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Abstract: We describe general methods for determining higher-form symmetry groups
of known 5d and 6d superconformal field theories (SCFTs), and 6d little string theories
(LSTs). The 6d theories can be described as supersymmetric gauge theories in 6d which
include both ordinary non-abelian 1-form gauge fields and also abelian 2-form gauge fields.
Similarly, the 5d theories can also be often described as supersymmetric non-abelian gauge
theories in 5d. Naively, the 1-form symmetry of these 6d and 5d theories is captured by
those elements of the center of ordinary gauge group which leave the matter content of
the gauge theory invariant. However, an interesting subtlety is presented by the fact that
some massive BPS excitations, which includes the BPS instantons, are charged under the
center of the gauge group, thus resulting in a further reduction of the 1-form symmetry. We
use the geometric construction of these theories in M/F-theory to determine the charges
of these BPS excitations under the center. We also provide an independent algorithm
for the determination of 1-form symmetry for 5d theories that admit a generalized toric
construction (i.e. a 5-brane web construction). The 2-form symmetry group of 6d theories,
on the other hand, is captured by those elements of the center of the abelian 2-form gauge
group that leave all the massive BPS string excitations invariant, which is much more
straightforward to compute as it is encoded in the Green-Schwarz coupling associated to
the 6d theory.
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1 Introduction

Higher-form global symmetries [1] of theories play an important role in characterizing
refined properties, such as the spectrum of line- and higher-dimensional defect operators.
In the simplest instance they correspond to the center symmetries of Yang-Mills theories,
under which the Wilson lines are charged. In higher dimensions, in particular 5d and
6d much recent progress has been made in uncovering properties of superconformal field
theories (SCFTs) and related theories, such as little string theories (LSTs). SCFTs in 5d and
6d are intrinsically strongly coupled, and have an IR description in terms of an effective
theory on the Coulomb branch and tensor branch, respectively. One of the questions
that we will address in this paper is how to determine the higher-form symmetries of the
quantum theories from the effective description. The key subtlety here is the existence of
instanton particles or strings, which can be charged under the one-form symmetry, and can
thereby break the symmetry.
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This will be complemented with the analysis in geometry, using either the description
in terms of collapsable surfaces or a description in terms of generalized toric diagrams (i.e.
5-brane-webs). Much progress has been made on mapping out the theories in 6d, including
a putative classification of SCFTs [2–5] and LSTs [5, 6] from F-theory on elliptic Calabi-
Yau three-folds — for a review of the 6d classification, see [7]. In 5d recent progress has
been made in mapping out and furthering the classification of SCFTs using the M-theory
realization on canonical singularities [8–25].

Higher form symmetries in 6d and 5d SCFTs are highly constrained by the supercon-
formal algebra. As is shown in [26] (and related upcoming work by the same authors),
there cannot be any continous 1-form symmetry in such theories. Indeed, we will see that
1-form symmetries 5d and 6d SCFTs are discrete. From a geometric engineering point of
view, higher form symmetries were discussed using the M-theory realization of 5d SCFTs
on Calabi-Yau threefolds, as well as other M-theory geometric engineering constructions
such as G2-holonomy compactifications to 4d in [23, 27, 28]. Related works in Type IIB, for
4d SCFTs in particular Argyres-Douglas theories were obtained in [25, 29, 30]. In 6d the
defect group was analyzed in [31] and the 1-form symmetries in 6d SCFTs were discussed
from a geometric construction in [27]. The global form of the flavor symmetry in 6d was
discussed in [32], using the torsional part of the Mordell-Weil group of elliptic fibrations in
F-theory. In this paper the main new insight is two-fold: we determine how to compute
the higher form symmetry from the effective description in the IR, taking into account
non-perturbative instanton effects. We observe that in many cases these non-perturbative
effects are correlated with the existence of half-hypers in the theory, i.e. if the half-hypers
are completed into full hypers, the non-perturbative effects disappear. The other aspect of
this paper is the generalization to arbitrary 6d and 5d theories. This includes 6d SCFTs,
LSTs and the frozen phases of F-theory [33, 34]. 6d theories are closely connected with
5d theories by circle-reduction, with potentially added holonomies (in flavor symmetries),
or twists. We track the higher form symmetries through this dimensional reduction and
match it with one computed in 5d. This provides another confirmation for the approach
we propose, and confirms the geometric analysis.

In 5d a complementary approach uses the 5-brane webs, which engineer a class of 5d
SCFTs. These are dual to so-called generalized toric polygons (or dot diagrams) [35]. We
provide a prescription generalizing the analysis for toric models for computing the 1-form
symmetry for generalized toric polygons, and underpin this with a discussion of the Wilson
lines in the 5-brane web.

The plan of the paper is as follows: in section 2 we discuss the 6d case, starting with the
2-form symmetry in 6d SCFTs and LSTs, followed by their 1-form symmetry. In section 3
the 5d theories are discussed, both in terms of their relation to 6d theories, and the analysis
on the Coulomb branch. We furthermore provide an analysis of the 5d theories that have
a description as brane-webs, or generalized toric diagrams.

2 Higher-form symmetries of 6d SCFTs and LSTs

This section is devoted to the study of higher-form symmetries in supersymmetric 6d
theories. There are two known kinds of UV complete theories in six dimensions which
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do not include dynamical gravity. The first are supersymmetric conformal field theories
(SCFTs), and the second are supersymmetric little string theories (LSTs).

We would like to argue that it is sufficient for us to focus on a class of 6d theories1

which admit only two different kinds of higher-form symmetry groups, namely discrete 1-
form symmetry group O and discrete 2-form symmetry group T . One can obtain theories
outside this class by performing various kinds of discrete gaugings. For example, one can
gauge a subgroup O′ of the 1-form symmetry O to obtain a 6d theory with discrete 3-form
symmetry group. One can also stack the 6d theory with an SPT phase carrying 1-form
symmetry O′ before gauging the diagonal O′ symmetry, thus producing more 6d theories
which have 3-form symmetries. It might also be possible to obtain 6d theories carrying
4-form symmetry by gauging discrete subgroups, possibly in combination with an SPT
phase, of the 0-form symmetry group of the above special class of 6d theories. At the
time of writing of this paper, there is no known 6d theory that cannot be produced as
a discrete gauging of the above class of 6d theories. For any such discrete gauging, the
spectrum of higher-form symmetries (along with possible higher-group structures) and their
anomalies can be deduced from the knowledge of the spectrum of higher-form symmetries
and anomalies of the above special class of 6d theories.

Moreover, at the time of writing of this paper, all the known 6d theories in the above
class admit a geometric construction in F-theory.2 In this paper, we thus focus only on the
above set of “F-theoretic” 6d theories and provide methods to determine their 1-form and
2-form symmetry groups.

Our analysis will involve passing on to a generic point on the tensor branch of vacua3

of the 6d theory. We will assume that the full higher-form symmetry of the 6d theory is
visible at such a point on the tensor branch, if we also take into account massive BPS
excitations in the theory on the tensor branch. We will be presenting our analysis in field-
theory terms without referring to the technicalities of F-theory construction. An advantage
of this approach is that it allows us to treat the 6d theories arising from both the unfrozen
and the frozen phases of F-theory on an equal footing.

At a generic point on the tensor branch, an F-theoretic 6d SCFT or LST flows to a
6d N = (1, 0) gauge theory (carrying a semi-simple gauge algebra) along with a set of free
tensor multiplets4 in the IR. Moreover, the theory on the tensor branch carries massive
BPS string excitations in one-to-one correspondence with a special basis for these tensor
multiplets. These strings are charged under the 2-form gauge fields living in the tensor
multiplets. Their charges are captured by a symmetric positive semi-definite integer matrix
Ωij (which is the matrix participating in Green-Schwarz mechanism of gauge anomaly
cancellation) with non-positive off-diagonal entries, where i labels different elements in the

1From this point onward, a “6d theory” will refer to either a 6d SCFT or a 6d LST.
2These constructions can be divided into two types. The first kind of constructions are referred to be

in the “unfrozen phase” of F-theory and do not involve O7+ planes. The second type of constructions are
referred to be in the “frozen phase” of F-theory [33, 34] and involve O7+ planes. See [3, 6] for classification
of theories of first type and [5] for classification of theories of second type.

3Note that every known F-theoretic 6d theory admits a tensor branch of vacua.
4For an SCFT all these tensor multiplets are dynamical, while for an LST one of the tensor multiplets

is a non-dynamical background tensor multiplet.
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above-mentioned special basis for the tensor multiplets. This matrix Ωij is positive definite
for a 6d SCFT, and it is a positive semi-definite matrix of corank 1 for an irreducible5 LST.
The rank of Ωij will be denoted by r in what follows, and it is also known as the rank of
the 6d SCFT or LST to which Ωij is associated.

A subset of the above mentioned BPS strings arise as the BPS instanton strings for
the simple factors in the low-energy gauge algebra. Thus, each simple factor of the gauge
algebra is associated to some i and we refer to the corresponding simple factor of gauge
algebra as gi.

We can thus denote a 6d SCFT or LST by displaying the above discussed data in a
graphical notation of the following form:

Ωii

gi gj

Ωjj−ΩijΩkk

Ωll

gl

, (2.1)

where there is a node for each i. Each node is labeled by Ωii and the associated gauge
algebra gi. We leave gi empty for a node i if the BPS string corresponding to that node
is not an instanton string of any gauge algebra. The node labeled as k in the above graph
is such an example. Two nodes i and j are connected by an edge if the off-diagonal entry
Ωij 6= 0. If furthermore −Ωij > 1, then we insert a label at the middle of the edge indicating
this number −Ωij . If −Ωij = 1, then no such label is inserted. The edge between i and l
in the above graph is such an example. See [21] for more details on this notation in the
context of 6d SCFTs.

2.1 2-form symmetry

2.1.1 2-form symmetry of 6d SCFTs

If we forget about the BPS strings for a moment, then there is a U(1) 2-form symmetry
associated to each tensor multiplet i under which the “Wilson surface” for the 2-form gauge
field living within the tensor multiplet i has charge 1. Thus, we obtain a potential U(1)r
2-form symmetry.6 When the BPS strings are included, the 2-form symmetry is reduced
to the subgroup of U(1)r under which the BPS strings are uncharged.

The 2-form symmetry in the presence of the charged strings is then found by computing
the Smith normal form T ij of the matrix Ωij , which, due to the positive definiteness of Ωij ,
is a diagonal matrix with the diagonal entries being positive integers. Let ni be the i-th

5We call an LST irreducible if it cannot be written as a stack product of other LSTs.
6It should be noted that this U(1)r 2-form symmetry is spontaneously broken along the tensor branch.

This is akin to the spontaneous breaking of U(1)r electric 1-form symmetry in an abelian gauge theory [1].
Since the 2-form symmetry T of 6d SCFTs and LSTs embeds into this U(1)r 2-form symmetry, T is always
spontaneously broken along the tensor branch as well. We expect T to be spontaneously broken at the
conformal point of a 6d SCFT too.
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diagonal entry of T ij . Then the 2-form symmetry group T can be written as

T =
r∏
i=1

Zni , (2.2)

i.e. a product of Zni for all i, where Z1 denotes the trivial group.
The appearance of the Smith normal form is easy to understand from the point of

view of Pontryagin dual of the 2-form symmetry group. Before accounting for the charged
strings, the dual is the lattice Zr which captures the possible charges of surface defects
and dynamical strings under the 2-form gauge fields. The matrix Ωij defines a sublattice
[Ωij ] · Zr inside the lattice Zr which is spanned by vectors

vi :=
∑
j

Ωijuj , (2.3)

where ui is the standard basis of Zr. This sublattice captures the charges of the dynamical
strings. The charges under T are then captured by the quotient lattice

Zr

[Ωij ] · Zr , (2.4)

whose Pontryagin dual is T . After changing the basis inside Zr and [Ωij ] ·Zr, we can write
the above quotient lattice as

Zr

[T ij ] · Zr =
r⊕
i=1

Z
niZ

, (2.5)

The Pontryagin dual of each subfactor is isomorphic to itself since ni > 0, and hence we
find that the 2-form symmetry group T is as shown in (2.2).

