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Abstract. A general method is presented for determining the mathematical expecta- 
tion of the combinatorial complexity and other properties of the Voronoi diagram of n 
independent and identically distributed points. The method is applied to derive exact 
asymptotic bounds on the expected number of vertices of the Voronoi diagram of 
points chosen from the uniform distribution on the interior of a d-dimensional ball; it 
is shown that in this case, the complexity of the diagram is | for fixed d. An 
algorithm for constructing the Voronoi diagram is presented and analyzed. The 
algorithm is shown to require only | time on average for random points from a 
d-ball assuming a real-RAM model of computation with a constant-time floor 
function. This algorithm is asymptotically faster than any previously known and 
optimal in the average-case sense. 

Introduction 

The Voronoi diagram is a natural and intuitively appealing structure, repeatedly 
reinvented by researchers in several fields. While computer scientists generally 
name it for the mathematician Voronoi [32-1, meteorologists associate the two- 
dimensional version with the name Thiessen [30], and physicists honor Wigner 
and Seitz [35] for the three-dimensional version. It has been used by geologists, 
foresters, agriculturalists, medical researchers, geographers, crystallographers, and 
astronomers. Within the domain of the mathematical sciences, it is applied to 
simulate differential equations by finite-element methods, to interpolate surfaces in 
geometric modeling systems, and to solve geometric problems such as finding 
Euclidean minimum spanning trees and largest empty circles. (Avis and Bhatta- 
charya [2] present an extensive list of references for applications.) 

* Based upon work supported by the National Science Foundation under Grant No. CCR-8658139 
while the author was a student at Carnegie-Mellon University. 
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The Voronoi diagram of a set of points--called si tes-- is  a partition of R ~ that 
assigns a surrounding polytope o f"nearby"  points to each of the sites. Each region 
is a d-polytope containing the points lying nearer to the site in its interior than to 
any other site. More rigor is supplied by the following definition. 

Definition 1. The (nearest-site) Voronoi diagram of the set Y'. = {x 1, x 2 . . . . .  Xn} of 
n sites in R ~ is the set of n convex regions ~ = {x[u dist(x, x3 < dist(x, xj)} for 
l < i < n .  

The straight-line dual of the Voronoi diagram in the plane is called the Delaunay 
triangulation. In the planar case, sites x~ and xj are joined by an edge in the 
Delaunay triangulation if and only if "//] and ~ j  share an edge. In d dimensions, 
sites X~o,X i . . . . . .  xik define a k-face of the Voronoi dual if and only if 
~o ,  ~ . . . . . .  ~ k  share a ( d - k ) - f a c e  in the Voronoi diagram. The Voronoi 
diagram can be constructed easily from its dual and vice versa. If, as is assumed in 
the following, no d + 2 sites fall on the same hypersphere, the facts below are easily 
verified. 

Fact 1. (d + 1) sites are vertices of a d-simplex in the Voronoi dual if and only if 
the inside of the hypersphere passing through these sites contains no other sites. 
(We call such a hypersphere empty or site-free.) 

Fact 2. (k + 1) sites are vertices of a k-face of some Voronoi dual simplex if and 
only if some empty hypersphere passes through these sites. 

Fact 3. Every convex-hull face is a face of some Voronoi dual simplex. 

Fact 4. The Voronoi dual partitions the convex hull of ~ .  into d-simplices. 

We may also define a furthest-site Voronoi diagram. 

Definition 2. The  furthest-site Voronoi diagram of the set &r = {xl, x2 . . . . .  Xn} of 
n sites in R d is the set of n convex regions ~ = {xlVj: dist(x, x3 > dist(x, x)} for 
l < _ i < n .  

Region ~ contains the points lying further from site x~ than from any other site. 
Only sites that are vertices of the convex hull of X, have nonempty furthest-site 
Voronoi regions. The dual of the furthest-site Voronoi diagram also partitions the 
convex hull of ~ ,  into simplices; the vertices of these simplices determine 
hyperspheres that each contain all the sites of X,. 

Many researchers have considered Voronoi-diagram construction. Previous 
work on the two-dimensional case has been surveyed elsewhere [10]. Browstow et 
al. [8], Finney [14], and Tanemura et al. [28] have addressed the construction of 
three-dimensional diagrams; none of these authors present detailed analyses of 
running time. 

Bowyer [6] and Watson [33] describe algorithms for higher dimensions, but 
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neither analyzes his algorithm rigorously. Bowyer gives some theoretical and 
empirical evidence suggesting that his algorithm requires O(n l§ time on 
average for points uniform in a d-dimensional hypercube. Watson claims O ( r / 2  - i/d) 
time in the worst case to find the edges of the dual. Avis and Bhattacharya's 
algorithms for the Voronoi diagram and its dual [2] rely heavily on the simplex 
method for linear programming; since this method has exponential worst-case 
running time, they focus mainly on experimental studies of their algorithms' 
performance and of the expected complexity of the diagrams for points distributed 
uniformly in the unit hypercube. 

A pleasing connection between nearest- and furthest-site Voronoi diagrams in d 
dimensions and convex hulls in d + 1 dimensions allows any convex-hull algo- 
rithm to be used to construct Voronoi diagrams. This connection, first observed by 
Brown [7], is restated here in a form due to Edelsbrunner and Seidel [12]. If a is a 
d-vector and b is scalar, let a �9 b be the (d + l)-vector ( a t l ) a  (2) . . . . .  a (d), b), and let 2: 
R d -~ R d+l be the "lifting function" defined by 2(x) = x �9 (x, x) ,  where (x, y)  
denotes the inner product. The range of 2 is the surface of a (d + 1)-dimensional 
paraboloid of revolution. The image of a d-ball is the intersection of a half-space 
with the paraboloid and vice versa. This is easily verified by applying the bilinearity 
of the inner product. Now suppose that the function 2 is applied to the points of 5f. 
and the convex hull of their images is constructed. Then the simplices of the duals 
of the nearest- and furthest-site Voronoi diagrams are in one-to-one correspon- 
dence with the facets of the convex hull of the transformed points. 

