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Abstract

The main problem discussed in this report 1is: given an
algorithm represented as a program in some high level
language, how do we map that algorithm onto a hardware
structure that implements the algorithm.

The approach presented here is the following: The algorithm
is parsed and translated into a syntax tree. From this tree
a special data flow graph, the demand graph, 1is made. On
this graph several optimisations can be done to make the
graph structure better reallisable. Several inefficiencies
introduced by the designer may also removed. Essential is
that the optimisations transform a demand graph in a
semantically equivalent demand graph.

Further the demand graph is compiled into a hardware
structure. This hardware structure consists of a list of
modules with their interconnections and a state machine,
The compilation is done by generating alternative
implementations, using a dynamic programming technique, and
choosing the optimal implementation. This choice is made
with the information provided by the module library,
concerning the area, dissipation and speed of the modules.

The algorithms described 1Iin this report are coded in
CommonLisp. The module 1list and state machine have
automatically been generated for some algorithms,
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PREFACE

This report 1is the result of my work done during my
graduated period 1in the Automatic System Design Group (ES)
of the department of Electrical Engineering at the Eindhoven
University of Technology.

This group has several research projects concerning the
development of tools for VLSI design. Some of these
projects are contributions to the NELSIS/ICD (NEderlands
ontwerpSysteem voor gelntegreerde Schakelingen / Integrated
Circuit Design) project, which is a cooperation of the Dutch
Universities of Technology and several companies in Great-
Britain, Germany and the Netherlands.

The ESPRIT-991 project concerns Silicon Compilation. Silicon
compilation is the automatic translation of a behavioural
(algorithmic) description of a cifcuit into an implementable
layout. Silicon compilation becomes increasingly important
with the development of the IC technology. The technology
enables to design very complex systems. These large systems
cannot be designed by hand. Consequently, there will be a
large market for silicon compilers in the near future.

At this place I would like to thank the group ES for the
support given. Especially I would like to thank prof. J.A.G.
Jess, who made this research project possible, and drs. R.
v.d. Born and ir. G.L.J.M. Janssen for their wuseful
discussions and continuous support. Furthermore I thank R.
v.d. Born for proofreading this report and the suggestions
he made for improvements.
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1. Hardware synthesis systems.
1.1 Introduction.

The continuing inmprovements in the integrated circuit
technology have made possible to integrate increasingly
complex circuits. The design of systems currently
implementable on a single Iintegrated circuit requires
extensive use of design alds for such tasks as simulation
and design verification. These tools typically aid in
analysing a design once it has been specified. Missing at
the systems 1level of design are those alds which help in
creating or synthesising a design. The need for such design
alds will grow because nowadays the complexity of the
designs increases.

Although design synthesis was formerly considered to be the
realim of the creative designer, automatic and semi-automatic
programs are now being developed. As we move into the VLSI
era, the demand for more capable system IC‘'s requires even
greater productivity at all levels of the design process.
Thus, development of synthesis tcols for the creative design
process has become an important research area.

Synthesis is the creation of a detajiled design from an
abstract specification. Digital system design actually
consists of many synthesis steps, each adding more detail.

Their use promises further benefits.

e More design alternatives. Designers can specify parts
of the design and have the synthesis program fill in
details quickly, or they «can change constraint
specifications so the synthesis aid specifies a
different design.

e Correctness by construction. Human designers can make
errors in the synthesis steps. When it is proved that a
synthesis program correctly implements a specification,
such design errors are avoilded,

o Multi level representations. Synthesis programs can
maintain correlations between abstract specifications
and detailed design in the form of a representation
with multiple levels of abstraction. The representation
supports the use of powerful design aids such as mixed
level simulators and timing verifiers.

Another advantage of automatic synthesis 1s the availability
of IC technology also to the non expert designer, which
offers not only economic advantages but also the possibility



of protecting know-how,

Automatic design systems may be particularly of wuse Iif
instead of speed and/or area the main criteria are design
costs, and especially design time. Design time for new
circuits can be reduced to a few days. Special purpose chips
to implement certain algorithms in silicon are applications
well suited for this approach. Examples are network
controllers, operating system functions, signal processing
applications, speclal processors, etc., The applicability of
silicon compilers will primarly be In the fabrication of
circuits that do not stretch existing technology to its
limits. For example: it will be very difficult for a silicon
compiler to wuse the speed of the circuits to their limits.
There always has to be a safety margin. On the other side &
silicon compiler gives the designers the opportunity teo use
the advantages of the new technologies. The more abstract
level of thinking about the design makes it possible to
create more complex designs, The class of systems for which
a silicon compiler can be wused is large enough to merit
further research.

1.2 8ystem description.

The goal of cur project is to develop a system synthesising
a circuit from a high level description of a system. The
high level description is a behavioural description. Usually
the behaviour of a circuit 1s described wusing natural
language. This description deals with the functions to be
implemented and the requirements concerning power,
reliability, pin-out, timing, technology etc. to be
fulfilled. A formal description is nowadays often restricted
to finite automata or function tables. Compared to context-
free languages they do not allow a comfortable description
of modular or hierarchical systems. We propose a more
general approach by using a description of the algorithm in
a context-free language similar to common  programming
languages. This high-level-description is given in a
language like Pascal, C or LISP.

A silicon compiler is a set of tools able to transform such
a description into a realisable layout. First we present
globally what a silicon compiler does. We will describe a
relation between the algorithm and the hardware.

1. The processing unit will take care of the wvariables,
of the procedures and functions and of the
assignments; intuitively the ~variables <can be
assoclated with registers and the function names will
be assigned combinational logic circuits. Finally, the
assignments will become functional register transfers



of the type

R:=F(R);
meaning that the contents of the set of registers R is
to be loaded with a function F of the content of these
registers.

2. The control unit will take care of the program 1itself
i,e. of the constructs while ... do, if .., then
...else, etc., of thelr sequencing and of the
condition wvariables, i.e. of the binary variables
providing the truth value of the conditions to be
evaluated.

High~lavel language

abstract-syntax-tres

alandﬂrmph-coniﬁiéi@f)
l

demand-graph

L

moduls ynasic-programme
1ibrary ardware-ganarator,

Hamand-grap!
pptimiser

nodula

interconnaction state~machina
list

Figure 1.1. System overview.

The system is partitioned in several iIntermediate results
and tools, The tools (shown in ellipses) convert the
intermediate results (shown in boxes) to each other.

This partitioning of the system has several advantages: (see



fig: 1.1)

¢ The implementation of the system can be done in several
steps.

e Between all stages we can display the intermediate
results and make toocls to Interfere in these results.
This can be useful when the design system is not fully
automatlic, and Interaction with the designer is needed
to synthesise a more optimal clrcuit.

e Libraries can be linked together into the system at
several stages. This is important when complicated
designs have to be made. We can wuse the results
gathered in earlier designs. For example: we can make a
procedure library at the language level and a library
containing a set of demand graphs at the demand graph
level.

¢ The demand graph can be translated into hardware by
several hardware generators. We can wuse an expert
system, an Interactive system or a system that
translates the whole demand graph at once, like our
present-day system does.

This report describes the transformation from the syntax
tree to the demand graph and from here to the symbolic
hardware representation. These transformations are coded in
Commonlisp during this project. Before going into detail in
the following chapters we will shortly describe the
components of the system.

1.2.1 The high level language.

"The symbol-making function is one of man’s primary
activities, like eating, looking, or moving about. It is the
fundamental process of the mind, and goes on all the time."

5.K. Langer

"Man's achievements rest upon the use of symbols."”
A. Korzybski

"Language ... makes progress possible.”
§.1. Hayakawa

From "Language in Thought and Action™ by S.I. Hayakawa,
Harcourt, Brace and Company, 1949

As indicated by the quotations, languages give people the
possibility to express and communicate their ideas. The



purpose of a design language is to permit efficient
compunication between the designer and the application
design tools. But not only the communication with the
machine is important. Nowadays designs are such complex that
they cannot be made by one man. Thus some communication has
to take place between the desipgners in the project team. The
design language has to be suitable for this purpose too.
The availability of application design tools to be used with
a language 1s essential to the acceptance of the language by
the design community,

There are several advantages when wusing a high level
language and a high level silicon compiler:

1. Time consuming low level simulation and circuit
verification are no longer needed when the system
design is started from a high level.

2. The language gives the designers a communication and
documentation medium. Formal description of a design
is then possible.

3. The designers can think about thelr design at a more
abstract level, therefore the time to develop a
complex system is decreased considerably,.

Once a design language is defined, it can serve as a basis
for many design tools. But when defining a language we have
to take care of supporting the following language features:

s Both human and machine readable functional
specifications and documentation must be generated.

® Design management, The design data has to be subdivided
into parts, conform to the way the designer thinks
about the design.

e Behavioural descriptions. The algorithms, when
expressed in the language, must reflect the designer
thoughts about the algorithm. The designer has to be
able to express in the language the way he thinks about
the design.

* Description of a design’s enviromnment. The design has
to fulfill certain specifications, as timing, signal
levels and dissipation. Some special language
constructs are needed to express these constraints put
on the design by its environment.

¢ When the language is also used to serve the silicon
compiler with more structural descriptions, it must be



possible to express a structural description and a
timing description. It would be nice if the language is
extensible.

A Behaviour Description Language (BDL) is used as the input
to our silicon compiler. In this stage of ocur project we did
neither develop a new language nor decided what existing
language we could use. Instead we use the syntax tree of the
language as input. The definition of the syntax tree 1is
given in chapter 2. The syntax tree puts some constraints
on the input language but there 1iIs a certain degree of
freedom in choosing our 1language. This strategy has the
advantage that we can add language structures during the
project without the need to rewrite the parser each time.
When all language elements are known the language can be
defined or chosen. From this language a syntax tree is build
using conventional compiler techniques [Aho86]. During the
research described in this report the syntax tree is used as
the input to the silicon compiler. Because we use a user
friendly description of the syntax tree (see Appendix A), it
does not raise too many difficulties to express an algorithm
in the syntax tree.

1.2.2 Demand graph constructor.

The next intermediate result (see fig. 1.1) is the demand
graph. The demand graph represents both data flow and
control flow of the system described in the BDL. Nodes
represent both the operations on the data and the direction
in which the data flows. The edges represent the relation
between a definition and a use of a variable. The role of
the nodes and the edges will become clear in chapter 2.

The demand graph 1is, in a sense, independent from the
specification given by the designer: different BDL
specifications may lead to the same demand graph. So the
graph does not directly represent the BDL description, but
merely represents the intention the designer has put in the
description,

Because of the nature of the data flow representation, the
synthesis programs can change the order of operations
specified in the high-level description - so long as data
dependencies are satisfied - and can change design
parallelism.

The tool which converts the syntax tree to the demand graph
is the demand graph constructor. The constructor traverses
the syntax tree and generates the appropriate nodes and
edges of the demand graph.



1.2.3 Demand graph optimisations.

The optimiser converts a demand graph to a functionally
equivalent demand graph. These conversions are done because
they will result in a more efficlent implementation of the
algorithm. Certain optimisations are made to improve the
description made by the designer. The designer can use some
elements in his description to make the description more
readable. For example the wuse of constants can make a
description easier to read but will cause Inefficilencies in
the implementation. The demand graph is a wuseful
representation for these optimisations. Most optimisations
are simllar to those used in optimising compilers. We will
describe some optimisations here. The implemented
optimisations are discussed in chapter 3. A survey of
optimisations wused in optimising compilers can be found in
[Kenn81].

Some optimisations:

® Redundant subexpression elimination. 1f two operators
that both compute the expression A * B are separated by
code which contains no store into elther A or B, then
the second operator can be eliminated if the result of
the first 1s saved.

¢ Constant folding. If all the inputs to an operator are
constants whose values are known, the result of the
operator can be computed at compile time and stored
instead of the operator.

* Code motion. Operators that depend upon variables
whose values do not change in a loop may be moved ocut
of the loop, improving performance by reducing the
operators ‘frequency of executilon.

s Strength reduction, Operators that depend on the loop
induction variable cannot be moved out of the loop, but
sometimes they can be replaced by less expensive
operators.