2.1.2 2-form symmetry of 6d LSTs

The structure of 6d LSTs is similar to that of 6d SCFTs, the crucial difference being that
the matrix Ωij is only positive semi-definite for 6d LSTs. Naively, one might expect that
the 2-form symmetry group for an LST would be captured by the quotient lattice

Zr+1

[Ωij ] · Zr+1 , (2.6)

where the total number of nodes i is r+ 1 as Ωij has rank r and corank 1 for an irreducible
LST. The fact that the corank of Ωij is 1 implies that the above quotient lattice contains
one factor of Z along with a torsion part. That is, the above quotient lattice takes the
following form

r⊕
i=1

Z
niZ
⊕ Z . (2.7)

Taking its Pontryagin dual, the above naive expectation would lead us to believe that the
2-form symmetry group for a LST takes the form

r∏
i=1

Zni ×U(1) . (2.8)
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However, we must take into account the fact that one of the tensor multiplets, out of the
r + 1 tensor multiplets associated to the nodes i, is non-dynamical. Hence this tensor
multiplet does not generate a potential U(1) 2-form symmetry, and we should mod out
this U(1) factor from (2.8) since we have taken it into account in our above calculation.
Thus, the 2-form symmetry of a little string theory is

T =
r∏
i=1

Zni . (2.9)

2.1.3 Examples
Example 1: consider the case of N = (2, 0) SCFTs. These can be described in terms of
a simply laced simple Lie algebra g. The matrix Ωij is the Cartan matrix of g. Then, T
simply coincides with the center of g.

Similarly, N = (2, 0) LSTs are also described in terms of a simply laced simple Lie
algebra g but the associated matrix Ωij is the Cartan matrix of g(1), which is the untwisted
affine Lie algebra associated to g. Again, T coincides with the center of g.

Example 2: consider the following 6d SCFT arising in the frozen phase of F-theory

4
so(n)

22

su(n− 8)
(2.10)

Its associated tensor branch gauge theory contains gauge algebra so(n) ⊕ su(n − 8) with
the matter content being a hyper in bifundamental representation plus n − 16 hypers in
fundamental representation of su(n− 8). The matrix Ωij for this theory is(

4 −2
−2 2

)
. (2.11)

The Smith normal form of the above matrix is(
2

2

)
, (2.12)

and thus T = Z2 × Z2.

Example 3: consider the LST

4
so(2n+ 8)

12

sp(n)
(2.13)

whose tensor branch gauge theory contains a full hypermultiplet in the bifundamental.
The 2-form symmetry group can be computed to be

T = Z1 . (2.14)

One can obtain a 6d SCFT from a LST by deleting a node. Note that a 6d SCFT
obtained this way need not have the same 2-form symmetry group as that of the 6d LST.
For example, deleting the sp(n) node in the above LST, we obtain the 6d SCFT

4
so(2n+ 8)

(2.15)

for which T = Z4.

– 6 –



J
H
E
P
0
2
(
2
0
2
1
)
1
5
9

2.1.4 Relative nature of 6d SCFTs and LSTs

General 6d SCFTs and LSTs are relative theories, which means that they are more properly
thought of as theories living on the boundaries of some particular kind of 7d topological
quantum field theories (TQFTs). It is well-known in the context of 6d SCFTs having a
construction in the unfrozen phase of F-theory that the 7d TQFT associated to such a 6d
SCFT is captured by the 2-form symmetry group (also known as the defect group [31]) T
of the 6d SCFT.

This should admit a straightforward generalization to 6d SCFTs constructed in the
frozen phase of F-theory and LSTs, for which the recipe to compute T has been pro-
vided above.

2.2 1-form symmetry of 6d SCFTs and LSTs

If we forget about the hypermultiplet matter content of the N = (1, 0) low-energy gauge
theory and the dynamical BPS strings, then the 1-form symmetry is the product of the
center7 Γi of each simple factor gi of the tensor branch gauge algebra.8 Including the hy-
permultiplets and BPS strings, the 1-form symmetry O of the theory becomes the subgroup
of ∏i Γi under which all hypermultiplets and BPS strings are uncharged.

The charges of (full or half) hypermultiplets under ∏i Γi is determined by knowing the
representation R of g = ⊕igi formed by these hypermultiplets. We will describe a way to
compute the charge of any arbitrary representation R under ∏i Γi in section 3.2.1. The
charges of representations relevant in the context of 6d SCFTs and LSTs are displayed in
table 1. The charges for arbitrary reps are provided in equations (3.46) and (3.47).

As far as charges of BPS strings are concerned, it is often the case that the charges
of BPS strings under ∏i Γi are already accounted by the charges of hypermultiplets un-
der ∏i Γi. However, in some cases, BPS strings lead to independent contributions not
accounted by the hypermultiplets. The hallmark of these cases is that either they involve
tensor multiplets that are not paired to a gauge algebra, or the matter content is such that
we have a half-hyper in some irreducible representation of g = ⊕igi, or the Z2 valued theta
angle of a gi = sp(n) is relevant. More exhaustively, these cases are listed below:

1. Consider a node i with Ωii = 1 and gi trivial. Then, look at the set9 of nodes j such
that Ωij = −1 and gj is non-trivial. It is well-known that the sum ⊕jgj of these gj

7More precisely, we are working with a form of the theory where the gauge groups Gi realizing all the
gauge algebras gi are simply connected. Other forms of the theory having non-simply-connected gauge
groups can be obtained from this form of the theory by gauging the 1-form symmetries, if any. Throughout
this paper, we will abuse the language and refer to the center Z(G) of the simply connected group G of a
simple algebra g as the “center of the simple algebra g”.

8The N = (1, 0) low-energy non-abelian gauge theory is free in the extreme IR, and hence described
by a bunch of free vector multiplets in the far IR. The 1-form symmetry associated to these free vector
multiplets is spontaneously broken. Since, as we will see, the 1-form symmetry O of the 6d SCFT or LST
is a subgroup of

∏
Γi 1-form symmetry which is further embedded into the 1-form symmetry of the free

vector multiplets in the IR, O is spontaneously broken along the tensor branch. We also expect O to be
spontaneously broken at the conformal point of a 6d SCFT.

9This set is trivial if there is a node j with Ωij < −1. See the discussion later in this subsection
accounting for the possibility of such nodes.
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Gauge algebra Center Representations Charge
su(n) Zn F

Λ2

Λ3

S2

1 (mod n)
2 (mod n)
3 (mod n)
2 (mod n)

so(2n+ 1) Z2 F
S

0 (mod 2)
1 (mod 2)

sp(n) Z2 F
Λ2

Λ3

1 (mod 2)
0 (mod 2)
1 (mod 2)

so(4n+ 2) Z4 F
S
C

2 (mod 4)
1 (mod 4)
3 (mod 4)

so(4n) Z2 × Z2 F
S
C

(1 (mod 2), 1 (mod 2))
(1 (mod 2), 0 (mod 2))
(0 (mod 2), 1 (mod 2))

e6 Z3 F 1 (mod 3)
e7 Z2 F 1 (mod 2)
e8 Z1 F 0 (mod 1)
f4 Z1 F 0 (mod 1)
g2 Z1 F 0 (mod 1)

Table 1. Centers of various gauge algebras and charges of some of the representations under the
center of the gauge algebra. The adjoint representation A is not mentioned in the table above since
it always has charge 0 under the corresponding center. F denotes the fundamental representation for
su(n), sp(n); the vector representation for so(n); and the irreducible representations of dimensions
7,26,27,56 for g2, f4, e6, e7 respectively. We often refer to F as the “fundamental representation”
of the corresponding algebra. Λ2 and Λ3 denote the irreducible two and three index antisymmetric
representations for su(n) and sp(n). S2 denotes the two-index symmetric irrep for su(n). S and
C denote the irreducible spinor reps of different chirality for so(2n); and S denotes the irreducible
spinor rep for so(2n+1). The charges for arbitrary irreps are provided in equations (3.46) and (3.47).

is a subalgebra of e8. Correspondingly, the adjoint representation of e8 decomposes
as some representation R of ⊕jgj . Then, the charge of the BPS string corresponding
to node i is captured by the charge of R under ∏j Γj .
Schematically the graph near the node i takes the following form

1
gj

ΩjjΩkk

gk

Ωll

gl

(2.16)

2. Consider a situation, where we have two nodes i and j such that gi = sp(n) and
gj = so(m) for n > 0 and m 6= 8, and Ωij = −1. The matter content between

– 8 –



J
H
E
P
0
2
(
2
0
2
1
)
1
5
9

sp(n) and so(m) is a half-hyper in a mixed representation of sp(n) ⊕ so(m) with
mixed representation being the bifundamental representation. In this case, we need
to account for the charge of BPS instanton strings for sp(n) under center Γj of so(m).
We can take this string to be charged under Γj as the irreducible spinor representation
S of so(m) is charged under Γj .
Schematically the graph near the nodes i and j takes the following form

1
sp(n) so(m)

Ωjj ΩkkΩll

gl

gm
Ωmm

(2.17)

3. Now, consider a situation where we have two nodes i and j such that gi = sp(n)
and gj = so(8) for n > 0, and Ωij = −1. In this case, the matter content between
sp(n) and so(8) is a half-hyper in a mixed representation of sp(n)⊕so(8). The mixed
representation takes the form F ⊗ R where F is the fundamental representation of
sp(n) and R is one of the following 3 representations of so(8): vector F, spinor S, or
cospinor C. If R = F, then the charge of BPS instanton string for sp(n) under Γj
can be taken to be the same as that of the representation S of so(8). If R = S, then
the charge of BPS instanton string for sp(n) under Γj can be taken to be the same
as that of the representation C of so(8). If R = C, then the charge of BPS instanton
string for sp(n) under Γj can be taken to be the same as that of the representation
F of so(8).
The schematic form of the graph near nodes i and j is displayed in (2.17) where
m = 8.

4. Consider a situation, where we have two nodes i and j such that Ωii = 1, Ωjj = 2,
Ωij = −1, gi = sp(n) and gj = su(2n + 8). The matter content between sp(n) and
su(2n + 8) is a hyper in bifundamental. In this case, the 6d sp(n) gauge algebra
requires the input of a discrete theta angle θ which takes values 0, π. For θ = π, we
need to account for the charge of BPS instanton string for gi = sp(n) under its own
center Γi = Z2, and the charge is 1.
The graph near the nodes i and j takes the following schematic form

2
su(2n+ 8) gk

Ωkk−Ωjk1

Ωll

gl

sp(n)π
(2.18)

where we have displayed the theta angle for sp(n) which is relevant since all the 2n+8
fundamental hypers of sp(n) are gauged by an su gauge algebra.
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The fact that BPS strings carry non-trivial charges under gi (and hence Γi) in the first
three of the above four cases is a known fact in the literature. On the other hand, the fact
that the above four cases are the only cases where one needs to account for the charges of
BPS strings under Γi requires a justification, which we will provide in section 3.3.3.

In any case, let us address a few pressing questions that might arise upon a reading of
the above list:

1. First, it is possible, in the context of 6d SCFTs and LSTs, to have two nodes i and
j with Ωii = 1, gi trivial, Ωij < −1 and gj non-trivial. In this case, the BPS string
associated to i will be charged under gj , so why is this possibility not accounted in
the above list? It turns out that in this case, the charge of the BPS string under Γj
is trivial. To see this, notice that the only theory where this situation occurs is the
following 6d LST

4
so(8)

12
, (2.19)

for which so(8) is embedded into e8 with embedding index 2. Thus, the BPS string
corresponding to the right node is charged as

(S⊗ S)⊕ (C⊗ C) (2.20)

under so(8) which has trivial charge under the Z2 × Z2 center of so(8).

2. Second, how about the cases, where we have a node i with Ωii = 2 and gi trivial?
In this case, the set of nodes j such that Ωij < 0 and gj non-trivial is either trivial,
or includes a single node (which we label by j) with Ωij = −1 and gj = su(2).
Moreover, the su(2) gauge algebra on node j must carry a positive number of full
hypers in fundamental of su(2), out of which one half-hyper must be trapped by the
node i, i.e. the half-hyper cannot be gauged by some other gauge algebra gk. This
half-hyper completely destroys the center of su(2), and hence one does not need to
account for the contribution from BPS string associated to node i.