Constructing a (d + 1)-dimensional convex hull is a viable approach to the 
problem of constructing a d-dimensional Voronoi diagram. For example, the gift- 
wrapping algorithm [5], [9], [27] may be used in | + S*)) time. Or Seidel's 
shelling algorithm [25] may be used in O(n z + (S, + S*)log n), where S. is the 
number of nearest-site simplices and S* is the number of furthest-site simplices in 
the result. In fact, it is not difficult to modify either algorithm to eliminate the S* 
(S,) term if only the nearest-site (furthest-site) diagram is required. 

Like the number of facets in the case of convex hulls, S, and S* can vary wildly. 
Seidel [24], [26] has shown that both S, and S* can be extremely 
large--O(nt-~d+~)/zJ)--in the worst case. On the other hand, it is not difficult to 
construct families of problem instances for which S. = | Thus probabilistic 
estimates of the average value of the two quantities are useful. 

Meijering [18] and Gilbert [15] have considered the Voronoi diagram of sites 
from a Poisson process of fixed intensity in Rd; Meijering showed that the expected 
number of nearest-site Voronoi neighbors of a site depends only on d; in particular, 
it is 6 for d = 2 and ~ 15.54 for d = 3. Such a set of sites may be thought of as an 
infinite set of sites drawn from a uniform distribution over all of R d. In computa- 
tional practice, however, we must deal with finite sets of sites drawn from a 
particular distribution, e.g., a uniform distribution on the interior of some convex 
body like a hypercube or hypersphere. Two sites are neighbors if and only if they lie 
on the surface of some ball that contains no other site. In the Poisson case, a pair of 
distant neighbors is always unlikely since it implies the existence of a large empty 
ball. In the case of a bounded set of sites, it can still be shown that sites far from the 
boundary of the body probably have only nearby neighbors, but some pairs of 
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distant neighbors always occur near the boundary of the body, where most of the 
empty ball may lie outside the support of the distribution. Thus results dealing only 
with the Poisson case are inadequate for the average-case analysis of algorithms. 

In the next section we present a general method for determining ES, and ES*, 
the expected number of simplices in the dual of the nearest- and furthest-site 
diagrams. In Section 2 this method is applied to the analysis of the asymptotic 
behavior of ES, for sites drawn independently from the uniform distribution in the 
unit d-ball. In Section 3 we present a variation of the gift-wrapping algorithm that 
uses standard bucketing techniques. In Section 4 we apply the methods of Section 1 
to show that the algorithm requires only linear time on average for independent 
and uniformly distributed points in the unit d-ball. The last section mentions some 
open problems and possible extensions to the work. 

1. A General Method for Bounding the Expected Complexity of Voronoi 
Diagrams 

In this section we describe a general method for bounding ES, and ES*, the 
expected number of simplices in the duals of nearest- and furthest-site Voronoi 
diagrams of random point sets. The approach taken is similar to that of the seminal 
work of R6nyi and Sulanke [22], [23] and Efron [13] to evaluate convex-hull 
expectations. 

The first d + 1 points x~ . . . . .  xd + ~ define a d-simplex with probability one. Let 
us first reckon the probability Pn that they also define a simplex in the dual of the 
nearest-site Voronoi diagram. This is just the probability that the other n - d - 1 
points lie outside the hypersphere passing through the d + 1 points. Writing #( .)  
for the density function of the x~ and F for the probability content of interior of the 
hypersphere, we see that this probability is 

P"=fRa" '~R~(1-F)~-a- lg(Xl ) ' "g(xa+l)dx l""dxa+l '  

and that the expected number of simplices is therefore 

n )p,, 
ES,, = d + 1 

f. = d +  1 . . .  ( 1  -F)"- ' l - lg(x l ) . . .g(xd+l)dxl  ".'dx,j+ 1. 

We next carry out a transformation of coordinates. The d + 1 points x l ,  
x2 . . . . .  xd § 1 can be expressed in terms of a d-vector p representing the center of the 
d-sphere they define, a scalar r representing the radius of that sphere, and d - 1 
angles ~b n,  ~bi2 . . . . .  ~ki.d- 1 for each xi. The angles satisfy 0 < ~k n , ~1i2 . . . . .  ~Ji, d -  2 

n and 0 < ~ ,d -  1 < 2n. Let y~ = x~ - p. Then the two systems of coordinates are 
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related by the equations 

xl l )  = p(X) .jr_ y ~ )  = pt~) + rci ,a_ 1Ci, d - 2  " ' "  Ci3Ci2Cil,  

XI2) = p~2) + y~2) = p(2) + rC i ,d_ lC i , d_  2 . . .  Ci3Ci2Sil ,  

x13) = p(3) + yla) = p(3) + rCi,d_~Ci,d_Z...CiaSi2 ' 

X~a) = p(d) + y~d) = p(d) + rSi,d-~, 

where c~s and s~j represent cos ~ j  and sin ~p~, respectively. 
The Jacobian of this transformation is given without proof by Miles [20], and 

Affentranger [1] has recently given a derivation. However, it is worthwhile to give 
another derivation here, since both assume a more-than-passing familiarity with 
the concepts and notations of integral geometry. In three dimensions, the Jacobian, 
expressed in tabular form, is 

x] ~1 

x~3 " 
x~ ~ 

x~ 2~ 
X(I 3 ) 

x~ zl 
x~ 3~ 
x~32~ 
x~ 3~ 
x~ 2~ 
x~31 

pl,, p~ p~3~ r qq, r qJ21 ql= qJ~ ql32 r qJ~: 

1 0 0 y~l )/r 
1 0 0 y~l )/r 
1 0 0 y~31 )/r 
1 0 0 y~l '/r 

0 l 0 y]2)/r 
0 0 1 y]3)/r 
0 1 0 y~2~/r 
0 0 1 y~3)/r 
0 1 0 yg2)/r 
0 0 1 y~33'/r 
0 1 0 y~2)/r 
0 0 1 y~3)/r 

t'l l y] 1) t'12 y] 1) 0 0 0 0 0 0 
0 0 t'21 y~) t'22y~ ~) 0 0 0 0 
0 0 0 0 t'al ygl) t,a2ygl) 0 0 
0 0 0 0 0 0 t'41 y~l) t'a2 y~l) 

k l ly~  2) t'12y] 2) 0 0 0 0 0 0 
0 kx2y] 3) 0 0 0 0 0 0 
0 0 k21 y~22) t~ 2 y~2) 0 0 0 0 
0 0 0 k22 y~3) 0 0 0 0 
0 0 0 0 ka~ y~2) t~2 y~2) 0 0 
0 0 0 0 0 k32 yts3~ 0 0 
0 0 0 0 0 0 k,l  y~2) t~ 2 y~2) 
0 0 0 0 0 0 0 k,,, y~3) 

where t'is = - t a n  Oij and kl j  = cot ~k~j. The generalization to higher dimensions is 
straightforward. 

