any q ∈ R

d and α ∈ P(M(X)) the function
Sqα is strictly convex, then

P(M(X)) = int P(M(X)).

For example, if f : X → X is a subshift which satisfies specification, and
ϕi, ψi ∈ Cf (X) for i = 1, . . ., d, then for each α ∈ P(M(X)) the following
properties are equivalent:

1. the function q 7→ PX(〈q,Φ − α ∗ Ψ〉) is strictly convex;
2. the function Sqα is constant for no q ∈ R

d;
3. the functions ϕi − αiψi for i = 1, . . ., d are linearly independent as

cohomology classes.

For each q ∈ S2d−1 def
= {x ∈ R

2d : ‖x‖ = 1} we set

Γ(q) = ∂
{
P(µt〈q,(Φ,Ψ)〉) : t ∈ R

}
,

where ∂A denotes the boundary of the set A.

Theorem 10. Let f : X → X be a subshift which satisfies specification, and
ϕi, ψi ∈ Cf (X) for i = 1, . . ., d. Then

∂P(M(X)) ⊂
⋃

q∈S2d−1

Γ(q),

and if, in addition, the functions 1, ϕ1, . . ., ϕd, ψ1, . . ., ψd are linearly
independent as cohomology classes, then P(M(X)) = int P(M(X)).

4.3. New phenomena observed in higher-dimensional spectra. In
the case d = 1, the connectedness of P(M(X)) implies that only one of the
following two exclusive alternatives can occur:

1. The spectrum is degenerated : in this case P(M(X)) = {a} for some
a ∈ R. Furthermore, Ka = X and Kα = ∅ for every α 6= a.

2. The spectrum is nondegenerated : in this case P(M(X)) = [a, a] for
some real numbers a < a. In particular P(M(X)) has nonempty

interior, and P(M(X)) = int P(M(X)).

When d > 1, that is, in the case of higher-dimensional multifractal spectra,
several new phenomena can occur. Namely:

1. P(M(X)) may not be convex;
2. int P(M(X)) may have more than one connected component;
3. P(M(X)) may have empty interior, but still contain an uncountable

number of points.

See Examples 1 and 2 below for explicit constructions. We emphasize that
neither of these three situations occurs when d = 1.

When d = 1 the existence of a cohomology relation between the functions
ϕ and ψ immediately implies that the domain of the spectrum is composed
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Figure 1. Two sets P(M(X)) for which the interior has two
connected components, due to the presence of a cohomology
relation. The curves in the pictures represent the boundary
of P(M(X)).

of only one point. In the case of higher-dimensional multifractal spectra this
may not be the case, as illustrated in the following example.

Example 1. Consider a subshift of finite type f : X → X and set d = 2.
Let ϕ, ψ ∈ Cf (X) be such that ϕ, ψ, and 1 are linearly independent as
cohomology classes. We assume that

∫
X ϕdµ = 0 for some measure µ ∈

M(X) and that ψ > 0.
Setting ϕ1 = ϕ, ϕ2 = ϕ, ψ1 = 1, and ψ2 = ψ we obtain 0 ∈ P(M(X))

(since
∫
X ϕdµ = 0) and (ϕ1−0 ·ψ1)−(ϕ2−0 ·ψ2) = 0. On the other hand, it

is easy to see that ϕ1−α1ψ1 and ψ2−α2ψ2 are linearly independent as coho-

mology classes whenever α 6= 0, and hence P∗ def
= P(M(X))\{0} is nonempty

(by Theorem 9). In fact, it follows from Theorem 9 that P∗ ⊂ intP(M(X)).

Since P(M(X)) is closed, we conclude that P(M(X)) = int P(M(X)). This
shows that even though there exists a cohomology relation, the set P(M(X))
is composed of uncountably many points. Furthermore it has nonempty in-
terior.

The first picture in Figure 1 provides an explicit example when f is the
Bernoulli shift on 3 symbols. In this example we took the linear combinations
of characteristic functions

ϕ = χ1 − χ2 and ψ = χ1 + χ2 + 2χ3,

where χi is the characteristic function of the cylinder Ci of length 1. Observe
that in this particular case intP(M(X)) has two connected components.
Furthermore, the set P(M(X)) is not convex, but each of the connected
components of int P(M(X)) is convex.

The second picture in Figure 1 is obtained in a similar manner for the
Bernoulli shift on 3 symbols, with the functions

ϕ1 = −4χ1 + 4χ2 + 8χ3 and ϕ2 = −6χ1 − 3χ2 + 5χ3,

ψ1 = 2χ1 + 9χ2 + 2χ3 and ψ2 = 6χ1 + χ2 + 2χ3.

Again the set int P(M(X)) has two connected components. We note that
contrarily to what happens in the previous construction, there exists now a
component of int P(M(X)) which is not convex. �
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We now illustrate that P(M(X)) may have empty interior, but still contain
uncountably many points.

Example 2. Consider the Bernoulli shift on 2 symbols and set d = 2. In a
similar way to that in Example 1 we define functions

ϕ1 = a1χ1 + b1χ2 and ϕ2 = a2χ1 + b2χ2,

and ψ1 = ψ2 = u = 1, where χi is the characteristic function of the cylinder
Ci of length 1. We assume that a1b2−b1a2 = 1. The case when a1b2−b1a2 6=
1 can be treated in a similar manner. Observe that

b2ϕ1 − b1ϕ2 = χ1 and a1ϕ2 − a2ϕ1 = χ2.

Since χ1 + χ2 = 1 we obtain

K(α1,α2) = Kb2α1−b1α2
(χ1) = Ka1α2−a2α1

(χ2),

and

b2α1 − b1α2 + a1α2 − a2α1 = 1 (28)

for every (α1, α2) ∈ R
2. It follows from Theorem 8 and (28) that

h(f |K(α1 ,α2)) = sup{hµ(f) : µ(C1) = b2α1 − b1α2}
= − (b2α1 − b1α2) log(b2α1 − b1α2)

− (a1α2 − a2α1) log(a1α2 − a2α1).