3. Third, in the above list the only possibilities that arise have a half-hyper charged in
a mixed representation of two simple gauge algebras. What about the possibility of
having a half-hyper charged in a mixed representation of more than two simple gauge
algebras? In the context of 6d SCFTs and LSTs, this possibility is only realized
in the 6d LST with the associated 6d gauge theory carrying su(2)3 gauge algebra
along with a half-hyper in trifundamental plus two extra full hypers in fundamental
representation of each su(2). In this case, the extra full hypers break the center of
each of the three su(2)s and hence one does not need to consider the contributions
of BPS strings.

4. Fourth, how about the cases where we have a half-hyper charged under a single gauge
algebra only? In all of these cases, it turns out that there is no 6d SCFT or LST
where the hypermultiplet content does not already capture the contribution of BPS
strings. For example, consider a node i with Ωii = 3 and gi = so(12). Any 6d
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theory containing this node contains a half-hyper charged as S of so(12) and 5 hypers
charged as F. Since the half-hyper in S cannot be gauged by any other gauge algebra
gj for a 6d SCFT or LST, the Z2

2 center of so(12) is broken down to the Z2 subgroup
under which F and C reps of so(12) have charge 1. It turns out that there is no
way to gauge the 5 hypers in F and to simultaneously complete the node i into a 6d
SCFT or LST such that the above Z2 subgroup of the center of so(12) would survive
as 1-form symmetry. Thus, the center of so(12) is already completely broken by the
hypermultiplet content, and we do not get to the point where we need to discuss the
charge of BPS string associated to i under Γi.

2.2.1 Examples

Example 1: consider the 6d SCFT

4
so(4n)

(2.21)

where n ≥ 2. The center of so(4n) is Z2 × Z2 under which fundamental, spinor and
cospinor representations have charges (1, 1), (1, 0) and (0, 1) respectively. The above 6d
SCFT contains 4n − 8 hypers in fundamental representation. For n = 2, there are no
hypers and we find

O = Z2 × Z2 . (2.22)

For n > 2, the fundamental hypers are uncharged under only a diagonal combination of
the two Z2s and thus

O = Z2 . (2.23)

For the 6d SCFT

4
so(4n+ 2)

(2.24)

the center is Z4 under which fundamental has charge 2 and spinor/cospinor have charges
±1. The 6d SCFT contains 4n− 6 hypers and n ≥ 2 for the theory to exist. The presence
of fundamental hypers implies that the 1-form symmetry for this theory is

O = Z2 . (2.25)

In all of the cases considered in this example, there is no extra breaking induced by
the instanton string.

Example 2: consider the 6d SCFT

4
so(2n)

1
sp(2n− 8)

(2.26)

Consider first the n > 4 case, for which we have a half-hyper in the bifundamental and
3n−8 full hypers in fundamental of sp(2n−8). The presence of fundamentals of sp(2n−8)
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breaks the Z2 center 1-form symmetry associated to sp(2n − 8) down to Z1. And the
presence of bifundamental breaks the center 1-form symmetry associated to so(2n) down
to the Z2 subgroup under which fundamental representation is uncharged.

However, this is not the end of story, as the BPS instanton string associated to the
sp(2n − 8) has non-trivial charge under the above Z2 subgroup of the center of so(2n).
Thus, we find that the 1-form symmetry for the above 6d SCFT is trivial. That is,

O = Z1 . (2.27)

For n = 4, sp(2n− 8) = sp(0) denotes that there is no gauge algebra associated to the
right node and we can write the quiver as

4
so(8)

1 (2.28)

The potential 1-form symmetry is Z2 × Z2 coming from the center of so(8). There are no
hypermultiplets, but we again have to account for the BPS string associated to the right
node. This string is charged as the adjoint of the total flavor symmetry e8 associated to the
right node. The so(8) gauge algebra embeds into e8 such that the adjoint of e8 decomposes
into a representation of so(8) which contains both the spinor and cospinor representations.
Thus, both the Z2s are broken by this BPS string and we again obtain

O = Z1 . (2.29)

Consider also the 6d LST

4
so(2n)

12

sp(n− 8)
(2.30)

whose matter content is a full hyper rather than a half-hyper in the bifundamental of the
two algebras. According to our general discussion above, due to the presence of a full
hyper, we don’t need to consider the contribution of BPS instanton strings. Any element
of the center Γso of so(2n) that acts non-trivially on the representation F of so(2n) can be
combined with the generator of the center Z2 of sp(n − 8) to produce an element of the
1-form symmetry group of the above theory. Thus, we find that

O ' Γso . (2.31)

Example 3: consider the 6d SCFT

4
so(2n)

22

su(2n− 8)
(2.32)

where n ≥ 8. The theory contains a bifundamental hyper plus 2n−16 fundamental hypers
for su(2n − 8). Let us first consider the case n > 8. Then, the 2n − 16 fundamental
hypers of su(2n − 8) completely destroy the center Z2n−8 1-form symmetry associated to
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su(2n−8). As above, the bifundamental hyper leaves only a Z2 1-form symmetry out of the
center 1-form symmetry associated to so(2n). The BPS strings do not contribute to any
additional breaking of the potential 1-form symmetry since the theory does not contain any
half-hypers in mixed representation of so(2n)⊕ su(2n− 8). Thus, the 1-form symmetry is

O = Z2 , (2.33)

for n > 8.
Now consider the case n = 8. We can combine the order two element in the center

Z8 associated to su(2n − 8) = su(8) with the generators of the two Z2s in the center of
so(2n) = so(16) to obtain two Z2 symmetries under which the hypermultiplet content is
uncharged. Due to the same reason as for the case n > 8, the BPS strings do not further
reduce the 1-form symmetry in the n = 8 case as well. Thus, the above 6d SCFT for n = 8
has 1-form symmetry

O = Z2 × Z2 . (2.34)

Example 4: consider the 6d SCFT

4
so(2n+ 8)

1 4
so(2n+ 8)sp(n)

(2.35)

which makes sense for n ≥ 0. Consider first the case of n > 0. Then, the hypermultiplet
content of the theory is

1
2(F,F, 1)⊕ 1

2(1,F,F)⊕ n(F, 1, 1)⊕ n(1, 1,F) , (2.36)

where F denotes the fundamental representation. This breaks the Z2 center of sp(n), but
leaves a Z2 element inside the center of each so(2n+ 8) unbroken. The unbroken Z2 inside
so(2n + 8) acts non-trivially on the spinor and cospinor representations but acts trivially
on the fundamental representation. The BPS instanton string for sp(n) has charge (1, 1)
under the unbroken Z2

2 potential 1-form symmetry coming from the two so(2n+ 8) gauge
algebras. Thus we see that only a diagonal combination of the two surviving Z2s associated
to the two so(2n+ 8)s survives. That is, the 1-form symmetry for n > 0 is

O = Z2 . (2.37)

Notice that if one of the two so(2n + 8) was not gauged, then we would have obtained a
trivial 1-form symmetry as discussed in an example above.

Now consider the case of n = 0 for which we can write the quiver as

4
so(8)

1 4
so(8)

(2.38)

This theory contains no charged hypermultiplets. But the BPS string associated to the
middle node is charged under the adjoint of its e8 flavor symmetry, which decomposes
under the two so(8)s as

(A, 1)⊕ (1,A)⊕ (F,F)⊕ (S, S)⊕ (C,C) (2.39)

– 13 –



J
H
E
P
0
2
(
2
0
2
1
)
1
5
9

where A denotes the adjoint representation. Thus we see that the BPS string is left invariant
by a diagonal combination of the centers of the two so(8). Thus, the 1-form symmetry is

O = Z2 × Z2 . (2.40)

This result can be extended to the 6d SCFT

4
so(8)

1 4
so(8)

1 4
so(8)

· · · (2.41)

for which only a diagonal combination of the centers of all the so(8)s survives, thus lead-
ing to

O = Z2 × Z2 . (2.42)

Example 5: consider the 6d SCFT

6
e6

1 3
su(3)

(2.43)

which carries no charged hypers and for which the BPS string associated to the middle
node is charged under e6 ⊕ su(3) as

(A, 1)⊕ (1,A)⊕ (F, F̄)⊕ (F̄,F) , (2.44)

where F = 27 for e6. This is left invariant by a diagonal Z3 combination of the Z3 centers
associated to e6 and su(3), thus leading to the final result

O = Z3 (2.45)

This result can be extended to the 6d SCFTs

3
su(3)

1 6
e6

1 3
su(3)

· · ·16
e6 (2.46)

and

3
su(3)

1 6
e6

1 6
e6

· · ·16
e6 (2.47)

for which again only a diagonal Z3 combination of all the centers survives, leading to

O = Z3 (2.48)

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
1
5
9

Example 6: consider the following LST arising in the frozen phase of F-theory

1
sp(n)π

2 4
so(2n+ 16)su(2n+ 8)

2
, (2.49)

for n > 0, where the theta angle for sp(n) is relevant since all of the 2n + 8 fundamental
hypers of sp(n) have been gauged by su(2n + 8) gauge algebra, and we have chosen this
theta angle to be π. The hypermultiplet content forms a representation

(F,F, 1)⊕ (1,F,F) , (2.50)

of sp(n) ⊕ su(2n + 8) ⊕ so(2n + 16). The potential center 1-form symmetry is Γ := Z2 ×
Z2n+8 × Γso where Z2 factor is the center of sp(n), Z2n+8 factor is the center of su(2n+ 8)
and Γso is the center of so(2n + 16), where Γso = Z4 if n is odd and Γso = Z2

2 when n is
even). This potential 1-form symmetry is broken by the above hyper content to a subgroup
Γ̃ of Γ. It turns out that Γ̃ is isomorphic to Γso with the generators of Γ̃ being obtained by
combining the generators of the Γso factor of Γ combined with the order 2 element in the
Z2n+8 factor of Γ combined with the generator of Z2 factor of Γ.

However, the BPS string associated to the sp(n) node has charge 1 under the Z2 factor
of Γ since the theta angle for sp(n) is π, and hence the Γ̃ potential 1-form symmetry is
completely broken since all the generators of Γ̃ involve the generator of the Z2 factor of Γ.
We find that the above LST has

O = Z1 . (2.51)

3 1-form symmetry of 5d N = 1 theories

In this section, our aim is to study higher-form symmetries of 5d N = 1 theories. More
precisely, we aim to study mass-deformations of 5d SCFTs and circle compactifications of
6d SCFTs and LSTs.

Just as in the previous section, we would like to argue that it is sufficient for us to focus
on a class of 5d theories, which admit only one kind of higher-form symmetries, namely
1-form symmetries.10 The argument is again that all known 5d theories arise by discrete
gaugings of the above class of theories.11 Moreover, all the known 5d theories in the above
class admit a geometric construction in M-theory which we will be using to study these
theories. The geometric constructions that we will consider require extra discrete data
that we fix by demanding that all the non-compact complex curves can be wrapped by
M2-branes. This severely limits the non-compact complex surfaces that can be wrapped
by M5-branes. See [27, 28] for more discussion about this discrete data. It is this above
mentioned choice of discrete data that gives rise to the 5d theories in the above mentioned
class of 5d theories that we will be studying.

10Just like the case of 1-form and 2-form symmetries of 6d theories, these 1-form symmetries of 5d theories
will also be spontaneously broken in all kinds of vacua we discuss below.

11See however [25] for some proposed counter-examples. In these cases, there are 3-form symmetries,
whose interpretation remains to be fully understood in terms of the classification of 5d SCFTs.
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3.1 1-form symmetry from the Coulomb branch

At a generic point on its Coulomb branch, a 5d N = 1 theory flows to a 5d N = 1 abelian
gauge theory with gauge group U(1)r, where r is often called as the rank of the original
5d N = 1 theory. We can choose a basis for U(1)r such that the U(1)r charges of the line
defects and dynamical particles in the theory lie in a lattice generated by primitive Wilson
lines Wi having charge +1 under U(1)i gauge group and charge 0 under U(1)j gauge group
for j 6= i.

