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Abstract

Rationale: Recent studies have focused on the role of female
sex and estradiol (E2) in pulmonary arterial hypertension (PAH),
but it is not known whether sex hormones are risk factors for
PAH in men.

Objectives:We performed a case-control study to determine
whether hormone levels (E2, dehydroepiandrosterone-sulfate
[DHEA-S], and testosterone) are associated with PAH in men.

Methods: Plasma sex hormone levels in men with idiopathic,
heritable, or connective tissue disease–associated PAH were
compared with those from age- and body mass index–matched men
without clinical cardiovascular disease.

Measurements andMain Results: There were 23 cases with PAH
(70% had idiopathic PAH, 65% were functional class III/IV) and 67
control subjects. Higher E2 and E2/testosterone levels were

associated with the risk of PAH (odds ratio per 1 ln[E2:testosterone],
6.0; 95% confidence interval, 2.2–16.4; P = 0.001), whereas higher
levels ofDHEA-Swere associatedwith a reduced risk (odds ratioper 1
ln[DHEA-S], 0.1; 95% confidence interval, 0.0–0.3; P = 0.001). E2
and DHEA-S levels were strong predictors of case status (C statistic
for both, 0.82) but testosterone was not (C statistic, 0.53). Higher
levels of E2 were associated with shorter 6-minute-walk distances
(P = 0.03), whereas higher levels of DHEA-S were associated with
lower right atrial pressure (P = 0.02) and pulmonary vascular
resistance (P = 0.01) in men with PAH.

Conclusions:Higher levels of E2 and lower levels of DHEA-S were
associated with PAH in men. Sex-based differences in sex hormone
processing and signaling may contribute to unique phenotypes in
pulmonary vascular disease.
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Women are more likely to develop
pulmonary arterial hypertension (PAH)
than men, but women with PAH have better
survival (1, 2). Although there has been
recent interest in the role of estrogen (and
female sex) in PAH, little is known about
the role of androgens (and male sex) in
disease pathogenesis and outcomes. We
have demonstrated that men have greater
hemodynamic burden at baseline than
women with PAH and that genetic
variation in aromatase (the pivotal enzyme
that converts androgens to estrogens) is
associated with the risk of portopulmonary
hypertension irrespective of sex, suggesting
the study of the hormonal milieu in men
may be of equal import to understand the
“estrogen paradox” of pulmonary vascular
disease (3, 4).

Although estrogen and
dehydroepiandrosterone (DHEA) prevent
or rescue cardiopulmonary changes in
experimental models of pulmonary
hypertension, estrogen and its metabolites
can also induce pulmonary vascular disease
in some models and the effects of DHEA
have been described in male animals only
(5–11). The contradictory findings in
experimental models of pulmonary
hypertension and the knowledge gaps that
exist in studying both sexes in animal and
human disease provide a strong rationale
for comparing differences in hormone
levels in men with and without PAH.
Limited data suggest that higher
testosterone levels are detrimental to the
pulmonary endothelium and are associated
with maladaptive right ventricular (RV)

hypertrophy and fibrosis in murine
models of pulmonary hypertension, but
testosterone deficiency has been described
in human studies of left heart failure and in
other chronic illnesses (12–18).

We sought to determine whether
sex hormone levels (estradiol [E2],
E2/testosterone ratio, DHEA-sulfate
[DHEA-S], total testosterone, bioavailable
testosterone) are associated with PAH
in men. We hypothesized that lower
testosterone and bioavailable testosterone
levels would be associated with the presence
of PAH. Some of the results have been
previously reported in abstract form (19).

Methods

Study Sample
We performed a case-control study of men
with PAH and men without clinical
cardiovascular disease. Cases were recruited
from the Rhode Island Hospital Pulmonary
Hypertension Center at Brown University,
the Pulmonary Vascular Disease Program at
University of Pennsylvania, and the
Pulmonary Hypertension Center at Tufts
Medical Center. Control subjects were
selected from the MESA study (Multi-
Ethnic Study of Atherosclerosis), a
multicenter population-based cohort study
to investigate the prevalence, correlates, and
progression of subclinical cardiovascular
disease in a multiethnic population
aged 45–84 years drawn from six U.S.
communities: Forsyth County, North
Carolina; Northern Manhattan and the
Bronx, New York; Baltimore City and
Baltimore County, Maryland; St. Paul,
Minnesota; Chicago, Illinois; and Los
Angeles, California (20). Exclusion criteria
for the MESA baseline examination
included weight greater than 300 lb,
pregnancy, impediment to long-term
participation, and clinical cardiovascular
disease, which was determined at
participant screening by questionnaire.
Participants were excluded if they answered
“yes” to having been diagnosed by a
physician with heart attack, stroke,
transient ischemic attack, heart failure,
angina, current atrial fibrillation, and/or to
having undergone any prior cardiovascular
procedure.