Furthermore, the domain of the spectrum (α1, α2) 7→ h(f |K(α1,α2)) is a
segment contained in the line defined by (28). �

We remark that in some sense the situation described in Example 2 should
be considered degenerated. In fact, Theorem 9 implies that the “degeneracy”
in Example 2 is due to the presence of cohomology relations. When this
happens one can replace the 2d functions in the vectors Φ and Ψ by a
maximal set of independent ones, without changing the level sets (up to a
change of variables), and in such a way that after the reduction the domain of
the spectrum will have nonempty interior with respect to the new functions.

The spectrum itself may not be convex even when d = 1 (see [2] for an
explicit example).

4.4. The case of the entropy. We now consider the particular case of a
conditional variational principle for the topological entropy. The following
statement is an immediate consequence of Theorem 8 by setting u = 1.

Theorem 11. Assume that the metric entropy is upper semi-continuous,
and that span{ϕ1, ψ1, . . . , ϕd, ψd} ⊂ D(X). If α 6∈ P(M(X)) then Kα = ∅.
Furthermore, if α ∈ int P(M(X)) then Kα 6= ∅ and the following properties
hold:

1. we have the conditional variational principle

h(f |Kα) = max{hµ(f) : µ ∈ M(X) and P(µ) = α}; (29)

2. h(f |Kα) = inf{PX (〈q,Φ − α ∗ Ψ〉) : q ∈ R
d};

3. there exists an ergodic equilibrium measure µα ∈ M(X) with P(µα) =
α and µα(Kα) = 1 such that hµα(f) = h(f |Kα).
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When d = 1 the statement in Theorem 11 was established by Barreira and
Saussol in [2]. When Ψ = (1, . . . , 1) and f is a topologically mixing subshift
of finite type, Fan, Feng and Wu [6] showed that (29) holds for an arbitrary
continuous function Φ. Takens and Verbitskiy recently observed in [14] that
their statement also holds when Ψ = (1, . . . , 1) and f satisfies specification
(provided that the maximum in (29) is replaced by a supremum). We recall
that there exist plenty transformations not satisfying specification for which
the entropy is upper semi-continuous. Furthermore, when the entropy is
upper semi-continuous the family D(X) is dense in C(X). We refer to
Section 4.1 and [2] for a detailed discussion. See also [7] for results of related
nature when Ψ = (1, . . . , 1), even though no mention is made to the sets Kα.

5. Regularity and nondegeneracy of the spectrum

We continue to assume that f : X → X is a continuous map on the
compact metric space X. For a broad class of dynamical systems we shall
now formulate conditions to obtain the regularity and the nondegeneracy of
the spectrum, as an application of Theorems 8 and 9. This includes the case
of uniformly hyperbolic dynamical systems.

We first study the regularity of the spectrum.

Theorem 12. Assume that:

1. the metric entropy of f is upper semi-continuous;
2. the topological pressure of f is of class Ck for some k ≥ 2.

If α ∈ int P(M(X)) is such that the second derivative of the function q 7→
PX(〈q,Φ−α ∗Ψ〉) is a positive definite bilinear form for each q ∈ R

d, then:

1. Fu is of class Ck−1 in some open neighborhood of α;
2. if the topological pressure is analytic then Fu is analytic in some open

neighborhood of α.

Assume now that f : X → X is topologically mixing, and that it is either
a subshift of finite type, an axiom A C1+ε diffeomorphism, or a C1+ε ex-
panding map. By Theorem 9 (see also the discussion after Theorem 9), if
α ∈ int P(M(X)), and the functions ϕ1, . . ., ϕd, ψ1, . . ., ψd are in Cf (X),
then the functions ϕi−αiψi for i = 1, . . ., d are linearly independent as coho-
mology classes. Therefore, using Ruelle’s formula for the second derivative
of the topological pressure (see [10]), we conclude that ∂2

qPX(〈q,Φ−α∗Ψ〉) is
a positive definite bilinear form for each q. This readily implies the following
statement.

Theorem 13. Let f be a subshift of finite type, an axiom A C 1+ε diffeo-
morphism, or a C1+ε expanding map, which is topologically mixing. If the
the functions (Φ,Ψ) and u are Hölder continuous, then Fu is analytic in
int P(M(X)).

We now study the nondegeneracy of the spectrum. We denote by Hθ

the set of Hölder continuous functions ϕ : X → R with exponent θ. The
next theorem asserts that typically the spectrum Fu is nondegenerated for
potentials in Hθ.

Theorem 14. Let f be a subshift of finite type, an axiom A C 1+ε diffeo-
morphism, or a C1+ε expanding map, which is topologically mixing. There
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exists a residual subset Θ ⊂ Hθ
d × Hθ

d such that if (Φ,Ψ) ∈ Θ and u are
Hölder continuous then:

1. P(M(X)) = intP(M(X));
2. Fu(α) = 0 for every α ∈ ∂P(M(X)).

When d = 1 the statement in Theorem 14 was established by Schmeling in
[12]. In this case the set ∂P(M(X)) is composed by either one or two points,
respectively if it is degenerated or nondegenerated. On the other hand,
when d > 1 and thus in the general case considered in Theorem 14 the set
∂P(M(X)) may consist of uncountably many points (see Examples 1 and 2
for explicit constructions), and indeed by Statement 1 in the theorem this is
the generic situation. Correspondingly the second statement in Theorem 14
requires a much more detailed study of the structure of the set ∂P(M(X)).

6. Irregular sets

We consider the setup of Section 4.1. In particular, given functions
(Φ,Ψ) ∈ C(X)d × C(X)d we define the sets Kα = Kα(Φ,Ψ) as in (21).
We also define the sets

Kαi
(ϕi, ψi) =

{
x ∈ X : lim

n→∞

ϕi,n(x)

ψi,n(x)
= αi

}
,

and

I(ϕi, ψi) =

{
x ∈ X : lim inf

n→∞

ϕi,n(x)

ψi,n(x)
< lim sup

n→∞

ϕi,n(x)

ψi,n(x)

}
,

where ϕi,n and ψi,n are as in (22). Set

αi = inf

{∫
X ϕi dµ∫
X ψi dµ

: µ ∈ M(X)

}

and

αi = sup

{∫
X ϕi dµ∫
X ψi dµ

: µ ∈ M(X)

}
.