» Variable folding. Statements of the form A:=B will
become useless 1If B can be substituted for subsequent
uses of A.

® Dead code elimination, If transformations 1like
variable folding are successful, there will be many
operators whose results are never used. Dead code
elimination detects and deletes such operators.

® Procedure integration. Under certain circumstances, a
procedure call can be replaced by the bedy of the



procedure being called.

Some other techniques from the optimising compilers can be
used during the hardware generation. For example register
allocation, scheduling of operations and detection of
parallelism,

1.2.4 Hardware generation.

The last step consists of transforming the nodes of the
optimised data flow graph into circuit components during the
dynamic programming pass. The technique of dynamic
programming is wused to generate the alternative hardware
configurations. Chapter 4 will cover the dynamic programming
while chapter 5 describes the generated hardware.

The generated hardware system appears as decomposed in two
interconnected parts: the control unit and the data path
(processing unit). The two units cooperate by exchanging
various sipgnals: the control unit provides the processing
unit with command signals, to inform the latter of the next
operation to be carried out. Typically, command lines
correspond to control variables of programmable computation
resources or to reglster control. On the other hand the
processing unit provides the control unit with binary
sipnals called condition variables. These condition
variables provide the control unit with the relevant
information about the past history of the computation to
allow decisions about the next step of the computatiomn.

The synthesis can be done using high level primitives such
as:

* reglisters of width n

¢ adders of width n plus m

multipliers of width n times m
¢ n to m multiplexers
e AlU's of width n

That means that no fixed set of hardware modules exists in
the 1library, but there exists & basis set that can be
extended according to the specific design needs. Thus for
each operator node in the demand graph a hardware operator
can be generated by a structure generator, This can be done
by taking a module from the 1library, modifying it and
combining it with other library modules until the Ffunction
of the demand graph node is attained.



The control synthesis is done during the synthesis of the
data path. If some operators have to be used twice or more,
they have to be multiplexed and controlled. Second, the need
for an explicit control of the data path, originates from
the contrel nodes. Control synthesls is performed by
constructing a £finite state machine. Once the data path
structure 1s allocated, the control signals are fixed (e.g.
load inputs 1in registers, select inputs in multiplexers,

outputs from comparators, etec.). States and state
transitions are assigned according to the predecessor
successor relation in the demand graph. The data path

description and the finite state machine description serve
as input for the underlying tools in the silicon compiler.

1.3 Related systems

In this section we describe a few research projects,
concerning VLSI-design, starting at the highest level of the
IC-design: the algorithmic description in a high level
language. At  Carnegle-Mellon University [Hitch83],
[Thom83] and [Black85] research 1is done on the
implementation of behavioral descriptions. Another project
is within the Fifth Generation Computer Systems (FGCS)
Project in Japan [Mano85]. An expert system 1is used to
translate a description in OCCAM to a CMOS layout. The last
research project we will mention is from Carlsruhe
University [Camp85], [Rosen85] and [Rosen84].
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2. Demand graph construction.
2.1 High level data flow analysis.

For the data flow analysis we want to perform, we can rely
on the results of the research donme for optimising
compilers. The overwhelming majority of previous research in
data flow analysis is concerned with low level analysis.
Such analysis algorithms act upon a program representation,
in which the only control flow structures are conditional
jumps {Al170]. The structure of the propgram disappears in
the control flow graph representing the algorithm. In a
control flow graph nodes represent basic blocks, which are
to be executed 1in linear fashion, and the arcs represent
possible flows of control.

But presently new techniques are developed. They operate on
& program representation, typically a parse tree or an
abstract syntax tree, which Includes all of the high 1level
control flow structures present in the source program. High
level data flow analysis techniques can be found in
[Rose77], [Babi78], [Kenn8l] and [Veen85]}.

The main reason for performing a high 1level data flow
analysis 1s that the structure of the program is preserved.
But there are some other advantages:

e With a good data flow technique 1t 1is possible to
locate the concurrency of the algorithm represented by
the syntax tree. We need this information to be able
to exploit the parallelism in the algorithm.

e Several optimisations can be done during the data flow
analysis. These optimisations offer the possibility to
make the algorithm more suitable for implementation.
Very important during the hardware generation is the
analysis of dead wvariables. We must decide which
variables have to be stored and which variables are not
used anymore at a glven moment.

We have chosen the demand graph {Veen85] as the
representation for our algorithms. The demand graph method
is used to perform this data flow analysis that results in
the demand graph.

The demand graph method consists of four phases: syntactic-
analysis, demand-graph construction, application and
extraction. The syntactic analysis 1is performed by the
parser, while the demand graph constructor performs the
second phase.
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The demand graph is a convenient program representation to
carry out various flow analysis  applications. The
application analysis consists of depositing Initial
information in the demand graph nodes and propagating the
information through the demand graph, combining the
information when appropriate. The analysis has to be
concerned only with data flow, since all control flow
operators have already been interpreted.

After the demand propagation all information is stored in
the nodes and arcs. Extraction can take place and all
information can be extracted and interpreted in the right
manner to be valuable,

The structure of this chapter is as follows: first general
descriptions of the syntax tree and the demand graph are
given in the following two sections. Then an example of an
algorithm with its syntax tree and demand graph are treated.
In the remainder of this chapter the implementation of the
demand graph method 1is explained. These sections also
contain exact information about the outlooks of the syntax
tree and the demand graph in this implementation in
CommonLisp.

2.2 Syntax tree.

The syntactic analysis is straightforward and converts a
program into a syntax tree representation. This analysis
is done by a parser. A parser removes all information, that
makes the program more readable for humans, but does not
contain useful information. The (abstract) syntax tree is a
condensed form of the parse tree useful for representing
language constructs. The production:

S -» if B then Sl else S2

might appear in the syntax tree as:

if-then-else

/1N

/ |\
B S1  s2

In the syntax tree, operators and keywords do not appear as
leaves, but rather are associated with the interior node
that would be the parent of those leaves in the parse tree.
In this report both the forms parse tree and syntax tree
will be used to indicate the abstract syntax tree.
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A complete summary of the abstract syntax tree, the demand
graph constructor can work upon, is given in Appendix A. An
algorithm is a list which starts with the symbol ‘"program”.
The mname of the algorithm is followed by some declarations
and the program body. In this body procedures and functions
can be declared and called, the usual dyadic and monadic
operators can be used and some special control structures
can be specified.

Here we will describe some semantics of the syntax tree.
These are properties of the language, not reflected in the
syntax tree, but determined by the interpretation of the
program, made by the demand graph constructor.

2.2.1 Declarations.

The syntax tree i{s expected to be free from declarations of
varlables and constants. These have to be put in special
tables when building the syntax tree from the program
description. It’s expected that the declaration of all
variables and constants is checked before building the
demand  graph. The 1lists connected to the "program”
identifier indicate only which wvariables are used, so they
contain only symbols that are seen as variable or constant
names. The symbols that indicate a constant name are
identified by the property value, which has the value of
the constant. This value is used in the demand graph instead
of its constant name, currently only integer wvalues are
supported. Constants may only be declared in the program

enviromment. They c¢an not be declared locally in the
procedures.

2.2.2 Procedures and functions.

The interpretation of the definition of functions and
procedures 1s made within a global environment. Thus,
procedures defined in another procedure may be called from
outside that procedure. This is a result of the current
implementation but can easily be altered if desired.

2.2.3 And and Or.

And and or are in essence dyadic operators, but are treated
in a special way. When for example the evaluation of the
expression A in A or B delivers the true value, expression
B is not evaluated. Thus we perform a conditional evaluation
from left to right., The same holds for and if the first
expression delivers the wvalue false.
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2.2.4 Arrays.

Arrays are mnot allowed in the current syntax tree.
Considering it is a hardware language, the implementation of
arrays has to be one of the first extensions made in the
future.

2.2.5 Types

There are more constraints on the input language, not
determined by the demand graph constructor, but by
considering it as a hardware description language. One of
these constraints 1is concerned with thé types of the
variables. Proposed is to use only cne type : integer. You
can define the precision of the integer by describing how
many bits should be used, This information can be entered in
the graph in the constant nodes and the get nodes. The
information can then be propagated through the whole graph,
until each processing node knows how many bits it has to
process. Thus only at the entrances of the graph (constant
and get nodes) you have to specify the bit width. The design
system then calculates the bit widths of all the data paths
and operators in the data paths. This information is not
present in the syntax tree. The parser has to make some
additional lists, during the translation of the algorithm to
the syntax tree, in vhich this additional information about
the variables is stored.

2.3 The demand graph.

The demand graph is a graph which describes the data flow in
& Pprogram. It does not contain any expliecit control
structures: these have all been interpreted during the data
dependency analysis and their effects have been expressed in
interface nodes. Interface nodes encode the static ambiguilty
of data dependency: they appear wherever data dependency is
influenced by conditional control flow.

The demand-graph-construction transforms the syntax tree in
a demand-graph. This is done by adding extra nodes and arcs
that encode data dependencies, and by removing control flow
nodes that are not essential to the meaning of the program.
Nodes that do not in some way construct a new value are not
part of the demand-graph: Variable and Assign nodes, for
instance, are left out, while a plus node constructs a new
value and is therefore part of the demand graph.
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2.4 Example: The GCD-machine.

In the example some terms are used that will be declared
later. These will become clear when the remainder of this
chapter is read. However, the reason the example is
presented here 1is to give the reader an idea of what is
going on during the demand graph construction.

The well-known Euclid’s algorithm to calculate the greatest
common divisor (GCD), is taken as example for the demand
graph construction.

The algorithm is described in two input languages Pascal
(see fig. 2.1) and LISP. (see fig. 2.2) These descriptions
can be translated into the same syntax tree (see fig. 2.3).
When we lock at the syntax tree, we recognise the function
that calculates the remainder. Furthermore, the two while-
loops, the get and put operations with their arguments and
the call to the function remainder can be found.

This syntax tree is transformed to the demand graph (see
fig. 2.4) by the demand graph constructor. In the demand
graph we find the data flow of the algorithm. First the two
variables a and b are read by the get node. The get nodes
represent the 10-protocol needed. These values are entered
through entry nodes (EN) in a loop. This loop exchanges the
values for a and b and calls the function remainder (call-in
nodes) while the output of the test node (NOT) is true.
Through the param nodes the values reach the second loop.
Here the value of d is unchanged (direct connection between
entry and exit node in the rightmost EN-EX nodes). The value
of d is subtracted from n each time the loop is traversed,
by the - node, as long as the >= nodes output remains true,
When false, the value of n 1s transported through the exit
node to the result node and through the call-out node back
to the maln loop. After finishing this loop, the put node
produces the value of a, which is the greatest common
divisor of the initlal a and b.
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program gcd (input, output);
var &, b, h : integer;
function remainder {n, d : integer) : integer;

begin
while n >= d do
n:=n - d;

remainder := n;
end; jremainder}

begin jged}
readln(a, b);
while b <> 0 do
begin
h:=b
:= remainder(a, b);
a := h;
end; jwhile}
writeln(a);
end. PASCAL PROGRAM

Figure 2.1. Euclid's algorithm in PASCAL.
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EUCLID’S ALGORITHM

(defun ged (a b)
(let (n)
(while (not (= b 0))
(setq h b)
(setq b {remainder a b))
(setq & h)))
a)

(defun remainder {n d)

(while (>= n d)
(setq o (~ a d)))
n)

Figure 2.2. Euclid’s algorithm in LISP.
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Figure 2.3. Syntax tree for Euclid’s algorithm.
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Figure 2.4. Demand graph for Euclid’s algorithm.
2.5 Demand graph method.
2.5.1 Mechanism for descending the syntax-tree,

The demand-graph constructor has as its input the abstract
syntax tree description of the program. The conversion is
achieved during a recursive descend of the tree. The
algorithm 1is best understood if each node is considered to
be an active object that can alter the graph by adding new
nodes and arcs. This process 1s called attaching the node
to the demand graph, The algorithm is implemented by a
collection of attach-procedures, one for each kind of node
in the syntax tree, including the nodes that will not become
part of the demand graph. The construction is started by
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attaching the program mnode and proceeds by recursively
attaching all its descendants in an order corresponding to
the left to right evaluation order. The descend of the
parse tree is achieved by going through the list structure,
defining the syntax tree, and calling the appropriate attach
procedures.

