University of Wollongong

Research Online

Higher dimensional orthogonal designs and Hadamard matrices

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Seberry, Jennifer: Higher dimensional orthogonal designs and Hadamard matrices 1980.
https://ro.uow.edu.au/infopapers/1004

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Higher dimensional orthogonal designs and Hadamard matrices

Abstract
We construct n-dimensional orthogonal designs of type $(1,1) n$, side 2 and propriety $(2,2, \ldots, 2)$. These are then used to show that orthogonal designs of type $(2 t, 2 t) n$, side $2 t+1$ and propriety $(2,2, \ldots, 2)$ exist.
\section*{Disciplines}
Physical Sciences and Mathematics
\section*{Publication Details}
Seberry, J, Higher dimensional orthogonal designs and Hadamard matrices, Combinatorics VII, Lecture Notes in Mathematics, 829, Springer--Verlag, Berlin--Heidelberg--New York, 1980, 220-223.

JENNIFER SEBERRY

We construct n-dimensional orthogonal designs of type $(1,1)^{n}$, side 2 and propriety $(2,2, \ldots, 2)$. These are then used to show that orthogonal designs of type $\left(2^{t}, 2^{t}\right)^{n}$, side 2^{t+1} and propriety $(2,2, \ldots, 2)$ exist.

1. INTRODUCTION

In [2] it is pointed out that it is possible to define orthogonality for higher dimensional matrices in many ways.

Intuitively we see that each two-dimensional matrix withing the n-dimensional matrix could have orthogonal row vectors (we call this propriety ($2,2, \ldots, 2$); or perhaps each pair of two-dimensional layers

$$
A^{j}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
\vdots \\
a_{2} \\
a_{t}
\end{array}\right) \quad \text { and } \quad B^{j}=\left(\begin{array}{c}
b_{1} \\
{\underset{b}{2}}_{2} \\
\vdots \\
{\underset{b}{t}}^{2}
\end{array}\right)
$$

could have $A \cdot B=\operatorname{tr}\left(A B^{T}\right)={\underset{\sim}{1}}^{a_{1}} \cdot{\underset{\sim}{1}}^{b_{1}}+z_{2} \cdot b_{2}+\ldots+{\underset{t a}{t}}^{b_{n}}{\underset{\sim}{b}}^{b_{2}}=0$ (note if the row vectors in this direction had been orthogonal we would have had ${z_{i}}_{i} \cdot b_{i}=0$ for each 1) (we call this propriety (...,3,...)); or perhaps each pair of three-dimensional layers

$$
\alpha=\left(\begin{array}{c}
A^{1} \\
A^{2} \\
\vdots \\
A^{t}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{c}
B^{1} \\
B^{2} \\
\vdots \\
B^{t}
\end{array}\right)
$$

could have $\alpha \cdot \beta=A^{1} \cdot B^{1}+\ldots+A^{t} \cdot B^{t}=0$ (note that if the 2-dimensional matrices had been orthogonal we would have had $A^{j} \cdot B^{j}=0$ for each j); and so on.

We say an n-dimensional matrix is orthogonal of propriety $\left(d_{1}, \ldots, d_{n}\right)$ with $2 \leqslant d_{i} \leqslant n$ where d_{i} indicates that in the $i^{\text {th }}$ direction (i.e., the $i^{\text {th }}$ coordinate) the $d_{i}-^{s t}, d_{i}{ }^{\text {th }}, d_{i}{ }^{+1}{ }^{s t}, \ldots,(n-1)^{\text {st }}$ dimensional layers are orthogonal but the $d_{i}-2^{\text {nd }}$ layer is not orthogonal. $d_{i}=\infty$ means not even the $(n-1)^{\text {st }}$ layers are orthogonal.