We have
X =

⋃

αi∈[αi,αi]

Kαi
(ϕi, ψi) ∪ I(ϕi, ψi) (30)

and this union is composed of pairwise disjoint sets.
Let C be the collection of nonempty subsets of {1, . . . , d} distinct from

{1, . . . , d}. Intersecting the decompositions in (30) for i = 1, . . ., d we obtain

X =
⋃

α∈P(M(X))

Kα(Φ,Ψ) ∪
⋃

α∈P(M(X)),L∈C

Mα,L(Φ,Ψ) ∪ I(Φ,Ψ), (31)

where
Mα,L(Φ,Ψ) =

⋂

i∈L

Kαi
(ϕi, ψi) ∩

⋂

i6∈L

I(ϕi, ψi),

and I(Φ,Ψ) =
⋂d
i=1 I(ϕi, ψi). We remark that the decomposition in (31)

is composed of pairwise disjoint sets. We call this decomposition the mul-
tifractal decomposition associated to the vector (Φ,Ψ). The set I(Φ,Ψ) is
called the irregular set associated to the vector (Φ,Ψ).

We want to give a complete description of multifractal decompositions
from the point of view of dimension theory. Accordingly, we must consider
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each of the sets in (31). The sets Kα are considered in the former sections.
We now consider the remaining sets in (31).

It is an immediate consequence of Birkhoff’s ergodic theorem that the
sets Mα,L(Φ,Ψ) and I(Φ,Ψ) have zero measure with respect to any invariant
measure. Nevertheless we shall show that generically, with respect to (Φ,Ψ),
they have full u-dimension.

The following statement was established by Barreira and Schmeling.

Theorem 15 ([4]). Let f : X → X be a topologically mixing subshift of finite
type, and ϕ1, . . ., ϕd, ψ1, . . ., ψd, u Hölder continuous functions on X. If
for each i = 1, . . ., d the function ϕi is not cohomologous to any multiple of
ψi, then

dimu I(Φ,Ψ) = dimuX.

See [4, 2] for extensions of this result to more general classes of maps.
Theorem 15 shows that from the point of view of dimension theory (and

in particular from the point of view of entropy theory, by setting u = 1)
the irregular sets of multifractal decompositions are as large as the whole
space. The following statement shows that the corresponding statement is
also valid for each of the sets Mα,L(Φ,Ψ).

Theorem 16. Let f : X → X be a topologically mixing subshift of finite type,
and ϕ1, . . ., ϕd, ψ1, . . ., ψd, u Hölder continuous functions on X. If the
functions 1, ϕ1, . . ., ϕd, ψ1, . . ., ψd are linearly independent as cohomology
classes, then

dimuMα,L(Φ,Ψ) = dimu

⋂

i∈L

Kαi
(ϕi, ψi)

for every α ∈ P(M(X)) and every L ∈ C.

Observe that Mα,L(Φ,Ψ) ⊂ ⋂
i∈LKαi

(ϕi, ψi). Therefore, Theorem 16
shows that the set Mα,L(Φ,Ψ) (which has zero measure with respect to
any invariant measure) has full u-dimension in

⋂
i∈LKαi

(ϕi, ψi). This is a
surprising phenomenon since by Theorem 8 the set

⋂
i∈LKαi

(ϕi, ψi) has full
measure with respect to some ergodic equilibrium measure, contrarily to the
set Mα,L(Φ,Ψ).

For example, assume that ϕ and ψ are Hölder continuous functions such
that 1, ϕ, and ψ are linearly independent as cohomology classes. For topolog-
ically mixing subshifts of finite type the properties of the sets Kα(ϕ)∩Kβ(ψ)
are described in the introduction. Let

I(ψ) =

{
x ∈ X : lim inf

n→∞

1

n

n∑

k=0

ψ(fkx) < lim sup
n→∞

1

n

n∑

k=0

ψ(fkx)

}
.

For each α ∈ R we have

Kα(ϕ) =
⋃

β∈R

(Kα(ϕ) ∩Kβ(ψ)) ∪ (Kα(ϕ) ∩ I(ψ)),

and this union is composed of pairwise disjoint sets. It follows from Theo-
rem 16 that

dimu(Kα(ϕ) ∩ I(ψ)) = dimuKα(ϕ)

for every α ∈ R and every Hölder continuous positive function u. This
reveals an extreme complexity hidden by Birkhoff’s ergodic theorem.
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7. Finer structure of the spectrum

We now want to have an even closer look at the fine structure of the
level sets Kα in (21). In particular, we shall show that the u-dimension
of the level set Kα is entirely carried by a certain level set strictly inside
Kα corresponding to a new higher-dimensional parameter, at the expense
of considering new vectors Φ and Ψ.

Let f : X → X be a topologically mixing subshift of finite type. Fix
Hölder continuous functions ϕi, ψi for i = 1, . . ., d, and u on X such that
ψi for i = 1, . . ., d, and u are positive.

Given α ∈ R
d and µ ∈ M(X) we define Kα and P(M(X)) respectively

as in (21) and (23). We consider also the multifractal spectrum Fu defined
by (24). We shall refer to this spectrum as a mixed spectrum, due to the
noncoincidence in general of the functions ψi and u.

For each (q1, q2) ∈ R
d × R

d, we consider the unique number T (q1, q2)
satisfying

PX(〈q1,Φ〉 + 〈q2,Ψ〉 − T (q1, q2)u) = 0,

and denote by µq1,q2 the equilibrium measure of 〈q1,Φ〉+〈q2,Ψ〉−T (q1, q2)u.
Set

β(q1, q2)
def
= ∇q1T (q1, q2) and γ(q1, q2)

def
= ∇q2T (q1, q2).

For each (β, γ) ∈ R
d × R

d, we consider the set Kβ,γ of points x ∈ X such
that

lim
n→∞

∑n
k=0 ϕi(f

kx)∑n
k=0 u(f

kx)
= βi and lim

n→∞

∑n
k=0 ψi(f

kx)∑n
k=0 u(f

kx)
= γi

for every i = 1, . . ., d. We now establish a precise relationship between the
d-dimensional mixed spectrum and the 2d-dimensional spectrum

Hu(β, γ) = dimuKβ,γ .