If the row for xp ), denoted by (~) xp t , , u ) / , ,m~u)  it p~ , is replaced by a~ = ~ ~j_<d~Yl /Yl JVl , 
becomes 

y~l)/yll) y~2'/yll) yl3)/yl 1) r /yp  ) 0 0 0 0 0 0 0 0 

and the matrix is in quasi-triangular form. The entire determinant is the product of 
a ( d + l )  x ( d + l )  determinant in the upper left and a (d 2 - 1 )  x ( d  2 - 1 )  
determinant in the lower right. The lower-right determinant can be decomposed 
into d + 1 similar (d - 1) x (d - 1) determinants. These are upper triangular, and 
the ith is easily seen to be 

r d - l _ d - 1  c d - 2  ..C/11 ~ ~ ( 1 ) r d - 2 r d - 2  d - 3  1 0 
Ci, d - 1  i , d - 2  " Yi - -  ~ i , d - l C i ,  d - 2  "'" Ci2Cil .  
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If the factors of (1/y~ ~)) are removed from the rows of the upper left matrix, and 
then the factor of r is removed from the last column, the remaining determinant is 

D = 

y?' y?' 1 
y~l, y?, y~3, 1 

ygl, yg2)yt33) 1 
y2) y~2~ y?~ 1 

in the three-dimensional case, and in general its magnitude is just d! 
times the volume of the simplex formed by x l , x 2  . . . . .  xd+l, denoted by 
simp(xl, x2 , . . . ,  Xd+ O. Thus the determinant of the original Jacobian matrix is 

s g n ( D ) d ! s i m p ( x l , x 2 , . . . ,  xa+l )r  (a+l)(a-2)+l ~I  ci.a-a-21 cl,a-a-3 2 " "'c~2. 
l < i _ < d + l  

Since this is essentially a probability density, it must be positive, so 

P .  = d! r-a(1 - -  F)n-d-1 
d 

x . . .  h ( x t ) . . . h ( X d + l ) s i m p ( x l  . . . . .  x a + t ) d O l , 1 . . . d t l / a + l , a _ l  d r d p  

t d +  l~d 1) (1.1) 

with 

h(xl)  a - l _ a - 2  a-3 . .c~29(xl)l .  r g i , d _ l C i , d - 2  " 

If we define 

f ~  

O(r, p )  = o 

(d L 1) 

h ( x l )  d ~ l , 1  " "  d t ~ l , a - 1 ,  

then, since xt through Xa+ 1 are i.i.d., 

(d + l'Xd - 1) 

h(xx) "'" h(xa+ 1)d~1,1" '"  dd/a+ 1,a- 1 = (O(r, p))a+ 1 
(1.2) 

Since the quotient of the bracketed quantity of (1.1) and (1.2) is 

esimp(r, p)..= E(simp(x 1, X 2 . . . . .  X d +  1)111 x i -  P II = r for 1 ~ i _< d + I), 
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the bracketed quanti ty equals (O(r, p))a+ 1 esimp(r, p), and 

P.  = d! r -nO _ F ) . - a -  l(O(r ' p))a+ lesimp(r, p) dr dp. 
d 

It is clear that 0, F, and esimp depend only on r and IIptl if 9 is spherically 
symmetric. To exploit this symmetry,  we express p in generalized spherical 
coordinates (q, 01,02 . . . . .  On- 1) defined by 

l lpl l  = q ,  

p(1)  : q c a _  1 C d -  2 " " " C 3  C 2 C l ,  

p(2) _ q C d _ l C d _  2 . . .  C3C2S1  ~ 

p(3) : q c a _ l C a _  2 . . .  c3s2 ' 

pta) = qs a- 1, 

where cl and si represent cos 0~ and sin 0~. The Jacobian of this t ransformation is 
known to be d-1 d - 2 _ a - 3 .  17], thus P.  is q Cd_lCd_ 2 ' 'C~ [16, p. 

(;o ;o f? ) d !  " " �9 c a~a-2_ 1Cd~d-3""- c l d 0 1  . . .  d O a _  1 

(d 2) 

X ( f o f o q d - l r - d ( 1 - - F ) " - d - a o d + % s i m p d r d q ) .  

The integral in the 0~ can be shown to be rc a = (277/2)/F(d/2), the surface area of the 
unit d-ball, by repeatedly applying a s tandard definite-integral identity [4, p. 287]. 
We estimate (1 - F) " -d -  1 ~ e x p ( - n F ) ;  to be strictly correct, we should apply the 
s tandard inequalities [34, p. 242] 

e x p ( - n F ) ( 1  - nF 2) < (1 - F) n < e x p ( -  nF) 

to derive 

e x p ( -  nF)(1 - nF 2) < (1 - F) " -a -1  _< e x p ( - ( n  - d - 1)F) 

and then perform separate calculations to show that the upper and lower bounds 
give asymptotical ly equivalent results. Finally, since 

d + 1 (d + 1)! '  

fofo tca n a + 1 ~ qd- 1 r -  aOn + 1 esimp exp(--  nF) dr dq 
E S . , , .  d +  1 " 

= d + ~ "  I(q, r) dr dq. (1.3) 
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Similarly 

ES* .,. - -  K a n a +  l . ~ qd- lr-aOd+ l esimp 1 " n - a - 1  dr dq. 
d + l  

R. A. Dwyer 

2. Bounds for the Uniform Distribution in a d-Ball 

In this section we turn to the uniform distribution in the unit d-ball in particular 
and prove the following theorem. 

Theorem 1. Let YE, = { X l , X 2 . . . . .  X,}  be a set of n sites drawn independently from 
the uniform distribution on the interior of the unit d-ball. Then ES,, the expected 
number of simplices of the dual of the Voronoi diagram of YC,, is |  fixed d as 
n---.~ ~ .  

We actually show that ES, ~ Can. and give Ca exactly in (2.3). 

