

Open access • Posted Content • DOI:10.1101/19001248

Higher energy requirement during weight-loss maintenance on a low- versus highcarbohydrate diet: secondary analyses from a randomized controlled feeding study — Source link ☑

Cara B. Ebbeling, Lisa Bielak, Paul R Lakin, Gloria L Klein ...+4 more authors Institutions: Boston Children's Hospital, Framingham State University, Baylor College of Medicine Published on: 11 Jul 2019 - medRxiv (Cold Spring Harbor Laboratory Press) Topics: Weight loss and Calorie

Related papers:

- Energy Requirement Is Higher During Weight-Loss Maintenance in Adults Consuming a Low- Compared with High-Carbohydrate Diet.
- · Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial
- A randomized study of dietary composition during weight-loss maintenance: Rationale, study design, intervention, and assessment.
- A randomized trial comparing low-fat and low-carbohydrate diets matched for energy and protein.
- · Dietetic treatment of obesity with low and high-carbohydrate diets: comparative studies and clinical results.

1	Title: Higher energy requirement during weight-loss maintenance on a low- versus high-
2	carbohydrate diet: secondary analyses from a randomized controlled feeding study
3	
4	Authors: Cara B Ebbeling, Lisa Bielak, Paul R Lakin, Gloria L Klein, Julia MW Wong, Patricia
5	K Luoto, William W Wong, David S Ludwig
6	
7	Author affiliations:
8	• New Balance Foundation Obesity Prevention Center (CBE, LB, GLK, JMWW, DSL); and
9	Institutional Centers for Clinical and Translational Research (PRL); Boston Children's
10	Hospital and Harvard Medical School
11	• Department of Food and Nutrition, Framingham State University (PKL)
12	• USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College
13	of Medicine (WWW)
14	
15	Conflicts of interest: see section following Acknowledgements
16	
17	Correspondence to:
18	David S Ludwig, <u>david.ludwig@childrens.harvard.edu</u>
19	300 Longwood Ave, Boston, MA 02115, USA
20	ORCID Number 0000-0003-3307-8544
21	
22	Sources of support: This work was conducted with grants from Nutrition Science Initiative
23	(made possible by gifts from the Laura and John Arnold Foundation and Robert Lloyd Corkin

2

24	Charitable Foundation), New Balance Foundation, Many Voices Foundation, and Blue Cross								
25	Blue Shield. DSL was supported by a mid-career mentoring award from the National Institute of								
26	Diabetes and Digestive and Kidney Diseases (K24DK082730). Nutrition Science Initiative								
27	monitored study progress and was given an opportunity to comment on the manuscript. The								
28	funders had no role in the design and conduct of the study; collection, management, analysis, and								
29	interpretation of the data; approval of the manuscript; and decision to submit the manuscript for								
30	publication. The content of this article is solely the responsibility of the authors and does not								
31	necessarily represent the official views of the study sponsors.								
32									
33	Running head: Energy requirements on a low-carbohydrate diet								
34									
35	Abbreviations: body mass index (BMI); carbohydrate-insulin model (CIM); doubly-labeled								
36	water (DLW); dual-energy x-ray absorptiometry (DXA); estimated energy requirement for								
37	weight maintenance (EER); insulin concentration at 30 minutes following a 75-gram oral glucose								
38	load (Insulin-30); Intention-to-Treat (ITT); Per Protocol (PP); total energy expenditure (TEE)								
39									
40	Clinical trial registration:								
41	ClinicalTrials.gov Identifier: NCT02068885 https://clinicaltrials.gov/ct2/show/NCT02068885								
42									
43	Manuscript length: 4500 words, 3 tables, 2 figures, and an online only supplement								

3

45 ABSTRACT

Background: Longer-term feeding studies suggest that a low-carbohydrate diet increases energy 46 47 expenditure, consistent with the carbohydrate-insulin model of obesity. However, the validity of 48 methodology utilized in these studies, involving doubly-labeled water, has been questioned. 49 Objective: The aim of this study was to determine whether dietary energy requirement for 50 weight-loss maintenance is higher on a low- versus high-carbohydrate diet. 51 Methods: The study reports secondary outcomes and exploratory analyses from a feeding study 52 in which the primary outcome was total energy expenditure. After attaining a mean Run-in 53 weight loss of 10.5%, 164 adults with pre-weight-loss BMI of ≥25 were randomly assigned to 54 Test diets containing Low (20%), Moderate (40%) or High (60%) carbohydrate for 20 weeks. 55 Calorie content of Test diets was adjusted to maintain individual body weight within 2 kg of the 56 post-weight-loss value. In analyses by Intention-to-Treat (ITT, study completers, n=148) and Per 57 Protocol (PP, those achieving the weight-loss maintenance target, n=110), we compared 58 estimated energy requirement from 10 to 20 weeks on the Test diets using ANCOVA. Insulin 59 secretion was assessed pre-weight-loss as insulin concentration 30 minutes following 75 grams 60 oral glucose (Insulin-30). 61 Results: Estimated energy requirement was higher in the Low vs High group by models 62 involving ITT (ranging from 181 [CI 8–353] to 223 [40–406] kcal/d; $P \leq 0.04$) and PP (ranging 63 from 245 [43–446] to 295 [91–499] kcal/d; $P \le 0.02$). This difference remained significant in 64 sensitivity analyses accounting for change in adiposity and possible non-adherence. In 65 observational analyses, pre-weight loss Insulin-30 predicted adverse change in body composition

66 following weight loss.

4

- 67 <u>Conclusions</u>: Energy requirement was higher on a low- versus high-carbohydrate diet during
- 68 weight-loss maintenance, commensurate with total energy expenditure. These data are consistent
- 69 with the carbohydrate-insulin model and lend qualified support for the validity of the doubly-
- 70 labeled water method with diets varying in macronutrient composition.