Theorem 17. The following properties hold:

1. µq1,q2(Kβ(q1,q2),γ(q1,q2)) = 1 and

Hu(β(q1, q2), γ(q1, q2)) = dimu µq1,q2

= T (q1, q2) − 〈q1, β(q1, q2)〉 − 〈q2, γ(q1, q2)〉;
2. if α ∈ intP(M(X)), then there exists γ ∈ R

d such that Fu(α) =
Hu(α ∗ γ, γ).

Observe that Hu is the Legendre transform of the function T .
Clearly, for each γ ∈ R

d we have Kα∗γ,γ ⊂ Kα. Therefore, the second
statement in Theorem 17 says that the u-dimension of the set Kα is fully
carried by some subset Kα∗γ,γ of Kα (among the uncountable number of
pairwise disjoint subsets Kα∗γ,γ). In particular, the mixed spectrum Fu can
be obtained from the non-mixed (but 2d-dimensional) spectrum Hu by

Fu(α) = max{Hu(α ∗ γ, γ) : γ ∈ R
d} (32)

for each α ∈ intP(M(X)). This consequence is particularly unexpected
since the inclusion

⋃
γ Kα∗γ,γ ⊂ Kα is never an identity, and since the u-

dimension of an uncountable union
⋃
γ Iγ may in general be strictly larger

then supγ dimu Iγ .
We now provide an application of Theorem 17.
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Theorem 18. If for some α ∈ int P(M(X)) the maximum in (32) is attained
at a point (α ∗ γ, γ) ∈ R

2d in the interior of the domain of definition of Hu,
then Fu has at most one local maximum in a neighborhood of α.

For example, assume that d = 1 and that the functions ϕ1, ψ1, and u are
linearly independent as cohomology classes. In this case, the function Hu

is strictly convex, and its maximum is attained in the interior of its domain
of definition (and coincides with the maximum of Fu). The measure of
maximal dimension is the equilibrium measure with potential −T (0, 0)u. If
d = 1 and ϕ1, ψ1, and u are linearly independent as cohomology classes, then
the spectrum Fu has only one maximum, and it follows from Theorem 18
that it is strictly convex in an open neighborhood of this maximum. We
note that however Fu may not be convex (everywhere). An example of a
nonconvex spectrum is given in [2].

8. Proofs

8.1. Proofs of the results in Section 4. We begin with some preparatory
lemmas. Let |q| = |q1| + · · · + |qd| be the norm of a vector q ∈ R

d.

Lemma 1. If α ∈ P(M(X)) then

inf
q∈Rd

PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u) ≥ 0.

Proof of Lemma 1. Assume first that Fu(α) = 0. By the definition of P

there exists µ ∈ M(X) such that
∫
X Φ dµ =

∫
X α ∗ Ψ dµ. Then

PX(〈q,Φ − α ∗ Ψ〉) ≥ hµ(f) +

〈
q,

∫

X
(Φ − α ∗ Ψ) dµ

〉
= hµ(f) ≥ 0.

We shall now use a modification of an argument in [2] and the notations
of Section 2. Assume that Fu(α) > 0. By Proposition 4 the number Fu(α)
is equal to the unique root δ of the equation PKα(−δu) = 0. Given δ > 0
and τ ∈ N consider the sets

Lδ,τ = {x ∈ X : ‖Φn(x) − αΨn(x)‖ < δn for every n ≥ τ},
where

Φn =
n−1∑

k=0

Φ ◦ fk and Ψn =
n−1∑

k=0

Ψ ◦ fk.

Since Ψ > 0 one can easily show that Kα ⊂ ⋂
δ>0

⋃
τ∈N

Lδ,τ . Let now U

be an open cover of X with sufficiently small diameter such that if n is
sufficiently large, U ∈ ⋃k≥nWk(U), and x ∈ X(U), then

‖Φ(U) − Φm(U)(x)‖ ≤ δm(U) and ‖Ψ(U) − Ψm(U)(x)‖ ≤ δm(U).

Hence, if U ∈ ⋃k≥nWk(U) and X(U) ∩ Lδ,τ 6= ∅ then

‖Φ(U) − αΨ(U)‖ < (2 + |α|)δm(U).

Thus

PLδ,τ
(−Fu(α)u,U) ≤ PLδ,τ

(〈q,Φ − α ∗ Ψ〉 − Fu(α)u,U) + (2 + |α|)δ|q|.
Letting the diameter of U going to zero yields

PLδ,τ
(−Fu(α)u) ≤ PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u) + (2 + |α|)δ|q|,
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and hence,

0 ≤ P⋃
τ∈N

Lδ,τ
(−Fu(α)u) = sup

τ∈N

PLδ,τ
(−Fu(α)u)

≤ PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u) + (2 + |α|)δ|q|.
Since δ is arbitrary, we obtain

inf
q∈Rd

PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u) ≥ 0.

This completes the proof of the lemma. �

Lemma 2. If α ∈ intP(M(X)) then

inf
q∈Rd

PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u) = 0,

and there exists an ergodic equilibrium measure µα ∈ M(X) with P(µα) = α
and µα(Kα) = 1 such that dimu µα = Fu(α).

Proof of Lemma 2. Let

r = dist(Rd \ P(M(X)), α) > 0

(with the distance given by | · |). We claim that the infimum over q ∈ R
d of

the function

F (q) = PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u)

is attained inside the ball of radius

R =
dimuX · supu+ F (0)

rmini inf ψi
.

Let q ∈ R
d such that |q| ≥ R. We shall prove that F (q) ≥ F (0). Let

a ∈ (0, 1) and β ∈ R
d such that βi = αi + ar sgn qi. Clearly β ∈ P(M(X)),

and hence there exists µ ∈ M(X) such that
∫
X Φ dµ =

∫
X β ∗ Ψ dµ. We

obtain

F (q) ≥ hµ(f) +

〈
q,

∫

X
(Φ − α ∗ Ψ) dµ

〉
− Fu(α)

∫

X
u dµ

≥
〈
q,

∫

X
(β − α) ∗ Ψ dµ

〉
− dimuX · supu

≥ |q|armin
i

inf ψi − dimuX · supu

> adimuX · supu+ F (0) − dimuX · supu.