The Paley cube of size $\left(q^{+1}\right)^{n}$ constructed in [2] for $q \equiv 3(\bmod 4)$ a prime power has propriety $(\infty, \infty, \ldots, \infty)$ but if the 2 -dimensional layer of all ones is removed in one direction the remaining n-dimensional matrix has all 2-dimensional layers in
that direction orthogonal.
An n-cube orthogonal design, $D=\left[d_{i j k} \ldots\right]$, of propriety $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, side d and type $\left(s_{2}, s_{2}, \ldots, s_{t}\right)^{n}$ on the commating variables $x_{1}, x_{2}, \ldots, x_{t}$ has entries from the set $\left\{0, \pm x_{2}, \ldots, \pm x_{t}\right\}$ where $\pm x_{i}$ occurs s_{i} times in each row and column of each 2-dimensional layer and in which each e_{j}-dimensional layer, $d_{i}-1 \leqslant e_{j} \leqslant n-1$, in the $i^{\text {th }}$ direction is orthogonal.

Shlichta [3] found n-dimensional Hadamard matrices of size $\left(2^{t}\right)^{n}$ and propriety ($2,2, \ldots, 2$). In [2] the concept of higher dimensional m-suitable matrices was introduced to show that if t is the side of 4 Williamson matrices there is a 3dimensional Hadamard matrix of size $(4 t)^{3}$ and propriety ($2,2,2$).
2. n-DIMENSIONAL ORTHOGONAL DESIGNS OF TYPE $(1,1)^{n}$ AND SIDE 2

Theorem. Thexe exists an n-dimensional orthogonal design of type $(1,1)^{n}$, side 2 and propriety (2,2,...,2).

$$
\text { Proof. Let } a \text { and } b \text { be commuting variables and }\left[h_{i j k} . .\right] \text { be the orthogonal }
$$ design. Define $w=i+j+k+\ldots+v$, the weight of the subscripts which can only asstume the values 0 and 1 for side 2 .

Now define

$$
h_{i j k \ldots v}= \begin{cases}(-1)^{\frac{1}{2} w+1} a & w=0(\bmod 2\} \\ (-1)^{\frac{1}{2} w-1} b & w \equiv I(\bmod 2)\end{cases}
$$

In order to check the orthogonality we consider

$$
\begin{equation*}
h_{00 x} h_{01 x}+h_{10 x} h_{11 x} \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{00 x}{ }^{h} 10 x^{+h_{01 x}} h_{11 x} \tag{**}
\end{equation*}
$$

where x is a constant vector of $n-2$ subscripts. For convenience we put the two varying constants first but of course we are really checking then in each of $n(n-1)$ positions. Suppose $v=$ sum of the subscripts in x. Then we have four cases:
(1) $v \equiv 0(\bmod 4)$ then (*) and (**) both become

$$
-a b+b a=0
$$

(2) $v \equiv 1$ (mod 4) then (*) and (**) both become

```
22
\[
b a+a(-b)=0 ;
\]
```

(3) v $\equiv 2(\bmod 4)$ then (*) and (**) both become

$$
a(-b)+(-b)(-a)=0 ;
$$

(4) $v \equiv 3$ (mod 4) then (*) and (**) both become

$$
(-b)(-a)+(-a) b=0 .
$$

Hence each face of this orthogonal n-cube is a 2-dimensional orthogonal design and so we have a proper n-dimensional orthogonal design of type $(1,1)^{n}$.

Corollary. There axist n-dimensional orthogonal desigris of types $\left(2^{t}, 2^{t}\right)^{n}$, side 2^{t+1} and propriety $(2,2, \ldots, 2)$.

Proof. Take the Kronecker product of Shlichta's proper n-dimensional Hadamard matrices of order $\left(2^{t}\right)^{n}$ with the orthogonal design established in the theorem. This is illustrated in the Figure.

REFERENCES

[1] A.V. Geramita and Jennifer Seberry, Orthogonal Designe: Quadratio Forns cand Hadamard Matricess (Mercel Dekker, New York, 1979).
[2] Joseph Hammer and Jennifer Seberry, Higher dimensional orthogonal designs and applications, IEES Trans. Inform. Theory, (to appear).
[3] P.J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory, (to appear).

Department of Mathematics
University of Sydney
Sydney

$A_{1} \otimes A_{2}$.