71

- 72 Key words: obesity, dietary carbohydrate, dietary fat, carbohydrate-insulin model, energy
- 73 requirements, energy expenditure, feeding study, metabolism

5

75 INTRODUCTION

76 The independent effect of dietary composition on energy expenditure remains a topic of 77 controversy. According to the carbohydrate-insulin model (CIM) of obesity, the high ratio of 78 blood insulin-to-glucagon concentration in the postprandial period with consumption of a high 79 glycemic load diet partitions metabolic fuels toward fat storage (1, 2). As a result, hunger may 80 increase and (under some conditions, such as post-weight loss) energy expenditure may decrease 81 relative to a low glycemic load diet. Because reduced energy expenditure following weight loss 82 may predispose to weight regain (3-5), research into the dietary determinants of metabolic rate 83 holds both scientific and clinical significance. 84 A recent meta-analysis reported little effect of dietary carbohydrate-to-fat ratio on energy 85 expenditure (6), but the included studies had a median duration of < 1 week. As previously 86 reviewed (2), the adaptation to a low-carbohydrate diet takes at least 2 to 3 weeks, limiting 87 inferences about chronic macronutrient effects that can be drawn from these very short trials. 88 The few prior studies of at least 2.5 weeks duration consistently showed a numerical advantage 89 favoring the low-carbohydrate diet (2), but each of these had important methodological 90 limitations, such as low statistical power, lack of randomization and physical confinement (e.g., 91 in respiratory chambers) confounding activity-related energy expenditure. 92 In the longest feeding study addressing this question (7), we reported that total energy 93 expenditure (TEE) was about 200 to 250 kcal/d higher on a low- vs high-carbohydrate Test diet 94 throughout 20 weeks of weight-loss maintenance, as determined using doubly-labeled water 95 (DLW) methodology. However, the validity of DLW with diets varying in macronutrient 96 composition has recently been called into question (8).

07 The sim of the present study was to examine estimated energy rec	auiromont (EED) for
<i>The all of the present study was to examine estimated energy rec</i>	Junement (EEK) IOI

- 98 maintenance of stable weight following weight loss in our study, based on the energy provided to
- 99 participants in carefully controlled Test diets. If TEE increases with reduction in dietary
- 100 carbohydrate and DLW methodology is valid for measuring TEE when comparing different
- 101 macronutrient diets, we would expect to see corresponding dietary effects on EER.

7

102 METHODS

103 Overview of parent study design and original findings

104 This study presents secondary and exploratory (post hoc) analyses from a feeding trial for which

- 105 the methods (trial design, participants, dietary interventions, sample size, randomization),
- 106 participant flow, adverse events and primary outcome were previously reported (7, 9, 10).
- 107 Briefly, 164 participants with overweight or obesity who lost at least 10% of their body weight
- 108 during the Run-in phase on a hypocaloric diet were randomly assigned to low- (LOW, 20%
- 109 carbohydrate, 60% fat), moderate- (MOD; 40% carbohydrate, 40% fat) or high- (HIGH, 60%
- 110 carbohydrate, 20% fat) carbohydrate Test diets controlled for protein (20%). During the 20-week

111 Test phase, dietary energy provided to participants in prepared meals was adjusted with the aim

112 of keeping weight within 2 kg of the post-weight loss, pre-randomization baseline value. TEE

113 was measured using DLW at four time points: 1) pre-weight loss (PRE), 2) start of trial (START,

114 weeks -2 to 0, post-weight-loss), 3) midpoint of Test phase (MID, weeks 8 to 10) and 4) end of

115 Test phase (END, weeks 18 to 20). The primary finding of the trial was that TEE was

significantly greater on LOW vs HIGH in an Intention-to-Treat model (ITT: 209 kcal/d, n=162,

117 P=0.002 for overall group effect) and a Per Protocol model that excluded participants who did

not achieve weight stability at 10 or 20 weeks (PP: 278 kcal/d, n=120, overall P<0.001).

We previously conducted a preliminary analysis in the PP group (n=120, including 10 participants who achieved weight stability at MID but did not complete the trial), comparing change in estimated energy intake from START to the average of MID (10 weeks) and END (20 weeks) using dietary data for the days when we assessed TEE (7). Change in energy intake increased in a pattern consistent with the dietary effect on TEE, though without significant group differences (HIGH 139, MOD 175, LOW 269 kcal/d, overall *P*=0.36). This pattern strengthened

8

as expected among those in the highest tertile of insulin secretion at PRE (37, -24, 340 kcal/d,
respectively, overall *P*=0.05). However, as discussed in our initial report, these preliminary
analyses were imprecise and inaccurate, with probable bias against those with higher energy
requirements, thereby limiting scientific inference.

129

130 Conceptual approach for current analyses

For the current study, we considered four potential reasons for imprecision and inaccuracy in the initial estimates of energy requirements used to calculate energy intake: 1) excessive variability in the START estimate used in models of change; 2) the limited time frame (using dietary data only from the days when we assessed TEE) for evaluating energy intake during the Test phase; 3) unaddressed factors affecting EER, including provision of additional snacks to some individuals to assist with weight-loss maintenance and 4) change in body composition affecting energy balance calculations.

138 To begin our exploration of these issues, we extracted data from food production sheets 139 throughout the Test phase on daily dietary energy provided to every participant, as periodically 140 adjusted to maintain weight loss within the target range. Visual inspection revealed large changes 141 (>500 kcal/d) in dietary energy provided for many participants in all 3 diet groups from the 142 weight stabilization period at the end of the Run-in phase through the first few weeks of the Test 143 phase, demonstrating that our initial estimates of energy requirements were imprecise. By MID 144 (week 10 of the Test phase), estimates of energy requirements had stabilized, with relatively few participants requiring substantial adjustments in dietary energy to maintain weight loss from that 145 146 point through END (week 20). This imprecision would not have biased the primary study 147 outcome involving TEE, because the initial dietary energy level for each participant was

9

148 established prior to randomization and there was no significant difference in body weight among 149 the diet groups during the assessment periods. However, imprecision in the START value for 150 energy intake would erode power for the change models originally reported (11, 12). 151 As an alternative approach to the inherent limitations of an imprecise baseline (START 152 value) in measurement of a change variable, we examined EER with general linear models 153 (ANCOVA) adjusted for baseline covariates that would plausibly influence energy requirements 154 (such as age, sex and weight). We focused on the daily average energy provided from 10 to 20 155 weeks as our most accurate measure of EER, with primary interest in the HIGH vs LOW diet 156 comparison in the PP analysis to maximize power. Consistent with the approach used with our 157 original TEE outcome, we calculated EER per kg and normalized the results as kcal/d using the 158 average START weight of our participants (82 kg). We examined diet group differences in EER 159 at START and during weeks 10 through 20 of the Test phase, with and without adjustment for 160 the START value. In sensitivity analyses, we explored how changes in body fat mass might 161 influence EER and how possible non-adherence to energy prescription might influence EER. 162 163 Assessment of Test diet energy

Details regarding the dietary interventions were published previously (9, 10). In brief, the hypocaloric Run-in diet comprised 45% of energy from carbohydrate, 35% from fat, and 25% from protein. Eucaloric Test diets were controlled for protein and varied in carbohydrate-to-fat ratio as indicated above. Standardized menus were calculated for 2000-kcal Run-in and Test diets using Food Processor Nutrition Analysis Software (ESHA Research Inc., Salem, OR) with energy distributed across breakfast (450 kcal), lunch (650 kcal), dinner (650 kcal), and an evening snack (250 kcal). Data for each menu item were exported from the ESHA Food