Proof. Recall that xa is the surface area of the unit d-ball. We write #a = xa/d for 
its volume, and v a for the expected volume of a d-simplex with random vertices on 
the unit d-sphere. (The exact value of va is given later.) 

Let ~ denote the unit d-ball, ~ the ball defined by the points xl through xd+ 1, 
and O~ the surface of ~ .  We have g(x )= 1/~ d when I[xll < 1 and g(x )= 0 
otherwise. Thus probabilities and densities are proportional to volumes and 
surface areas of intersections with the unit ball 0g. In particular, 

F = /~ ;  1 vol(~ c~ r 

= /~-  1 vola - 1(0~ c~ ~) ,  

esimp < vol(conv(8~ n q/)). 

The last bound is based on the observation that the convex hull of points chosen on 
d~  n q / i s  contained in the convex hull of ~ n q/. The crude but useful bounds 

< /~ -  1 xard- 1 = O(r a- 1), 

0 </~-1 xa = O(1), 

esimp < #dr d = O(rn), 

and 

esimp </~a = O(1) 

are immediate. 
We proceed by dividing the domain of integration of the integral of (1.3) into 

eight regions corresponding to the possible patterns of intersection of the two balls 
and q/. We apply different estimates of F, 0, and esimp in each region. 
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Case l : q < 1 and O < r < 1 -  q. In this case, .~ c q/, 

- -  K d y d - 1  - -  d r  a -  1 a n d  F _ .,.a,.d- 

~l d ].l d 
D r d "  

Also 

Thus 

esimp = Vdr d. 

f ~ f j - q l ( q , r ) d r d q ~ d d + t v a f ~ f 2 - q q d - l r n 2 - 1 e x p ( - n r d ) d r d q  

~ d d + l v d ( f ] q d - ~ d q ) ( ~ f ] ' l - q ' ~ ( ~ ) d ~ d t )  

d d - 2 d !  Van  - d .  

Case 2." q < 1 and 1 - q <_ r <_ x f i - ~ q  ~. In this case (Fig. l) at least half o f ~  and 
(?M lie inside q/, and 

# d  rd r d 
F >  

- 2#d 2"  

By the crude bounds 0 = O ( r  d -  1) and esimp = O(r d) along with Tricomi's formula 
~ t-ae - '  dt ~ x -ae  -x for the incomplete gamma function [31, Section 43], 

f~f~ ~ f~f~ ~ ~ r ~  
l(q, r) dr dq 0 (1 ) .  qU - 1 r d2 - 1 ~1-~ = ~l-q exp~ ~ )  dr dq 

) = O(1). qd-1 dt dq (2.1) 
\ , J n ( 1 - q ) a  

fo = O(n-d) .  qd-l(n(1 _ q)d)d-1 exp(--n(1 -- q)d)dq 

;o = O(n-e) .  n-1/dud-2+~l/%-~du = O(n-d-md~). 

C a s e 2 : q <  l a n d  l - q < _ r < x / ~ - q  2. Fig. 1. 
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Fig. 2. C a s e  3: q < 1 a n d  x / 1  - q2 < r < 1. 

R. A. D w y e r  

Fig. 3. Case 4 : q <  landr>_ 1. 

Case 3." q < 1 and x/~ - q2 ~ r ~ 1. Referring to Fig. 2, where w is the radius of the 
( d -  1)-sphere 8 ~  c~ 8q/ and x is the distance between the centers of ~ and 
8 ~  ~ 8~ we see that the volume of the bipyramid with base 8 ~  n 0 ~  and height 
1 + r - q gives a lower bound  on F. F r o m  the triangle inequality (r - x) < w < r. 
By first solving the equat ion 1 - (q - x) 2 -- r 2 - x 2 for x, it is easy to verify that 

(g  - -  X )  = 
(q + 1 -  r)(r + l - q )  

2q 

Since r > x/1 - q2 > 1 - q, it follows that  

r < ( r +  1 - q ) < 2 r ,  

q _ < ( q +  1 - r ) _ < 2 q ;  

thus (r - x) = |  and also w = | This implies that  

(r + 1 - q)l . t  a _ 1 w a  - 1 
r _> = O(r~) .  

d/~d 

Applying the crude bounds  0 = O(r a- 1) and esimp = O(r d) gives 

I(q, r) dr dq = 0(1) qa- lr-arta+ a)td- 1)/2gd exp( - -n r  a) dr dq 
--q2 

fo x ( f '  ( t ~ a e - , d t ~ d q ;  = O(1) qd_ 
~1 _q2)d,~ \ n j  t j 

this is clearly dominated  by (2.1) of Case 2. 

Case 4: q < 1 and r > 1. In this case (Fig. 3) we apply 0 = O(1), esimp = O(1), and 

vo l (~  n q_/) _> vo l (~  n {xlx ~1) > 2!}) = ~(1), 
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1 r 

l,r 

Fig. 4. Case 6 : q <  1 a n d q -  1 _<r___q. 

353 

giving F -- D(1) and 

l (q,  r) dr dq < O(1) qa-  l r - a  e x p ( - f l ( n ) )  dr dq = O(e-n~"~). 
1 1 

C a s e 5 : q >  l a n d O _ < r < q -  1. I n t h i s c a s e ~ n ~ / / = ~ , 0 = F = e s i m p = 0 ,  and 
the integral vanishes. 

Case 6." q > l and q - 1 < r < q. Le t  w be the  radius  o f  O ~  n U#,  and let x be the 
distance between the centers of ~.~ n Oq/and ~ (Fig. 4) as in Case 3. We can bound  
F/# a above and below by the volumes of a cylinder and a b ipyramid,  respectively, 
each with base vola_ 1(c~ c~ 8q/) = #d_ lW a-1 and height h = 1 - q + r. esimp can 
be bounded  above by a cylinder with the same base but  height r -  x. Since 
1 - (q - x) 2 = w 2 = r 2 - x 2, we have 

r2+qZ--12q ( 2 - h ) h  (hq) 
x -  - r  2-q - r - |  , 

1 
w - ~ - x / - ( l  + q + r ) ( 1  + q - r ) ( 1 - q + r ) ( l - q - r )  