We obtain the claim by letting a→ 1.
Since F is of class C1 its minimum is attained at a point q = q(α) with

|q(α)| < R and satisfying ∂qF (q(α)) = 0. Let µα be the equilibrium measure
of the function 〈q(α),Φ − α ∗ Ψ〉 − Fu(α)u. Then

∫

X
(Φ − α ∗ Ψ) dµα = ∂qF (q(α)) = 0,

and hence P(µα) = α. Furthermore,

F (q(α)) = hµα(f) − Fu(α)

∫

X
u dµα.
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By Lemma 1 we have F (q(α)) ≥ 0 and thus

dimu µα =
hµα(f)∫
X u dµα

≥ Fu(α).

On the other hand, since µα is ergodic and
∫
X Φ dµα =

∫
X α ∗ Ψ dµα it

follows from Birkhoff’s ergodic theorem that µα(Kα) = 1. Therefore

Fu(α) ≥ dimu µα

and thus dimu µα = Fu(α). This completes the proof of the lemma. �

Proof of Theorem 8. Let α ∈ R
d with Kα 6= ∅, and take x ∈ Kα. The

sequence of measures

µn =
1

n

n−1∑

k=0

δfkx

has an accumulation point, say µ, which is invariant. Moreover, for all i = 1,
. . ., d we have

∫
X ϕi dµn/

∫
X ψi dµn → αi when n→ ∞. This implies that
∫

X
ϕi dµ

/∫

X
ψi dµ = αi

for all i = 1, . . ., d. Hence α ∈ P(M(X)), which proves the first statement.
Let now α ∈ int P(M(X)). For any µ ∈ M(X) such that P(µ) = α

Lemma 2 implies that

0 = inf
q∈Rd

PX(〈q,Φ − α ∗ Ψ〉 − Fu(α)u) ≥ hµ(f) − Fu(α)

∫

X
u dµ.

Therefore

hµ(f)
/∫

X
u dµ ≤ Fu(α).

On the other hand, again by Lemma 2 there exists an ergodic measure µα
such that µα(Kα) = 1, P(µα) = α, and

Fu(α) = dimu µα =
hµα(f)∫
X u dµα

(using ergodicity and the identity in (8)). This establishes the identities in
(26) and (27). Statement 2 is an immediate consequence of Lemma 2. This
completes the proof of the theorem. �

Proof of Theorem 9. Changing if necessary Φ by Φ−α ∗Ψ, we may assume
that α = 0 without loss of generality. Note that this corresponds to a
translation of the set P(M(X)) by the vector −α.

We now establish the first statement. Since α = 0 ∈ P(M(X)) there
exists a measure m0 ∈ M(X) such that

∫
X Φ dm0 = 0. Moreover, the map

m 7→
∫
X Φ dm is affine on the convex set M(X), and hence

M(Φ)
def
=

{∫

X
Φ dm : m ∈ M(X)

}

is convex. We shall show that its interior is nonempty. If int M(Φ) = ∅

then M(Φ) is contained in some hyperplane, and hence there exists q ∈ R
d
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such that 〈q,
∫
X Φ dm〉 = 0 for any m ∈ M(X). This implies that for any

real number t we have

PX(t〈q,Φ〉) = sup
m∈M(X)

(
hm(f) + t

∫

X
〈q,Φ〉 dm

)

= sup
m∈M(X)

hm(f) = PX(0).

This contradicts the hypotheses in the theorem. Therefore int M(Φ) 6= ∅

and one can find d measures m1, . . ., md such that the vectors
∫
X Φ dm1,

. . .,
∫
X Φ dmd form a basis of R

d.
Consider the set

∆ = {p ∈ R
d : 0 ≤ pi for each i = 1, . . ., d and p1 + · · · + pd ≤ 1}.

For each p ∈ ∆ let

µp = p1m1 + · · · + pdmd +

(
1 −

d∑

i=1

pi

)
m0 ∈ M(X).

We define the map β : ∆ → R
d by

β(p) =

(∫
X ϕ1 dµp∫
X ψ1 dµp

, . . . ,

∫
X ϕd dµp∫
X ψd dµp

)
.

Since
∫
X Φ dm0 = 0 we have

∂

∂pj

(∫
X ϕi dµp∫
X ψi dµp

) ∣∣∣
p=0

=

∫
X ϕi dmj −

∫
X ϕi dm0∫

X ψi dµp

∣∣∣
p=0

−
(∫
X ψi dmj −

∫
X ψi dm0

) ∫
X ϕi dµp(∫

X ψi dµp
)2

∣∣∣
p=0

=

∫
X ϕi dmj∫
X ψi dm0

.

The map β is of class C1, and its derivative at p = 0 is given by

d0β =




∫
X
ϕ1 dm1∫

X
ψ1 dm0

· · ·
∫
X
ϕ1 dmd∫

X
ψ1 dm0

...
. . .

...∫
X
ϕd dm1∫

X
ψd dm0

· · ·
∫
X
ϕd dmd∫

X
ψd dm0


 .

We denote by M = (Mij)ij the d× d matrix with entries Mij =
∫
X ϕj dmi.

Then

det d0β =




d∏

j=1

∫

X
ψj dm0




−1

detM.

Since the vectors
∫
X Φ dm1, . . .,

∫
X Φ dmd are linearly independent, the

matrix M is invertible, and thus β is a local diffeomorphism at 0. Thus
there exist open sets U ⊂ ∆ and D = β(U) such that 0 ∈ U and β is a
diffeomorphism from U to D. Accordingly, 0 ∈ D. In particular,

α = 0 ∈ intβ(∆) ⊂ int P(M(X)).
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We now prove the second statement. We still assume that α = 0. There
exists q ∈ R

d such that PX(t〈q,Φ〉) = PX(0) for any t ∈ R. We want to
show that

{sq : s ∈ R} ∩ P(M(X)) = {0},
which immediately implies the statement in the theorem. Let s 6= 0. If
sq ∈ P(M(X)) then there exists µ such that

∫
X Φ dµ = sq ∗

∫
X Ψ dµ. Thus

for any t > 0 we have

PX(0) = PX(t〈sq,Φ〉) ≥ hµ(f) + t

〈
sq,

∫

X
Φ dµ

〉
≥ t|sq|2 inf

i
inf ψi.