Each U(1)i gauge group gives rise to a potential U(1) 1-form symmetry, and we can
identify the actual 1-form symmetry group O of the 5d N = 1 theory as the elements of
these potential U(1) 1-form symmetries under which all the BPS (and massless) particles
are uncharged.

3.1.1 1-form symmetry from M-theory geometry

The above discussed procedure of determining the 1-form symmetry of a 5d N = 1 theory
from its Coulomb branch is easy to implement if the 5d N = 1 theory admits a geometric
construction in M-theory. In such a construction, the Coulomb branch of 5d N = 1 theory
is constructed by compactifying M-theory on a non-compact Calabi-Yau threefold (CY3).

The CY3 contains a collection of irreducible compact Kahler surfaces Si. Decomposing
the M-theory 3-form gauge field in terms of a basis of 2-forms associated to Si leads to
a collection of 1-forms Ai which are identified as the gauge fields for gauge groups U(1)i.
The CY3 also contains compact holomorphic curves which lead to dynamical BPS particles
via compactification of M2-branes on these curves. The charge of a particle arising from a
curve C under U(1)i is given by the intersection number C · Si.

Typically, the surfaces Si can be identified as blowups of Hirzebruch surfaces or blowups
of P2. Moreover, the CY3 can often be presented in a form such that each curve C can
be written as a linear combination of compact curves living inside Si. The intersection
number C · Si can then be traced to intersection theory of Hirzebruch surfaces and P2.

To do this, let α parametrize different intersections between Si and Sj for i 6= j.
Then the locus of αth intersection can be identified as a compact curve C(α)

ij living in Si

and a compact curve C(α)
ji living in Sj . In other words, we say that the αth intersection

between Si and Sj is produced by identifying the curve C(α)
ij living in Si with the curve

C
(α)
ji living in Sj . We refer to C(α)

ij and C
(α)
ji as the gluing curves corresponding to this

intersection. Moreover, let us define the total gluing curves for the intersections of Si and
Sj as Cij := ∑

αC
(α)
ij and Cji := ∑

αC
(α)
ji .

Similarly, different self-intersections of a surface Si can be obtained by gluing C
(α)
i

with D(α)
i where C(α)

i and D(α)
i are curves living in Si. In this case, we identify the total

self-gluing curve as Ci := ∑
αC

(α)
i +∑

αD
(α)
i .

If a compact curve C lives in Si then its intersection number with Sj for j 6= i can be
written as

C · Sj = (C · Cij)Si , (3.1)

– 16 –



J
H
E
P
0
2
(
2
0
2
1
)
1
5
9

where the brackets with a subscript Si represents the fact that the intersection can be
taken inside the surface Si without regard for the details of the rest of the CY3. On the
other hand, the intersection number of C with Si can be written as

C · Si = (C ·Ki)Si + (C · Ci)Si = 2g(C)− 2− (C · C)Si + (C · Ci)Si (3.2)

where Ki is the canonical divisor of Si and we have used the adjunction formula (applied
to the surface Si) to write its intersection with C in terms of the self-intersection of C
(inside Si) and the genus g(C) of C.

The upshot of the above discussion is that we can reduce the calculation of U(1)i
charges of various dynamical particles in the 5d N = 1 theory to the calculation of some
intersection numbers inside the surfaces Si, where an intersection number inside Si can
be computed without regard for the details of the rest of the CY3. Now we only need to
discuss the intersection theory of curves inside a fixed surface Si.

As we remarked above, each Si is either a blowup of a Hirzebruch surface or a blowup
of P2. The first homology of a blowup of Hirzebruch surface can be described in terms of
curves e, f and xi, where e is the homology class of the total transform (under all blowups)
of the base P1 of the Hirzebruch surface, f is the homology class of the total transform
(under all blowups) of a fiber P1 of the Hirzebruch surface, and xi is the homology class of
the total transform (under subsequent12 blowups j > i) of the exceptional P1 introduced
by the ith blowup.

Similarly, the first homology of a blowup of P2 can be described in terms of curves l
and xi, where l is the homology class of the total transform (under all blowups) of a P1

inside P2, and xi is the homology class of the total transform (under subsequent blowups
j > i) of the exceptional P1 introduced by the ith blowup.

The intersection numbers between these curves in the case of a Hirzebruch surface Fn
of degree n are

e · e = −n (3.3)
f · f = 0 (3.4)

xi · xj = −δij (3.5)
e · f = +1 (3.6)
xi · e = 0 (3.7)
xi · f = 0 . (3.8)

We will also use the h curve which is defined as

h := e+ nf . (3.9)

12For our convenience, when we consider concrete geometries below, we will not adopt the order that the
blowup j is performed after blowup i if j > i.
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On the other hand, the intersection numbers in the case of P2 are

l · l = +1 (3.10)
xi · xj = −δij (3.11)
xi · l = 0 . (3.12)

Using the above information, we can determine the U(1)i charges of any dynamical particle
on the Coulomb branch of the 5d N = 1 theory T in consideration. Similar to the case in
section 2.1, the 1-form symmetry group O for T can be computed from the point of view
of its Pontryagin dual. For this purpose, let Zr be the lattice of possible U(1)i charges.
Then, let C be a set of curves defined as follows.

For each Si, which is a blowup of a Hirzebruch surface, we add the curves e, f, xi into
C, and for each Si, which is a blowup of P2, we add the curves l, xi into C.

Let α parametrize different elements of C. Then, the U(1)i charges of elements of C
define the charge matrix Qαi, which can be used to describe O as the Pontryagin dual of
the quotient lattice13

Zr

[Qαi] · Zr =
r⊕
i=1

Z
niZ

, (3.13)

where ni := Q̃ii and Q̃αi is the Smith normal form of Qαi.
If the 5d N = 1 theory is a 5d SCFT or a compactification of a 6d SCFT (twisted or

untwisted) on a circle of finite non-zero radius, then each ni > 0, and we can write the
Pontryagin dual as

O =
r∏
i=1

Zni , (3.14)

with Z1 being the trivial group.

3.2 1-form symmetry of 5d N = 1 non-abelian gauge theories

As in section 2.2, the 1-form symmetry of a non-abelian 5d N = 1 gauge theory with
gauge algebra g = ⊕igi (where gi are simple) can be described as a subgroup O of ∏i Γi
where Γi is the center of gi. One necessary condition on O is that its elements should leave
all the (full or half) hypermultiplets invariant. As in section 2.2, we also need to include
the instantonic excitations. In that section, the effect of these excitations was captured
by requiring that the fundamental BPS instanton strings be uncharged under elements of
O. In the case of 5d N = 1 theories, the effect of instantonic excitations is captured by
requiring that BPS instanton particles are left invariant by elements of O.

Some examples of instantonic contributions to (the breaking of) 1-form symmetry in 5d
theories were already studied in [27]. Two such examples are obtained by considering a pure
5d N = 1 gauge theory with a simple gauge algebra g = su(n), sp(n). As discussed in the
above reference, for a pure su(n) theory with Chern-Simons (CS) level k, the instantonic
contributions are captured by accounting for an instanton particle of charge k (mod n)
under the center Zn of su(n); and for a pure sp(n) theory with theta angle θ = mπ (mod 2π),

13This result was first derived in [27].
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the instantonic contributions are captured by accounting for an instanton particle of charge
m (mod 2) under the center Z2 of sp(n).

In this subsection, we will discuss other examples where instantonic contributions are
relevant to the discussion of 1-form symmetry of 5d gauge theories. To this end, we will
employ the M-theory construction of these 5d gauge theories.

3.2.1 1-form symmetry of non-abelian gauge theories from geometry

In section 3.1.1, we discussed geometric constructions of Coulomb branches of 5d N = 1
theories. At special loci in the Coulomb branch, the low-energy theory enhances from an
abelian gauge theory to a non-abelian gauge theory such that in the vicinity of such a
locus we can regard the abelian gauge theory as arising on the Coulomb branch of the
non-abelian gauge theory.

Let us consider a locus where a non-abelian gauge theory with a semi-simple gauge
algebra g arises. In the vicinity of this locus, the M-theory geometry can be represented in
the following special form (see [36, 37] for more details).

We can represent each surface Si as a blowup of a Hirzebruch surface such that the
intersection matrix Mij defined by

Mij := −fi · Sj , (3.15)

(where fi denotes (the homology class of) a fiber P1 of Hirzebruch surface Si) can be
identified as the Cartan matrix of g.

The hypermultiplet content of the non-abelian gauge theory is encoded in the blowups
and gluing curves. The details of this encoding can be found in [36, 37]. Here we will only
need to consider special cases of the general case analyzed there.

Eq. (3.15) establishes a one-to-one correspondence between the nodes in the Dynkin
diagram of g and the surfaces Si. Let the semi-simple gauge algebra g decompose into
simple factors as g = ⊕µgµ. Let Sµi be the surfaces corresponding to gµi .

Eq. (3.15) implies that the total gluing curve Cij for i 6= j can be written as

Cij = −Mijei + βijfi +
∑
m

γijmxim (3.16)

for some undetermined coefficients βij and γijm where xim are the blowups living in the
Hirzebruch surface Si. Using the above form for Cij and structure of Cartan matrix Mij ,
we can find a (non-unique) surface S̃µ among the surfaces Siµ such that we can write

eµi ∼ n
µ
i ẽ
µ + · · · , (3.17)

where the ∼ sign denotes the curves on the two sides are same inside the homology of the
full threefold; ẽµ is the e curve for the surface S̃µ; nµi are strictly positive integers; and the
omitted terms denoted by dots include contribution only from fibers and blowups living
inside surfaces Sµi for various i. An explicit choice for ẽµ for various simple Lie algebras
will be provided later in this subsection. This result (3.17) will be very helpful for us in
determining the contribution of instantons to the 1-form symmetry, but let us keep it aside
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for some time and turn to the discussion of the realization of center symmetry in terms of
surfaces Si.

For each µ we have surfaces Sµi for i = 1, · · · , rµ where rµ is the rank of gµ. Consider
the lattice ΛµS ' Zrµ spanned by Sµi and the lattice Λµf ' Zrµ spanned by fµi . We claim
that we can change basis inside ΛµS from Sµi to Sµa (which are some linear combinations
of Sµi ) with a = 1, · · · , rµ, and the basis inside Λµf from fµi to fµa (which are some linear
combinations of fµi ) with a = 1, · · · , rµ, such that

−fµa · S
µ
b = δab (3.18)

−fµc · S
µ
b = 0 (3.19)

−fµa · Sµc = 0 (3.20)

for a, b > 1 and c = 1 if gµ 6= so(4n); and a, b > 2 and c = 1, 2 if gµ = so(4n) for some n.
Furthermore,

− fµ1 · S
1
µ = Nµ (3.21)

for gµ 6= so(4n) where ZNµ is the center of gµ, and

− fµa · S
µ
b = 2δab (3.22)

for gµ = so(4n) where a, b ∈ {1, 2}. More importantly, these results imply that if gµ 6=
so(4n), then

− fµi · S
µ
a=1 = kµi Nµ (3.23)

for some integers kµi having gcd 1. Similarly, if gµ = so(4n), then

− fµi · S
µ
a = 2kµia (3.24)

for a = 1, 2 and some integers kµi1 having gcd 1 and some integers kµi2 having gcd 1.
The upshot of the above analysis is that we have changed the basis of potential 1-form

symmetries from U(1)µi to U(1)µa such that the W-bosons fµi break U(1)µa down to the center
Γµ of gµ. For gµ 6= so(4n), the center 1-form symmetry arises from the U(1)µa=1 associated
to the surface Sµa=1. For gµ = so(4n), the center 1-form symmetry has two factors which
arise from the U(1)µa=1 and U(1)µa=2 associated to the surfaces Sµa=1 and Sµa=2. Eqs. (3.23)
and (3.24) simply state that the W-bosons have a charge

0 (mod n) (3.25)

under U(1)µa where n is the order of the center symmetry associated to U(1)µa .
Let us now provide an explicit identification of surfaces Sµa=1 for various possible simple

Lie algebras gµ 6= so(4n) and an explicit identification of surfaces Sµa=1,2 for gµ = so(4n). As
we have discussed above, these surfaces generate the center 1-form symmetries associated
to gµ. We leave an explicit identification of fµb and Sµa for other values of a to the reader.