Case and Control Definitions
We included men with idiopathic, heritable,
or connective tissue disease–associated PAH

as designated by their treating PAH
physicians at local centers and meeting
traditional diagnostic criteria: mean
pulmonary artery pressure greater than or
equal to 25 mm Hg at rest, mean
pulmonary capillary wedge pressure less
than or equal to 15 mm Hg, and pulmonary
vascular resistance greater than three Wood
units (21). Both prevalent (on PAH
therapy) and incident (treatment naive)
patients were included. Control subjects
were men with normal RV and left
ventricular measures (ejection fraction,
end-diastolic mass, and volumes) by
cardiac magnetic resonance imaging (22)
without obstructive or restrictive
ventilatory defects on spirometry and
without self-reported chronic obstructive
pulmonary disease, emphysema, or chronic
bronchitis (22, 23). We also excluded men
using testosterone compounds or DHEA
supplements. Control subjects were
matched 3:1 to cases by age (within 5 yr)
and body mass index (BMI) (within
3 kg/m2).

Clinical Variables
Clinical data for cases were collected from
the medical record or the local research
database. Functional class, 6-minute-walk
distance (6MWD), hemodynamics, and
PAH treatments were collected at the time
of (or as close as possible to) blood
collection.

Sex Hormone Levels
Blood samples were drawn and stored using
standardized procedures (24). All plasma
sex hormones from cases and control
subjects were measured using the Roche
Elecsys 2010 system (F. Hoffman-La Roche,
Basel, Switzerland) at the Laboratory for
Clinical Biochemistry Research at the
University of Vermont. Interassay
coefficients of variation for E2 were
2.2–10.5%, for DHEA-S were 4.6–6.5%, and
for testosterone were 2.3–5.6%.

Each center had local Institutional
Review Board (IRB) approval for this study
(Rhode Island Hospital, IRB Registration
#021911; Penn, #706091; Tufts, IRB
Registration #7437). The protocols of
MESA were approved by the IRBs of all
MESA sites and the National Heart Lung
and Blood Institute. Informed consent was
obtained from all patients with PAH and
MESA participants. MESA participants
were consented during the baseline
examination for blood draw, storage, and

At a Glance Commentary

Scientific Knowledge on the
Subject: Sex-based differences in
pulmonary vascular disease prevalence
and survival are well known, but the
relation of sex hormones with
pulmonary arterial hypertension in
men has not been completely
characterized.

That This Study Adds to the
Field: This is the first study to show
that higher levels of estradiol and lower
levels of dehydroepiandrosterone-
sulfate are associated with the risk of
pulmonary arterial hypertension in
men.
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future measurement of biomarkers
important to vascular pathobiology.

Statistical Analysis
Continuous data were summarized as
median (interquartile range) and categorical
data were reported as frequency and
percentages. Sex hormone levels were
natural log-transformed. Case status was
regressed on hormone levels using
generalized estimating equations assuming a
binary distribution. A similar approach with
generalized estimating equations assuming a
normal distribution was used to estimate
hormone levels by case status. Sandwich
estimation was used for both modeling
methods and patients were nested within
their respective matching group. Receiver
operating characteristic curves were
constructed for each sex hormone level
and corresponding C statistics were derived.
The relationships between each sex
hormone level and markers of disease
severity (functional class, 6MWD, and
hemodynamics) in cases were examined
with multivariable linear or binomial
regression as appropriate. Case–control
random matching for age and BMI was
accomplished using a macro designed for
SAS software (SAS Inc., Cary, NC) (25).
Final models were further adjusted for the
exact values for age and BMI. Sensitivity
analyses included the subgroup of cases
with idiopathic or heritable PAH and the
subgroup of cases who were treatment
naive at the time of blood draw. All
hypotheses were tested using two-tailed
tests and 95% confidence intervals (CIs)
were estimated. P values less than 0.05 were
considered significant. All analyses were
conducted using SAS 9.4 (SAS Inc.).

Results

We included 23 cases with PAH and 67
control subjects (Table 1). Subjects in the
groups were similar in age and BMI because
of matching, but a higher proportion of
men with PAH were white (83%) as
compared with control subjects (43%).
Among men with PAH, 70% had idiopathic
disease, and 65% were World Health
Organization functional class III/IV. Cases
tended to have moderate hemodynamic
impairment despite relatively preserved
6MWD (median, 398 m; interquartile
range, 233–440 m). Forty-three percent of
the cases were PAH treatment-naive, and

35% of cases were receiving combination
PAH therapy at the time of enrollment in
the local registry and blood draw.