This gives a contradiction if t is sufficiently large. Therefore α = 0 6∈
int P(M(X)). This completes the proof of the theorem. �

Proof of Theorem 10. The second statement follows immediately from The-
orem 9. Let now

E2d(µ) = −
(∫

X
Φ dµ,

∫

X
Ψ dµ

)

and

P̂ =

{
αi
βi

: (α, β) ∈ ∂E2d(M(X))

}
.

It follows from Theorem 5 that

E2d(M(X)) = int E2d(M(X)).

The proof consists of three claims.

Claim 1. ∂P(M(X)) ⊂ P̂.

Let (α, β) ∈ int E2d(M(X)). This means that (α, β) + ε ∈ E2d(M(X)) for
all sufficiently small ε ∈ R

2d, and thus by Theorem 5 there exists an ergodic
measure µε with P(µε) = (α, β) + ε. Hence for all sufficiently small δ ∈ R

d

the δ-neighborhood of (α1/β1, . . . , αd/βd) is entirely contained in P(M(X)).
This establishes the claim.

Claim 2. The set E2d(M(X)) is convex.

The claim follows immediately from the convexity of M(X) and the con-
vexity of the functional E2d on this space.

For each q ∈ S2d−1 we set

Wq = −
{∫

X
〈q, (Φ,Ψ)〉 dµ : µ ∈ M(X)

}
.

Claim 3. For each (α, β) ∈ ∂E2d(M(X)) there exists a vector q ∈ S2d−1

such that 〈(α, β), q〉 ∈ ∂Wq.

Since E2d(M(X)) is a convex set each of its boundary points has a sup-
porting plane. Let (α, β) ∈ ∂E2d(M(X)), and denote by P the orthogonal
projection of E2d(M(X)) onto the normal to the supporting plane at (α, β).
The point (α, β) is mapped by P into a boundary point of the interval
P (E2d(M(X))). The orthogonal projection of a point (α, β) onto the line
in the direction of a normal vector q ∈ S2d−1 is given by 〈(α, β), q〉. This
establishes the claim since Wq is the image of E2d(M(X)) under this projec-
tion.
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Now we are ready to prove the proposition. Let (α, β) ∈ R
2d be such

that (α1/β1, . . . , αd/βd) ∈ P̂. This means that (α, β) ∈ ∂E2d(M(X)). Hence
there is a point q ∈ S2d−1 such that 〈(α, β), q〉 ∈ ∂Wq. This concludes the
proof. �

8.2. Proofs of the results in Section 5.

Proof of Theorem 12. Let α ∈ int P(M(X)) and put

Q(δ, q, α) = PX(〈q,Φ − α ∗ Ψ〉 − δu).

Proceeding as in the proof of Lemma 2 one can show that there exist q(α) ∈
R
d and an ergodic equilibrium measure µα such that q 7→ Q(Fu(α), q, α)

attains a minimum at q = q(α), and thus

∂qQ(Fu(α), q(α), α) =

∫

X
(Φ − α ∗ Ψ) dµα = 0.

By Lemma 2 we have Q(Fu(α), q(α), α) = 0.
Consider the system of equations

Q(δ, q, α) = 0 and ∂qQ(δ, q, α) = 0.

We want to apply the implicit function theorem to establish the uniqueness
of the solution (δ, q) = (Fu(α), q(α)) for this system, and its regularity in α.
In particular this will establish the regularity of the spectrum. Let

G(q, δ, α) = (Q(δ, q, α), ∂q1Q(δ, q, α), . . . , ∂qdQ(δ, q, α)).

It is enough to show that the matrix

(∂δ , ∂q1 , . . . , ∂qd)
tG =




∂δQ ∂δ∂q1Q · · · ∂δ∂qdQ
∂q1Q ∂q1∂q1Q · · · ∂q1∂qdQ

...
...

. . .
...

∂qdQ ∂qd∂q1Q · · · ∂qd∂qdQ


 (33)

is invertible at (q(α),Fu(α), α). Denote by µq,δ,α the unique equilibrium
measure of the function 〈q,Φ − α ∗ Ψ〉 − δu. For each i = 1, . . . , d we have
∂qiQ(Fu(α), q(α), α) = 0, and δ = Fu(α). Hence the first column of the
matrix in (33) is zero at (q(α),Fu(α), α), with the exception of the first
term which is

∂δQ(Fu(α), q(α), α) = −
∫

X
u dµq,δ,α < 0.

Therefore, it suffices to check that the remaining right lower d×d matrix, say
H, is invertible. The second derivative of the pressure at q(α) is a bilinear
symmetric form B : R

d × R
d → R and we have

∂qi∂qjQ(Fu(α), q(α), α) = B(ei, ej)

where (ei)i=1,...,d denotes the canonical basis in R
d. By hypothesis B is

positive definite. If H were not invertible, then some nontrivial linear com-
bination of its columns would be zero, and thus there would exist λ ∈ R

d\{0}
such that

d∑

j=1

λjB(ei, ej) = 0
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for i = 1, . . . , d. Hence, setting g =
∑d

i=1 λiei we would obtain

B(g, g) =

d∑

i=1

λi

d∑

j=1

λjB(ei, ej) = 0.

Since g 6= 0 this contradicts the positive definiteness of B. Thus H is
invertible. By the implicit function theorem the functions δ(α) and q(α)
must be at least as regular as the function G, which is of class C k−1 (or
analytic if the pressure is analytic). This completes the proof of the theorem.

�

Proof of Theorem 13. Let G = Φ − α ∗ Ψ and define F (q) = PX(〈q,G〉).
Ruelle’s formula for the second derivative of the topological pressure shows
that for any p ∈ R

d (see [10]) we have

∂2
qF (p, p) =

∫

X
〈p,G〉2 dµq + 2

∞∑

n=1

∫

X
〈p,G〉 · 〈p,G ◦ fn〉 dµq ≥ 0,

where µq denotes the unique equilibrium measure of the function 〈q,G〉.
We shall prove that ∂2

qF (p, p) > 0 whenever p 6= 0. Suppose on the

contrary that ∂2
qF (p, p) is zero. In this case the function 〈p,G〉 must be co-

homologous to some constant c. Since α ∈ P(M(X)) there exists a measure
µ ∈ M(X) such that

∫
X Gdµ = 0. This implies that c = 0. Since 〈p,G〉 is

cohomologous to zero we conclude that t 7→ PX(t〈p,G〉) is constant. By The-
orem 9 this never happens when α ∈ int P(M(X)) and thus ∂2

qF (p, p) > 0.
The desired statement follows now immediately from Theorem 12. �

We now need an auxiliary statement.

