University of Wollongong

Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

1980

Higher dimensional orthogonal designs and Hadamard matrices

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Recommended Citation

Seberry, Jennifer: Higher dimensional orthogonal designs and Hadamard matrices 1980. https://ro.uow.edu.au/infopapers/1004

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Higher dimensional orthogonal designs and Hadamard matrices

Abstract

We construct n-dimensional orthogonal designs of type (1, 1)n, side 2 and propriety (2,2,...,2). These are then used to show that orthogonal designs of type (2t, 2t)n, side 2t+1 and propriety (2,2,...,2) exist.

Disciplines

Physical Sciences and Mathematics

Publication Details

Seberry, J, Higher dimensional orthogonal designs and Hadamard matrices, Combinatorics VII, Lecture Notes in Mathematics, 829, Springer--Verlag, Berlin--Heidelberg--New York, 1980, 220-223.

Vol 829, Lecture Noteo in Mathematico, Springer-Verlag, HIGHER DIMENSIONAL ORTHOGONAL DESIGNS Barlin - Heidelbeig AND HADAMARD MATRICES - New York, 1980

JENNIFER SEBERRY

We construct n-dimensional orthogonal designs of type $(1,1)^n$, side 2 and propriety $(2,2,\ldots,2)$. These are then used to show that orthogonal designs of type $(2^t,2^t)^n$, side 2^{t+1} and propriety $(2,2,\ldots,2)$ exist.

1. INTRODUCTION

In [2] it is pointed out that it is possible to define orthogonality for higher dimensional matrices in many ways.

Intuitively we see that each two-dimensional matrix withing the n-dimensional matrix could have orthogonal row vectors (we call this propriety (2,2,...,2)); or perhaps each pair of two-dimensional layers

۸ ^j =		and	B ^j =	$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_t \end{pmatrix}$
	vet/			v~t/

could have $A \cdot B = tr(AB^T) = \underline{a}_1 \cdot \underline{b}_1 + \underline{a}_2 \cdot \underline{b}_2 + \ldots + \underline{a}_t \cdot \underline{b}_t = 0$ (note if the row vectors in this direction had been orthogonal we would have had $\underline{a}_i \cdot \underline{b}_i = 0$ for each 1) (we call this propriety $(\ldots, 3, \ldots)$); or perhaps each pair of three-dimensional layers

$$\alpha = \begin{pmatrix} A^1 \\ A^2 \\ \vdots \\ A^t \end{pmatrix} \qquad \text{and} \qquad \beta = \begin{pmatrix} B^1 \\ B^2 \\ \vdots \\ B^t \end{pmatrix}$$

could have $\alpha \cdot \beta = A^1 \cdot B^1 + \ldots + A^t \cdot B^t = 0$ (note that if the 2-dimensional matrices had been orthogonal we would have had $A^j \cdot B^j = 0$ for each j); and so on.

We say an n-dimensional matrix is orthogonal of propriety (d_1, \ldots, d_n) with $2 \leq d_i \leq n$ where d_i indicates that in the ith direction (i.e., the ith coordinate) the d_i^{-1} , d_i^{th} , d_i^{+1} , \ldots , $(n-1)^{st}$ dimensional layers are orthogonal but the $d_i^{-2^{nd}}$ layer is not orthogonal. $d_i = \infty$ means not even the $(n-1)^{st}$ layers are orthogonal.

The Paley cube of size $(q+1)^n$ constructed in [2] for $q \equiv 3 \pmod{4}$ a prime power has propriety $(\infty, \infty, \ldots, \infty)$ but if the 2-dimensional layer of all ones is removed in one direction the remaining n-dimensional matrix has all 2-dimensional layers in that direction orthogonal.

An *n*-cube orthogonal design, $D = [d_{ijk...}]$, of propriety $(d_1, d_2, ..., d_n)$, side d and type $(s_1, s_2, ..., s_t)^n$ on the commuting variables $x_1, x_2, ..., x_t$ has entries from the set $\{0, \pm x_1, ..., \pm x_t\}$ where $\pm x_i$ occurs s_i times in each row and columm of each 2-dimensional layer and in which each e_j -dimensional layer, $d_i - 1 \le e_j \le n - 1$, in the ith direction is orthogonal.

Shlichta [3] found n-dimensional Hadamard matrices of size $(2^t)^n$ and propriety $(2,2,\ldots,2)$. In [2] the concept of higher dimensional m-suitable matrices was introduced to show that if t is the side of 4 Williamson matrices there is a 3dimensional Hadamard matrix of size $(4t)^3$ and propriety (2,2,2).

2. n-DIMENSIONAL ORTHOGONAL DESIGNS OF TYPE (1,1)ⁿ AND SIDE 2

Theorem. There exists an n-dimensional orthogonal design of type $(1,1)^n$, side 2 and propriety $(2,2,\ldots,2)$.

<u>Proof.</u> Let a and b be commuting variables and $[h_{ijk...}]$ be the orthogonal design. Define w = i + j + k + ... + v, the weight of the subscripts which can only assume the values 0 and 1 for side 2.

Now define

$$h_{ijk...v} = \begin{cases} (-1)^{\frac{1}{2}w+1}a & w \equiv 0 \pmod{2}, \\ \\ \\ (-1)^{\frac{1}{2}w-1}b & w \equiv 1 \pmod{2}. \end{cases}$$

In order to check the orthogonality we consider

$$h_{00x}h_{01x} + h_{10x}h_{11x}$$

and

$$h_{00x}h_{10x} + h_{01x}h_{11x}$$
 (**)

(*)

where x is a constant vector of n-2 subscripts. For convenience we put the two varying constants first but of course we are really checking then in each of n(n-1)positions. Suppose v = sum of the subscripts in x. Then we have four cases:

(1) $v \equiv 0 \pmod{4}$ then (*) and (**) both become

-ab + ba = 0;

(2) $v \equiv 1 \pmod{4}$ then (*) and (**) both become

ba + a(-b) = 0;

(3) $v \equiv 2 \pmod{4}$ then (*) and (**) both become

$$a(-b) + (-b)(-a) = 0;$$

(4) $v \equiv 3 \pmod{4}$ then (*) and (**) both become

$$(-b)(-a) + (-a)b = 0$$
.

Hence each face of this orthogonal n-cube is a 2-dimensional orthogonal design and so we have a proper n-dimensional orthogonal design of type $(1,1)^n$.

 $\frac{\text{Corollary.}}{\text{and propriety } (2,2,\ldots,2).}$ There exist n-dimensional orthogonal designs of types $(2^t,2^t)^n$,

<u>Proof</u>. Take the Kronecker product of Shlichta's proper n-dimensional Hadamard matrices of order $(2^t)^n$ with the orthogonal design established in the theorem.

This is illustrated in the Figure.

REFERENCES

- A.V. Geramita and Jennifer Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices (Marcel Dekker, New York, 1979).
- [2] Joseph Hammer and Jennifer Seberry, Higher dimensional orthogonal designs and applications, IEEE Trans. Inform. Theory, (to appear).
- [3] P.J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory, (to appear).

Department of Mathematics University of Sydney Sydney