Higher E2 and E2/testosterone levels
and lower DHEA-S levels were associated
with an increased odds of PAH after

adjustment for age and BMI (Table 2). For
example, for each one-unit increase in ln
(E2) the odds of PAH were increased
almost 55-fold (95% CI, 7.2–420.3;
P, 0.001), whereas for each one-unit
increase in ln(DHEA-S) the odds of PAH

Table 1. Baseline Characteristics of Cases and Control Subjects

Variables Cases Control Subjects

Number 23 67
Age, yr 62 (55–70) 64 (55–68)
Race/ethnicity, n (%)
White 19 (83) 29 (43)
African-American 1 (4) 0 (0)
Asian 0 (0) 18 (27)
Hispanic 3 (13) 20 (30)

BMI, kg/m2 27 (24–31) 26 (24–29)
Diagnosis, n (%) —
Idiopathic PAH 16 (70)
Heritable PAH 2 (9)
Connective tissue disease–associated PAH 5 (22)

WHO functional class, n (%) —
I 1 (5)
II 5 (24)
III 13 (62)
IV 2 (10)

Six-min-walk distance, m 398 (233–440) —
Hemodynamics —
Right atrial pressure, mm Hg 11.0 (8.0–14.0)
Mean pulmonary artery pressure, mm Hg 48.0 (37.0–54.0)
Cardiac output, L/min 4.1 (3.0–5.1)
Pulmonary capillary wedge pressure, mm Hg 10.5 (7.0–14.0)
Pulmonary vascular resistance, Wood units 5.4 (3.1–12.4)

PAH therapies, n (%) —
Calcium channel blockers 4 (17)
Phosphodiesterase type 5 inhibitors 7 (30)
Endothelin receptor antagonists 6 (26)
Prostacyclin analogs 5 (22)
Combination therapy 8 (35)

Sex hormone levels
Estradiol, pg/ml 40.9 (34.9–52.6) 27.9 (20.9–36.8)
DHEA-S, µg/dl 67.8 (37.6–139.4) 133.7 (102.1–170.6)
Total testosterone, ng/dl 541 (304–795) 530 (401–667.5)
Bioavailable testosterone, ng/dl 147.4 (82.0–178.5) 129.3 (102.9–153.8)

Definition of abbreviations: BMI = body mass index; DHEA-S = dehydroepiandrosterone-sulfate;
PAH = pulmonary arterial hypertension; WHO=World Health Organization.
Data are shown as median (interquartile range) or number (percentage).

Table 2. Multivariate Generalized Mixed Models for the Prediction of Case Status by
Sex Hormone Levels

Sex Hormone Odds Ratio* 95% CI P Value

Estradiol 54.9 7.2–420.3 ,0.001
Estradiol/total testosterone 6.0 2.2–16.4 0.001
DHEA-S 0.1 0.0–0.3 0.001
Total testosterone 0.7 0.2–2.3 0.58
Bioavailable testosterone 0.8 0.2–3.7 0.78

Definition of abbreviations: CI = confidence interval; DHEA-S = dehydroepiandrosterone-sulfate.
*Per 1 ln increase. Matched on age within 5 yr and body mass index within 3 kg/m2 and adjusted for
age and body mass index.
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were significantly decreased (odds ratio, 0.1;
95% CI, 0.0–0.3; P = 0.001). No association
was found between total or bioavailable
testosterone and case status. Results were
unchanged when race/ethnicity was added
to the model and there was no relationship
between race/ethnicity and sex hormone
levels (data not shown). Model fit was
adequate and specifically the large effect
estimates and wide 95% CI for the E2
analysis were not caused by overfitting.

Men with PAH had higher levels of E2
(P, 0.001) and lower levels of DHEA-S

(P, 0.001), but there was no association
between case status and testosterone levels
(P = 0.66 for total testosterone) (Table 3
and Figure 1). Both ln(E2) and ln(DHEA-S)
had excellent discrimination (C statistic for
both hormones, 0.82), whereas testosterone
performed poorly in discriminating case
versus control status (C statistic, 0.53)
(Figure 2).

The relationship between sex hormone
levels and markers of disease severity in
cases is presented in Table 4. Higher levels
of E2 (and greater ratios of E2/testosterone)

were associated with shorter 6MWD and
higher right atrial pressures (RAP),
although the relationship with RAP was of
borderline significance. Conversely, higher
levels of DHEA-S were associated with
lower RAP and pulmonary vascular
resistance and may have been associated
with higher cardiac output.