Lemma 3. The set of vectors (ϕ1, . . . , ϕd) ∈ Hθ
d such that ϕ1, . . ., ϕd are

linearly independent as cohomology classes is residual in Hθ
d.

Proof of Lemma 3. Consider d distinct periodic orbits x1, . . ., xd of period
respectively n1, . . ., nd. We set

Sij =
1

ni

ni−1∑

k=0

ϕj(f
kxi).

By the Livschitz theorem, if the d× d-matrix with entries Sij has full rank,
then the functions ϕ1, . . ., ϕd are linearly independent as cohomology classes.
The desired statement follows now from the fact that this is a generic con-
dition. �

Proof of Theorem 14. Set

u = min{u(x) : x ∈ X} and u = max{u(x) : x ∈ X}.
It follows from (7) below that

M(Z,αu, 1,U) ≤M(Z,α, u,U) ≤M(Z,αu, 1,U).

Therefore
dim1,U Z

u
≤ dimu,UZ ≤ dim1,UZ

u
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and hence h(f |Z)/u ≤ dimu Z ≤ h(f |Z)/u. This shows that F1(α) = 0 if
and only if Fu(α) = 0. Hence it is sufficient to prove that the topological
entropy vanishes at the boundary of P(M(X)).

We shall reduce our problem to a one-dimensional problem. For each
q, α ∈ R

d and each (Φ,Ψ) ∈ Hθ
d × Hθ

d we consider the function χΦΨ =
〈q,Φ−α∗Ψ〉. In [12] (in the proof of Proposition 5.3) it is shown that there
is an open and dense subset Θε ⊂ Hθ such that if χ ∈ Θε then

h

(
f |
{
x ∈ X : lim

n→∞

1

n

n−1∑

k=0

χ(fnx) ∈ {β, β}
})

< ε, (34)

where

β = inf

{∫

X
χdµ : µ ∈ M(X)

}
and β = sup

{∫

X
χdµ : µ ∈ M(X)

}
.

Therefore for each fixed q, α ∈ R
d the set

Θε
qα = {(Φ,Ψ) ∈ Hθ

d ×Hθ
d : χΦΨ ∈ Θε} (35)

is open and dense in Hθ
d ×Hθ

d.
It follows from Lemma 3 that by changing Θε

qα slightly but leaving it
still open and dense we may assume that there is no cohomology relation
between the functions ϕi − αiψi for i = 1, . . ., d. This implies that there
is an open neighborhood U(q, α) ⊂ R

d × R
d of (q, α) such that there is an

open and dense subset Θε
qα of Hθ

d×Hθ
d without cohomology relations such

that (Φ,Ψ) ∈ Θε
q′α′ for every (q′, α′) ∈ U(q, α). Now we choose a sequence

(qn, αn) such that
⋃∞
n=1 U(qn, αn) = R

d × R
d and set

Θ =
∞⋂

m=1

∞⋃

n=1

Θ1/m
qnαn

. (36)

By construction the set Θ is residual and for every (Φ,Ψ) ∈ Θ there are no
cohomology relations (see Theorem 9 and the discussion after this theorem).
This establishes the first assertion of the theorem.

By Theorem 10, for each (Φ,Ψ) ∈ Θ the boundary points of P(M(X))
are contained in

⋃
q∈S2d−1 Γ(q). By construction of the set Θ (see (34)–(36))

the spectrum vanishes at these points. This completes the proof of the
theorem. �

8.3. Proofs of the results in Section 6.

Proof of Theorem 16. The following is an immediate consequence of a result
of Barreira and Schmeling (see [4, Theorem 7.2]).

Lemma 4. For a subshift f : X → X with the specification property, and
an f -invariant set K ⊂ X, if for each i 6∈ L there exist measures µ1

i , µ
2
i ∈

ME(K) such that ∫
X ϕi dµ

1
i∫

X ψi dµ
1
i

6=
∫
X ϕi dµ

2
i∫

X ψi dµ
2
i

,
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then

dimu


K ∩

⋂

i6∈L

I(ϕi, ψi)


 ≥ min{dimu µ

1
i ,dimu µ

2
i : i 6∈ L}.

We want to apply Lemma 4 with K =
⋂
i∈LKαi

(ϕi, ψi). By Theorem 8
there exists an ergodic measure µ ∈ ME(K) with µ(K) = 1 and dimu µ =
dimuK. By Birkhoff’s ergodic theorem, for each i = 1, . . ., d there exists a
constant βi such that

lim
n→∞

ϕi,n(x)

ψi,n(x)
→ βi

for µ-almost every x ∈ K. Clearly βi = αi for each i ∈ L, and Mα,L(Φ,Ψ) =
Mβ,L(Φ,Ψ) where β = (β1, . . . , βd). Furthermore,

dimuK ≥ dimuKβ ≥ dimu µ = dimuK,

and thus dimuKβ = dimuK.
By Theorem 12 the spectrum Fu is analytic, and thus the function γi 7→

Fu(γ) is also analytic for each i 6∈ L, where γj = αj for every j ∈ L and γj =

βj for every j 6∈ L∪ {i}. By Theorem 10 we have P(M(X)) = intP(M(X)).
This implies that for each ε > 0 and each i 6∈ L, there exists γi sufficiently
close to βi (but different from βi) and an ergodic measure µi such that
µi(Kγ) = 1, P(µi) = γ, and

dimu µi > dimuKβ − ε = dimuK − ε.

Since µi(K) ≥ µi(Kγ) and
∫
X ϕi dµi∫
X ψi dµi

= γi 6= βi =

∫
X ϕi dµ∫
X ψi dµ

,

it follows from Lemma 4 that

dimu


K ∩

⋂

i6∈L

I(ϕi, ψi)


 ≥ dimuK − ε.