Lq 

1 x / ( 2  q + h)(2 - h ) h ( r  + q - 1) 
2q 

: 

since 

0 < h _ < l ,  

1 < ( 2 - h ) _ < 2 ,  

2q < (2q + h) _< 3q, 

r < _ ( r + q - 1 ) < _ 2 r .  
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Thus 
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F = O(hw ~- 1) = O(h(d+ 1)12(r/q)(d- 1)/2), 

esimp </~a-  1 wa- 1( r -- x) = O(F/q), 
= Ix d l~card- 1Kd(x/r ) = O(r d- 1(1 _ (x/r))ta- 1)/2) 

= O((hr/q)(a-1)/2) = O(F/h), 

where Kd(y) is the fraction of the surface of the unit d-ball cut off by a hyperplane at 
distance y from the origin. N o w  

l(q, r) dr dq = 0(1) 

oo 1 _ q d _ 

/'Io = 0 (1 )  q-2h-lw-2aFa+2e ~"r dh dq 
1 

= | q-2hw-2Fae-"r dh dq. 
1 

Substituting t = nF; dt = | dh gives 

f , ~ f f  f ~ f o  ( h - ' ) 2 ( ' ) d e - ' d q  (2.2) I(q, r) dr dq = O(1) q - 2  _t dt 
- 1 1 \ w  ! \ n ]  t 

= O(n-a) q-1 h r - l t d - l e - td tdq .  
1 

Since the F-region contains a ball of  radius h/2, F = D(h a) and h = O(F TM) = 
O((t/n)lla). Also r 1/2 ~_ h 1/2 and r 1/2 >_ (q - 1) 1/2, so 

hr- 1 = h112. (h i /2 .  r -  112). r -  112 = O((t/n)ll2a. 1. (q -- 1)- 1/2), 

and 

f oo fq~ I(q, r) dr dq 
1 - 1  

)(/o ) O(n-a-o/2a)) q-  l(q _ 1)- 1/2 dq t d- 1 -(1/2a)e-t dt 
1 

= O(n-~-<l/2d))B(�89 �89 - 1 -- ( 1 / 2 d ) )  

= O(n-d-tll2'O). 

Case 7: q > 1 and q _< r ~ q + 1. Let x be the distance of  the center of tgDfl c~ tgq/ 
from tg~. We can bound  esimp by the volume of  a cylinder with a unit  (d - 1)-ball 
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x r-x 

Fig. 5. Case 7:q_< 1 a n d q < r < q +  1. 
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as base and x as height. From Fig. 5 we see that (r - X) 2 Jr- 12 ---- r 2, or x = 

r -- x / r  E -- 1 = O ( r - 1 ) ,  thus esimp = O ( r - 1 ) .  We have the crude bound 0 = O(1) 
and the bound F = f~(1) as in Case 4. Thus, since r -1 < q - l ,  

I ( q, r) dr  d q = qd - l r - d O ( 1 ) O (  r - i )  exp(-nf2(1))  d r  d q 
1 oq 1 o q  

= q 2 dr  e -  n~.) 

= O(e- n(,)). 

C a s e  8 :  q > 1 a n d  q + 1 <_ r. In this case q / c  ~ and a ~  c~ q / =  ~ ,  thus 0 = 0 and 
the integral vanishes. 

Examining all eight cases, we see that Case l dominates, and that 

d ! d  d -  l l2dVdn 
E S .  ~ (2.3) 

( d +  l) 

with it a = (2rce /2F(d /2) )  and, according to Miles [19], 

r ( (d  2 + 1)/2)F(d/2) a + 1 [ ]  

v~ = x /~d  ! r (dZ/2)r ( (  d + 1)/2)a. 

3. A Fast Algorithm for the Unit d-Ball 

It is immediate from Theorem 1 and the discussion of the lifting function in the 
introduction that the Voronoi diagram of random points from a d-ball can be 
constructed in O(n 2) time on average by either the shelling algorithm or the 
gift-wrapping algorithm. In this section we describe a faster algorithm requiring 
only O ( n )  time on average. 
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O u r  a lgor i thm enumera tes  the d-simplices of the Voronoi  dual.  It is s imilar  to 
M a u s '  p l ana r  a lgor i thm [17]:  it employs  s t a n d a r d  bucket ing  techniques,  and  its 
ope ra t ion  in R d co r responds  to the ope ra t ion  of the g i f t -wrapping a lgor i thm in 
Rd+ x. (Bentley e t  al. [3]  employed  similar  bucket ing  techniques in a quite different 
a lgor i thm.)  It is convenient  to call  the d-simplices of the Vorono i  dua l  cel l s  and the 
(d  - l ) - s i m p l i c e s f a c e t s  (since they are facets of  the cells); likewise, we call an empty  
d-sphere  defined by the vertices of a cell a cel l  s p h e r e  and a (d - 1)-sphere defined 
by the vertices of  a facet a f a c e t  sphere .  The a lgor i thm proceeds  by repeatedly  
f inding a new cell ad jacent  to a known  facet. Except  for facets that  are  also facets of 
the (d-d imensional )  convex hull, every facet belongs to exact ly two cells. We  
ma in ta in  a d ic t ionary  of  facets for which only one cell is known.  At each step a facet 
is r emoved  from the d ic t iona ry  and its unkn ow n  cell (if it exists) is found by 

Algorithm A 
--Box(x)  is the bucket for the box containing x. 
-- f_dict  is the facet dictionary and contains (facet,half-space) pairs. 
for x ~ A r. do Box(x),= Box(x) u {x}; 
Find an initial (facet,half-space) pair (~r, ,,~) by gift-wrapping; 
Insert(,~', .,~, f_ dict); 
whik f_dict ~ ~ do 

(#-, .,~),= any pair from f_dict; 
new_v ,= Find_site(.~, .~); 
Delete(3~, f d i c t ) ;  
if new_v # nil then 

output(~- W {new_v}); 
for v ~ #- do 

.~-' ,= (#-\{v}) u {new_v}; 