171	Processor to Excel (Microsoft, Redmond, WA), and gram weights were imported from Excel
172	into SAS (SAS Institute Inc., Cary, NC). In SAS, 2000-kcal menus were scaled to coincide with
173	individualized energy levels, and food production sheets (1 sheet per participant per meal or
174	snack) were generated to specify gram portions of each menu item.
175	Estimating and adjusting Run-in and Test diet energy levels. Individualized energy levels
176	were estimated and then adjusted when necessary, but not more frequently than every two weeks.
177	To inform adjustments, body weight was measured daily using Wi-Fi scales (Withings Inc.,
178	Cambridge, MA) synced with a study-specific online portal (SetPoint Health, Needham, MA). At
179	the beginning of the Run-in phase (PRE), energy levels were set at 60% of estimated needs (13),
180	and then adjusted to achieve targeted weight loss. Energy levels for weight stabilization at the
181	end of the Run-in phase were estimated based on rate of weight loss over 20 days: energy intake
182	during weight loss (kcal/day) + rate of weight loss (kg/day × 7700 kcal/kg). During the Test
183	phase, energy levels were adjusted when deviation from the START anchor weight exceeded ± 2
184	kg and/or the slope of weight regressed on time was ≥ 15 g per day over 14 days.
185	Some participants received unit bars (100 kcal per bar with diet-specific carbohydrate-to-
186	fat ratio) and/or ad libitum snacks, in addition to the meals and snacks listed on food production
187	sheets. The purpose of providing unit bars was to: 1) replace some of the meal calories, when
188	large portions were a barrier to consuming all provided food and 2) immediately adjust energy
189	levels, before meal adjustments could be implemented according to established production
190	cycles, to achieve weight-loss maintenance (±2 kg of START anchor weight). The purpose of
191	providing foods for ad libitum snacks (n=11) was to halt continued weight loss in participants
192	who were already consuming large meals. Examples of snack foods (for each diet) included:
193	banana, skim milk (HIGH); bagel chips, chocolate chips, apple, banana, nut butters (MOD); nuts,

11

194 nut butters, dark chocolate, whole milk (LOW). We conservatively estimated energy content of 195 *ad libitum* snacks at 200 kcal per day, for the days when participants (n=11) received snacks. In 196 preliminary analyses, we noted similar study outcomes with energy content estimated at 500 kcal 197 per day (data not presented).

198 Quantifying unconsumed energy. Data on food consumption recorded in the online portal 199 were used to calculate daily unconsumed energy, which totaled < 5% throughout the study. For 200 supervised meals, unconsumed menu items were weighed, and gram amounts were entered into 201 the portal by food service staff. Menu data exported from the ESHA Food Processor to Excel 202 were used to create a "food library," interfaced with the portal, for converting gram amounts to 203 kcal. For unsupervised take-out meals, percentages of menu items consumed were recorded by 204 participants, using a form in the online portal that was prepopulated with daily menus from food 205 production sheets, so that unconsumed energy could be calculated as follows: energy provided – 206 (energy provided × percentage consumed). Unconsumed energy during supervised and 207 unsupervised meals was summed to obtain a total for each day. Food consumption data for 208 calculating unconsumed energy were not available electronically for cohort 1 (n=25 in ITT, n=18 209 in PP), prior to developing the online portal, and assumed to be 0 (this methodological limitation 210 is addressed in a sensitivity analysis).

211 <u>Calculating EER.</u> An EER for each participant was calculated as the average daily energy 212 level during weeks 10 through 20 of the Test phase. The calculation included energy in weighed 213 meals and snacks (as specified on food production sheets), *ad libitum* snacks (200 kcal/d), and 214 unit bars (based on the number provided), with correction for unconsumed energy in weighed 215 meals and snacks. The first 10 weeks of the Test phase was considered adequate time for 216 physiological adaptations to the Test diets, that could affect energy metabolism and fluctuations

217	in body weight (2), and fine-tuning initially imprecise estimates of energy levels for weight-loss								
218	maintenance. We also calculated EER for the first day of the Test phase (EER at START), to								
219	obtain insight regarding the level of imprecision and inaccuracy in the initial estimates of energy								
220	requirements, and for use as a baseline covariate in a statistical model.								
221									
222	Assessment of body composition								
223	We assessed body composition by dual-energy X-ray absorptiometry (DXA, Discovery A,								
224	Hologic Inc., Bedford, MA, USA) and isotope dilution. Data from DXA, the more precise								
225	method, were available for PRE, START and END. Data from isotope dilution were available								
226	for the same time points and also MID, allowing assessment of adiposity from weeks 10 through								
227	20 of the Test phase which was the exact timeframe of interest for determining EER (after the								
228	initial 10-week period of physiological adaptation). Total body water was estimated using the								
229	isotope dilution space for ¹⁸ O (calculated as previously described) (9), divided by 1.01 (to correct								
230	for binding to non-exchangeable sites) (14). Total body water was divided by 0.73 to estimate								
231	fat-free mass (FFM). Fat mass (FM) was calculated by subtracting FFM from total body weight.								
232	Percent body fat was calculated as: FM / body weight \times 100%.								
233									
234	Statistical analyses								
235	For all summary and inferential computations, we used SAS 9.4 (SAS Institute, Cary, NC).								
236	Descriptive data. We inspected raw distributions of EER during the Test phase for the								
237	ITT and PP groups and compared raw distributions and descriptive data (mean and median) with								
238	those of TEE.								

13

239	Variability in Estimated Energy Requirement at START. We used partial correlation
240	analysis to determine whether excessive variability in EER might have obscured the effect of diet
241	on change in EER in our preliminary analyses (7). Controlling for diet group, we evaluated
242	partial correlation of the residuals from models comparing EER at START with EER during the
243	Test phase (MID through END), and TEE at START with TEE during the Test Phase (average of
244	MID and END).

245 Diet effect on Estimated Energy Requirement. The analytic framework for statistical 246 inference on EER and other outcomes was the general linear model (GLM) including ANCOVA. 247 We evaluated EER at START (with body weight at START included as a covariate) and EER 248 during the Test phase (with and without EER at START as a covariate). To be consistent with the 249 approach in our prior study (7), the reported models include diet group assignment and a design 250 variable (a polytomous covariate labeled cohort, which captured all combinations of study site, 251 cohort, and enrollment wave, including 11 categories). Because inclusion of this variable utilizes 252 10 degrees of freedom, and we have no reason to hypothesize confounding by cohort, a model 253 without this adjustment was evaluated. Other variables in the primary model included sex, age at 254 randomization, weight loss during the Run-in phase (expressed as a percentage of PRE body 255 weight), START weight, and START TEE. One participant who developed a medical condition 256 (hypothyroidism) that affects energy expenditure was excluded in the final analysis plan on an a 257 *priori* basis from the primary outcome in our prior study (7, 9). We present models with and without exclusion of this individual. The outcome was the Test phase average of EER from 258 259 weeks 10-20, modified from our original change (pre-to-post) analyses, in consideration of the 260 rationale above, and as further addressed in Figure 1.