The arbitrariness of ε implies the desired result. �

8.4. Proofs of the results in Section 7.

Proof of Theorem 17. With a straightforward modification of the standard
one-dimensional multifractal analysis (or applying Theorem 8 with Ψ =
(1, . . . , 1)), we have

µq1,q2(Kβ(q1,q2),γ(q1,q2)) = 1 and Hu(β(q1, q2), γ(q1, q2)) = dimu µq1,q2 .

Furthermore

β(q1, q2) =

∫
X Φ dµq1,q2∫
X u dµq1,q2

and γ(q1, q2) =

∫
X Ψ dµq1,q2∫
X u dµq1,q2

.
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We obtain

dimu µq1,q2 =
hµq1 ,q2

(f)∫
X u dµq1,q2

=
−
∫
X(〈q1,Φ〉 + 〈q2,Ψ〉 − T (q1, q2)u) dµq1,q2∫

X u dµq1,q2
= T (q1, q2) − 〈q1, β(q1, q2)〉 − 〈q2, γ(q1, q2)〉.

This completes the proof of the first statement.
We now establish the second statement. By Theorem 8 there exists a

measure of maximal u-dimension µα on Kα. Then for µα-almost every
x ∈ X there exist the limits

lim
n→∞

∑n
k=0 Φ(fkx)∑n
k=0 u(f

kx)
= β(α) =

∫
X Φ dµα∫
X u dµα

,

lim
n→∞

∑n
k=0 Ψ(fkx)∑n
k=0 u(f

kx)
= γ(α) =

∫
X Ψ dµα∫
X u dµα

,

and β(α) = α ∗ γ(α). Therefore

µα(Kβ(α),γ(α)) = µα(Kα∗γ(α),γ(α)) = 1.

This implies that

dimuKα∗γ(α),γ(α) ≥ dimu µα = dimuKα.

On the other hand Kα∗γ,γ ⊂ Kα for every γ ∈ R
d, and thus dimuKα∗γ,γ ≤

dimuKα. We conclude that

dimuKα = sup{dimuKα∗γ,γ : γ} = dimuKα∗γ(α),γ(α) .

This completes the proof of the second statement. �

Proof of Theorem 18. Fix α0 ∈ R
d in the domain of definition of Fu, and

let (α0 ∗ γ0, γ0) be a point in the interior of the domain of definition of Hu

such that
Hu(α0 ∗ γ0, γ0) = sup{Hu(α0 ∗ γ, γ) : γ ∈ R

d}.
Then there exists a ball B = B((α0 ∗ γ0, γ0), r) ⊂ R

2d such that whenever
|α − α0| is sufficiently small the maximum of γ 7→ Hu(α ∗ γ, γ) is attained
at a point γ such that (α ∗ γ, γ) ∈ B. Since Hu is analytic and strictly
convex, the maxima will be attained on a smooth d-dimensional submanifold
Γ transversal to the family of d-dimensional planes {(α ∗ γ, γ) : γ ∈ R

d}.
These planes foliate the space R

d. Furthermore each of them is tangent
to the level set Hu = Fu(α) and to no other level set (see Figure 2). If
c < max Hu then the corresponding level set Hu = c is an analytic compact
convex (2d − 1)-dimensional submanifold. This level set divides the space
R

2d into the sets

Hint = {x ∈ R
2d : Hu(x) > c} and Hext = {x ∈ R

2d : Hu(x) < c}.
Let αc be such that Fu(αc) = c. Since the curve Γ is transversal to the
plane {(αc ∗ γ, γ) : γ ∈ R

d} at the point (αc ∗ γc, γc) of tangency to Hc, any
neighborhood of (αc ∗ γc, γc) in Γ contains points in Hint as well as in Hext.
This yields that there cannot be a local maximum at αc. This proves the
theorem. �
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Γ

Figure 2. Looking for the maxima of mixed spectra. Each
plane γ 7→ (α ∗ γ, γ) is tangent to the level set of Hu given
by Hu = Fu(α). The maxima are attained in the curve Γ.

8.5. Proofs of the results in Sections 1 and 3. Let µ be a Gibbs mea-
sure of the function ϕ with respect to the dynamical system f |X. Without
loss of generality we can assume that PX(ϕ) = 0. Then the pointwise di-
mension and local entropy can be written respectively as

dµ(x) = lim
n→∞

−
∑n−1

k=0 ϕ(fkx)
∑n−1

k=0 log‖dfkxf‖
and

hµ(x) = lim
n→∞

− 1

n

n−1∑

k=0

ϕ(fkx).

Furthermore, if f is differentiable and conformal on X, then

λ(x) = lim
n→∞

1

n

n−1∑

k=0

log‖dfkxf‖.

Therefore, the results in Theorems 1–3 and Theorems 5–7 can be reformu-
lated using the notions introduced in Sections 2 and 4.

Proof of Theorem 1. Considering the vectors Φ = (ϕ,ψ) and Ψ = (1, 1),
and the function u = 1, the desired statement follows immediately from
Theorem 8. �

Proofs of Theorem 2. Proceeding as in the proof of Theorem 1, the desired
statements are immediate consequences of Theorems 8, 9, and 13. �

Proof of Theorem 3. The theorem is an immediate consequence of the sec-
ond statement in Theorem 17. �

Proof of Theorems 5, 6, and 7. Considering u = 1 in the case of the topo-
logical entropy, and u = a, where a = log‖df‖, in the case of the Haus-
dorff dimension, the desired statements are immediate consequences of The-
orems 8, 9, and 13, by making an appropriate choice of the vectors Φ and
Ψ in Section 4:
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1. Φ = −(ϕ1, . . . , ϕd) and Ψ = (1, . . . , 1) for Ed;
2. Φ = −(ϕ1, . . . , ϕd) and Ψ = (a, . . . , a) for Dd;
3. Φ = (−ϕ1, . . . ,−ϕd, a) and Ψ = (1, . . . , 1, 1) for (Ed,L);
4. Φ = (−ϕ1, . . . ,−ϕd, a) and Ψ = (a, . . . , a, 1) for (Dd,L);
5. Φ = −(ϕ1, ϕ1) and Ψ = (1, a) for (E1,D1);

This completes the proof of the theorem. �
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