We repeated our analyses in the
subgroup of cases with idiopathic or
heritable PAH (n = 18) and results were
unchanged (see Tables E1 and E2 in the
online supplement). A subgroup analysis
including only the 10 patients who were
treatment naive (incident cases) showed
persistent relationships between sex
hormone levels and case status, although
precision was lower because of the smaller
sample size (see Tables E3 and E4).

Discussion

Higher levels of E2 and E2/testosterone and
lower levels of DHEA-S were associated
with the presence of PAH in men. In cases,
higher E2 and lower DHEA-S levels were
associated with more severe hemodynamic
burden and higher E2 levels were associated
with poorer exercise tolerance. Testosterone
levels were not related to case status or
markers of disease severity. Our results
persisted in the subgroup of cases with
idiopathic or heritable disease and in
those who were treatment naive. To our
knowledge, this is the first study to show that
sex hormone levels are associated with the
risk of PAH in men.

Because PAH is more common in
women than in men, estrogen has been
implicated as a mechanistic factor in disease
development. Estrogen regulates bone
morphogenetic receptor type II (BMPR2)
expression through direct estrogen receptor
binding to the BMPR2 promoter (26). Sex-
specific changes in BMPR2 signaling have
been demonstrated in human pulmonary
artery smooth muscle cells (PASMC), with
lower levels of BMPR2 and the downstream
mediators inhibitor of DNA binding family
of proteins Id1 and Id3 transcribed in
female as compared with male cells, which
may explain why PAH is a female-
predominant disease (8, 27). Mair and
colleagues (8) also demonstrated that
exogenous estrogen significantly reduced
Id1 and Id3 expression in male PASMC
only, which could contribute to
dysregulated PASMC growth and explain

Table 3. Multivariate Mixed Modeling of Hormone Levels by Case Status

Sex Hormone Case Control P Value

Estradiol, pg/ml 42.0 (36.6–48.1) 27.6 (25.0–30.5) ,0.001
DHEA-S, µg/dl 61.0 (42.5–87.7) 129.9 (116.4–145.1) 0.001
Total testosterone, ng/dl 464.7 (318.0–679.0) 503.4 (457.5–553.7) 0.66
Bioavailable testosterone, ng/dl 119.2 (82.6–171.8) 124.3 (115.3–134.0) 0.82

Definition of abbreviation: DHEA-S = dehydroepiandrosterone-sulfate.
Data are expressed as least-square means with 95% confidence intervals. Matched on age within
5 yr and body mass index within 3 kg/m2 and adjusted for age and body mass index.
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Figure 1. Sex hormone levels by case/control status adjusted for age and body mass index (as
continuous measures). Interquartile range (box) and outlying values (whiskers) are shown. Estradiol
(A), dehydroepiandrosterone-sulfate (DHEA-S) (B), total testosterone (C), and bioavailable
testosterone (D).
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the correlation between higher levels of
circulating E2 and worse exercise tolerance
and greater hemodynamic burden in our
study.

E2 is metabolized by the cytochrome
P-450 system. Cytochrome monooxygenases
are expressed in PAH pulmonary arterioles
and the RV and may induce both pulmonary
vascular and RV microvascular changes
(7, 28). In a small study, 10 men with
heritable PAH had a higher ratio of 16a-
hydroxyestrone (which is proangiogenic)
to 2-methoxyestrone (which is antiproliferative)
(29). Male mice treated with 16-estrogen
had lower cardiac output (29). Although
we do not have data on BMPR2 status or
E2 metabolites, these observations suggest
that estrogen compounds may be
detrimental to cardiopulmonary function
in men with PAH.

Unlike the paradoxical observations
that have been made for E2, DHEA seems to
be consistently beneficial in male pulmonary
hypertension animal models (5, 9, 30–33).
A DHEA receptor has been described,
which is coupled to endothelial nitric oxide
synthase, and DHEA has also been shown
to regulate vascular endothelin-1 synthesis
and secretion (34, 35). Lower levels of

circulating DHEA-S in our cases as
compared with control subjects may
contribute to down-regulation of nitric
oxide and enhanced endothelin activation,
two major pathophysiologic drivers in
pulmonary vascular disease. Higher levels
of DHEA-S were associated with reduced
hemodynamic burden including lower
RAP and possibly higher cardiac output,
important predictors of outcome in PAH
(36). Interestingly, DHEA treatment exerts
beneficial effects on the RV (more-so than
on the pulmonary vasculature) following
exposure to SU5416/hypoxia, with
improved cardiac index and inhibition of
RV capillary rarefaction, fibrosis, and
oxidative stress, suggesting an RV-
disproportionate or -specific effect (5).
DHEA deficiency could explain poorer RV
ejection fraction improvements in response
to disease-specific therapy and concomitant
worse outcomes in men as compared with
women (37).