14

261	From parameters of the fitted models, taking account of all data, we tested two									
262	hypotheses. First, that the outcome was uniform across all diet groups, using an F test with two									
263	degrees of freedom and a $P \le 0.05$ as a threshold for significance. The HIGH – LOW									
264	comparison was equivalent to a test for linear trend by carbohydrate proportion, given the equal									
265	increments of carbohydrate content (60%, 40%, 20%) across Test diets. In this second test, the									
266	null hypothesis was zero difference between HIGH and LOW in a two-sided Student's <i>t</i> test.									
267	We conducted four sensitivity analyses using GLM (ANCOVA) to explore the potential									
268	effects of changes in body composition and non-adherence on EER during weight-loss									
269	maintenance. These analyses were based on our most conservative estimate of EER in the weight									
270	stable PP group (Table 2, model 2). For every kilogram increase or decrease in FM from START									
271	to END, assessed by DXA, we subtracted or added 55 kcal/d (7700 kcal/kg \div 140 days, the									
272	relevant time period). Similarly, for change in FM from MID to END, assessed by isotope									
273	dilution, we subtracted or added 110 kcal/d (7700 kcal/kg \div 70 days, the relevant time period).									
274	As a proxy measure of non-adherence, we defined energy discrepancy as the ratio of EER-to-									
275	TEE and excluded participants with energy discrepancy in the top quintile (those most likely to									
276	have under-consumed provided foods) and bottom quintile (those most likely to have consumed									
277	foods off protocol). In a final model, we excluded individuals in cohort 1, for whom we had no									
278	food consumption data in the online portal to calculate unconsumed energy as a measure of non-									
279	adherence.									
280	Changes in body composition. We analyzed change in percent body fat from START to									
281	END with DXA, and also from MID to END with isotope dilution. These models included only									
282	design variables (diet group, cohort). In cross-sectional and prospective observational analyses									

283 involving the Run-in phase, we evaluated the associations of Insulin-30 (measured at PRE) with

15

- 284 PRE body weight or percent body fat by DXA, and with change in percent body fat by DXA
- 285 (from PRE to START). These models include participant characteristics (sex, age).

- 287 *Ethics*
- 288 The study protocol was approved by the institutional review board at Boston Children's Hospital
- and registered at ClinicalTrials.gov NCT02068885.

16

290 **RESULTS**

291 Descriptive data

We randomly assigned 164 participants to a diet group for the Test phase. Of these, 148

- 293 completed the trial and were included in the ITT analyses. Among the completers, 110 achieved
- 294 weight-loss maintenance and were included in PP analyses. **Table 1** summarizes baseline data
- 295 describing the cohort, including those who completed the weight loss Run-in phase (for analysis
- of Insulin-30 and body composition) and those in the ITT and PP groups (for the trial outcomes).
- About two-thirds of the cohort were women, mean age was ~30 years, and mean BMI at PRE
- 298 was ~32 kg/m². Supplemental Figure 1 illustrates raw distributions of EER for the ITT and PP
- groups. Overall, the median and mean values of EER were 89.2% and 87.7% of TEE,

300 respectively.

301

302 Variability in Estimated Energy Requirement at START

303 To determine whether excessive variability might have obscured the effect of diet on energy

304 requirements in our preliminary analyses of change (7), we compared EER at START with EER

305 measured from weeks 10 through 20 of the Test phase. As shown in **Figure 1**, the partial R^2 after

adjusting for diet group (0.54) was much weaker than the partial R^2 involving TEE (0.85). These

307 findings suggest that analytic models of change have adequate power for evaluating TEE but not

308 EER (11, 12), providing rationale for using an alternative approach (ANCOVA).

309

310 Diet effect on Estimated Energy Requirement

311 **Table 2** shows EER by diet group in the ITT and PP analyses. At START, EER did not differ by

diet. From weeks 10 through 20 of the Test phase, EER was significantly higher in LOW vs

313	HIGH, ranging from a mean of 181 to 323 kcal/d in models with varying covariate structure. In
314	sensitivity analyses (Table 3), this diet effect remained robust after accounting for concurrent
315	change in body composition, excluding individuals for whom the EER-to-TEE ratio raised the
316	possibility of non-adherence, and additional exclusion of individuals in cohort 1 lacking non-
317	adherence data from the online portal. The nominal order of effect by group, with MOD
318	intermediate between LOW and HIGH, showed a pattern similar to that of TEE. The ratio of
319	EER-to-TEE did not differ by diet group (Supplemental Figure 2), indicating no selective non-
320	adherence or bias in group comparisons.
321	
322	Changes in body composition
323	As shown in Supplemental Table 1, there were no significant diet group differences in adiposity
324	by DXA or isotope dilution throughout the study.
325	In cross-sectional analyses, Insulin-30 was strongly associated with PRE body weight
326	(4.4 kg per 100 μ U/mL increase in Insulin-30, <i>P</i> for linear trend = 0.0005; Figure 2A) and
327	adiposity (1.2% body fat per 100 μ U/mL increase in Insulin-30, <i>P</i> for linear trend = 0.005; data
328	not depicted). Insulin-30 also predicted change in adiposity during weight loss, with percent
329	body fat decreasing less from PRE to START among individuals in the top versus bottom
330	quintiles of Insulin-30 (-3.1% <i>vs</i> -3.8%, <i>P</i> =0.0085; <i>P</i> for linear trend = 0.002; Figure 2B). This
331	prospective association was moderately attenuated, but remained statistically significant, with
332	further adjustment for PRE body weight, BMI or adiposity. (However, inclusion of these
333	adiposity measures may over-correct the models, due to potential collinearity with Insulin-30.)
334	