2.5.2 Chainer and cocoon mechanism,
Chainers.

The complicated part of the demand graph construction is the
building of the appropriate use-definition graphs. This is
controlled by a set of objects called chainers and cocoons,
Each chainer contains a deflist and an uselist. During the
construction one chainer 1is always designated as  the
current-chainer. In the deflist of this current-chainer a
variable is stored when it is defined. Defining a variable
means: giving the wvariable a new value. So in the deflist
are stored the variable name and the node identifier of the
node in which it was last defined. In general this will be
an assignment node. When a variable is used one can look up
in the deflist where it was last defined and make a new arc
from the use to the definition of the wvariable, If in a
sequential code segment the sequence definition-use-
definition-use for one variable occurs, the first use is
connected to the first definition and the second use to the
second definition. The two definitions are unrelated and the
fact that the two groups employ the same variable name has
no influence on the demand graph.

In the deflist there are other items than wvariable names.
These are called pseudo-variables. They are used to store a
reference to a certain node. For example, the node
identifier corresponding to the pseudo-variable 'Value, is
the node which produced the last new value. This is used in
assignments where the left hand side has to point to the
last produced value of the right hand side.

A variable is sald to be exposed used if it is wused in an
environment in which it is not earlier defined. The variable
is put in the current-uselist, and an interface node is made
for this wvariable. So the uselist contains pairs, with in
each palr a wvariable name and a2 node 1dentifier. The
function of the uselist seems a little bit strange at the
moment, because normally it is not allowed to use a variable
before it 1s given a value (defined). But in the next
section the role of the uselist will become clear.
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Cocoons.

There are expressions that need special treatment because of
their effect on wuse-definition analysis. For example
procedures, loops and conditionals. Whenever during the
traversal of the syntax tree such an expression is
encountered a new cocoon is created, The creation of a new
cocoon 1s implemented by making a new deflist uselist
environment. In this new environment the  subgraph
corresponding to the expression can be attached in iscolation
from the remainder of the demand graph. There are different
kinde of cocoons corresponding to the different kinds of
special expressions. Each special expression contains one
or more subexpressions, called branches. For each branch a
new chainer is created, which is designated as the current
chainer when that branch is attached. When all branches are
analysed a series of separate demand graphs, one for each
branch 1is available. Each branch contains two lists: a
deflist and a uselist. The deflist contains the last
declaration of all variables within that branch, called the
exposed definitions. The uselist contains all wvariables
which are used in the branch before they are defined, called
the exposed uses.

After all branches have been analysed the cocoon is
dissolved, which involves the creation of two series of
interface nodes, one for the ocutputs and one for the inputs,
and the connection of these to the subgraph and the
surrounding graph. For the exposed wuses, input nodes are
made and these are connected to the use in the branch and to
the previous definition in the surrounding graph. For the
exposed definitions, output nodes are made and connected to
the defining nodes in the branch. They are mot yet connected
in the surrounding graph but they are put in the deflist,
corresponding to the surrounding graph, so they can be
connected later.

The chainer and cocoon mechanism for each kind of expression
are explained in the next sections where the attaches of all
kind of expressions are described.

2.5.3 Implementations of the attach procedures.
2.5.3.1 Implementation in LISP.

In this section the implementation of the syntax tree and
the demand graph in CommonLisp are described.

The syntax tree is implemented as a list in which the arcs
are represented by "(", indicating that a new level in the
parse tree is entered, and ")}", indicating that a 1level Iis
terminated and the closest higher level is entered again.
The exact syntax of each tree element can be found in the
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descriptions of the attach procedures.

A special graph structure is developed for the demand graph.
A graph is a LISP symbol with two properties: the node-list
and the edge-list. The node-list contains the mnodes,
identified by a LISP symbol with prefix Node- and suffix a
unique number. The same holds for edges with the prefix
Edge-. A node has the properties: type, indicating the node
type (constant, operator), in-edges, a 1list of incoming
edges and out-edges, a list of cutgoing edges. An edge has
the from-node and to-node properties, besides the type
property.

Furthermore the various stacks and deflists and uselists are
implemented as LISP lists.

2.5.3.2 Form in which the attach-descriptions are given.

The attach-procedures for each kind of expression that is
allowed in the syntax tree are given in the next sections.
The descriptions will be presented in two parts:

1. The syntax of the expression in the syntax tree, in
EBNF.

2. How the expression is attached to the demand graph.

Some attach-procedures are explained in a figure. The
abbreviations used in the nodes have the following meaning:

Dx ;. Node which defines a variable x.
Ux : Node which uses a variable x.

The following drawing convention is used in the figures:
Operator and constant nodes are circled, control nodes look
like "houses™ and ellipses are special nodes with their
meaning in it. (see fig. 2.5).

In the following sections some references to  the
implementation will be made. Names surrounded by asterisks
(*) reference to the names of LISP structures used in the
implementation. Names preceded by a quote (') reference to
names used in LISP to indicate a certain property or its
value.

Detailed information about the demand graph is given in
Appendix B.
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2.5.3.3 Attach of constant.

1.

<integer>

A node with the value of the constant is created with
an outgoling arc, which has the ’'type 'source to the
sink-node : Node-0 (see fig. 2.5). and the node 1isg
placed in the *current-deflist* under the pseudo-
variable name 'Value. The sink-node 1is the node to
which all constant nodes are conmmected. It is only
used for initialisation purposes. When a constant
nede 1is attached within a special construct, an
interface node to the surrounding environment is
created. These interface nodes will eventually lead to
the sink.

source

Figure 2.5. Demand graph for constant.

2.5.3.4 Attach of a symbol,

1.

<symbol>

If <symbol> is a member of the property list
‘constant-list of the *program-name*, it is a name for
a symbolic constant and attached as the value of that
constant (see ©previous section). Otherwise it is
treated as a variable.

If the variable fis-a-def(inition) then the <symbol>
ig put in the *current-deflist* with node use(’'Value),
else the pseudo-name ’'Value is made to point to the
last definition of the variable <symbol> found by
use (<symbol>)
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5 Attach of assignment.
n(n nat <left-hand-side> <right-hand-side> ")"

<left-hand-side> has to be a symbol describing a
single variable, <right-hand-side> may be any
expression that creates a value which can be assigned
to the <left-hand-side>.

The <left-hand-side> has to be a single variable
because a value is assigned to 1t. The property 'ls-
a-def of the variable is set true because the variable
is defined here. First the <right-hand-side> 1is
attached and use(’Value) contains the node that
delivers the value to be assigned to the <left-hand-
side>. This is done during the attachment of the
<left-hand-side>. See also the next section,

6 Attach of a sequence.
lt(ll |I\;ﬂ {<arg>} l1)l|

Calls the attach procedure for all its arguments from
left to right,

7 Attach of a get.
w(" "get" (<variable>} ")"
<variable> is a symbol, defined in a2 variable list.

There is a special path for the get and the put nodes.
This path represents the succession of the read (get)
and write (put) operations specified in the algorithm.
This path is controlled by the pseude variable
*Standard-10, The first get or put nmode is connected
to 'Node-1 which is the '10-sink, The following nodes
are connected to their ancestors with a source edge.
In this way a path of get and put nodes is formed.
When the graph construction is finished the property
'source-of-demands of the *program-name* is set to the
last definition of the 'Standard-I0 wvariable. This
property marks the beginning of the IO path. The get
node is defined in the *current-deflist* together with
the wvariable 1t gets. Each variable gets its own get
node. (see fig. 2.6),
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2.5.3.8 Attach of a put.

1.

2.5.

3.

"(" "put" {<variable>} ")"
<variable> is a symbol, defined in a variable list.

For each variable a put node is made. This node 1s put
in the I0 chainer with its left-source edge as
described in the previous section, Further the node is
connected to the last definition of the wvariable, that
has to be put, with its right-source edge (see fig.
2.6).

source

right-
source

spurce-of ~demands

Figure 2.6. Demand graph for put and get nodes.
9 Attach of a monadic operator.
"(" <monop> <arg> ")"

<monop> ig defined {n *monop-set*., <arg> must deliver
a value.

Makes a new node with ‘type <monop> and connects this
node to the value delivered by the <arg> with an arc
'source and defines 'Value as the node itgelf (see
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fig. 2.7).

source

Figure 2.7. Demand graph for the monadic  expressiomn:

2.5.3.

1.

2.5.3.

NOT(a).
10 Attach of a dyadic operator.
"(" <dyop> <argl> <arg?> ")"

<dyop> is defined in *dyop-set*. *dyop-set* contains
all dyadic operators except for the and and or
operators, treated in the next two sections, <argl>
and <arg?> must deliver a value, acceptable to the
<dyop> operator.

Makes a new node with ’'type <dyop> and connects this
node to the value delivered by the <argl> with an arc
*left-source and to the value delivered by <arg2> with
an arc 'right-source and defines ‘Value as the node
itself (see fig. 2.8).

11 Attach of an and.

"(* "and" <argl> <arg2> ")"

<argl> and <arg2> must deliver a boolean value.

Makes a new node with ‘type 'and. This is a branch
node. Connects both control and outlink-failure to the

value delivered by <argl> and the outlink-success to
the value delivered by <arg?> (see fig. 2.9).
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Figure 2.8. Demand graph for the dyadic expression: a+b.

O (0)

and

control

Figure 2.9. Demand graph for the expression: X AND Y.
2.5.3.12 Attach of an or.
1. "(" “or" <argl> <arg2> ")"
<argl> and <arg?> must deliver a boolean valué.
2. Makes a new node with 'type 'or. This is a branch
node. Connects both control and outlink-success to the

value deliveted by <argl> and the outlink-failure to
the value delivéred by <arg2> (see fig. 2.10).
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outlink-
succes

outlink-
failure

control

Figure 2.10. Demand graph for the expression: X OR Y.

2.5.3.13 Attach of conditionals.

1.

"(" "if" <test> <then-chainer> <else-chainer> ")"
<test> must deliver a boolean value,

<then-chainer> and <else-chainer> may be nil but may

never be omitted. They consist of a statement or a
multiple statement,

The <test> ls attached to the demand-graph 1in the
*current-deflistx. The 'Value it delivers is later
connected to the control of the conditional cocoon,
but first the conditional cocoon is made. This is done
by creating two new deflists and two new uselists. The
*current-deflist* and the *current-uselist* are pushed
on their stacks. Then the <then-chainer> 1is attached
in the branch-chainer with one deflist and one uselist
and the <else-chainer> 1s attached in the else-branch.
For all exposed-uses ( (see fig. 2.11): U-nodes) new
nodes are made. Nodes with ‘type 'Link-in-0 for the
then branch and 'link-in-1 for the else branch,

Now we can dissolve the conditional cocoon. Branch
nodes ( (see fig. 2.11): B-nodes) are created for all
names that occur in some of the twe deflists. These
branch-nodes are connected to their definition (D-
nodes) in the then-chainer with edge 'outlink-success
and in the else-chainer with edge ‘outlink-failure,
If one of the two definitions does not exist then a
new node, type 'link-in-0 (definition in then non-
existent) or ‘link-in-1 (definition in else non-
existent), 1is made. The 'link-in-1 nodes are put in
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the uselist of the then branch, and the 'link-in-0
nodes are put in the uselist of the else branch. All
branch nodes are placed in the *export-list-branch* of
the conditional cocoon. Now merge (M} nodes are made
for all names that occur in some of the two uselists.
The merge nodes are connected with 'inlink-success
edges to the ’'link-in-1 nodes. If one of these nodes
does not exist then it is not connected. All merge
nodes are put in the export-list-merge and they are
connected to previous definitions (D) in the
surrounding demand-graph with ‘value edges after
popping the deflist and uselist from their stacks. At
the end the control is linked to all branch and merge
nodes with ’'contrel edges and the branch nodes are
defined in the *current-deflist* of the surrounding
demand graph.

control

inlink- inlink- inlink- inlink-
suycces failure succes failure

outlink-
failure

succes outlink-

failyre

control

Figure 2.11. Demand graph for if statement.
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2.5.3.14 Attach of loops.