DHEA is a precursor in the
biosynthesis of testosterone and estrogen.
The higher levels of E2 and E2/testosterone
and lower levels of DHEA-S in PAH cases
suggest that aromatization (the process by
which steroid precursors and androgens

are converted to E2) may also be
abnormal in men with PAH. We found
estrone and E2 levels to be highly correlated
in postmenopausal women and men with
PAH (unpublished data), suggesting that
increased aromatase activity may play a
role in PAH. Aromatase is expressed in
male and female control and PAH lungs;
higher expression is seen in female
PASMC when compared with male
PASMC and aromatase inhibition via
anastrozole decreases circulating E2 levels
and attenuates pulmonary hypertensive
changes in female but not in male
animals (10). This implies that E2 may
play more of a dynamic role in the female
PAH phenotype and/or that hormones
may have unique effects depending on
the sex substrate.

Sex-based differences in the hormonal
environment may modulate endothelial
injury and PASMC growth via alterations in
inflammatory signaling pathways (38). E2
receptors on B cells lead to apoptosis
resistance and possibly a more detrimental
phenotype in men (39, 40). In animal
models of rheumatoid arthritis (a disease
with a strong female sex bias), B- and T-cell
responses differ by sex and can be altered
with castration and E2 treatment (41, 42).
Androgens have been linked to T
regulatory cell expansion and proliferation
(43). Lower testosterone levels have been
shown to increase inflammatory markers,
such as tumor necrosis factor-a in
hypogonadal men, although testosterone
was not linked to PAH risk or disease
severity in our study (44). Men with
rheumatoid arthritis have higher E2 and
lower DHEA-S levels compared with male
control subjects, similar to our findings in
PAH (45). Although inflammation is a
plausible mechanism for our observations,
sex hormone binding globulin levels (linked
to insulin resistance and inflammation)
(46–48) did not predict case status or
severity in our study (data not shown) and
we have found that sex hormone levels are
not associated with interleukin-6 levels in
patients with PAH (unpublished data).

There were some limitations. This was
a small study that included both prevalent
and incident PAH and middle to older age
men, making it difficult to exclude survival
bias. PAH in men is quite rare, however, and
is challenging to study in large numbers.
Cases were drawn from PAH referral
centers, whereas MESA enrolled from
communities, which may have resulted in
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selection bias. Cardiac magnetic resonance
imaging for the assessment of RV
morphology was available for control
subjects only, because magnetic resonance
imaging is not used routinely in clinical care
at the three study centers from which the
cases were drawn.

High E2 levels and altered
E2/testosterone balance have been linked to
both increased risk and protection from
systemic vascular disease depending on age
(18, 49). The influence of hormonal
fluctuations on cardiopulmonary function
over the lifespan (e.g., through

puberty/adolescence, or with waning
testosterone levels in older age) and at
various stages of PAH is unknown and
should be studied longitudinally. We chose
to focus on a limited number of sex
hormones given the bulk of preclinical and
observational data on the “estrogen
paradox” in PAH, but the entire
hypothalamic-pituitary-adrenal-gonadal
axis should be interrogated in pulmonary
vascular disease.

The blood draws and disease
measurements were not all simultaneous,
potentially causing bias that would be

expected to weaken the results by
introducing additional variability; the
associations may be even stronger than we
have shown. The correlations of hormone
levels with markers of disease severity in
prevalent treated patients might be even
stronger in incident patients where the
“signal-to-noise” ratio is likely to be more
pronounced, but we were underpowered to
make such comparisons. Still, this study is
among the first to characterize sex hormone
levels in men with World Health
Organization Group 1 pulmonary
hypertension. Although the differences in
sex hormone levels in PAH versus control
subjects could be attributed nonspecifically
to chronic illness, the similarity of
testosterone levels between the two groups
makes this unlikely.

Conclusions
Men with PAH have higher levels of E2 and
lower levels of DHEA-S as compared with
age- and BMI-matched healthy control
subjects. Higher E2 and lower DHEA-S-
levels, but not testosterone, were associated
with markers of disease severity. Although
the mechanisms for these observations are
unknown, hormone-receptor interactions,
aromatization of androgens into estrogens,
and DHEA-mediated regulation of the
endothelin and nitric oxide pathways
deserve further consideration, as does the
“estrogen paradox” in men with pulmonary
vascular disease. n
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