.,~' ,= the half-space defined by ~" not containing v: 
i f  ~ '  e f dict then Delete(~',  f dict) 
else lnsert(~d ~', jef,, f_dict); 

end 
end 

function Find_site(3~, ~ )  
--Site_level(x, .:~r) is the signed distance of the center 
-- of the d-ball defined by x and #- above the hyperplane of ,~. 
-- We define Site_level(nil, ~ )  = + oo. 
--Box_level(B, ~-) = miny~ts, tn~ a,.~ Site_level(y, ~ ) .  
--q is a priority queue of boxes ordered by Box_level, initially empty. 
Insert(Box(center of facet sphere of 3~-), q); 
answer ,= nil; 
while (q # ~ )  ^ (Box_level(Find_min(q), 3~') < Site_level(answer, ,~r)) do 

currentBox ,= Delete_rain(q); 
for x ~ currentBox do 

if (x ~ .~') ^ (Site level(x, 3~) < Site_level(answer, #) )  then answer ,= x; 
for newBox adjoining currentBox do 

if ((newBox c~ ~,~ c~ all) # ~5) ^ (newBox ~ q) then Insert(newBox, q); 
return answer; 
end Find_site 

Fig. 6. Algorithm A. 
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searching for the unknown (d + 1)st vertex (the site search). The remaining facets 
of the new cell are searched for in the dictionary (facet searches). Each that is found 
is deleted, since both of its cells are already known. Each that is not found is 
inserted so that its unknown cell will be searched for in some later step. The 
algorithm is described more formally in Fig. 6. 

The facet dictionary is organized as a linear array of n buckets; a random facet 
falls into a particular bucket with probability 1In. Within each bucket facets may be 
organized in a balanced search tree to ensure good (logarithmic) worst-case 
performance, but a simple linear list is sufficient to achieve a linear bound on 
expected time. 

Pseudocode describing the searching function Find_site is also found in Fig. 6. 
To speed the site searches, we partition the hypercube [ -  1, 1] ~ into approximately 
2~n/#d hypercubic "boxes"  of side L(/~/n)l/d/and volume about #n/n. We assign 
each site to the bucket for the box in which it lies. Boxes lying completely outside 
the unit ball will always be empty. Boxes lying inside the unit ball will contain in 
expectation about one site each. An asymptotically vanishing fraction of the boxes 
will intersect the boundary of the unit ball and will contain less than one site each 
in expectation. On a particular cell to Find_site, let ~- and ~ be the actual 
arguments (a facet and a half-space to search), let ~ be the unit d-ball, and let ~ be 
the cell ball of the unknown cell if it exists. If the cell exists, it is necessary and 
sufficient to examine those boxes intersecting (:~ n ~,~ n ~#) to determine it (Fig. 7). 
If it does not exist, it is necessary and sufficient to examine the boxes intersecting 
( ~  n ~') to determine this (Fig. 8). The function Find site examines almost exactly 
those boxes. 

Simp_ctr(x, ~ )  is the center of the d-sphere determined by the point x and the d 
vertices of the facet f t .  If  ~,~ is the half-space (a, x )  > 0, then the goal of the site 
search is to find the site x e ~ for which Site_level(x, ~ )  = (a, Simp_ctr(x, ~ ) )  is 
minimized. The priority queue is primed by inserting the box containing the center 
of the facet sphere of :~-. When a box is removed from the priority queue and its 
contents are examined, the 2d boxes that share a facet with it are entered into the 
queue for possible examination later. The boxes in the priority queue are ordered 
by the quantity Box_level(B, ~) .  Ideally, we would like to have 

Box_level(B, ~-) = min Site_level(y, ~ )  
ye(Br~.~) 

L/ �9 L+ 

�9 A 

Fig. 7. A successful Findsite search. Fig. 8. An unsuccessful Find site search. 
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(where the minimum is taken over all points, not sites, in B). Unfortunately, this 
ideal is difficult to achieve because the minimum may occur at any point on the 
surface of the hypercube B. Apparently it would be necessary to find minima 
separately on each of the 3 a - 1 faces of the box. The time required to do this, while 
independent of n, obviously grows rapidly with the dimension. 

Fortunately we can approximate this ideal sufficiently well in time proportional 
to d. The definition 

Box_level(B, ~ )  = min Site_level(y, ~ ) ,  
y~(.~(B)r-,.,~) 

where 6a(B) is the circumsphere of the hypercube B, guarantees that the correct site 
will be found, while perhaps causing a few boxes to be examined unnecessarily. The 
boxes examined are exactly those with circumspheres intersecting ~ n J f  n q / o r  
~ f  n q/. 

Now let us consider the computation of Box_level. Let C~ and r~ be the center 
and radius of the facet sphere of ~ ,  let Cs~ and r~  be the center and radius of 6~(B), 
let C~ be the projection of C j  onto the hyperplane defined by ~ ,  let d~ = 
dist(C~e, C~) and d~ = dist(C~, C~). A typical situation in two dimensions is 
depicted in Fig. 9. Without loss of generality, we may assume that C~ and C~e lie in 
the (x (t~, x(2~)-plane, that ~f~, the half-space being searched, is x ~ > 0, and further 
that C~ is the origin and that C~, = ( d ~ , d ~ , 0 , 0  . . . . .  0). We seek a point 
equidistant from all points on the facet sphere and the circumsphere of B. Such a 
point clearly lies on the x(l~-axis. Formally, we require a point P = (x. 0, 0 . . . . .  0) 
for which 

dist(P, Cs~) = dist(P, (0, r~, 0, 0 . . . . .  0)) + r~, 

i.e., one for which 

, / ( x  - + a = + , / V  + 6 .  

Squaring and rearranging terms, we have 

2r~,x//~ + r 2 = d~ + d 2 - r~  - r 2 - (2d~)x. 

Writing q for (d~ + d 2 - r 2 - r~), squaring again, and rearranging gives 

4(r~ - d~)x 2 + (4qd~,)x + (4r~r 2 - q2) = O. 

This quadratic equation in x always has two real roots. Which root to return as the 
value of Box_level depends on the relationship of the circumsphere re(B) and the 
half-space ~f. 

�9 If re(B) lies entirely inside ~ ,  we choose the smaller root as the value of 
Site_level(B, ~-); the larger root maximizes the value of Site_level on the 
circumsphere (Fig. 9). 
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II x ~ / //I IIII 

Fig. 9. Computing Box level for a box lying 
completely in the half-space 9(r. 

Fig. 10. Computing Box level for a box lying 
only partly in the half-space )fr 

�9 If be(B) lies entirely outside ~,~, we choose + oo for Site_level, eliminating B 
from further consideration. 