1.

"(" "while" <test> <body> ")"

<test> has to deliver a boolean value. <body> may be
nil but may never be omitted.

A loop-cocoon 1is created. This means that the
*current-deflist* and the *current-uselist* are pushed
and two new deflists and two new uselists are created.
The <test> branch 1is attached first within its own
chainer. The loop-control is set to the wvalue that is
created by attaching the <test> branch (see fig.
2.12).

When there are exposed uses in the <test>, nodes of
the type ‘'entry (EN) are made for the concerning
variables. Now the <body> branch is attached. If there
are exposed wuses iIn the <body> 'link-in-0 nodes are
made. All these exposed uses appear of course in the
uselist corresponding to the branch in which they are
used. When dissolving the loop-cocoon for each name
that occurs in some deflist or uselist of the loop-
cocoon an 'exit (EX) node is made. The 'exit node is
linked to the definition in the <test> with edge
'value. If no definition is available then there will
be no ‘entry node, thus one is made and put in the
uselist of the <test> branch. All names in the
uselist of the <test> branch have 'entry nodes., These
*entry nodes are connected to the surrounding graph
with an edge ’'entry, and with an edge '"last to the
definition in the <body>, If there is no definition in
the body than a 'link-in-0 node is made, in the same
way as if it was an exposed use in the <body>.

All names in the uselist of the <body> branch have
'link-in-0 nodes. These nodes are connected teo the
'exit node with edge 'last. When the loop cocoon 1is
dissolved all 'exit nodes are connected with an 'entry
edge to ’'link-in-1 nodes. These ’'link-in-1 nodes are
placed in the *current-deflist* and connections teo
them can be made, when used later.
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Figure 2.12. Demand graph for while statement.

2.5.3.15 Attach of procedures.

1.

"(" "procedure” <name> "(" <value-params> ")"
(" <reference-params>")"
“{" <local-variables> *)"
ﬂ(" <body> ll)ll ll)“

<name> is a symbol, which identifies the procedure.

<value-params> <referencé-params> <local-variables>
when omitted nil has to be given in their place.

<body> may be nil but may never be omitted. It may be
any sequence of expressions.
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Attaching a procedure starts with checking if there is
not already another procedure in the program with the
same name. If mnot, the <name> 1is stored in the
*program-name*’s list ‘procedure-list. The sets of
<value-params>, <reference-params> and <local-
variables> are stored as property lists of the symbol
<name>. A new cocoon is created with in it one new
deflist and one new wuselist, These become current
lists when attaching the <body> of the procedure after
pushing the other lists. When the body is attached the
deflist contains all definitions that have to be
exported to the surrounding graph. For all definitions
that correspond to reference parameters and global
variables ‘result nodes are made (see fig, 2.13),.
These are comnnected to their definitions with edges of
type ‘value. Later, when calling the procedure, these
nodes can be connected to ‘call-in nodes. For 1local
variables and wvalue parameters mno result nodes are
made because they have mno influence on their
environment, All ‘'result nodes are stored in a
property list 'outputs belonging to the symbol <name>.

The uselist contains all exposed uses. Exposed use can
occur for <value-params>, <reference-params> and
global variables. Exposed uses for <local-variables>
are put in a *signal-list* and will be reported when
the program finishes. For the other exposed uses,
'param nodes are made while attaching the body. Now
these 'param nodes are put in the 'inputs property of
the procedure <name>. Dissolving the procedure cocoon
is ended with popping the deflist-stack and the
uselist-stack.

.16 Attach of procedure calls,

(" <name> {<param>} ")"

<name> is a symbol in *programs-name* property list
'procedure-list.

{<param>)} is a sequence with exactly the number of
symbols as in the procedure definition are in the
<value-params> and <reference-params> lists. The first
symbols in <params> are seen as the value params,
until no corresponding parameter 1s found in the
<value-params>. The resulting params are reference
params .

When a procedure is called it 1is checked if the
procedure is already attached. If no error is
signaled, for each node in the ‘outputs property a
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‘call-out node is made. This 'call-out node 1is
connected to the ‘result mnode with an edge ‘proc-
leave. The 'call-out node is stored in the *current-
deflist* under the name self if it is a global
variable or under the corresponding name in the
procedure call heading in case of a reference
parameter.

For each node in the ’'inputs property a ’'call-in node
is made. This node is connected to the corresponding
'param node. The ‘call-in node 1is connected to the
last definition of the variable in case of a global
variable and to the definition of the corresponding
name In the <params> list in case of a value param or
a reference param (see fig. 2.13).



- 133 -

Cy 0y

valus valueg

G

¢

proc-antar
proc-snter
procedure
call
proc-leave

©
G e

Figure 2.13. Demand graph for procedure with procedure
call.
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2.5.3.17 Attach of a function.

Functions are attached in exactly the same manner as
procedures. Only the function name itself is treated as a
reference-param vhen the function exits. Thus a 'result node
is made for the varisble with the name: function name.

2.5.3.18 Attach of a program.

1,

"(" "program" <program-name> "(" <constant-list> ")*
"{" <variable-list> ")"
ll( ll<body> ﬂ)“ ll)ﬂ

<program-name> is a symbol that identifies the current
program.

<constant-list>  <variable-list> when omitted nil has
to be given in their place.

<body> may be nil but may never be omitted. It may be
any sequence of expressions.

2. The <constant-list> and the <variable-list> hold
symbols, The 1lists are stored as properties of the
symbol *program-name* namely a ’'constant-list and a
'var-l1ist. The 1dentifier #*program-name* 1is set to
<program-name>. Then the <body> is attached. The graph
that 13 constructed is stored as a 'graph property of
the symbol <program-name>.
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3. Applications of the demand graph.
3.1 Introduection

The demand graph can be optimised in many ways. Essential to
these improvements is that the demand graph is transformed
in an equivalent demand graph. Thus the demand graph
represents the same algorithm but its structure is altered,
resulting in a better implementation. The outcome 1is that
you can compile the demand graph into hardware at the moment
it is generated, or after some lmprovements, This makes it
possible to add more applications on the graph structure
afterwards.

3.2 Dead node elimination

Dead nodes are nodes with no predecessors or nodes of whose
predecessors are all dead. If these nodes represent dyadic
or monadic operators, no following operation requires the
values they produce. It 1s useless to produce these values
and the operators can be omitted. If a control node has no
moere edges that carry values connected to it, it can be
removed too. After removing dead nodes it is possible that
other nodes become dead and can be removed. Thus when a ncde
is removed, it has to be checked whether any of 1its
predecessors are dead now.

The algorithm : Dead code elimination
1. All nodes without incoming edges are put in a list.

2. From this list one node is taken and 1t is removed
together with its outgoing edges.

3. The list is updated by removing the node processed
under 2 and adding new nodes that became dead by
removing edges under 2.

4. As long as the list is not empty, goto step 2.

Another approach to eliminate superfluous nodes 1is the
following: Useless nodes are all nodes that do not
contribute in anyway to the output. In the demand graph the
output 1is represented by put nodes. We check which nodes
influence the data, produced by the put nodes, and mark
these. All unmarked nodes can be removed afterwards.

The algorithm : Useless node elimination

1. Follow the I0 path and for each put node do the Mark-
procedure.
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The Mark-procedure; For each outgoing edge of a node
mark the destination node of the edge and call
recursively the Mark-procedure for the destination
node., '

2. Remove all unmarked nodes.

The second algorithm covers all nodes that would be removed
by the first algorithm. The reverse of this assertion is not
true.

3.3 Code motion.

A special kind of expressions can be removed from the inside
of loops. These are called invariant-expressions. An
expression is an invariant-expression in a loop {f none of
the variables in the expression can be modified by execution
of the loop. When such an expression {s evaluated outside
the 1loop, it is only evaluated once, while inside the loop
it may be evaluated many times.

3.4 Remove algebraic identitiles

Some operations on data do not influence the wvalue of the
data. For example the operations:

el
M
~ ¥ +
O

can be removed without changing the value of X afterwards.
This can be extended to other operators.

3.5 Redundant subexpression elimination.

Repeated operations are the same operations on data, that
has wnot changed meanwhile. Unchanged data in this context
means either constants that have the same value or variables
that did not change their value. The unchanged variables can
be detected quite easily in the demand graph. The outgoing
edges of a repeated operator points to the same definition
node as the outgoing edge of the first operator. The
similarity between constants can be established by comparing
their values. When two operators have been classified as
being repeated one of them can be removed and itz incoming
edges can be connected to the other one.

The algorithm : Redundant subexpression elimination.

For each type of operator do:
Make a 1list of all nodes with operators of the same type.
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For each node in the list do:
If a node is a repetition of one of the other nodes
in the
list remove the repeating operator and remove the
node from list.

3.6 Constant folding

If all inputs to an instruction are constants whose values
are known, the result of the instruction can be computed
when traversing the demand graph. The constants are
propagated through the 1instruction. That 1is why it is
sometimes called constant propagation.

Here we shortly list the meaning of the constant folding for
the different statements. A full description is given in the
section where the graph transformations are covered,

e Operators
The operators and the Input constants can be replaced
by a new constant with the value that results when the
operation is performed on the two constants.

o If TEST then A else B

If TEST of a conditional statement delivers a constant
value, one of the branches (A when test is false) is
never reached. This branch can be removed from the
demand graph.

There is another possibility for constant folding here.
When a variable is defined as the same constant in both
A and B it can be moved outside the if statement.

e While TEST do A

There are two possibilities when the TEST of a 1loop
appears to be a constant. First the TEST is false, then
the loop is never traversed and can be removed. Second
the TEST delivers the true value for ever and a warning
can be reported to the designer during the constant
propagation,

Furthermore, when a variable holds the same constant
value, during the loop as when entering the loop, it
can be defined outside the loop.

& Procedure (a b)
When a and b get the same constant value in all
procedure calls the wvariables can be defined in the
procedure.
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3.6.1 Implementation of the constant folding.
The algorithm for constant folding is described below:
The Algorithm : Constant folding

PILE := all constant nodes in the demand graph;
while PILE is not empty
Take a NODE1l from the pile;
Remove NODE1l from the pile;
For each input-edge of NODEl
NODE2 := start node of the input-edge;
If PROPAGATE-THROUGH(NODE2)
put NODEZ on the PILE;
REPLACE(NODEL) ;

The procedure PROPAGATE-THROUGH(node) delivers the value
true 1if the constants can be propagated through the node.
The criteria for this propagation are given in the following
section. The procedure REPLACE(node) replaces the node by
the above described structure and performs the actions,

The function "const-propagation"” returns a list of all the
nodes through which constants are propagated. As a side
effect it alters the demand-graph by removing these nodes
and replacing them by equivalent structures.

There is another algorithm for finding the nodes through
which constants can be propagated. The only entrance for
variables in the graph are the get nodes. Thus, when we
start a mark procedure, similar to the mark procedure of the
dead code elimination, from the get nodes we can find all
nodes that can be reached from the get nodes. The remaining
nodes cannot be reached from the get nodes and cannot be
supplied with wvariables. Through these nodes constants can
be propagated.

The algorithm : Find foldable nodes

1. Follow the I0 path and for each get node do the Mark-
procedure.

The Mark-procedure: For each incoming edge of a node
mark the  departure node of the edge and call
recursively the Mark-procedure for the departure node.

2. Through all  unmarked nodes cornstants can be
propagated.
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3.6.2 Graph transformations during constant folding.

Constant propagation asks for special actions for each node
type. A speclal description has been developed to describe
these actions. First this description will be introduced.

¢ Node names are surrounded by *'s, for example *dyop¥
means a node which represents a dyadic operator.

e In front of the node name its output edges are given in
a list surrounded by "(" and ")",
&
¢ Behind the node name the input edges are glven in a
list similar to the output edges.

e Edges inside "[" and "]" mean that the node to which
this edge leads has to be a constant node.

e[ --> R means: L is transformed to R

s The actions which have to be done during the transition
--> are described in between "(" and "}".

We will describe the transformation of a DYOP node as an
illustration to the transformations given below.