18

335 **DISCUSSION**

336 In this analysis of a large feeding study, we observed higher estimated energy requirement on a 337 low- vs high- carbohydrate diet during weight-loss maintenance. The magnitude of this effect 338 (about 200 to 300 kcal/d, or \geq 50 kcal/d for every 10% decrease in carbohydrate as a proportion 339 of total energy) and the numerical order across groups (LOW > MOD > HIGH) are 340 commensurate with previously reported changes in TEE (7), supporting the CIM. If reproducible 341 and generalizable, this finding may inform the scientific understanding of how dietary 342 composition affects metabolism and the design of more efficacious long-term obesity treatment. 343 These results also have relevance to outpatient metabolic study methods. In a recent 344 analysis of an observational pilot study, Hall et al. (8) questioned the validity of DLW 345 methodology to compare diets differing in carbohydrate-to-fat ratio, in part due to the 346 "theoretical possibility that ... [differential] fluxes through biosynthetic pathways" could inflate 347 measured energy expenditure on diets with lower carbohydrate content. However, their estimates 348 of isotopic trapping through *de novo* lipogenesis, the pathway of greatest potential concern, 349 appear overstated, and DLW has worked well in animals with diets varying widely in 350 macronutrient ratio, including obligate carnivores (7, 15). The congruence in dietary effect on 351 energy intake and expenditure from our trial provide qualified validation for the use of DLW in 352 human diet studies, though the possibility of other, unrecognized biases cannot be excluded. In 353 contrast to the theoretical concerns involving DLW, whole room calorimetry – the other gold 354 standard method – has been shown to underestimate adaptive thermogenesis (16) because of inherent constraints on physical activity energy expenditure (a confounding issue in the analyses 355 356 of Hall et al. (8)). Recognizing that reduction in dietary carbohydrate has been hypothesized to 357 attenuate adaptive thermogenesis with weight loss (2, 7), macronutrient studies utilizing whole

19

358 room calorimetry may yield results biased against low-carbohydrate diets. Indeed, the prior 359 validation study (16) found a better correspondence between dietary calorie titration and TEE – 360 the approach we used here – for DLW vs whole room calorimetry under several physiological 361 conditions. 362 In observational analyses, pre-weight loss insulin secretion was strongly associated with 363 greater body weight and adiposity before weight loss, and prospectively with an adverse change 364 in body composition (a lesser decrease in adiposity) following weight loss, potentially 365 predisposing to weight regain. Although we cannot rule out reverse causation and confounding,

366 the findings are consistent with other lines of investigation free from such limitations. According

367 to the CIM, increased primary insulin secretion (versus secondary hyperinsulinemia in

368 compensation for insulin resistance) partitions metabolic fuels away from oxidation and instead

369 into storage, lowering energy expenditure and promoting adiposity. Indeed, individual

370 predisposition to high insulin secretion has been linked to weight gain in translational research

371 (17), a cohort study (18), a Mendelian randomization study (19) and several clinical trials (20,

372 21). These relationships appear to be strongly attenuated on a low-glycemic load diet, as was

also reported for TEE among individuals with high insulin secretion in our recent trial (7). In

374 contrast, DIETFITS found no effect modification involving insulin secretion for weight loss on

375 lower-fat vs lower-carbohydrate diets, but that null finding might relate to the focus on reducing

376 sugar and other processed carbohydrates throughout the trial, resulting in a low glycemic load in

both diet groups (22). Thus, our current study provides additional data on a novel diet-phenotype

378 interaction and highlights a high-risk subgroup that may do especially well with dietary

379 carbohydrate restriction, similar to findings from DiOGenes and other trials involving fasting

380 glucose or insulin resistance (23).

20

381 Strengths of this study include relatively large size and long duration for a feeding trial, 382 demonstration of weight stability during the Test phase, state-of-the-art methods to produce 383 nutrient-controlled diets and monitor quality control, concurrent measurement of body 384 composition, and sufficient power to conduct informative sensitivity analyses. The main 385 limitation is non-adherence to the Test diets. This methodological issue, common to all long-386 term outpatient feeding studies, could lead to an overestimation of the diet effect on energy 387 requirement under two conditions: if individuals on the low-versus high-carbohydrate diet 388 consumed less of the provided food than reported when not under direct observation; or if those 389 on the high- versus low-carbohydrate diet consumed more food off protocol. Either of these 390 scenarios might arise if the low-carbohydrate diet were less palatable or more satiating. 391 Conversely, the high-carbohydrate diet was substantially lower in energy density; the diet effect 392 could be underestimated if participants in that group had difficulty consuming the larger volume 393 of food. However, we designed the diets to be as similar as possible in types of foods included, 394 cooking methods and palatability (10). Moreover, we saw no discrepancy in the ratio of EER-to-395 TEE across diet groups, nor evidence of overall bias in a sensitivity analyses excluding 396 individuals with EER-to-TEE ratio in the highest quintile (for whom energy intake might have 397 been overestimated) and in the lowest quintile (for whom energy intake might have been 398 underestimated). Moreover, the findings strengthened in the PP analyses, involving participants 399 who demonstrated successful weight-loss maintenance as an objective measure of compliance 400 (the opposite would be expected if non-adherence contributed importantly to the observed 401 effect).

402 Other study limitations include the inherent imprecision of methods for measuring small 403 changes in body composition during weight-loss maintenance, and possible inaccuracy arising

21

404 from changes in body water on diets differing in macronutrient content. However, on the latter 405 issue, any changes in body water resulting from reduction in dietary carbohydrate would stabilize 406 after a few weeks, allowing for an unconfounded measurement of body composition between 10 407 and 20 weeks of the Test phase, the relevant period for our calculations of energy requirements. 408 Furthermore, our estimates of energy requirements vary based on covariate structure of the 409 analytic models and other assumptions, and the 3-way diet comparison is not significant in some 410 models. However, the comparison between the low- and high-carbohydrate diet was consistently 411 significant as hypothesized in multiple models and sensitivity analyses. In light of the foregoing, 412 our estimates of the magnitude of the diet effect on energy requirements should be interpreted 413 cautiously. 414 Because of the inherent limitations of outpatient feeding studies discussed here, some 415 suggest that the only informative diet studies are those conducted on metabolic wards (24), but 416 these too have major limitations. For logistical and financial reasons, ward studies rarely exceed 417 a few weeks in duration - too short to distinguish transient adaptive processes from the chronic 418 metabolic effects of macronutrients (2, 25). Ward studies also entail an artificial environment, 419 constraint on spontaneous physical activities, and the psychobiological effects of social isolation 420 and other stresses. Moreover, even with presumably maximum control, substantial "unaccounted 421 energy" - the basis of criticisms of our trial by Hall et al. (26) - may occur, as was seen in the 422 control diet arm of a recent trial by Hall et al. (27). Discrepancies in energy balance are 423 unsurprising, considering the cumulative error that would arise in comparisons encompassing 424 three imprecise measures (energy intake, energy expenditure, and body energy stores), even with 425 optimal conditions.