�9 If be(B) intersects the facet sphere of,~-, we choose - oo for Site_level, causing 
B to be searched immediately. 

�9 If be(B) intersects the hyperplane defined by ~ ,  but not the facet sphere, we 
choose the larger root of the equation; the smaller root is Site_level for a point 
on the circumsphere lying outside of ~ (Fig. 10). 

The priority queue operations Insert, Find_rain, and Delete_rain can be imple- 
mented so that only O(log n) time is required for each [29], but a naive linked-list 
implementation in which each operation requires time proportional to the length 
of the list suffices for the purposes of our average-case analysis. 

4. Analysis of the Algorithm 

In this section we show that all the facet and sites searches made by Algorithm A in 
the previous section can be completed in O(n) time on average. 

Lemma 1. The facet searches can be completed in O(n) expected time. 

Proof. To manage the facet dictionary, we maintain n buckets and hash facets 
into buckets by computing the exclusive-or of the binary representations of the 
indices of the sites defining the facet. Within each bucket we maintain a linked list 
of the facets in the bucket; each search or insertion in the bucket takes time 
proportional to the length of this list. It is not hard to see that this scheme hashes 
an equal number of the d-subsets of { 1, 2 . . . . .  n} to each bucket, but we must show 
that those d-subsets actually defining facets are not correlated in a way that causes 
them to be hashed to a small number of buckets. 
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n), let 91,  92  be the d-subsets of the input set X,, Let C(n, d) = d . . . .  9C(,,d) 

and let MR be the number of facets hashed into the kth bucket. In the kth bucket, 
O(Mk) facet searchs are performed, each in time O(Mk). Thus, by the linearity of 
expectation, the average amount of work done for the facet searches is 

hence it will suffice to show that E(M2k) = 0(1) for any fixed k. 
Let F~ represent the condition " ~  is a dual facet," and let I~ be the indicator 

variable of Fi, i.e., I~ = 1 if 9~ is a dual facet, otherwise I~ = O. Let ~k be the set of 
indices i for which 9~ hashes into the kth bucket. It is easy to verify that 
I~kl = n - x C ( n ,  d). Without loss of generality let us consider the bucket containing 
9~.  Then 

E(M2) = E( i~k  Ii) 2 

j~:i 

= EM R + ~ ~ Pr{Fi}'Pr{FjlFi} 
i~g$k jegSk 

j~i 

= 0 ( 1 )  + n-~C(n,d)Pr{Fx}. ~ Pr{FjlF~}. 
j e~k  
j ~ l  

By Theorem 1 the expected number of facets is | so Pr{F1} = | d)). The 
conditional probability Pr{FjlF1} depends only on 19 j \9~ t .  If 19j \911 = m > O, 
then there are at most C(n - d, m - 1)/C(m, m - 1) = O(n m- 1) ways to choose the 
m elements of 9 j \ 9 1  so that 9x  and 9 j  fall into the same bucket. This holds 
because choosing the first m - 1 elements fixes the mth. (We must say "at  most" 
because the mth element required by the first m - 1 sometimes belongs to 91 and 
cannot be chosen. This always occurs when m = 1, for example.) So 

E(M 2) = 0(1) + 0(1) .  ~ O(nm-1)Pr{FjlF1 ^ (19j~9i l  = m)} 
l <m<d 

=O(1)+O(1 /n ) .  ~1<_,,<d(n--d) 

= 0(1) + O(1/n)E(number of facets IF1) 

= 0(1) + O(1/n)E(number of facets) 

^ ( l ~ j \ 9 , 1  = m)} 

= o ( 1 ) ,  
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since the number  of d-subsets (in all buckets together) satisfying I~j~il = m is 

[] 

We now turn to the search for the (d + 1)st site completing a cell with a known 
facet. We call a site search "successful" if a site is found, and "unsuccessful" if no 
site is found because the facet lies on the boundary  of the convex hull. 

Lemma 2. The successful site searches can be completed in O(n) expected time. 

Proof If we define the distance between a point  x and a set ~ by 

dist(x, ~ )  = min dist(x, y), 
ye~J 

all the boxes with circumspheres intersecting ~'  n ~ c~ 0// are completely con- 
tained by the set 

.~r = {xldist(x, ~ c~ ~ )  ~ x//d(l~a/n)l/a}. (4.1) 

Intuitively, .~r is the intersection of og with ~ inflated by the diameter of a box, just 
enough so that the inflated ball contains completely all the boxes that intersect 
,~. The use of a priority queue in Find_site guarantees that exactly these boxes 
are examined. Assuming the naive linked-list implementation, the cost of each 
priori ty-queue operat ion is at most  propor t ional  to the total number  of boxes 
examined. The cost of examining the sites in a box is O(1) in expectation. The 
expected total cost of the site search is therefore propor t ional  to the square of the 
number  of boxes examined, or 

ecost = O((n. vol d2~) 2) (4.2) 

If we write C, for the total cost of all successful site searches needed to compute  
the Voronoi  diagram of Y',, we have 

( n ) fR "" fR ecost(xl, xa+l)(1-- F) "-a-1 EC,<_ d + l  d d . . . .  

x g(xO"'g(xa+l)dxl  ""dxd+t; 

the (d + 1)-fold integral represents an upper  bound  on the expected cost of a 
successful site search to complete the cell xl x2 . . . . .  Xa+ 1. Proceeding as in Section 
1, we eventually obtain 

EC. = 0 (1 ) .  ecost(q, r)l(q, r) dr dq. 
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We cont inue as in Section 1, dividing the domain  of integrat ion into eight 
regions. However ,  we ignore constant  factors this time. 

Case 1, 2, and 3. In all these cases, 

~- ~ ) ( / , d - I ) ,  F = O(rd), esimp = 19(ra). 

The set ~r of (4.1) is conta ined in a d-ball of  radius (r + x/d(#a/n)l/a) a and, by (4.2), 
with t = nF = |  d) as in Section 2, 

x/~cost(q, r) = O(n(r + n-lid)a) = 0 rin i/a = 0 t i/a = 0(1 + t). 
\ i = o  / i 

It  follows that  

fofo (fo)(f  ( ) )  ecost(q,r)I(q,r)dr dq = 19(1) qa-1 dq (1 + t) 2 t de - '  
n - t  at 

= 19(n-a). 