When a DYQOP its outputs, left-source and right-source, both
lead to a constant node ( indicated by the brackets "[" and
"]1* ) then this node can be replaced by a constant mnode G,
The inputs of the DYOP node ( V1..Vn) are connected to the
constant node C. The calculation of the constant € 1is done
by applying the function of DYOP to both constants, as
indicated by the action inside the brackets "{" and ")".

Here follows the table with the descriptions for each node
type.
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DYOP:
([left-source] [right-source]) *dyop* (VI .. Vn)

--> *C* (V1 .. Vn)

{ *C* = function of *dyop* (left-source,right-source) )

MONOP :

([source]) *momnop* (V1 ., Vn) --> *Cx (V1 .. Vn)
{*¥C* =~ function of *monop* (source) }

AND, OR:

(outliﬂk-su*cess, outlink-failure, [control]) *and/or* (V1 .. Vn)
-=> kN* (V1 .. Vn)

{ if control=l then *N* = (’'to-node of outlink-success)
else *N* « ('to-node of outlink-failure) )
i
BRANCH(1):
(outlink-success, outlink-failure, [control]) *branch* (V1 .. Vn)

--> *N* (V1 .. Vn)

{ 1f control=l then *N¥ = {'to-ncde of outlink-success)
i else #N* = ('to-node of outlink-failure) )

i
'

BRANCH(2) :
([outlink-success], [outlink-failure], control) #*branch* (V1 .. Vn)

> *Ck (V1 .. Vn) | e

{if VAL (; 'to-node outlink-success) =
VAL (j 'to-node outlink-failure)
then *C* = ‘to-node of outlink-success
else mnothing happens )

MERGE(1):
(value, [control]) *merge* (inlink-success, inlink-failure)

--> *C%* (inlink-success) | *C* (inlink-failure)

{ #*C* = ‘to-node of value;
If control=1
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then #*C%* (inlink-success)
else #C* (inlink-failure);
delete (other-link) }

Remark:

Delete means removing all nodes, starting with 'from-node
of delete-link until a branch node with the same control as
the merge-node is reached.

MERGE(2}:
([valuel, control) *merge* {(inlink-success, inlink-faillure)

--> %C* (inlink-success, inlink-failure)

{ *C*x = 'to-node value }
LINK-IN-OQ or LINK-IN-1 or CALL-IN or CALL-OUT:
{[value-in]) *node* (value-out) --> value-out = value-in

{ remove link-in-node )
Remark:
#node* = link-in-0 or link-in-1 or call-in or call-cut
ENTRY(1):
{entry, last, [control]}) *entry* (value)
--> (error | entry-exit = entry)
(if contrel=l then error: endless loop
else (entry-edge of exit)=entry, delete-loop)
ENTRY(2):
({entry], last, control) *entry* (value) --> *C% (value) | ¢
{1f type(’'to-node last)= type('to-node entry) or
= link-in-0

then *C* = 'to-node entry

else nothing happens)
Remark:
Delete-loop deletes all nodes in between an entry and an exit loop.
EXIT:

(value, [control]) *exit* (last, entry)

--> (value, [control]) *exit¥ (last, entry)
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PARAM:
([proc-enterl]..[proc-entern)) *param* (value) --> *C* (value) | ¢

{ 1f [proc-enterl]..[proc-entern] point to nodes with the

same value
then =#*C* = 'to-node of proc-enterl;
delete ('to-nodes of proc-enter?..proc-entern);

else nothing happens }

RESULT:
([source]) *result* (V1 .. Vn) -=> *C* (V1 .. Vn)

{*#C* = ’to-node of source) )}
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4, The dynamic programming approach
4.1 Introduction

In general dynamic programming is used to generate a limited
number of solutions to a problem. But in this set of
solutions the optimal solution has to be present. To be sure
the optimal solution is in the set, we need a quantity in
which the optimum can be expressed. This quantity is called
the return. Suppose we have available a certain gquantity of
a resource. This abstract term may represent the area of an
integrated circuit. A conflict of interests arises from the
fact that a resource can be used in a number of different
ways. Each such possible application is called an activity.

As a result of using all or part of this resource in any
single activity, a certain return is derived. The return
may be expressed In terms of the resource itself, or it may
be measured in entirely different units. The magnitude of
the return depends both upon the magnitude of the resource
allocated and the particular activity.

The basic assumptions are:

1. The returns from the different activities can be
measured in a common unit,

2. The total return can be obtained as the sum of the
individual returns.

The fundamental problem 1s that of distributing our
resources 50 as to maximise the total return.

It is impossible to investigate all possible implementations
of a demand graph in hardware and realise the optimal one.
But we still want to obtaln an optimum. How is this
possible?

The problem as defined above 1s a multistage decision
process: a process Iin which a sequence of decisions 1s made,
the choices available being dependent on the current state
of the system, that is: on the previous decisions. For the
hardware generation problem, the decision at each stage Iis
which node to implement next. In such processes the problem
is to determine the optimal sequence of decisions, that 1s:
those that minimise (or perhaps maximise) some objective
function. In the solution of such problems by dynamic
programming, we rely on the principle of optimality:

Principle of optimality:
An optimal policy has the property that whatever the initial
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state and the initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state
resulting from the first decision.

By a policy 1s meant a sequence of decisions.

Applying this principle to the solution of combinatorial
problems  essentially 1means using the decomposition
principle: the solutions to subproblems are found and then
used to find solutions to larger subproblems and, finally;
to the problem itself.

An exhaustive description of dynamic programming can be
found in [Bell57] and in [Bellé$2].

4.2 Generatlon of states.

First we describe what exactly a state is. A state is
characterised by a set of demand graph nodes. How this set
is formed is described in the following section. For the
moment it is enough to know that a node can be added to and
deleted from a set belonging to a state, thus generating new
states ,

For example: (see fig. 4.1)

In State-0 there are three nodes in the set, consequently
three new states 8-1, S5-2 and §-3 are generated. Now the
sets of nodes are calculated for the statés 8-1, 5-2 and §5-3
and the process contlnues.

Secondly to each state a cost is added. How these cost are
calculated 1is treated later. The cost of a state is used to
eliminate the generation of equal subtrees in the dynamic
process. Deleting and adding nodes from and to a node set of
a state delivers new states. It is possible that this new
state has been generated by operations on a node set of
another state.

For example: (see fig. 4.1)

Suppose S-4 1s characterised by the implementation of the
nodes Node-1 and Node-2. When in State-0, Node-1 is
implemented during the transition to state S$-1 and Node-2
during the transition to state $-2, state S-4 is reached
from S-1 (implementation of Node-2) and $-2 (implementation
of Node-1}).

The cost is used to choose the best preceding state for the
new state, this is the state with the lowest cost.
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Figure 4.1, Dynamic process lattice.

In this chapter is described how the lattice is built. We
assume that an implementation can be made for each node and
that the costs are returned. The implementation of a node
means  that  hardware is generated for it. How the
implementation for the various nodes is made and the costs
are calculated described in the following chapter. Here we
assume that functions are avallable to 1implemented each
requested node and return the costs of that implementation.

4.3 Model definition.

In this section a model of the problem of hardware
generation 1is presented that makes it possible to use a
dynamic programming approach to extract hardware.

4.3.1 Allowed decisions.

The allowed decisions determine the number of states that
are generated. There are two contradictory constraints:

s Enough states must be generated to make sure that the
optimal end state is reached.

¢ As few states as possible must be generated to delimic
the time in which the implementation can take place.

Before we proceed to the description of the model we
introduce a few definitions.
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Free:
A node is free if all the predecessors, that produce values
the node needs for his operation, are implemented.

We call the set of inputs that a node needs for his
operation: the Inputs needed for operation. For short this
is indicated as the needed set. It 1s clear that the needed
set 1s different for each node type. The different needed
sets are described below.

Implementable:

A node is implementable if it is free and if all nodes that
are of the same type and belong to the same control
structure are free too,

The nodes of the same type as the main node and belonging to
the same control structure are called the related node set
of the main node.

As indicated before a state is characterised by the set of
nodes it contains. We call this set the bucket. The bucket
contains the nodes that are free in the state, With the
previous definitions we can define the allowed decisions.

Allowed decisions:

Given a state and a bucket belonging to this state. A new
state may be generated for each node (or set of related
nodes) in the bucket, that is (are) implementable.

We complete this section of the model definition by given
the needed set and the related node set for each node type.
If the first (second) set 1s empty the node 1is free
(implementable).

1. s8ink and I0 sink
Both sets are empty thus may always be implemented.

2. Operator nodes
Needed set: nodes at all outgoing edges.
Related node set: empty.

3. Merge
Needed set: nodes at control line and outgoing edges.
Related node set: other merge nodes with the same
control line.

4, Branch
Needed set: nodes at control line and both outlinks.
Related node set: other branch nodes with the same
control line.
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5. Entry
The entry nodes appear two timpes in the bucket, first
when the loop is entered {(entry-1l) and second when we
traverse the loop itself (entry-2).
Entry-1
Needed set: nodes at the outgoing edge from outside
the loop.
Related node set: other entry nodes with the same
control line.
Entry-2
Needed set: nodes at the outgoing edge from inside the
loop and the control line.
Related node set: other entry nodes with the same
control line.

6. Exit
Needed set: nodes at the outgoing edge and the control
line.
Related node set: other exit nodes with the same
control line.

7. Call-in
Needed set: node at one outgoing edge.
Related node set:; other call {n nodes connected to the
same procedure call node, with an implemented node on
the, to the needed set node related, outgoing edge.

8. Result
Needed set: node at the outgoing edge.
Related node set: other result nodes belonging to the
same procedure.

4.3.2 Cost functions.

This part of the module definition is related to the
hardware generation and therefore treated in the following
chapter. Here we assume that functions exist to implement a
node in hardware. These functions return the costs for this
implementation. The cost of a state is the sum of the cost
of the preceding state and the cost of the implementation of
the node, that is implemented during the transition. When
two states deliver the same new state the cheapest path
leading to this new state is saved, The other one 1is
removed. Consequently, by eliminating a subtree we delimit
the number of states and proceed only with these states that
provide a sub optimum,
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4.4 The algorithm for generation of states.

In this section the algorithm to generate the set of states
for a demand graph is presented.

The Algorithm: State generation.

Initialise;
repeat
current-state-1list = new-state-list
new-state-list :~ nil
repeat
Process-state (car current-state-list)
current-state-list := (cdr current-state-list)
until current-state-list is empty
untll new-state-list is empty

The Initialise procedure:

We start the dynamic process by making an 1Initial state
(State-0) with the first "get™ node and the constant nodes,
as its bucket. State-0 is entered in the new-state-list,

The Main routine:

The cuter loop 1s entered and meanwhile the current-state-
list is defined and the new-state-list is emptied. The inner
loop is used to perform all operations once for each node in
the current-state-list. We take one node from the current-
state-list, it is called the current-state. This current-
state 1is processed 1Iin the Preocess-state procedure. When
entering a new iteration of the outer loop the current-
state-list 1is set to the new-state-list. This causes the
horizontal levels in the lattice (see fig. 4.1). Each time
the current-state-list is set to the new-state-list a new
level in the lattice is entered.

The Process-state procedure:

Process state performs several tasks: 1t generates new
states and meanwhile it implements the nodes in hardware.
The bucket belonging to this state is called the current-
bucket. The following is done for each node in this bucket.

It is checked if this node is implementable. If so all
alternative implementations are generated for this
current-node and the optimal implementation is chosen.
All 1its successor nodes, freed by this implementation,
are put in a new-bucket together with the nodes in the
old-bucket, except for the current-node. A new state in
the dynamic process is formed. The new-bucket is
stored as the bucket of the new formed state. The
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states get a successive number. The newly generated
state 1s stored in the new-state-list.

When this process finishes there are implementations for all
nodes that were in the current-bucket. Thus we have
generated as many new states as there were implementable
nodes in the current bucket. This is only true if no new
states would be the same. Then less states are formed. If a
new state has to be generated it is first checked if this
state is already existent.