22

426	To elucidate underlying mechanisms involving diet and chronic disease, we will need a
427	variety of complementary study designs, novel methods for ensuring high levels of dietary
428	control for longer periods, multiple methods for measuring energy expenditure and substrate
429	metabolism, and attention to effect modification by biological predisposition (2, 23, 28).
430	Although research into more powerful behavioral and environmental interventions is also
431	warranted, these approaches will be most effective when informed by accurate knowledge of the
432	metabolic effects of dietary composition.
433	
434	Acknowledgments
435	We thank Steven Heymsfield and Henry Feldman for critical feedback on the manuscript, and
436	Stephanie Dickinson for verifying the data analyses. The study was funded by Nutrition Science
437	Initiative (made possible by gifts from the Laura and John Arnold Foundation and Robert
438	Lloyd Corkin Charitable Foundation), New Balance Foundation, Many Voices Foundation, and
439	Blue Cross Blue Shield. DSL was supported by a mid-career mentoring award from the National
440	Institute of Diabetes and Digestive and Kidney Diseases (K24DK082730).
441	
442	Conflicts of Interest Statement
443	CBE and DSL have conducted research studies examining the carbohydrate-insulin model
444	funded by the National Institutes of Health and philanthropic organizations unaffiliated with the
445	food industry; DSL received royalties for books on obesity and nutrition that recommend a low-
446	glycemic load diet. No other author has relevant disclosures.
447	

23

449 Author Contributions

- 450 CBE designed study, secured funding, interpreted data, participated in drafting the manuscript;
- 451 LB helped design the study and analyzed the dietary records; PRL conducted the statistical
- 452 analysis, interpreted data and participated in manuscript revision; GLK directed the parent and
- 453 participated in manuscript revision; JMWW co-directed the parent study, helped design the Test
- 454 diets and participated in manuscript revision; PKL co-directed the parent study at the
- 455 performance site and participated in manuscript revision; WWW advised on double labeled
- 456 water methodology and participated in manuscript revision; DSL, designed study, secured
- 457 funding, interpreted data, participated in drafting the manuscript.

458

459 Data Sharing

460 The protocol and full dataset is available at Open Science Framework (<u>https://osf.io/rvbuy/</u>).

24

462 **REFERENCES**

- 1. Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes,
- and cardiovascular disease. Jama. 2002;287(18):2414-23.
- 465 2. Ludwig DS, Ebbeling CB. The Carbohydrate-Insulin Model of Obesity: Beyond "Calories
- 466 In, Calories Out". JAMA Intern Med. 2018;178(8):1098-103.
- 467 3. Astrup A, Gotzsche PC, van de Werken K, Ranneries C, Toubro S, Raben A, et al. Meta-
- 468 analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr.
- 469 1999;69(6):1117-22.
- 470 4. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive
- 471 thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr.
 472 2008;88(4):906-12.
- 473 5. Tremblay A, Royer MM, Chaput JP, Doucet E. Adaptive thermogenesis can make a
- 474 difference in the ability of obese individuals to lose body weight. Int J Obes (Lond).
 475 2013;37(6):759-64.
- 476 6. Hall KD, Guo J. Obesity Energetics: Body Weight Regulation and the Effects of Diet
 477 Composition. Gastroenterology. 2017;152(7):1718-27 e3.
- 478 7. Ebbeling CB, Feldman HA, Klein GL, Wong JMW, Bielak L, Steltz SK, et al. Effects of a
 479 low carbohydrate diet on energy expenditure during weight loss maintenance: randomized
 480 trial. BMJ. 2018;363:k4583.
- 481 8. Hall KD, Guo J, Chen KY, Leibel RL, Reitman ML, Rosenbaum M, et al. Methodologic
- 482 considerations for measuring energy expenditure differences between diets varying in
- 483 carbohydrate using the doubly labeled water method. Am J Clin Nutr. 2019;109(5):1328-34.

484	9.	Ebbeling CB, Klein GL, Luoto PK, Wong JMW, Bielak L, Eddy RG, et al. A randomized
485		study of dietary composition during weight-loss maintenance: Rationale, study design,
486		intervention, and assessment. Contemp Clin Trials. 2018;65:76-86.
487	10.	Wong JM, Bielak L, Eddy RG, Stone L, Lakin PR, Sandman M, et al. An Academia-
488		Industry Partnership for Planning and Executing a Community-Based Feeding Study. Curr
489		Dev Nutr. 2018;2(9):nzy060.
490	11.	Van Breukelen GJ. ANCOVA versus change from baseline: more power in randomized
491		studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol. 2006;59(9):920-
492		5.
493	12.	Vickers AJ. The use of percentage change from baseline as an outcome in a controlled trial
494		is statistically inefficient: a simulation study. BMC Med Res Methodol. 2001;1:6.
495	13.	Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive
496		equation for resting energy expenditure in healthy individuals. Am J Clin Nutr.
497		1990;51(2):241-7.
498	14.	Schoeller DA, van Santen E, Peterson DW, Dietz W, Jaspan J, Klein PD. Total body water
499		measurement in humans with 18O and 2H labeled water. Am J Clin Nutr.
500		1980;33(12):2686-93.
501	15.	Ludwig DS, Ebbeling CB, Wong JMW, Wolfe RR, Wong WW. Methodological error in
502		measurement of energy expenditure by the doubly labeled water method: much ado about
503		nothing? Am J Clin Nutr. 2019;in press.
504	16.	Rosenbaum M, Ravussin E, Matthews DE, Gilker C, Ferraro R, Heymsfield SB, et al. A
505		comparative study of different means of assessing long-term energy expenditure in humans.
506		Am J Physiol. 1996;270(3 Pt 2):R496-504.

507	17.	Pawlak DB, Kushner JA, Ludwig DS. Effects of dietary glycaemic index on adiposity,
508		glucose homoeostasis, and plasma lipids in animals. Lancet. 2004;364(9436):778-85.
509	18.	Chaput JP, Tremblay A, Rimm EB, Bouchard C, Ludwig DS. A novel interaction between
510		dietary composition and insulin secretion: effects on weight gain in the Quebec Family
511		Study. Am J Clin Nutr. 2008;87(2):303-9.
512	19.	Astley CM, Todd JN, Salem RM, Vedantam S, Ebbeling CB, Huang PL, et al. Genetic
513		Evidence That Carbohydrate-Stimulated Insulin Secretion Leads to Obesity. Clin Chem.
514		2018;64(1):192-200.
515	20.	Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, Ludwig DS. Effects of a low-
516		glycemic load vs low-fat diet in obese young adults: a randomized trial. Jama.
517		2007;297(19):2092-102.
518	21.	Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, et al. A low-glycemic load
519		diet facilitates greater weight loss in overweight adults with high insulin secretion but not in
520		overweight adults with low insulin secretion in the CALERIE Trial. Diabetes Care.
521		2005;28(12):2939-41.
522	22.	Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JPA, et al.
523		Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight
524		Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS
525		Randomized Clinical Trial. Jama. 2018;319(7):667-79.
526	23.	Hjorth MF, Zohar Y, Hill JO, Astrup A. Personalized Dietary Management of Overweight
527		and Obesity Based on Measures of Insulin and Glucose. Annu Rev Nutr. 2018.
528	24.	Polychronakos C. Too sweet? Macronutrients and energy expenditure; a word of caution.
529		BMJ. 2019;363: doi: https://doi.org/10.1136/bmj.k4583.