Cases 4 and 7. For  these eases we apply the trivial bound  ecost(r, q) = O(nZ), and 

ffecos(o,r)l(o,r, drdq=O(n2) ffl(q,r)drdo 
= O(e-n(")). 

Cases 5 and 8. In  these cases ~ = 0 and the integral vanishes as before. 

Case 6. In  this case the set ~r of (4.1) is contained in a (d - 1)-spherical cylinder 

with height (h + 2v/-d(#d/n) lid) and base radius (w + ~/d(#a/n)l/d), so 

r) = O(n(h + n-1/d)(w + n-1/d) d - l )  

= O(n). hn- i/dWd- 1 - i + n-  i/awa- i 
\ i = o  i = 1  

( a-1 w)n_i /awa_,_ iWn_~)  = O(n). hw d-1 + ~, (h + 
i = 1  

= 0 nhw a- 1 + ~, wini/Cl + 1 (4.3) 
i=1  

= 0  n F +  
i=O 
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since h = O(w) and w = (wF/h) TM. Computat ion is similar to the first subcase of 
Case 6 in the proof of Theorem 1, substituting t = nF, to the point of (2.2), where 
this time we have 

fo~ ~ fo ( h )  2 -1 ecost(q, r)l(q, r) dr dq = O(n -d) ecost(q,r) w ta- l e-t dt 

fo = O(n -d) (1 + t)2t d- le-' dt 

= O(n-"). 

Summing over the eight cases, we see that 

and 

fo~ fo ~ ecost(q, r)l(q, r) dr dq = O(n -a) 

EC. = O(n n+ 1). O ( n - ~ )  = O(n). [] 

Finally, we consider the unsuccessful site searches for facets of the convex hull. 

Lemma 3. The unsuccessful site searches can be completed in o(n) expected time. 

Proof An unsuccessful search involves examination of all the boxes with circum- 
spheres intersecting ~ n ~ ;  these are completely contained in 

~r = {xldist(x, ~f~ n q/) < x/d(l~Jn)l/n}; 

here, we shift the hyperplane t ~  slightly to enclose completely all intersected 
boxes. As before, 

ecost = O((n. vol ~r 

Let us write U. for the total cost of all unsuccessful site searches. These occur 
only for facets of the convex hull. We have 

EU"<(nd) f~  ""f~t ~ ec~ x2 . . . . .  xd)(1-F)"-aY(xl)'"g(xa)dxl""dxd" 

Here F is the probability content of the smaller half-space defined by xl through xd, 
and (1 - F) "-~ is the probability that all the other sites lie in the larger half-space. 
We apply a standard change of variables used by Efron 1-13], Raynaud [21], the 
author [11], and others. Each of the d vertices of ~ is expressed in terms of p, the 
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Dimens ions  of an  unsuccessful search. Fig. 11. 

projection of the origin onto the hyperplane ~ ,  and an o r thonormal  basis for 
- p. After some computa t ion  similar to that of Section 1, we obtain 

E U ,  = O(nd) . ecost(r) esimp(r)(O(r)) a exp(--  nF) dr, 

where r is the distance of  the hyperplane ~ from the origin, esimp(r) is the expected 
volume of  the simplex 11 x2 ""  xa given the distance r, ecost(r) is the expected cost 
of the unsuccessful search given r, O(r) is the density of  the probabili ty that a 
r andom point  falls on 9if, and e x p ( - n F )  estimates the probabil i ty that 9ff defines 
an empty halfspace. 

Let h = 1 - r and w = x/1 - r 2 = O(x/~  ) as in Fig. 11. Then 

F(r) = O(hw ~- 1) = O(wn+ 1). 

With t = nF or w = ( t /n) I/tn+l), we have 

O(r)  = 

/t\21{a+ 1) dt 
d r =  - d h  = O(1)~n  ) --'t 

esimp(r) = |  d-  1) = | 

O(n(h  + n-X/n)(w + n- l /n )  a-1)  

= 0 nhw a- 1 + wln~/a 
i = 0  

) = 0 t + (tnl/d)l/(a+ 1) 
i = 0  

as in (4.3) 

= O(n(~-l)/(d:+d)(1 + t)), 
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and 

;0 EU, = O(n d) (n 2(d- 1)/(d2+d)(1 "k- t) 2) 

x(t~ta-l'/ta+U(t~n(d-1)/td+l) e ,(t~2/'n+X) dt 
\n/ \~/ - \~l T 

---- O(rt 1-(2/t'~2+a))) (1 + t)2td-2+t2/~a+l~)e-tdt 
do 

= o ( n ) .  

Lemmata l, 2, and 3 together imply the following theorem. 

[] 

Theorem 2. Let Yr. = {X 1, X 2 . . . . .  X.} be a set of n sites drawn independently 
from the uniform distribution on the interior of the unit d-ball. Then for fixed d, 
Algorithm A constructs the Voronoi diagram of X n in O(n) time on average. 

5. Discussion 

Applying (2.3) for d = 2, we obtain ES, ~ 2n. This is confirmed by well-known 
combinatorial results. We also have 

24n 2 
ES, ~ n ~ 6.77n for d = 3 ,  

35 

286 
E S , ~ n ~ 3 1 . 7 8 n  for d = 4 .  

These values are not obviously inconsistent with the values 6.31 and 25.6 found 
empirically by Avis and Bhattacharya for (rather small) samples of 1000 points 
chosen from the unit hypercube [2, Table 1]; it is reasonable to conjecture that 
(2.3) in fact holds for point set chosen from a uniform distribution on any convex 
body. 

Algorithm A is clearly optimal in the average-case sense for fixed dimension, and 
is asymptotically faster than any other known. If a balanced-tree implementation 
of priority queues is used, its worst-case running time is O(S,n log n), only a factor 
of | n) worse that the standard gift-wrapping algorithm. Worst-case perform- 
ance can be improved to O(nS,) if the use of buckets is abandoned on any site 

search that examines x/n buckets. It should not be difficult to show that this occurs 
so infrequently that average performance is not affected. 

It is easy to show that linear performance is preserved if the distribution is 
"quasi-uniform" in the unit d-ball, i.e., if its density is bounded above and below by 
two positive constants everywhere in the d-ball. It is an open question whether the 
same approach yields an O(n) algori thm--or  even linear bounds on S,--for  other 
distributions. 
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