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JENNIFER SEBERRY 

We eonstzouot n-dimtmsionaZ- or>thogcmaZ- assigns of type (llVn
l sids 2 and 

propriety (2,2, ••• ,2). Thue are then used to show that orthogonal. assigns of type 

(2t.2t)n~ side 2t+l and propriety (2~2 •••• ,2) e:dst. 

1. INTRODOCTI~ 

In [2} it is pointed out that it is possible to define orthogonality for 

higher di.ensional matrices in many ways. 

Intuitively we see that each two-diwmsional IIatrix withing the n-diwm

sional aatrix could have orthoional row vectors (we call this propriety (2.2 ••••• 2)); 

or perhaps each pair of two-dimensional layers 

on" 

could have A' B = tr(AB T) .. !1 • ~1 + l!z • ~ + •.• + !t; .l!.t .. 0 (note if the row vectors 

in this direction had been orthqgonal we would have had .l!i • ~ = 0 for each i) (we 

call this propriety ( •..• 3 •••• )); or perhaps each pair of three-dimensional layers 

[

A' 

A' a· . . ' 
ond 

could have a' a .. ,,1. Bl + •.. + At. Bt .. 0 (note that if the 2_diwmsional matrices 

had been orthogonal we would have had "j • Bj • 0 for each j); and so on. 

We sayan n-diMensional matrix is orthogonal of propriety (d1, •..• d
n
J with 

2 ~ d. " n where d. indicates that in the i th direction (Le., the ith coordinate) 

the d~-lst.di th,di!lst ••.•• (n_l)st dimensional layers ares~rthogonal but the d
i

_2nd 

layer is not orthogonal. di = "" means not even the Cn-l) layers are orthogonal. 

The Paley cube of size (q+l)n constructed in [2] for q = 3 (mod 4) a prime 

power has propriety (<<>,"" ••••• "') but if the 2-dimensional layer of all ones is removed 

in one direction the remaining n-dimensional matriJt has all 2-diJlellsional layers in. 
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that direction orthogonal. 

An n-aube opthogonaZndeaign. D = (dijk ... J. of propriety (d1.d:z ••..• dn). 
side d and type (51'S 2 •.•.• 5t ) on the co~ting variables l(l.~ ..... Xt has entries 

from the set {O.±xl ••••• ±x
t

} where 1x1 occurs 51 times In each row and column of each 

2-dimensional layer and in which each e.-dimensional layer, di - 1 f< e,. ~ n -I, in the 
. th J 
1 direction is orthogonal. 

Shlichta 

priety (2.2 •...• 2). 

t n 
[3] fOlDld n-dilllBnsional Hadamard matrices of size (2) and pro-

In [2J the concept of higher dimensional a-suitable matrices was 

introduced to show that if t is the side of 4 Williamson matrices there is a 3-

di.ensional Hadamard matrix of size (4t) 3 and propriety (2,2,2). 

2. n-DIMENSI<fiAL ORTHOGONAL DESIGNS OF TYPE (1,1)n AND SIDE 2 

Theorem. TheN e:r:ist8 WI n-dimerurl.-cmaZ orthogonal Msign of type (l,l)n~ 
Bide 2 and p1'Opnety (2,2, •.. ,2). 

~. Let a and b be commuting variables and [hijk ..• ] be the orthogonal 

design. Define w i + j + k + ••• + v, the weight of the subscripts which can only 

assume the values 0 and 1 for side 2. 

Now define 

• { (_,)1"" 
h .. k lJ ..• v 

(_I)iw- I
b 

In order to check the orthogonality we consider 

and 

w -= 0 (mod 2), 

w_l(mod2). 

(0) 

(**) 

where x is a constant vector of n-2 subscripts. For convenience we put the two 

varying constants first but of course we are really checking then in each of n(n-l) 

positions. Suppose v ~ sum of the subscripts in x. Then we have four cases: 

(1) v::: 0 (lIIOd 4) then (*) and (**) both become 

-ab+ba .. Oj 

(2) v _ I (mod 4) then (*) and (**) both become 



ba+ a(-b) .. 0; 

(3) v = 2 (mod 4) then (.) and ( •• ) both become 

a(-b)+'(-b)(-a) .. 0; 

(4) v = 3 (mod 4) then (*) and (**) both become 

(-b)(-a) + (-a)b ,,0. 

Hence each face of this orthogonal n-cube is a 2-dimensional orthogonal design and so 

we have a proper n-dimensional orthogonal design of type (l,l)n. 

Corollary. There. Bri8t n-dim6naionat. OJ't;'hogonat. de8igns 

Zt+l and propriety (Z,2, .. ,,2) . 

, ,n 
of type.8 (2 ,Z ) • 

~, . Take the Kronecker product of Shlichta's proper n-dimensional 

~amard matrices of order (2t)n with the orthogonal design established in the theorem. 

This is illustrated in the Figure, 
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