• For gµ = su(n), label the nodes in the Dynkin diagram as

· · ·
1 2 3 n− 1 (3.26)
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Then, we can take

Sµa=1 =
n−1∑
i=1

iSµi . (3.27)

Only the fiber fµi=n−1 has a non-zero charge under the U(1) generated by the above
surface. This fiber has charge n, thus reducing the U(1) generated by Sµa=1 to Zn,
which can be identified as the center of su(n).
We can choose ẽµ = eµi=1.

• For gµ = so(2n+ 1), label the nodes in the Dynkin diagram as

· · ·
1 2 3 n− 1 n (3.28)

Then, we can take
Sµa=1 = Sµi=n . (3.29)

The non-trivial charges under this surface are provided by the fiber fµin−1 and fµi=n,
both of which have charge ±2, thus reducing the U(1) generated by Sµa=1 to Z2, which
can be identified as the center of so(2n+ 1).
We can choose ẽµ = eµi=1.

• For gµ = sp(n), label the nodes in the Dynkin diagram as

· · ·
1 2 3 n− 1 n (3.30)

Then, we can take

Sµa=1 =
n∑
i=1

1− (−1)i
2 Sµi . (3.31)

Each fiber fµi has charge ±2 under this surface, thus reducing the U(1) generated by
Sµa=1 to Z2, which can be identified as the center of sp(n).
We can choose ẽµ = eµi=n.

• For gµ = so(4n+ 2), label the nodes in the Dynkin diagram as

· · ·
2n+ 1 2n− 1 2n− 2 2 1

2n

(3.32)

Then, we can take

Sµa=1 = 3Sµi=2n+1 + Sµi=2n +
2n−1∑
i=1

(
1− (−1)i

)
Sµi . (3.33)
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Each fiber fµi has charge ±4 under this surface except for fµi=2n which has 0 charge.
Thus, the U(1) generated by Sµa=1 is reduced to Z4, which can be identified as the
center of so(4n+ 2).

We can choose ẽµ = eµi=1.

• For gµ = so(4n), label the nodes in the Dynkin diagram as

· · ·
2n− 1 2n− 2 2n− 3 2 1

2n

(3.34)

Then, we can take

Sµa=1 =
2n−1∑
i=1

1− (−1)i
2 Sµi (3.35)

Sµa=2 = Sµi=2n +
2n−2∑
i=1

1− (−1)i
2 Sµi . (3.36)

Each fiber fµi has charge ±2 under Sµa=1 except for fµi=2n which has 0 charge. Simi-
larly, each fiber fµi has charge ±2 under Sµa=2 except for fµi=2n−1 which has 0 charge.
Thus, the U(1)×U(1) generated by Sµa=1 and Sµa=2 is reduced to Z2×Z2, which can
be identified as the center of so(4n).

We can choose ẽµ = eµi=1.

• For gµ = e6, label the nodes in the Dynkin diagram as

5 4 3 2 1

6

(3.37)

Then, we can take

Sµa=1 =
5∑
i=1

iSµi . (3.38)

Only the fiber fµi=5 and fµi=6 have non-trivial charges under this surface, which are 6
and 3 respectively. Thus, the U(1) generated by Sµa=1 is reduced to Z3, which can be
identified as the center of e6.

We can choose ẽµ = eµi=1.
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• For gµ = e7, label the nodes in the Dynkin diagram as

6 5 4 3 2 1

7

(3.39)

Then, we can take
Sµa=1 = Sµi=1 + Sµi=3 + Sµi=7 . (3.40)

Each fiber fµi has charge ±2 under this surface except for fµi=5 and fµi=6, both of
which have 0 charge. Thus, the U(1) generated by Sµa=1 is reduced to Z2, which can
be identified as the center of e7.
We can choose ẽµ = eµi=1.

• For gµ = e8, label the nodes in the Dynkin diagram as

7 6 5 4 3 2 1

8

(3.41)

There is no linear combination of Sµi under which fµj have charges with gcd bigger
than 1, which is consistent with the fact that the center of e8 is trivial.
We can choose ẽµ = eµi=1.

• For gµ = f4, label the nodes in the Dynkin diagram as

41 2 3 (3.42)

There is no linear combination of Sµi under which fµj have charges with gcd bigger
than 1, which is consistent with the fact that the center of f4 is trivial.
We can choose ẽµ = eµi=4.

• For gµ = g2, label the nodes in the Dynkin diagram as

1 2 (3.43)

There is no linear combination of Sµi under which fµj have charges with gcd bigger
than 1, which is consistent with the fact that the center of g2 is trivial.
We can choose ẽµ = eµi=2.
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Now that we have identified the centers Γµ of gµ in terms of surfaces, it is straightfor-
ward to compute the charges of other particles under Γµ. Let us first consider the effect
of a (full or half) hyper charged in an irreducible representation R of the gauge algebra
g = ⊕µgµ. The highest weight of R is given by some non-negative integers nµi for various
i and µ. Then, the geometry for the gauge theory must contain a curve C which satisfies

− C · Sµi = nµi . (3.44)

Moreover, the other curves associated to this hyper can be obtained from C by subtracting
fνj for various j and ν from it. Since fνj do not screen the center Γ = ∏

µ Γµ potential
1-form symmetry, the screening due to the hyper is completely captured by the charge of
the curve C under Γ, which can be readily computed using the data provided so far. For
gµ 6= so(4n), we have a single surface responsible for generating the center which can be
written as

Sµa=1 =
rµ∑
i=1

pµi S
µ
i , (3.45)

from which we find that the charge of the hyper under Γµ is

rµ∑
i=1

pµi n
µ
i (mod Nµ) , (3.46)

where Nµ is the order of Γµ. On the other hand, for gµ = so(4n), the charges under
Γµ = Z2

2 are given by( 2n−1∑
i=1

1− (−1)i
2 nµi (mod 2), nµi=2n +

2n−2∑
i=1

1− (−1)i
2 nµi (mod 2)

)
. (3.47)

Thus, we have computed the charge of an arbitrary irreducible representation R under the
center Γ of a semi-simple Lie algebra g. One can use the results presented here to verify
the charges tabulated in table 1.

At this point, we have incorporated the effect of the fibers and blowups living in all
the Hirzebruch surfaces Si. The fibers were responsible for breaking the potential 1-form
symmetry down to the center and the blowups encode the reduction of the center 1-form
symmetry induced by the hypermultiplets. The only contribution left to be taken into
account now come from the e curves of Si. These contributions themselves can be further
simplified drastically since we only need to take into account a single e curve for each µ.
This follows from the result (3.17) which states that the contribution of every eµi for a
fixed µ is accounted by the ẽµ upto the contributions coming from fibers and blowups, but
we have already accounted for the contributions from fibers and blowups. So the relevant
instanton contribution can be captured by the charges of ẽµ under the center Γν

− ẽµ · Sνa , (3.48)

where a = 1 for gν 6= so(4n) and a = 1, 2 for gν = so(4n).
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Let us see how these instanton contributions affect gauge theories carrying a simple
gauge algebra only. Consider first pure gauge theories for which geometries were provided
in [36]. For a pure su(n) theory with CS level k such that 0 ≤ k < n− 2, the geometry is

1n−2−k 2n−4−k 3n−6−k
e h e h · · · (n− 1)2−n−k

e h

(3.49)
where in is a notation for a Hirzebruch surface Si = Fn without any blowups. An edge
between two surfaces denotes an intersection between the two surfaces. The labels on each
end of the edge denote the gluing curves inside the two surfaces being identified to construct
the intersection. We can compute

−ẽ ·
(
n−1∑
i=1

iSi

)
= −e1 · S1 − 2e1 · S2 = (k + 4− n) + (2n− 4− 2k) (3.50)

= n− k = −k (mod n) , (3.51)

which reproduces the contribution from the instanton proposed in [27]. Similarly, for
k = n− 2 + 2m with m ≥ 0 the geometry is

10 24−n+k · · ·e+mf e h e (n− 2)n−4+k (n− 1)n−2+k
h e

(3.52)
from which we compute

−ẽ ·
(
n−1∑
i=1

iSi

)
= −e1 · S1 − 2e1 · S2 = 2− 2m (3.53)

= −k (mod n) (3.54)

For k = n− 2 + 2m with m ≥ 0 the geometry is

11 24−n+k · · ·h+mf e h e (n− 2)n−4+k (n− 1)n−2+k
h e

(3.55)
from which we compute

−ẽ ·
(
n−1∑
i=1

iSi

)
= −e1 · S1 − 2e1 · S2 = 1− 2m (3.56)

= −k (mod n) . (3.57)

Thus we find that for pure su(n) with CS level k, the instanton contributions can be
accounted for by considering an instanton of charge −k (mod n) under the center Zn.

For pure so(2n+ 1), the geometry is

12n−5 22n−7
e h · · · (n− 2)1

e h (n− 1)1
e e n6

2h e

(3.58)
from which we compute

− ẽ · Sn = −e1 · Sn = 0 . (3.59)
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Thus the instanton associated to so(2n+ 1) is not charged under its center.
For pure sp(n) with θ = nπ (mod 2π), the geometry is

12n+2 22n
e h · · · (n− 2)8

e h (n− 1)6
e h n1

2he

(3.60)
from which we compute

− ẽ ·
(

n∑
i=1

1− (−1)i
2 Si

)
= −en ·

(1− (−1)n
2 Sn

)
= 1− (−1)n

2 , (3.61)

which is only non-trivial for n = 2m+ 1.
Similarly, for pure sp(n) with θ = (n+ 1)π (mod 2π), the geometry is

12n+2 22n
e h · · · (n− 2)8

e h (n− 1)6
e h n0

2e+fe

(3.62)
from which we compute

− ẽ ·
(

n∑
i=1

1− (−1)i
2 Si

)
= −1− (−1)n−1

2 (mod 2) , (3.63)

which is only non-trivial for n = 2m. Thus, combining both the cases, we find that the
instanton has a non-trivial contribution only for sp(n) with θ = π for which it contributes
with charge 1 under the center Z2 associated to sp(n). This agrees with the proposal of [27].

For pure so(4n+ 2) the geometry is

14n−4 24n−6
e h · · · (2n− 2)2

e h (2n− 1)0
e e 2n2

e e

(2n + 1)2

e

e

(3.64)
for which we compute

− ẽ ·
(

3Si=2n+1 + Si=2n +
2n−1∑
i=1

(
1− (−1)i

)
Si

)
= −2e1 ·S1 = 12−8n = 0 (mod 4) . (3.65)

Thus the instanton associated to so(4n+ 2) is not charged under its Z4 center.
For pure so(4n) the geometry is

14n−6 24n−8
e h · · · (2n− 3)2

e h (2n− 2)0
e e 2n2

e e

(2n− 1)2

e

e

(3.66)
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for which we compute

− ẽ ·
(2n−1∑

i=1

1− (−1)i
2 Si

)
= −e1 · S1 = 8− 4n = 0 (mod 2) , (3.67)

and

− ẽ ·
(
Si=2n +

2n−2∑
i=1

1− (−1)i
2 Si

)
= −e1 · S1 = 8− 4n = 0 (mod 2) . (3.68)

Thus the instanton associated to so(4n) is not charged under its Z2
2 center.