4.4.1 Algorithm efficiency

It is clear that the number of states depends on the number
of nodes in the demand graph. The purpose of the dynamic
programming technique 1s that all possible optimal hardware
structures are examined. If the algorithm is highly parallel
many states will be generated. This 1is 1nherent to the
programming strategy. Our aim was to delimit the number of
states that are generated thanks to the special nodes that
are added during the demand graph construction. The special
nodes generate a few states more In the length of the
process but the process does not grow wider. This is
important because the width of the process determines the
number of states that have to be stored at one time and
indicate that many new states can be generated.

There are two mechanisms that delimit the number of states
that exist at one level. First, we have the detection of the
same states that eliminate sub lattices by determination of
a sub optimum. Given the definition of the bucket, the same
states can only be generated at the same horizontal level
(see fig, 4.1) in the process. This is because the same
nodes have to have been implemented for states to be the
same, They are only implemented in a different order and
that is why they could have generated other hardware.
Consequently we only have to check the states of one level
to determine if a state is already existent. This mechanism
also provides one end state in which all the nodes of the
demand graph are implemented.

The other mechanism is provided by the special restrictions,
used when it is determined 1f a necde 1s implementable. They
synchronise the dynamic process at certain points and reduce
the number of states. For example when there are call-in
nodes in a bucket they are not implemented before all call-
in nodes belonging to one call are in that bucket.
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4.4.2 Implementation of the dynamic programming

In Appendix C is described how each node type 1s treated
during this process. This description is based on the
implementation of the demand graph as described in the
previous chapters. It can be used by readers who have to
deal with the current implementation of the algorithm, or
serve as an illustration of the principles presented in this
chapter.

4.5 Example

We continue the GCD example of the preceding chapter. We
will demonstrate the dynamic process using the demand graph
for the GCD algorithm (see fig. 4.2).

In figure 4.1 is the lattice of the dynamic process for the
GCD algorithm given. We will give the explanation with
references to these two figures.

The bucket of State-0 is formed with the nodes that are free
considering Node-0 (sink) and Node-1l (I0-sink) are already
implemented. These nodes are: Node-19 (freed by the sink)
and Node-14, the initial IO-node, freed by the IO-sink. The
only node from this bucket that can be implemented is Node-
14. This implementation frees the mnodes 27 and 15. In
State-2 both get nodes are IiImplemented and the entry nodes,
belonging to the same loop, are free. All three nodes are
implemented at once and Node-18 1is the only freed node,
When, in State-4, the loop control node, Node-17, is done,
all exit nodes are free. The new bucket formed contains the
entry nodes 27 and 19, and the two call-in nodes 21 and 23.
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Figure 4.3. Process lattice for the GCD demand-graph.

We push nodes 27 and 19 on the procedure-stack and start
implementing the procedure. When we implement both call-in
nodes we can pass by the param nodes and the freed nodes are
node 2 and 4 In State-7. This loop is implemented in a
similar way as the main loop described above, resulting in a
bucket that contains only the result node 13 in State-12.
Implementing the result node, passing by the call-out node
and popping the procedure-stack results In the bucket of
state 13. Now we have all three entry nodes for the second
time and we can close the main loop. This is done by
restoring the free node after the exit nodes: Node-37, and
the process ends with the implementation of this node.

As we can see in the foregoing example an algorithm without
parallelism delivers only a straight line lattice. The
additional nodes in the demand-graph, to represent the
control flow, do not generate a wider lattice. This is a
very important result f{llustrating the complexity of the
dynamic process and the storage capaclty needed.

This example was meant to give an idea of what is going on
during a pass through the demand graph.
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5. Hardware synthesis.
5.1 Intreduction.

In this chapter the hardware generation is treated. In each
state, described in the previous chapter, hardware must be
generated for a single node or a collection of nodes. The
demand graph nodes are Implemented with modules that are
provided by the module 1library. At the same time this
library provides the costs for the implementation. When a
node has to be implemented a few alternatives are tried., For
each alternative the additional hardware is calculated and
the costs are given to a selector. This selector chooses the
cheapest implementation and the hardware structure of the
state is expanded with the new hardware, If necessary the
state machine 1s adapted for the new hardware at the same
time.

We will first outline a few difficulties that arise during
the hardware generation. Further the outlooks of the
hardware and the state machine are described. The cost
calculations are treated next, The remainder of this chapter
covers the hardware transformations for the demand graph
nodes,

5.2 Difficulties during hardware generation.

The synthesis algorithms transform the algorithm to real
circuits, Problems arise from the difference between the
constraints on the algorithm at one side and the constraints
on the hardware at the other side. We will outline a few
difficulties that arise from this controversy. Some
difficulties are solved durlng the hardware generation. More
technology dependent difficulties have to be solved at a
lower level in the silicon compiler.

1. In counterpart to the specification of the algorithm
the signals can not be used on many places in the real
circult, Limits are dependent on the technology used
and the timing characteristics given by the designer.

2. Outputs of different components can not be connected
in each manner. When no special precautions are taken,
the c¢reation of a  short-circuit «can 1lead to
unpredictable results.

3. Unwanted feedback can be created when in the
specification outputs are used, that are inputs iInto
foregoing operands, with only combinatorial logic
between them., Special synchronisation has to take
place in this case.
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4. Both a point in the time space and a place in the area
space must be found to implement an operation in
hardware. This transformation in time and space has a
special meaning when an operater 1is used twicé ot
more. Each time an operator is implemented, one has
to weight multiplexing an operator against placement
of a new operator.

5.3 The processing unit.

First we have to define a description of the hardware. The
hardware is split in two parts: the processing unit and the
contitol unit. In this sectiori the processing unit will be
described. In the next section the cortrol unit will be
covered.

I each state of tha dynamic process the hardware must be
described. Thus the description must be as short as possible
without the 1loss of wvital information for the coming
hardware generation.

We describe the hardware in two 1lists. The first 1list
contains all hardware nodes and to which nets their ports
are connected. The second contains a net list,with for each
net all nodes this net is connected to. The two lists
together form the hardware list (hdw-list). Two 1lists are
used to delimit the number of search operations, that would
have been done when one list was used.
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hdw-lise
—{(O—[node-11st |—>{net-11st F>()—>
node-list
node-nameH value I_j

(—FI inputs }—)l outputs }——)I control
net-lisr
—)@-Ir-)‘ input-nod;'—bl ocutput-nodes }—jT@—b
node-name : value

] il

()

H control :

g. © ®

inputs : outputs
et unber © ®
) <
< -
> 3
> »
input-nodes ! output-nodes

o node -nunber o o node -number o

"
-+

Y A

e
>

Figure 5.1, Hardware structure.
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The various hardware nodes are regilsters, multiplexzers and
operators. Each type of node has its own number of in- and
outputs. They are described in the following list.

Register input-nets : 0 ! register-input
output-nets: 0 : register-output
control-net: 0 : clock-in signal

IN-multiplexer 1input-nets : 1l..n: inputs

output-nets: 0 : output
control-net; 0 : input selector
OUT-multiplexer input-nets : 1 ! input
output-nets: 0..n: outputs
control-net: : output selector
operators input-nets : 0..k: inputs
output-nets: 1 ! output

multi-operators input-nets : 1..k: inputs
output-nets: 1 : output
control-net: 0 : function selector

n: dependent on the type multiplexer.
k: dependent on the type operator.

5.4 The control unit.

The controel unit 1s a finite state machine. The state
machine is represented by a LISP list. The state machine is
called a cycle-list because each label represents a new
cycle in the state machine. We omit the term "state" for
each state in the state machine and use the term "cycle"
instead, to prevent confusion with the states of the dynamic
process. The construction is as follows:
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State-machine :

~>{(Orp>{(—>{state-1abe1 »)—

Figure 5.2. The control unit

Each cycle has a cycle label. For each cycle that can be a
successor of these cycle a 1list is made, containing the
inputs and the actions belonging to this cycle transition
and the new cycle label. In this way we have created a Mealy
machine in which the old cycle and the inputs both determine
the new cycle. The inputs and actions are pairs of a net
number and a value. The value is the actual value that must
be put on the net during this cycle transition.

In this way we have created a state machine in which we can
express the cycle transitions that have to take place due to
the special language constructs. For example:
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the construct IF x THEN a ELSE b
could be translated into

(<81> ((x . 1) (actions a) 82)
{({x . 0) (actions b) 83)

<S2> ...

<S3> ...

)

and the construct WHILE x DO a
could be translated into

(«81> ((x . 1) (actions a) S1)
({(x . 0) (actions) S§2)
<82>

)

5.5 Hardware description and register transfer languages.

When we look at the hardware descriptions given above, we
see a close relation to register transfer languages, It is
easy to combine the description of the state machine with
that of the process unit and automatically generate a
description in some register transfer language. For
example: DDL (A Digital System Design Language) ([Duleyé8].
From this description we can use some other tools to
synthesise the final system. For example Takagi at NTT has
build a system that translates DDL descriptions into
hardware [Taka84]. He uses DDL-§, a LISP based DDL. The -S
stands for the LISP's S-expression syntax he uses. This
syntax is extremely simple to interface with our hardware
description.

This illustrates one of the interfaces we can use to lower
levels of the silicon compiler. The expression of the
generated results in a register transfer language has the
advantage that we can develop parts of our design using the
high level system and interface this with other parts of the
design done in the register transfer language.

5.6 Cost calculations.

5.6.1 General cost functions.

Here we give a presentation of what a cost function could
be. No research has been done on the cost functions yet. We

merely present them in this section to give the reader an
idea of how cost functions could be defined. Each cell in
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the module library has costs for its size, dissipation and
speed.

The cost function R(S) we have to optimise is:

R(S) = C, * = Te + C2 * D, (5.1)
e€eS eeS
with : weight factors.

: Time delay caused by hardware element e.

C, . C

D, : D%ssipation by hardware element e,

T

S7: Set of hardware elements in this implementation.

under the constraint:

Z A = Total area
e
eeS

with Ae : Area needed by hardware element e.

We can choose the area of interest we want to minimise most
by choosing the right wvalues for C, and C,. For example:
when we set C1 to zero we can optlmise to dissipation alone.

Now we have to define a function that calculates the costs
for each state during the process: We define the costs in
state-n fstn as follows:

min

fstn T (s ¢€s } [fs+cl*Te +C2*De ] (5.2)
pre s s
with;
fs : the cost in state-s.
spre: the set of all states preceding state-n
that can evolve to state s_ when
one element e is implemented.
e, element that is implemgnted.

It is obvious that:

fstO-O (5.3)
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5.6.2 Implementation costs,

Up till now the cost functions are defined during the state
transitions. But we have to choose between alternative
implementations when a node is implemented.

When we have to add a new hardware element we calculate the
cost for each possible implementation. When an operator is
added we can generate a list like the following:

OPERATOR_NAME

implementation; cost
processor_1 Kl
processor_2 K2
processor_3 K3
processor_n Kn

This list represents the different implementations for the
OPERATOR_NAME. It can be implemented in n ways by n
different processors. Similar 1lists can be made for
registers when a value has to be stored. From this list we
can take the optimal implementation. We get this list with
alternative  implementations by checking the following
possibilities:

1. A new processor, performing the function of the
cperator, can be added.

2. An existent processor with the same function can be
used, The cost for additional multiplexers and so on,
are taken into account in the cost.

3. An existent processor can be altered to perform both
the old functions and the new function. Then the cost
for the altered processor and additional multiplexing
circuitry has to be calculated. This happens for
example when we replace an adder by an ALU.

For registers we have the following possibilities:
1. A new register can be added.

2. An existent register that is not used at the moment
can be used.

3. An existent register can be altered {expanding the bit
width} and used.
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By this strategy we are sure that we minimise the cost of
the implementation. How well the overall realisation of the
algorithm is depends on the fact how well the cost function
is defined. When an optimum in the cost function is reached
for an optimal implementation we will find this
implementation. Therefore, it 1is very important to define
the right cost functions,

5.7 Hardware transformations.
5.7.1 Assumptions about the hardware.

In this section we will describe the assumptions we have
made about the hardware. These constraints are not inherent
in the strategy used in the silicon compiler but are an
cutcome of the current implementation of the hardware
generation algorithm. They are not optimal but made a fast
implementation possible.