530	25.	Ludwig DS,	Astrup A,	Bazzano I	LA,	Ebbeling	CB,	Heymsfield	SB,	King JC,	et al.	Ultra-
-----	-----	------------	-----------	-----------	-----	----------	-----	------------	-----	----------	--------	--------

- 531 processed food and obesity: the pitfalls of extrapolation from short studies. Cell Metab.
- 532 2019;online first June 20, 2019DOI:<u>https://doi.org/10.1016/j.cmet.2019.06.004</u>.
- 533 26. Hall KD, Guo J. Carbs versus fat: does it really matter for maintaining lost weight?
- 534 (Preprint). bioRxiv, The Preprint Server for Biology. 2019.
- 535 27. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-Processed
- 536 Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled
- 537 Trial of Ad Libitum Food Intake. Cell Metab. 2019.
- 538 28. Mendes-Soares H, Raveh-Sadka T, Azulay S, Ben-Shlomo Y, Cohen Y, Ofek T, et al.
- 539 Model of personalized postprandial glycemic response to food developed for an Israeli
- 540 cohort predicts responses in Midwestern American individuals. Am J Clin Nutr. 2019.

Table 1. Participant characteristics

Characteristic	All Enrolled ^a N=164	Intention-to-Treat ^b N=148	Per Protocol ^c N=110
Categorical Variables, No (%)			
Sex			
Men	49 (29.9%)	45 (30.4%)	33 (30.0%)
Women	115 (70.1%)	103 (69.6%)	77 (70.0%)
Hispanic Ethnicity	25 (15.2%)	21 (14.2%)	18 (16.4%)
Race			
White	128 (78.0%)	116 (78.4%)	84 (76.4%)
Black	17 (10.4%)	16 (10.8%)	11 (10.0%)
Asian	5 (3.0%)	5 (3.4%)	4 (3.6%)
Unknown/Other	14 (8.5%)	11 (7.4%)	11 (10.0%)
Continuous Variables, mean (SD)			
Age, years	38.04 (14.37)	38.62 (14.42)	39.83 (13.98)
Weight, kg	91.46 (18.17)	91.22 (18.23)	89.49 (16.56)
Height, cm	167.69 (9.99)	167.88 (10.04)	167.34 (10.28)
Body Mass Index (BMI), kg/m ²	32.37 (4.83)	32.20 (4.77)	31.82 (4.17)
Weight Loss, % of PRE body weight	10.45 (1.68)	10.49 (1.59)	10.47 (1.53)
Total Energy Expenditure at START, kcal/d	2661 (547)	2651 (557)	2663 (559)

^a Included in observational analyses of Insulin-30 and body weight and body composition
 ^b Study completers
 ^c Study completers who achieved weight-loss maintenance target

		NTENTION-TO	-TREAT		PER PROTOCOL					
	EER Mean P ^b 95% CI		Diet Group Contrasts for EER				Diet Group Contrasts for EER			
Diet Group		Pb	LO – HI Mean 95% CI P	LO – MOD Mean 95% CI P	MOD – HI Mean 95% CI P	EER Mean 95% CI	P ^b	LO – HI Mean 95% CI P	LO – MOD Mean 95% CI P	MOD – HI Mean 95% CI P
Baseline (STA	1 <i>RT</i>) °									
HIGH	2229 2152 to 2305					2277 2175 to 2378				
MOD	2276 2202 to 2350	0.54	56 -50 to 161 0.30	8 -95 to 111 0.88	48 -61 to 157 0.39	2309 2219 to 2398	0.73	53 -81 to 187 0.43	21 -101 to 143 0.73	32 -107 to 172 0.65
LOW	2284 2214 to 2354					2330 2247 to 2413				
Diet Effect, M	lodel 1 °									
HIGH	2303 2170 to 2435	_				2289 2127 to 2452				
MOD	2437 2308 to 2565	0.07	215 32 to 398 0.02	81 -97 to 259 0.37	134 -55 to 323 0.16	2447 2304 to 2591	0.04	276 61 to 490 0.01	118 -78 to 313 0.23	158 -66 to 382 0.16
LOW	2517 2396 to 2639	_				2565 2432 to 2698				
Diet Effect, M	lodel 2 (Model 1 a	dditionally	adjusted for STA	RT EER) ^d						
HIGH	2324 2199 to 2450	_				2308 2155 to 2460				
MOD	2429 2308 to 2550	0.12	181 8 to 353 0.04	76 -92 to 243 0.37	105 -73 to 283 0.25	2447 2312 to 2581	0.06	245 43 to 446 0.02	106 -77 to 289 0.25	139 -71 to 349 0.19
LOW	2505 2391 to 2620	_				2552 2427 to 2677				
Diet Effect, Model 3 (Model 2 excluding participant with hypothyroidism) ^{d, e}										
HIGH	2323 2200 to 2447	_				2309 2160 to 2458				
MOD	2432 2312 to 2551	0.07	204 33 to 376 0.02	96 -70 to 263 0.25	108 -68 to 284 0.23	2448 2316 to 2579	0.03	272 74 to 471 0.008	134 -47 to 314 0.14	139 -67 to 344 0.18
LOW	2528 2414 to 2642	_				2582 2458 to 2706				

Diet Effect,	Model 4 (Model 3 wi	ithout adju	stment for the pol	ytomous cohort vai	riable) ^f					
HIGH	2288 2156 to 2419					2271 2120 to 2422				
MOD	2460 2333 to 2587	0.03	246 64 to 427 0.009	73 -104 to 250 0.42	173 -12 to 357 0.07	2467 2331 to 2602	0.008	323 122 to 525 0.002	127 -60 to 314 0.18	196 -9 to 402 0.06
LOW	2533 2411 to 2656					2594 2465 to 2723				

30

^a Data calculated per kg and normalized to average weight of 82 kg at the START (post-weight loss, pre-randomization)

^b Overall diet group effect

^c Covariates included cohort, sex, age, Run-in weight loss (% PRE body weight), START TEE, and START body weight

^d Covariates included cohort, sex, age, Run-in weight loss (% PRE body weight), START TEE, START body weight, and START EER

^e As described in methods, 1 participant developed hypothyroidism and was excluded *a priori basis* from analyses of the primary outcome (7, 9)

^f Covariates included sex, age, Run-in weight loss (% PRE body weight), START TEE, START body weight, and START EER (Elimination of the polytomous cohort variable decreased predictor df by 10 in ITT and 9 in PP; participants in cohort 2, wave D were not included in PP.)