For pure e6 the geometry is

he14 22 30
e e 42

e e

62

e

e

54
h e

(3.69)

for which we compute

− ẽ ·
( 5∑
i=1

iSi

)
= −e1 · S1 − 2e1 · S2 = −2 + 8 = 0 (mod 3) (3.70)

Thus the instanton associated to e6 is not charged under its Z3 center.
For pure e7 the geometry is

he24 32 40
e e 52

e e

72

e

e

64
h e16

he

(3.71)

for which we compute

− ẽ · (S1 + S3 + S7) = −e1 · S1 = −4 = 0 (mod 2) (3.72)

Thus the instanton associated to e7 is not charged under its Z2 center.
Thus, for pure gauge theories we find that only for the case of su(n) with CS level k

and sp(n) with θ = π do we have to include contributions from instanton particles. Let us
consider adding matter in the form of full hypermultiplets in some representation R of g.
If g 6= su(n), sp(n) then the geometry for the theory can be represented as the geometry
for the pure theory plus some blowups on top of the surfaces Si which are possibly glued
to each other in some way [36]. This means that the intersections of ẽ curve with the
surfaces remain the same as in the pure case. That is, for g 6= su(n), sp(n) we do not need
to consider the instanton contributions.
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For g = su(n) with CS level k, addition of a full hyper in a representation R of
su(n) shifts the CS level14 by ±A(R)

2 where A(R) is the anomaly coefficient associated to
R (see [36]). Then, for an su(n) theory with CS level k and full hypers forming a (in
general reducible) rep R, the instanton contributions can be accounted by accounting for
an instanton particle of charge

− k + A(R)
2 (mod n) (3.73)

under the center Zn.
For g = sp(n), one can either add hypers such that theta angle becomes irrelevant, or

add hypers such that theta angle remains relevant. If the theta angle becomes irrelevant,
there are no instanton contributions to account for. If the theta angle remain relevant,
then for θ = π we need to account for an instanton particle with charge 1 (mod 2) under
the center Z2 of sp(n).

The above discussion wraps up the story of relevant instanton contributions for gauge
theories with simple gauge algebra and matter in full hypers only. New interesting phe-
nomena arise if we add matter in half-hypers of the simple gauge algebra. Unlike the case
of full hypers discussed above, it is not possible to write a geometry carrying half-hypers
in terms of geometry for the pure theory plus some blowups (that are possibly glued with
each other). Thus, it is possible for the instanton contributions to be different from the
instanton contributions for the pure gauge theory. As an illustrative example, consider
adding a half-hyper in S to a pure so(12) gauge theory. Since the instanton contribution to
the pure so(12) gauge theory is trivial, we might naively think that we only need to include
the effect of matter in spinor rep S, thus coming to the conclusion that the 5d gauge theory
so(12) + 1

2S has
O = Z2 . (3.74)

However, let us take a look at the geometry corresponding to this gauge theory which can
be written as [37]

32 2452 41
0

e

h+f

ee e h

12
8

e

e

f -x f

x-y

f

f -x-y
y

61

e-x

e

(3.75)

14Our convention for CS level differs from the convention used in [27]. In our convention, CS level is
defined by the tree-level contribution to the prepotential of the theory.
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where the notation ibn denotes a surface obtained by blowing up b times a Hirzebruch surface
Si = Fn. Thus the Hirzebruch surface S4 is blown up at one point and the Hirzebruch
surface S1 is blown up at two points where the exceptional curves associated to the two
blowups are denoted as x and y. Computing the contribution of instanton(

−ẽ ·
(2n−1∑

i=1

1− (−1)i
2 Si

)
,−ẽ ·

(
Si=2n +

2n−2∑
i=1

1− (−1)i
2 Si

))
(3.76)

= (−e1 · (S1 + S3),−e1 · (S1 + S3)) (3.77)
= (−7,−7) (3.78)
= (1 (mod 2), 1 (mod 2)) . (3.79)

Thus we find that the instanton contribution combined with the contribution from spinor
matter completely destroy the potential center 1-form symmetry of so(12) and the correct
1-form symmetry for so(12) + 1

2S is
O = Z1 . (3.80)

Generalizing this, we see that for so(12) + nS we have

O = Z2 , (3.81)

but for so(12) +
(
n+ 1

2

)
S we have

O = Z1 . (3.82)

A similar phenomenon occurs when we consider adding a half-hyper in Λ3 to an su(6) gauge
theory. The geometries for this case were also discussed in [37]. For CS level k = 1

2 − l
with 1 ≤ l ≤ 7, the geometry can be written as

3l 4l−414+l 21
2+l

e h+fhe e h

52
l−6

e

h

f -x f

x-y

f

f -x-y
y

(3.83)

Hence the instanton contribution turns out to be

− ẽ ·
( 5∑
i=1

iSi

)
= −ẽ · (S1 + 2S2 + 5S5) = (−2− l) + 2(4 + l)−5 = −k+ 3

2 (mod 3) , (3.84)

where we are considering the contribution modulo 3 since the Λ3 matter already breaks the
Z6 center down to a potential Z3 1-form symmetry only. We obtain the same instanton
contribution for other values of CS level as well, as the reader can check using the geometries
presented in [37]. The contribution (3.84) in the half-hyper case should be contrasted with
the contribution (3.73) in the full hyper case.

The above comments associated to matter in full vs half-hypermultiplets extend to the
case of a semi-simple gauge algebra g = ⊕µgµ. First of all, for the pure gauge theory based
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on g, the instanton ẽµ has 0 charge under Γν for ν 6= µ, and has non-trivial charge under
Γµ only if gµ = su(n) or sp(n)π. Now, whenever there is a half-hyper charged in a mixed
rep of gµ1 ⊕ gµ2 ⊕ · · · ⊕ gµl ⊆ g (for l ≥ 1), there is at least one µ ∈ {µ1, µ2, · · · , µl} such
that the instanton ẽµ has a charge under Γµ1 × Γµ2 × · · · × Γµl that is different from the
its charge under Γµ1 × Γµ2 × · · · × Γµl for the case of pure gauge theory based on g. The
full hypers can again be ignored when accounting for instantonic contributions.

For example, consider an so(8)⊕su(2) gauge theory with a half-hyper in bifundamental
representation. Including the data of only the gauge algebras and hypermultiplet matter
content, we will expect the 1-form symmetry to be

O = Z2 × Z2 , (3.85)

but the geometry implies a Z1 1-form symmetry as we will see below. The geometry for
this theory can be written as

40 12
e e32

22

e e

e

e

54
0

f x3-x4

x1 -x2

f

x2-x3ff
f -x1-x2

(3.86)

From this geometry we see that the BPS instanton e1 associated to so(8) has charge 1
under the center Z2 symmetry associated to su(2) (which is generated by S5), and the
BPS instanton e5 associated to su(2) has charge (1, 0) under the center Z2×Z2 symmetry
associated to so(8) (which are generated respectively by S1 + S3 and S1 + S2). Out of the
Z3

2 center symmetry, the blowups xi preserve a Z2 symmetry associated to S2 +S3 and a Z2
symmetry associated to S1 +S2 +S5. This is the Z2×Z2 1-form symmetry expected to be
preserved from the field theoretic analysis. Now we need to also consider the instantons.
e4 is charged as (0, 1) and e5 is charged as (1, 0) under the Z2

2 symmetry preserved by
the blowups. Thus, after including the contribution of instantons we find that the 1-form
symmetry for so(8)⊕ su(2) theory with a half-bifundamental is

O = Z1 (3.87)

contrary to the expected answer (3.85). The reader can also verify the answer (3.87) by
directly computing the Smith normal form of the charge matrix Qαi associated to the
above geometry.

3.3 1-form symmetry of 5d KK theories

In this paper, we will use the term “5d KK theories” to refer to 5d theories obtained by
compactifying a 6d SCFT or LST on a circle of finite non-zero radius. The terminology
stresses the fact that these 5d theories are different for standard 5d quantum field theories
because they contain the KK mode arising from the circle compactification.
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Upon compactification of a 6d theory on a circle, we can turn on Wilson lines in the
flavor symmetry group of the 6d theory. For the continuous part of the flavor symmetry15

group, these Wilson lines become the mass parameters of the 5d KK theory. For the discrete
part of the flavor symmetry group, the Wilson lines are discrete and hence parametrize
different 5d KK theories. Two discrete Wilson lines related by a discrete background gauge
transformation (valued in the discrete global symmetry group) are equivalent on a circle,
and hence lead to the same 5d KK theory. We refer to non-trivial discrete Wilson lines
upto discrete background gauge transformations as twists.

3.3.1 Untwisted case

Let us first consider the untwisted circle compactification of a 6d theory. The 1-form
symmetry O6d of the 6d theory is generated by topological operators of codimension 2.
Upon compactifying the 6d theory on a circle, we can either wrap these operators along
the circle or insert them at a point on the circle. Wrapping these operators along the circle
gives rise to 1-form symmetries in the 5d theory, while inserting the operators at a point
gives rise to 0-form symmetries in the 5d theory. The 5d theory contains both the 1-form
and 0-form symmetries descending from 1-form symmetry of the 6d theory.

Similarly, the 2-form symmetry T6d of the 6d theory is generated by topological oper-
ators of codimension 3. Wrapping the operators along a circle would give rise to 2-form
symmetry in the 5d theory, while inserting the operators at a point gives rise to 1-form
symmetries of the 5d theory. However, unlike the case of O6d discussed above, the 5d the-
ory cannot simultaneously have both the 1-form and 2-form symmetries originating from
the 2-form symmetry of the 6d theory.

This is due to the fact that the 2-form symmetry of the 6d theory is, in a sense, “self-
dual”. That is, the 6d theory does not admit backgrounds for the 2-form symmetry which
correspond to insertion of codimension 3 topological operators along intersecting 3-cycles.
Thus, we need to choose whether we wish to keep inside the 5d theory the 1-form symmetry
arising from the 2-form symmetry of the 6d theory, or the 2-form symmetry arising from
the 2-form symmetry of the 6d theory. If we choose to keep the 1-form symmetry, then we
can gauge this 1-form symmetry in the resulting 5d theory to obtain the 5d theory where
we would have chosen to keep the 2-form symmetry instead, and vice-versa. In this paper,
we always choose to keep the 1-form symmetry.

In conclusion, a 5d KK theory arising via an untwisted compactification of a 6d theory
has 1-form symmetry group

O5d = O6d × T6d . (3.88)

3.3.2 Twisted case

Discrete 0-form symmetries are generated by topological operators of codimension 1. So, we
can think of a twisted KK theory as being produced by inserting, at a point of the circle, the
codimension 1 topological operator associated to a discrete 0-form symmetry implementing
the twist. The insertion of this topological operator results in a reduction in the 1-form

15Throughout this paper, we use the terms “flavor symmetry” and “0-form symmetry” interchangeably.
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symmetry of the 5d KK theory associated to a twisted compactification as compared to
the 1-form symmetry of the 5d KK theory associated to the untwisted compactification
of the same 6d theory. The reason for this reduction is that the topological operators
corresponding to 0-form symmetry may act on the topological operators corresponding to
the 1-form or 2-form symmetries in the 6d theory.

As we have discussed above, a subset of the 1-form symmetries of the 5d KK theory
arise by wrapping the topological operators corresponding to 1-form symmetry of the 6d
theory along the circle. In the case of a non-trivial twist, say corresponding to a discrete 0-
form symmetry element g, we are only allowed to wrap topological operators corresponding
to 1-form symmetries that are left invariant by g. This is because, if a topological oper-
ator corresponding to a 1-form symmetry is charged under g, then traversing around the
circle changes the type of the topological operator as it crosses the insertion of topological
operator corresponding to g, and hence it cannot close back to itself. The surviving 1-form
symmetries form a group kerg(O6d), that is the kernel of the action of g on O6d.

On the other hand, another subset of the 1-form symmetries of the 5d KK theory arise
by inserting the topological operators corresponding to 2-form symmetry of the 6d theory
at a point on the circle. Suppose we have inserted a topological operator corresponding
to a 2-form symmetry element h. Moving this operator around the cirle, we obtain the
topological operator corresponding to the 2-form symmetry element g ·h, that is the 2-form
symmetry element obtained by applying the action of g. Thus, as elements of the 2-form
symmetry group of the 5d KK theory, h and g ·h are identified. More generally, since T6d is
abelian, an element h1h2 of T6d is identified with the elements g(h1)h2 and h1g(h2). This
identification gives rise to an equivalence relation ∼g on T6d. This means that the 1-form
symmetry group of the 5d KK theory arising from 1-form symmetry group of the 6d theory
is the projection T6d/ ∼g.