1. All operator modules and register modules can be
connected to each other.

2. Multiplexers can be added everywhere in between
operator modules, register modules and operator and
register modules.

3. Modules have to be available Iin the 1library to
implement each node in the demand graph. Available
means that a node can directly be mapped onto a module
or that the function of the node can be realised by a
set of modules,

4. The cycle time has to be long enough, to give the
operator modules in the critical path, time to
propagate the values to the registers where they have
to be stored at the end of that cycle.

5.7.2 Implementation of simple nodes.

In these and the following sections some references are made
to the description of a state. These concern the properties
used to store some  information needed during the

implementation, A complete state description can be found in
Appendix D.

In this section we deal with the implementation of simple
nodes. Simple nodes are nodes whose implementation has no
impact on the state machine. These nodes are constant nodes,
put and get nodes and all operator nodes. We will explain
their implementations in the following sections.
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5.7.2.1 Implementation of a constant node,
The implementation is done as follows:

1. First is checked if the same constant 1is already
implemented, 1f so the module that implements this
constant is connected to the new use of this constant.

2. 1If the constant is not yet implemented a new module
that implements this constant is made.

The constant module has the same outlook as a reglster in
the hdw-list:

('Const constant-value (0) (outputs))

The value of the register is the value of the constant. The
input of the constant module is net 0. The outputs are all
nets that connect the module to all modules that use this
constant.

5.7.2.2 Implementation of an operator.

In essence their are two  possibilities for the
implementation of an operator node.

1. A node can be mapped on an existing module, performing
the same function and unused in the current cycle.

2. A new module can be made.

Both possibilities are investigated during the
implementation of the operator node. All nodes that can be
multiplexed are listed and for each node the cost of the
additional circuitry is calculated. When there are already
multiplexers at the inputs of the operator module they only
have to be enlarged else multiplexers have to be added. The
cheapest realisation is saved. Then the cost of adding a new
module is calculated. When this 1s cheaper a new module {s
formed and else the cheapest multiplexing alternative 1is
chosen. The hardware 1list of the new state is changed
according to the previous decisions and all circuitry is
commected to the right operators.

Monadic operators are treated In the same way as dyadic
operators except that they have one input.
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5.7.3 Implementation of complex nodes.

Complex nodes are nodes that affect the state machine. These
nodes are the nodes that represent the control flow in the
demand graph. These nodes have become part of the demand
graph thanks to language constructs as IF ... THEN ... ELSE
and WHILE ... DO. These nodes deliver new cycles in the
state machine as described in the section about the control
unit.

5.7.3.1 Generation of new state machine cycles

During the implementations within a cycle all information,
concerning the used modules, 1s stored in the ’'cycle-occ
list. This information contains the module number and the
signal wvalue needed at the control input of the module
during the cycle. When a new cycle has to be made we can
use the ‘cycle-occ list to generate the appropriate signals
in the state machine

The actions performed during the closing of the previous
cycle and the opening of a new one depend on the reason for
a new cycle. Is it on account of a special language
construct or on account of full occupation of the present
hardware? We will first describe what happens in the latter
case.

5.7.3.2 Normal new cycle generation.

In the ’'cycle-occ list we find all operators that produce
output during this cycle. All these outputs have to be
stored. First, we try to fill all unused regilsters, present
on the IC. When no more registers are available we add
enough registers to store all wvalues. Reusing registers
means that some multiplexers in front of the registers have
to be altered or to be placed.

The hardware used in this cycle is determined, thus we can
expand the state machine to generate the signals to activate
this hardware. Signals have to be made to all modules in the
‘cycle-occ 1list and to the registers and multiplexers used
to store the live variables.

After doing this a new cycle can be opened and the 'cycle-
oce ligt be emptied.
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5.7.3.3 A new cycle on account of a conditional,

We recognise a conditional In the pass of the demand graph
wvhen a set of merge nodes is encountered. Two new branches
in a cycle have to be created. One in which the then branch
nodes are implemented and another to implement the else
branch nodes.

The old cycle is closed in the same way as a normal cycle is
(see previous section). The cycle numbers of the two new
created cycles are put in a ’special-struct-stack. If a node
is implemented while the top of this stack is a list with
two numbers, we know we have to determine in which cycle to
put these mnode.

The hardware implementation of the merge nodes  adds
registers and multiplexers to the hdw-list .

LIVE VARIABLES

|
|

CONDITIONAL CONSTRUCT

—_——

Figure 5.3. Implementation of merge-nodes.

The state machine looks like this:



- g5 -

(ClL (...)
(Regl.1l) (Reg2.1l) (Reg3.l)
c2 )

( C2 (Conl.0)
(Mux1,0) (Mux2.0) ... (Mux4.0) (Mux5.0) (Regi.l) (Regh.l)
c3)

{(Conl.l)
(Mux1l.1l) (Mux2.1) ... (Mux4.1l) (Mux5.1) (Regs.l) (Reg5.1l)
c3 )

( C3 R )

In cycle-1 the live variables are stored in the registers,
(A 1 on the Reg. control port means: store the input),.
Cycle-2 directs the state machine te c¢ycle-3 in two ways
depending on the input from the Conl module. The Conl module
delivers the test value for the conditional. The
multiplexers, that control the data flow, will be signaled
in this cycle too. We call this the selection cycle,

The conditional is ended when the corresponding set of
branch nodes is encountered. The two data flows are directed
into one flow, We therefore transform the branch nodes to
multiplexers with multiple inputs. The outputs of these
multiplexers are stored in registers by the normal store-
live-variable procedure,

! CONDIONAL CONSTRUCT !

! 1

l Py Mux4 Pid MuxS !

[}

L. - - -
Reg4 Reg%

’
Figure 5.4. Implementation of branch nodes.

In cycle-2 the multiplexers Mux4 and Mux5 can be put in two
states, to accept the data from the then branch or from the
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else branch.

It is possible that there are more cycles between the cycle
in which the cycles are separated and united again. For
example the state machine can have the following outlook:

(c1 cen C2)
(c2 M. C3)

(Mux4.1) (Mux5.1) C53)
(c3 ce C4)
{C4 con (Mux4.0) (Mux5.0) C5)
{C5 .

Now the then branch operators need three cycles and the else
branch only one. In cycle C5 the cycles are united.

In the current implementation the registers Reg4 and Regs
are implemented. It would be better not to add these
registers but to wait until the need for a new cycle 1is
reached 1In the process. The actions that are accumulated
since the implementation of the branch nodes have to be done
in both parts of cycle C2, (see first state-machine in this
section). This strategy may save some registers and cycles
in the state machine.

5.7.3.4 A new cycle on account of a loop.

Another structure that opens new cycles is the loop. A loop
is entered through a set of entry nodes. When these nodes
are encountered all live variables that are not input to the
loop are saved in registers. The variables that are used in
the loop are saved in registers that are preceded by
multiplexers
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gparators
loop
operators in test

rFd
Nux2 ’

’

Figure 5.5. Implementation of a loop.

The cycle in the state machine is:

( Cl ¢ e )
(Regl.1l) (Reg2.1l) (Muxl.0)
c2 )

The values is entered in the loop through Muxl and stored in
Regl. In cycle €2 the data is kept Inside the loop: all
multiplexers have wvalue 1 on their control ports; or
transported to the outside: Mux2 has value 0. In the first

case the data is clocked in the register inside the 1loop
again,

The state machine for these cycles:
( C2 (Conl.l)

(Mux1,1)(Mux2.1) (Regl.l)

c2 )

(Conl.0)
(Mux2.0)
- C3)

( €3
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The jump back to state C2 can take place in C2 itself or, if
more c¢ycles are needed to implement the operations within
the cycle, in a later cycle. Another structure of the state
machine possible when the implementation of the 1loop
operations need one cycle more.

{ C2 (Conl.1)
(Mux2.1)
c2)

{Conl,0)
(Mux2,0)
C4 )

(C3 (...)
(Mux1.1) (Regl.1)
c2 )

(C4 ...

5.7.3.5 A new cycle on account of a procedure or function
call.

A function or procedure in the demand graph 1s called at
least twice. Otherwise 1t would have been removed In the
optimising step. Therefore we can implement the param nodes
as a reglster with multiplexers in front of it. The number
of Inputs of the multiplexer is equal to the number of
inputs of the param node. When a procedure is called, by the
call-in nodes, we close the previous cycle and put the
values In the appropriate registers. We jump in the state
machine to the series of states that represent the procedure
or function. The result nodes are implemented as registers
with multiplexers behind them. In the last state of the
procedure the result values are stored. The state machine
for a complete procedure or function call:
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”
(o)
WAY

Figure 5.6. Implementation of a procedure.

{Cl (...)
(procedure signals) (Reg3.l)
G2 )

( €2 (Conl.0)
(Mux2.0)
cé )

(Conl.l)
(Mux2.1)
c? )

(65 ¢ .. )
{(Mux1.0) (Regl.1l) (Reg2.l) (Conl.0)
cl )

( C6

The number of states within the procedure is unlimited. The
only constraint is that the next state of the last procedure
state has to be the state following the calling state. When
the procedure is called the call-id is stored in Conl. This
is a reglster of width Log,(number of calls). The last state
of the procedure dirécts the state machine to the
appropriate cycle, thanks to the value of Conl.
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5.8 Example

The strategy explained in the previous sections is adapted
te the GCD example. See the demand graph in the previous
chapter. The call-in, param, result and call-out nodes are
already removed in the optimising pass. This is because the
procedure is called once. The resulting graph consists of
two loops and some operator nodes. We describe the hardware
generated for it: see fig. 5.7 and fig. 5.8,

The two put nodes are implemented by two Input modules Il
and 12,  They are activated in cycle S0 and store their
values in Rl and R2 through Ml and M2. In cycle 51 a test is
performed. Opl delivers its wvalue to the state machine which
is directed to cycle 52 or S3. When R2«0 (OPl delivers O0)
we can output the wvalue of Rl through M3 to the output
module Ol. Else we enter the second loop. While entering S2
the wvalues of Rl and R2 are copiled into itself. This is
useless. A protection against the genmeration of such cycles
or some postprocessing has to be added to avoid such cycles.

The value of register R2 is subtracted from R1l, each time
cycle BS2 is traversed. When Op2 delivers 0 the values of Rl
and R2 are exchanged and cycle 81 is entered again. This
completes our description of the GCD machine.
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Flgure 5.7.

Hardware for the GCD machine,
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(50 §...}

(st

(s2

f(11.1)(12.1)(M1.3)(M2.3)(R1.1)(R2.1)}
st)

{(0p1.1)}
{(M3.0)(M1.2)(M4.0)(M2.2)(R1.1)(R2.1)}
S2

{(0p1.0)}

f(M3.3)(01.1)}

83)

{(oP2.1)}
f(M3.1)(M4.1)(M1.1)(M2.1)(R1.1)(R2.1)}
S2 '

{(0P2.0)}
f(M3.2)(M4.2)(M1.0)(M2.0R1.1)(R2.1)}
S1)

~(S3 END)

Figure 5.8. State machine for the GCD machine.
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6. Conclusions and future research.

In this report a system is described to compile a behaviocur
description into a hardware description, The strategy used
makes it possible to perform many optimisations during this
compilation., The algorithms for demand graph construction,
optimisations and  Thardware generation using dynamic
programming are all coded in CommonLisp during the
graduation period.

A lot of work has to be done to integrate the described
system in a silicon compiler. First the language has to be
defined and a parser made for it. Then the demand graph
constructor can be expanded to transform all language
elements, During the hardware generation more design
alternatives can be generated. Of course the module library
must be defined and the wvarlous costs for each module
calculated. One of the main problems that remain is the
definition of the cost functions. Probably this must be domne
by generating hardware for many behaviour descriptions and
comparing these with the existent designs. The parameters
in the cost functions can be altered to generate an optimal
intergrated circuit. Last but not least the system must be
interfaced with the lower levels of the silicon compilation.

Up till now necessary additions te the system are described,
Furthermore we <can develop other hardware generation
mechanisms. The demand graph can serve as a bagis and from
here different strategies can be followed. An expert system
or a mapping in stages are suggested. Mapping In stages
means: first allocate the registers, next the operators and
at the end the controller.