			Diet Group Contrasts for EER				
Diet Group	EER Mean 95% CI	Р ^ь	LO – HI Mean 95% CI P	LO – MOD Mean 95% CI P	MOD – HI Mean 95% CI P		
Adjusted for change in b	oody composition by DXA °						
HIGH	2304 2145 to 2462						
MOD	2452 2313 to 2592	0.04	268 58 to 478 0.01	119 -71 to 310 0.22	149 -70 to 367 0.18		
LOW	2572 2442 to 2702						
Adjusted for change in b	body composition by isotope dilution $^\circ$						
HIGH	2208 2027 to 2388						
MOD	2394 2234 to 2553	0.08	273 32 to 513 0.03	87 -131 to 305 0.43	186 -63 to 435 0.14		
LOW	2481 2330 to 2631						
Accounting for possible	dietary non-adherence ^d						
HIGH	2347 2198 to 2495		205	2/2			
MOD	2369 2208 to 2531	0.02	285 76 to 493 0.008	262 37 to 486 0.02	23 -208 to 253 0.84		
LOW	2631 2488 to 2775						
As above, with additiona	al elimination of participants lacking	non-adherence data °					
HIGH	2345 2190 to 2499						
MOD	2456 2278 to 2634	0.02	292 84 to 501 0.007	181 -47 to 409 0.12	111 -140 to 362 0.38		
LOW	2637 2501 to 2773			-			

Table 3. Sensitivity analysis of Estimated Energy Requirement (EER).^a

- ^a Calculations performed on Model 2 (Table 2) to examine how changes in body composition and potential non-adherence could influence the diet effect on EER in the Per Protocol group. Data calculated per kg and normalized to average weight of 82 kg at START (post-weight loss, pre-randomization)..
- ^b Overall diet group effect
- ^c See Methods for details
- ^d Excluding 45 individuals with EER-to-TEE ratio in the top quintile (i.e., individuals most likely to have under-consumed provided foods) and in the bottom quintile (i.e., individuals most likely to have consumed foods off protocol)
- ^e Excluding an additional 9 participants in cohort 1 for whom data on unconsumed energy were missing

33

FIGURE LEGENDS

Figure 1. Variability in estimated energy requirement (EER) and total energy expenditure

(TEE). The correlation between the baseline (START) and outcome measurements adjusted for diet was substantially lower for EER (Panel A) compared to TEE (Panel B), providing rationale for using ANCOVA rather change models for EER.

Figure 2. Associations of Insulin-30 with body weight and change in change in body fatness.

Individuals with high Insulin-30 prior to weight loss have higher body weight in a cross-sectional analysis (Panel A) and a more adverse response to weight loss (proportionately less fat loss) in a prospective analysis (Panel B).

Fiaure 1

Insulin-30 uIU/mL

Insulin-30 uIU/mL

Supplementary Online Content

Ebbeling CB, Bielak L, Lakin PR, Klein GL, Wong JMW, Luoto PK, Wong WW, Ludwig, DS. Higher energy requirement during weight loss maintenance on a low- versus high-carbohydrate diet: secondary analyses from a randomized controlled feeding study

TABLE OF CONTENTS

Supplemental Table 1. Changes in body composition by DXA and isotope dilution throughout the study

Supplemental Figure 1. Distribution of Estimated Energy Requirement (EER) in the Intention-to-Treat and Per Protocol analyses.

Supplemental Figure 2. Ratio of Estimated Energy Intake (EER)-to-total energy expenditure as a measure of non-adherence.

Supplemental Table 1. Changes in body composition by DXA and isotope dilution throughout the study. No significant diet effects were observed during the Test phase. Change in percentage fat by DXA was assessed as a difference, END – START. Change in percentage body fat by isotope dilution was assessed as a difference, average (MID, END) – START. Statistical models were minimally adjusted for cohort; adjustment for other baseline covariates did not materially affect the results.

Intention-to-treat									
			Time	Overall	LO – HI				
Diet Group	N	PRE	START	MID	END	P	95% CI P		
Percentage Body Fat from DXA									
HIGH	46	41.58	37.87	_	37.36		0.24		
MOD	48	40.88	37.00	_	36.70	0.72	-0.35 to 0.84		
LOW	54	39.77	35.96	_	35.71		0.42		
Percentage Body Fat from isotope dilution									
HIGH	46	42.15	37.75	36.82	36.92		-0.30		
MOD	48	41.19	37.49	36.77	37.03	0.76	-1.5 to 0.95		
LOW	54	39.56	36.05	34.93	35.98		0.64		

Per protocol									
			Time	Overall	LO – HI				
Diet Group	Ν	PRE	START	MID	END	P	95% CI P		
Percentage Body Fat from DXA									
HIGH	31	42.23	38.53	_	38.35		-0.048		
MOD	37	40.26	36.43	_	36.30	0.97	-0.58 to 0.48		
LOW	42	39.74	35.93	_	35.71		0.86		
Percentage	Percentage Body Fat from isotope dilution								
HIGH	31	42.28	37.93	37.55	38.23		-0.62		
MOD	37	40.91	36.54	36.17	36.71	0.94	-2.1 to 0.89		
LOW	42	39.00	35.85	34.95	35.79		0.42		

Supplemental Figure 1. Distribution of estimated energy requirement (EER) in the Intention-to-Treat and Per Protocol analyses.

Estimated energy requirement, kcal/day

Supplemental Figure 2. Ratio of estimated energy requirement (EER)-to-total energy expenditure (TEE) as a measure of non-adherence. Differences by diet group were not significant, suggesting no systematic bias. EER as a proportion of TEE in HIGH, MOD and LOW were, respectively: 0.88, 0.91, and 0.85 in the Intention-to-treat; and 0.88, 0.89 and 0.87 in the Per Protocol analyses. Symbols: diamonds, mean: horizontal lines, median; grey shaded area, interquartile range (25th to 75th percentile); bars, range (minimum to maximum).