In total, we can write the 1-form symmetry group of the 5d KK theory obtained by
g-twist of a 6d theory as

O5d = T6d
∼g
× kerg(O6d) . (3.89)

Let us discuss the structure of (3.89) in more detail for different kinds of twists of 6d
theories. So far these twists have been studied only in the context of 6d SCFTs [21, 24] but
similar structure is expected to extend to the case of 6d LSTs. From the study of twists of
6d SCFTs, we expect three different kinds of twists for 6d theories:

1. The first kind originate from the outer-automorphisms of the gauge algebras appear-
ing on the tensor branch of the 6d theory.

2. The second kind originate from a permutation symmetry of tensor multiplets arising
on the tensor branch of the 6d theory.

3. The third kind originate for some 6d theories whose tensor branch theory carries
an O(2n) flavor symmetry. Since O(2n) has two disconnected components, the
holonomies valued in the component not connected to the identity element give rise
to a twisted 5d KK theory.
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Combining the twists mentioned above, one can write a general 5d KK theory using
the following graphical notation mimicking the graphical notation used for 6d theories:

Ωii

g
(qi)
i g

(qj)
j

Ωjj−ΩijΩkk

Ωll

g
(ql)
l[

Z(2)
2

]
(3.90)

where each node i carries a twisted or untwisted affine Lie algebra g
(qi)
i . This algebra may

be empty for some of the nodes, as is the case for the node k in the above graph. The
graph also involves the data of a non-symmetric positive-definite integer matrix Ωij with
non-positive off-diagonal entries. If Ωij = Ωji for some specific j 6= i, then the nodes j and
i are connected by −Ωij number of undirected edges, as we did in the case of 6d theories.
We can also have directed edges which arise for example when Ωji = −1 and Ωij < −1.
Then we join the nodes i and j by a directed edge pointing from i to j and insert a label in
the middle of the edge capturing the value of −Ωij . The edge between nodes i and j in the
above graph is such an example. In addition to all of this, we can have some nodes which
are attached to a

[
Z(2)

2

]
which is a shorthand to denote the fact that these nodes have an

O(2n) flavor symmetry and we have turned on holonomies in the component disconnected
to the identity. In the above graph, node l is an example of such a node.

The corresponding 6d theory can be obtained from the graph for the 5d KK theory by
“unfolding” it and removing the superscript labels qi and nodes

[
Z(2)

2

]
. For example, the

6d theory associated to the 5d KK theory shown in the above graph for −Ωij = 2 takes
the following form

Ωii

gi gj

ΩjjΩkk

Ωll

gl

gm
Ωmm

(3.91)

with gm = gj and Ωmm = Ωjj . The twist converting the above 6d theory to the above 5d
KK theory contains outer-automorphisms of gi and gl of order qi and ql respectively. This
includes the possibility of no outer-automorphism twist for gi (or gl) which is associated
to qi = 1 and corresponds to the untwisted affine Lie algebra g

(1)
i which is defined for any

gi. The twist also contains a permutation exchanging the tensor multiplets m and j which
identifies gj and gm and it is also possible to have an outer-automorphism of order qj of the
algebra gj after accounting for the identification. This identification of j and m induces a
“folding” of the graph which is represented by a directed edge from i to j in the graph for
the 5d KK theory. The label −Ωij = 2 in the middle of the directed edge tells us that the
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folding has been obtained by identifying 2 different nodes. Similarly, if we were to identify
3 nodes of a 6d SCFT, the 5d KK theory will contain a directed edge with a label 3 placed
in the middle of the directed edge. As discussed above, the twist also includes turning
on holonomies in the component disconnected to identity of the flavor symmetry O(2n)
associated to node l.

3.3.3 Geometric analysis

We now turn to the determination of 1-form symmetry group of a 5d KK theory by using
its M-theory geometric construction. Such geometric constructions have been extensively
studied in [9, 12, 14–17, 20, 21, 23, 24]. The M-theory geometric construction for a 5d KK
theory can be easily described in terms of its graphical data of the form (3.90). For every
node i, we have a collection of irreducible Hirzebruch surfaces (carrying some blowups) Sa,i
in the geometry. Let us first consider the nodes i for which gi is non-trivial. The number of
surfaces for each i equal ri + 1 where ri is the rank of the gauge algebra hi left invariant by
the outer-automorphism O(qi) acting16 on gi. Let fa,i denote the fibers of these Hirzebruch
surfaces. Then, the intersection numbers

Mab,i := −fa,i · Sb,i (3.92)

form the Cartan matrix of the affine Lie algebra g
(qi)
i (see [21] for more details). We let

S0,i be the surface corresponding to the affine node of the Dynkin diagram of g(qi)
i such

that Mab,i for a, b 6= 0 form the Cartan matrix of hi.
Now let us consider the nodes i for which gi is trivial. For these nodes, there is only

a single corresponding surface S0,i which can only be one of the following three types: F8
1;

F2
0 with e− x1 glued to e− x2; or F2

1 with the two blowups glued. For F8
1 we define f0,i to

be 2e+ 3f −∑xi. For F2
0 with e− x1 glued to e− x2, we define f0,i to be f . For F2

1 with
glued blowups, we define f0,i to be 2e+ 3f − 2∑xi.

For any two nodes i 6= j, we have

− fa,i · Sb,j = 0 . (3.93)

To the nodes of the Dynkin diagram of an affine Lie algebra, we can associate Coxeter
labels, which are minimal positive integers that form a row null vector for the Cartan
matrix of the affine Lie algebra. Similarly, we can associate dual Coxeter labels, which
are minimal positive integers that form a column null vector for the Cartan matrix of the
affine Lie algebra. Let us denote the Coxeter and dual Coxeter labels for g

(qi)
i by da,i and

d∨a,i respectively. For gi trivial, we let d0,i = d∨0,i = 1. Then, to each i, we can assign a
linear combination Si of surfaces Sa,i

Si :=
∑
a

d∨a,iSa,i , (3.94)

16For any O(1) we can choose the trivial automorphism which does not act on the gauge algebra and
hence hi = gi, which makes sense since O(1) means that we do not involve any outer-automorphism twist.
In this paper, we choose outer-automorphisms O(qi) for qi > 1 such that the invariant gauge algebras are
as follows. O(2) acting on su(n) leaves sp(n) invariant, O(2) acting on so(2n) leaves so(2n − 1) invariant,
O(2) acting on e6 leaves f4 invariant, and O(3) acting on so(8) leaves g2 invariant.
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which has the special properties that

fa,i · Si = 0 , (3.95)

and
x · Si = 0 , (3.96)

for any blowup x living in any of the surfaces Sb,j . Note that we can use (3.93) to
write (3.95) in the following more generalized form

fb,j · Si = 0 , (3.97)

for arbitrary a, i, j. The equations (3.96) and (3.97) imply that the surfaces Si are “null” in
the sense that all the fibers and blowups of all the Hirzebruch surfaces have no intersection
with Si. Note that the e curves of the Hirzebruch surfaces can still intersect the null
surfaces Si, so it is not strictly null.

In the last subsection, for a collection of Hirzebruch surfaces with intersection matrix
describing a simple Lie algebra g, we associated the e curve of a particular Hirzebruch
surface to g. This curve was denoted as ẽ and it is supposed to capture the contributions
of BPS instantons of g to the breaking of 1-form symmetry. We use this fact to assign a
curve ẽi to each i as follows. For nodes i with gi non-trivial, the surfaces Sa,i for a 6= 0
and fixed i form a collection of surfaces with intersection matrix describing the simple Lie
algebra hi, and we denote the ẽ curve associated to hi as ẽi. For nodes i with gi trivial, we
let ẽi be the e curves of the three possibilities discussed above. Then, it turns out that

− Si · ẽj = Ωij , (3.98)

where Ωij is the matrix associated to the 5d KK theory as discussed above.
Now we can describe how the 1-form symmetry (3.89) of the 5d KK theory is encoded

in this geometry. First, we can change the basis of surfaces for each i from Sa,i to Si, Sa 6=0,i

which is an acceptable change of basis since d∨0,i = 1 for any g
(qi)
i . Then, we claim that the

T6d
∼g part of (3.89) is encoded in the surfaces Si. Indeed Si give rise to the u(1) gauge algebras
descending from KK reduction of 6d tensor multiplets. One can view the curves ẽi as BPS
particles arising by wrapping (on the compactification circle) the BPS string corresponding
to node i in the 6d theory. From the above recounted facts about intersections of Si with
various curves, we see that it is only the ẽi i.e. the BPS strings that screen the U(1)s
potential 1-form symmetry generated by the surfaces Si, which makes sense since T6d∼g part
of (3.89) captures the data of the 2-form symmetry of the 6d theory. According to (3.98),
we find that

T6d
∼g

= Tors
( Zs

[Ωij ] · Zs
)
, (3.99)

where Tors denotes the torsional part of the quotient lattice. The appearance of Tors is
relevant only if the 5d KK theory arises via a compactification of a 6d LST in which case
a u(1) generated by a linear combination of the Si is non-dynamical, whose contribution
should be modded out, just as in the case of computation of 2-form symmetry of 6d LSTs
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discussed earlier in this paper. Just like in the case of 2-form symmetry of LSTs, the
contribution from this non-dynamical u(1) gives rise to a free part in the quotient lattice,
and hence we retain only the torsional part of the quotient lattice. If we specialize (3.99)
to the case of a 5d KK theory arising via an untwisted compactification of a 6d theory,
we obtain

T6d = Tors
( Zs

[Ωij ] · Zs
)
, (3.100)

where s is now captures the number of nodes in the graph associated to the 6d theory itself
and Ωij is the matrix associated to the 6d theory that we discussed in section 2. The above
equation simply recovers the result of section 2.1.

The part kerg(O6d) of (3.89) is encoded in the surfaces Sa 6=0,i. The fibers and blowups
living in these surfaces give rise to a 5d non-abelian gauge theory T with gauge algebra
⊕ihi, where the sum over i is only taken over nodes with non-trivial gi. Additional matter
content for this 5d non-abelian gauge theory T arises from blowups living in the surfaces S0,i
for the nodes i with gi non-trivial. As we have discussed in great detail in section 3.2.1, the
analysis of 1-form symmetries associated to the surfaces giving rise to ⊕ihi can be reduced
to some linear combinations of surfaces for each i which capture the center symmetry Γi of
hi. Potentially these surfaces give rise to a Γ := ∏

i Γi 1-form symmetry, which is broken
according to the matter content for T descending from the 5d KK theory. As discussed in
section 3.2.1, further breaking of Γ is induced by instantons ẽi for each hi. These curves
capture precisely the BPS instanton strings associated to gi in the 6d theory as we discussed
above. Following the discussion of section 3.2.1, one can easily determine the charges of
ẽi under Γ. Moreover one also needs to account for the charges of ẽi associated to nodes
with gi trivial under Γ, which can be easily determined from the data of the geometry of
the 5d KK theory. These contributions to the breaking of potential 1-form symmetry are
interpreted as contributions from non-gauge-theoretic BPS strings of the 6d theory.

The above contributions are an end of the story if the 5dKK theory under consideration
arises as an untwisted compactification. However, in the case of twisted compactification,
one needs to consider another contribution in some cases. This contribution arises from the
charge of f0,i under = Γi. The reason this is unimportant for untwisted cases is because of
the fact that the genus-one fiber

fi :=
∑
a

da,ifa,i (3.101)

has the property that
fi · Sa,i = 0 (3.102)

for all a. Since fa,i for a 6= 0 have zero charge under Γi, f0,i must have zero charge under
Γi as long as d0,i = 1. The latter condition is only true if the affine gauge algebra g

(qi)
i

for node i is untwisted, i.e. qi = 1. When non-trivial twist is involved, it can happen
that d0,i > 1, in which case we need to include the charge of f0,i under Γi separately into
consideration. Note that we do not need to consider the charge of f0,i under Γj for j 6= i

due to the fact (3.93).
Thus, in conclusion, kerg(O6d) part of (3.89) is comprised of those elements of Γ that

leave the matter content charged under h and the extra BPS particles ẽi, f0,i invariant.
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Specializing the above discussion to the case of a 5d KK theory arising from an un-
twisted compactification of a 6d theory provides us with a method for computing the 1-form
symmetry group O6d of the 6d theory itself. In this case, the 5d gauge theory T is identified
with the 6d gauge theory arising on the tensor branch of the 6d theory. The curves ẽi are
in one-to-one correspondence with the BPS strings of the 6d theory. If gi is non-trivial,
then the associated ẽi corresponds to the BPS instanton string for gi. If gi is trivial, then
the associated ẽi corresponds to the non-gauge-theoretic BPS string associated to the node
i. The charges of ẽi under the center Γ of h are identified with the charges of the BPS
strings of the 6d theory under the center Γ of the 6d gauge algebra g. Moreover, according
to the discussion of section 3.2.1, we need to consider contributions of the charges of ẽi for
non-trivial gi only if there are half-hypers involved or if gi = su(n), sp(n). In fact, we do
not need even need to consider the case of gi = su(n) since the contribution of the instanton
string in this case is always accounted for by the hypermultiplet spectrum. This can be
easily checked for all the possible gi = su(n) that can arise in the context of 6d SCFTs and
LSTs by taking into account (3.73) and (3.84) along with the fact that the CS level for a
5d su(n) descending from a 6d su(n) via an untwisted compactification is always 0.