As indicated by the above suggestions, the current
implementation is far from complete. But I hope that hoth
the LISP implementation and this report will be wuseful in
realising the silicon compiler in the near future.
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Appendix A: Syntax tree

algorithm :
©

C"l constant-list }——-D{ variable-lisc I—)
> R

prog-name

identifiexr

congtant-list ! varlable-list

Cl=zy Orlst O

L
>

body :

multiple-atatement

multiple-statement

OOl 0

.
o

i}

statement : simple-statement
—-—)I simple-statement ]———r—) assignment -statement
h)F:ctuc:turecl-zn:acemam: }—‘ procedure-statement

Q>I proc-and- func -psi,—

structured-statement ;

cotdicional. stetement

repetitive-statement

conditional-statement
—>(O—>(1£ )}->{bool-expr |—>{bady }—>{vody }—>()—>

repetitive-statement

bool -axpr f—)-l body ]——)@—)
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assignment-statement

variable
procedure-statement :

—)®—)[ procedure-name l—)&tual -parameter-1 Ls:_}—)@—)

pProc-and-Ffunc-part
procedure-declaration
function-declaration
procedure-declaration
—*@—)Goced.m D—){ procedure -mmTl——)

L)[ value- paramsH reference-params b
local-variables o

funceion-declaration

—)@——){ﬁ;dm }—)I function-nam:b
(—){ vaiue—params]——){ reference-params b
local-variables o

axpression‘]-—~)®—)

value-params : reference-params
Ol 0 Olmmms O
> >
local-varlables : actual-parameter-list

{patemeer

I
>

Oy

expression

monadic-expression

dyadic-expression




monadic-expression
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—-)@—)I monadic-operator l—)

dyadic-expression

—->®——){ dyadic-operator l—)

expression l—‘

axpression |—'

monadic-operator :

:

dyadic-operator :

v

B340

function-name

idencifier

constant

l

E
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Appendix B: Summary of used symbols with their properties.

These section is mainly included to provide some useful
information for people, who have to deal with the demand
graph, as constructed by my demand graph constructor.

In the demand graph constructor many symbols are wused., The
symbols can be put in classes. Depending on the fact in
which class a symbol belongs it has some properties. Some
properties are only used temporary and are not valid after
the constructor has ended. They will not be discussed here.
Qther properties are still valid after the construction and
can be used later. These are given in the following table.
The criterion column gives the criterion for which a symbol
is put in a class.

TABLE B.1. Symbol classes used in the demand graph
constructor.
Symbol Classes
CLASS CRITERION PROPERTIES

<program-name>

assigned to the
global variable
*program-namex

'constant-list
‘var-list
'procedure-list
' graph

<procedure-name>

in procedure
list of the
*program-name¥*

‘outputs

'inputs
'value-params
*reference-params
‘local-variables

<constant-name>

in constant
list of the
*program-name#

'value

<variable>

in varlist of
*program-name¥
or in
value-params,
reference-params,
local-variables
of the actual
procedure.

<node-id>

prefix: "Node-"
suffix integer

'type

<edge-id>

prefix. "Edge-"
suffix integer

*type
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each node-type given: all

of edges that can leave that node-type, because
the type of an edge is determined by the

node it leaves.

There are however a few exceptions to this rule. This is

indicated in the table in the following way: when the
of the outgoing edge
then the name of the node it enters is given after the

name

type
is determined by the node it enters
edge

in parenthesis (.). If a node determines the types of

Incoming edges these edges are given in curly braces {.} iIn
the edge list.

TABLE B.2. Node types with corresponding edge types
NODE-TYPE EDGE-TYPE

sink -

constant source

dy-ops left-source, right-source

mon-ops source

and left-source, right-source

or left-source, right-source

link-in-0 inlink-success (merge) or last (exit)
link-in-1 inlink-faflure (merge) or entry (exit)
entry control, last, entry

exit control, value, {last), {entry)

branch control, outlink-success, outlink-failure
merge control, value, {inlink-success), {inlink-failure}
param pProc-enter

result value

call-in value

call-out proc-leave
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Appendix C: Node treatment in the dynamic process.

For each node type is described when it 1is free and
implementable and how the dynamic process is directed when
the nodes are implemented. This is done by describing how
the buckets of the states look before and after the
implementation. Thus the bucket of the foregoing state is
described, which 1is the bucket before the implementation,
and the bucket of the new generated state. To treat the
special construct nodes a stack is defined. The usage cf the
stack will become clear in the descriptions.

The descriptions are given in the following form:
Node-type : comment

(old-bucket) --> (new-bucket)
{old-stack) --> (new-stack)

The stack transform is omitted 1f the stack is mnot changed
when the node is realised.

1. Treatment of simple nodes.

Sink,I0-sink:
Always free and implementable, implemented in State-0.

O --> (Node-0 Node-1)

Constant ,dyop,monops,and,or:
Free if all outputs are implemented.
Implementable if free.

(bucket) --> (bucket minus implemented node)

2. Treatment of loops.

Loops are treated in a special way. A loop 1is entered
through the entry node if all entry nodes belonging to the
same loop are free. There is nothing implemented parallel
to a loop. Thus the other nodes that were with the entry
nodes in the bucket are pushed on stack. First the nodes
inside the 1loop are encountered. When all exit nodes are
freed, the Inner-loop-nodes, freed by the exit nodes, are
implemented first and the outer-loop-nodes are pushed on the
stack. These nodes are implemented when the implementation
of loop 1s finished. From the inner-loop-nodes the body of
the locop is attached until a set with all entry nodes Iis
reached again. Then the loop is finished and the process

goes on with the implementation of all the other nodes from
the stack.
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entry (first time)

entry

exit

Free 1f node on 'entry edge implemented.
Implementable if all related entry nodes are free.

(entry-nodes | other nodes) -
(free-nodes-after-entry)

{(old-stack) -->
{(entry-nodes | other-nodes) old-stack)

(second time)
Free 1f node on ’'last edge implemented
Implementable if all related entry nodes are free.

It is determined that the entry nodes are attached the
second time because the entry node set is on top of the
stack.

{entry-nodes) -->
{(other-nodes | free-nodes-after-link-in-1)

(old-stack) ->
{edr old-stack)

Remark:

Free-nodes-after-link-in-1 are the nodes freed by the
link-in-1 nodes conmnected to the exit node of the loop.
These link-in-1 nodes are put on the realised-nodes-
list. Because the link-in-1 nodes are not essential to
the hardware generation they are passed by in this way
to delimit the number of generated states.

Free if nodes on the ’'control edge and the 'value are
implemented.

Implementable if all related exit nodes are free.
(exit-nodes) -
(In-loop-free-nodes-after-exit)

(old-stack) -=>
(cons (car old-stack link-in-l-nodes)(cdr old-stack)})
Remark:

The in-loop-free-nodes-after-exit are the nodes that
are freed by the link-in-0 nodes connected to the exit
nodes. These link-in-nodes are passed by, by
immediately putting them in the realised nodes 1list.
The link-in-1 nodes are pushed on the stack in the same
list as the other-nodes. These are the nodes that have

"to be put in the bucket when the 1loop 1is completely

implemented.
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3. Treatment of conditionals.

merge
Free if nodes on the ’'control edge and the ’'value are
implemented,
Implementable if all related merge nodes are free.

(merge-nodes | other-nodes) -
(free-nodes-after-link-nodes | other nodes)

Remark:

The merge nodes and the connected link-in nodes are put
in the realised nodes set. The nodes that are freed by
the link-in-1 and the link-in-0 nodes, together with
the other nodes are put in the new bucket.

Branch
Free if nodes on all the outgoing edges are
implemented.

Implementable if all related branch nodes are free.

(branch-nodes | other-nodes) -->
(free-nodes-after-branch-nodes | other nodes)

Remark:
The branch nodes are put in the realised nodes set. The

nodes that are freed by the branch nodes together with
the other nodes are put in the new bucket.

4. Treatment of procedures and functions.

Procedures dre treated in a way similar to loops. No other
nodes are implemented during the implementation of the
procedure. The other nodes are pushed on a stack that 1is
popped when the result nodes are treated. When a procedure
is called a second time it is already implemented in
hardware. Thus the new bucket 1is formed with the result
nodes and the other nodes are put on the stack. The
preceding lmplementation is used again,

Call-in (first time)
Free 1if nodes on all the outgoing edges are
implemented.
Implementable if all related call-in nodes are free.

{(call-in-nodes | other-nodes) -->
(free-nodes-after-param-nodes)

(proc-stack) -
(cons (proc-call-node other-nodes) proc-stack)
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Remark:

The other nodes are pushed on the stack together with
the proc-call node. The proc-call node is used to
detect to which call the results have to be sent when
the result nodes will be implemented, In the new
bucket are the nodes freed by the param nodes. To
delimit the number of states these param nodes are
passed by.

Call-in (second time)

Free if nodes on all the outgoing edges are
implemented.

Implementable if all related call-in nodes are free.

(call-in-nodes | other-nodes) >
{(result-nodes)

{proc-stack) -->
(cons (proc-call-ncde other-nodes) proc-stack)

Remark:

The other nodes are pushed on the stack together with
the proc-call node. The proc-call node 1is used to
detect to which call the results have to be sent when
the result nodes will be implemented. The result nodes
are put in the new bucket to avold a new implementation
of the procedure,

Result
Free 1f nodes on all the outgoing edges are
implemented.

Implementable 1f all related result nodes are free.

(result-nodes) -
(free-nodes-after-call-out-nodes | other-nodes)

{(proc-stack) -
(cdr proc-stack)

Remark:

In the new bucket are put the other nodes and the free
nodes after the call-out nodes. In this way the call-
out nodes are passed by and delimits this strategy the

number of generated states. The call-out nodes are put
in the realised nodes set.
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Appendix D: State description,

In each state enough information must be stored to be able
to determine the next states in an optimal way. Characters
in between "(" and ")" are only provided to explain the
property name but are omitted in the implementation. The
following properties are stored for each state (if
necessary):

1. Cost: the cost of the implementation up to his state,
updated when new hardware is implemented.

2. Bucket: the nodes that are free when entering this
state, updated when node(s) are implemented.

3. Transform-list: 1list of pairs of nodes that are
realised and whose output is still needed by other
nodes that have not been implemented and the module
nunber of the module in which the node is compiled.
Pairs are entered when a module is made for a node,
pairs are removed when a result of a node is used the
last time.

4. Cycle-occ(upancy): the occupancy of the current
processor cycle, wupdated when modules are wused,
cleared when a new cycle is entered.

5. Speclal-cycle-occ: the occupancy of the second current

processor cycle. Used when conditionals are
implemented and operators for two cycles are
collected.

6. Loop-cycle-occ: the occupancy of the processor cycle
in a loop.

7. H(ar)dw(are)-list: the generated hardware on the
integrated circuit.

8. Stat(e)-mach(ine): the state machine to control the
generated hardware, updated each time a new cycle is
made .

9. Input-signal: contains pair of net number and value of
the net that is the input signal of the then branch
cycle. Updated when the test node of the if-statement
is implemented. Cleared when a new cycle is made.

10. Special-input-signal: same as input-signal only for
else branch cycle.



11.

12.

13.

14,
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Loop-input-signal: same as input-signal only for loop
cycle, when loop is entered from normal environment or
from then branch environment. Updated when the mnode
that delivers the test signal of the while-statement
is implemented,

Loop-special-input-signal: same as loop-input-signal
only for 1loop cycle, when loop is entered from else
branch environment.

Insert-state: When a loop is ended and the environment
surrounding it is entered, the insert-state is the
cycle from which the jump out the loop must be made.
This property 1is stored when entering a loop and
deleted when a loop is ended.

Special-struct-stack: Top of stack represents the
environment that is entered. Two cycle numbers on top
of stack mean that an if-environment is handled, one
cycle number that a loop is handled. The cycle numbers
are the cycles in which the speclal structure 1is
entered, If more states are needed to implement the
operators in a specisl structure the cycle number is
replaced by the new cycle number.
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