For example, consider the case of gi = su(n) and Ωii = 1 such that the matter content
charged under su(n) is Λ2 + (n + 8)F. Then (3.73) implies that the instanton string has
charge 2 (mod n) under the center Zn of su(n). But since we already have a hyper in Λ2,
as long as this hyper is not gauged by some other gauge algebra gj , this hyper breaks the
Zn center down to Z2 and thus the charge of instanton string is irrelevant. On the other
hand, remaining in the realm of 6d SCFTs and LSTs, it is not possible to gauge the Λ2 in
such a way that we would be forced to account for the charge of the instanton string.

Thus, the only situations where the contribution of a BPS string associated to node i
of a 6d theory is relevant are as follows:

1. There is a half-hyper transforming in a mixed representation gµ1⊕gµ2⊕· · ·⊕gµl ⊆ g

(for l ≥ 1) where µ1 = i.

2. gi is trivial.

3. gi = sp(n) with θ = π.

This justifies the claims of section 2.2.

3.3.4 Examples

In this subsection, we discuss examples of 5d KK theories arising via non-trivial twisted
compactifications of 6d SCFTs, and discuss their 1-form symmetry using the geometric
methods discussed above. We do not pursue 5d KK theories arising via untwisted com-
pactifications as the computation in that case reduces to the computations performed in
section 2.2.1.

Example 1: consider the 5d KK theory

3
su(3)(2)

, (3.103)
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which is obtained by performing an outer-automorphism twist on the 6d SCFT

3
su(3)

. (3.104)

The 2-form Z3 symmetry of the 6d SCFT is left unaffected by the twist, and hence we
expect to obtain a Z3 factor in the 1-form symmetry of the 5d KK theory. On the other
hand, the outer automorphism twist acts on the 1-form Z3 symmetry of the 6d SCFT by
complex conjugation, and hence we expect no contribution to the 1-form symmetry of the
5d KK theory from the 1-form symmetry of the 6d SCFT. In total, we expect that the 5d
KK theory has

O5d = Z3 . (3.105)
Let us verify these expectations geometrically. The geometry for the 5d KK theory is

010 10
e 4e+f (3.106)

We claimed above that the contribution to the 1-form symmetry of 5d KK theory from the
2-form symmetry of the 6d SCFT can be computed by finding the Smith normal form for
Ωij associated to the 5d KK theory where Ωij can be computed geometrically via (3.98).
For the above geometry there is a single index i, and we have

Si = S0 + 2S1 (3.107)

and
ẽi = e1 . (3.108)

We can compute

Ωii = −Si · ẽi = −(S0 + 2S1) · e1 = −(4e1 + f1) · e1 − 2K1 · e1 = −1 + 4 = 3 (3.109)

which indeed is precisely what we expect. And hence we find that the 2-form part of the
6d theory indeed contributes Z3 factor to the 1-form symmetry of the 5d theory.

To compute the contribution to the 1-form symmetry of 5d KK theory from the 1-
form symmetry of the 6d SCFT, we need to first delete the surface S0 leaving us with the
geometry

10 (3.110)

which gives rise to a 5d non-abelian gauge theory T = su(2) without any matter. Note
that there is no extra matter content coming from S0 since S0 contains no blowups. The
potential center 1-form symmetry associated to T is Z2 spanned by the surface S1. Under
this, we see that ẽi has charge

− e1 · S1 = −e1 ·K1 = 2 = 0 (mod 2) (3.111)

and f0 has charge
− f0 · S1 = −f0 · e0 = −1 = 1 (mod 2) (3.112)

implying that the Z2 center is broken, and thus there is no contribution to the 1-form
symmetry of 5d KK theory from the 1-form symmetry of the 6d SCFT, confirming the
expected result (3.105).
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Example 2: consider the 5d KK theory

2 22 (3.113)

which carries non non-trivial gauge algebra. This KK theory is obtained by applying a
permutation twist on the following 6d SCFT

2 2 2 (3.114)

which is the A3 N = (2, 0) theory. As such it has a Z4 2-form symmetry which is acted
upon by the permutation twist. The Z4 can be identified as the center of A3 and the
permutation can be identified as the outer-automorphism of A3 Lie algebra which acts by
a complex conjugation on the center Z4 when Z4 is viewed as a subgroup of U(1). The
complex conjugation leaves only the Z2 subgroup of Z4 invariant, and hence we expect
the 5d KK theory to attain a Z2 1-form symmetry factor descending from the Z4 2-form
symmetry of the 6d SCFT. On the other hand, the 6d theory has no 1-form symmetry,
and hence we expect the full 1-form symmetry of the 5d KK theory to be

O5d = Z2 . (3.115)

Let us verify this geometrically. The geometry for the 5d KK theory can be written as

11+1
0 21+1

0
f -y, y2f -x, x

2

e-x e-y e-x e-y (3.116)

where we label the two nodes by i and j. We have Si = S0,i = S1 and Sj = S0,j = S2.
Moreover, ẽi = e1 and ẽj = e2. We can compute the matrix −Si · ẽj to be(

2 −1
−2 2

)
. (3.117)

which is indeed the matrix associated to the graph of the 5d KK theory. Computing its
Smith normal form indeed reveals a Z2 contribution to the 1-form symmetry of the 5d KK
theory. On the other hand, since both surfaces are affine surfaces, deleting them, leads
to a trivial theory with no center, and hence there is no other contribution to the 1-form
symmetry of the 5d KK theory, and we have recovered the expected result (3.115).

3.4 Brane-web and GTP analysis

A subclass of 5d SCFTs have a description in terms of 5-brane webs [38], or dually in
terms of generalized toric diagrams (GTP, or dot diagrams) [35]. We now discuss how the
1-form symmetry is encoded in this formulation of the theories, in particular how the IR
gauge theory description, by inclusion of the instanton particles gives rise to the correct
UV higher form symmetry. For models that are toric, it was argued in [27], that the 1-form
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symmetry of the 5d SCFT realized in terms of a toric fan {vi}, i = 1, · · · , f + 3, f= rank
of the flavor group, and with vi = (v1

i , v
2
i , 1) ∈ Z3, then

O = Za1 ⊕ Za2 ⊕ Za3 , (3.118)

with
diag(a1, a2, a3) = SNF(v1 · · ·vf+3) , (3.119)

where SNF is the Smith normal form, applied to the matrix of vectors in the fan. This is
entirely independent on the resolution data and therefore computes the 1-form symmetry
of the SCFT.

In the dual web, this corresponds to taking the SNF for the (p, q)-charges of the external
5-branes

diag(n1, n2, n3) = SNF


p1 q1
...

...
pf+3 qf+3

 , (3.120)

When an IR gauge theory description exists, the naive expectation from the gauge theory
can be that the 1-form symmetry is larger than the one of the SCFT. However as we have
argued the instanton particles can be charged under the 1-form symmetry and thereby cor-
rect the classical expectation. The resulting 1-form symmetry is then always in agreement
with that of the SCFT. We exemplify this in the case pure SU(N)k. Field-theoretically we
know that the 1-form symmetry is

O = Zgcd(N,k) . (3.121)

For pure SU(N)0 the toric diagram is (shown here for N = 4)

, (3.122)

One can compute using the above prescription that the 1-form symmetry associated to the
above toric diagram is Z4. On the other hand, consider pure SU(N)1 for which the toric
diagram is (shown here for N = 4):

, (3.123)

Computing the 1-form symmetry using the above prescription we find that O = Z1. If we
delete either the right-most or the left-most black dot then computing SNF leads to Z4. This
implies that the left-most and right-most black dots capture the instanton contribution.
Indeed, this fact was already observed in [11], see also related observations in [28].
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Here we conjecture that there is a generalization to non-toric, generalized toric polygon
(GTP). Consider a GTP, comprised of black and white vertices, and bring it into a convex
form (see [39]). The 1-form symmetry is computed in the same way as (3.118), except we
include all vertices that lie on the polygon — i.e. all white dots get converted into black
dots. The conjecture is that the resulting toric polygon has the same 1-form symmetry as
the diagram with white dots.

Consider e.g. su(4)0 + Λ2, whose GTP is the left diagram

, (3.124)

Computing the 1-form symmetry from the right diagram results in

O = Z2 . (3.125)

The right hand GTP describes an su(2)0 ⊕ su(4)0 gauge theory carrying a bifundamental
which indeed has the same 1-form symmetry.

Similarly for su(6)0 + AS, which has GTP given by the left diagram of

. (3.126)

The right hand diagram is su(2)0 − su(4)0 − su(6)0. Indeed both theories have O = Z2
1-form symmetry.

This observation about filling in of white dots can be understood by considering the
Wilson lines in the (p, q)-web, which correspond to (p, q)-strings, which stretch to infinity
(or end on D3-branes at finite distance) [40, 41]). A pair of strings ending on 7-branes
(p1, q1) and (p2, q2) can form a single string junction if

det
(
p1 q1
p2 q2

)
= ±1 . (3.127)

Consider a brane web with external 5-branes emanating. Consider two of these of type
(p1, q1) and (p2, q2), which each end on 7-branes at finite distance, of the same (p, q)-type.
From these 7-branes we can have (p, q) D-strings emanating, which correspond to the
Wilson lines (we can end these on D3-branes). Let∣∣∣∣∣det

(
p1 q1
p2 q2

)∣∣∣∣∣ = n1,2 . (3.128)
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(p1,q1)

(p2,q2)

...

n12(p1,q1)

(p2,q2)

...

n12(p1,q1)+(p2,q2)

Figure 1. On the left hand side is shown a general 5-brane web (blue) indicating the external
(p, q) 5-branes, ending on 7-branes (cyan). From these emanate (p, q)-strings (green), that end on
D3-branes (yellow). Given a pair of external 5-branes, the strings can only form a junction, if they
satisfy (3.129). This is shown on the right hand side. The resulting string can be moved into the
brane-web, by moving the D3-brane inside the web, and becomes a local operator. This is the
screening of the Wilson lines by local operators, realized in the brane-web.

Then these strings can form a junction satisfying [42]

n1,2(p1, q1) + (p2, q2) → ((p2, q2) + n1,2(p1, q1)) . (3.129)

These can end on D3-branes and can be moved back into the web. This is the analog
of the screening of Wilson lines by local operators and is illustrated in figure 1. For a
given 5-brane web, each external 5-brane gives rise to Wilson line, in the fashion above.
Considering pair-wise the possible junctions determines which Wilson loops are screened.
Taking the gcd over these computes the overall screening by all possible string junctions
in the web. This of course is precisely encoded in the expression (3.120) and the resulting
1-form symmetry.

From this perspective it is also clear why in a GTP with white dots, the 1-form
symmetry is computed from the GTP obtained by filling all white dots and converting
the diagram to black dots. A white dot corresponds to two 5-branes ending on the same
7-brane, whereas a black dot along a edge corresponds to two parallel 5-branes ending on
one 7-brane each. In the former configuration by not including this dot, we would not
consider the complete set of strings. The 7-branes are not essential in this, as we can send
these to infinity. By not including the white dots, we would not account for all possible
strings (Wilson lines), as there can be Wilson lines ending on either of the 5-branes, that
end on the 7-brane.
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