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Higher moments and US industry 
returns: Realized skewness  

and kurtosis 
Abstract   

Purpose – The purpose of this paper is to examine the relationships between the higher 
moments of returns (realized skewness and kurtosis) and subsequent returns at the industry 
level, with a focus on both empirical predictability and practical application via trading 
strategies. 

Design/methodology/approach – Daily returns for 48 US industries over the period 1970–
2019 from Kenneth French’s data library are used to calculate the higher moments and to 
construct short- and medium-term single-sort trading strategies. The analysis adjusts returns 
for common risk factors (market, size, value, investment, profitability and illiquidity) to 
confirm whether conventional asset pricing models can capture these relationships. 

Findings – Past skewness positively relates to subsequent industry returns and this relationship 
is unexplained by common risk factors. There is also a time-varying effect in that the predictive 
role of skewness is much stronger over business cycle expansions than recessions, a result 
consistent with varying investor optimism. However, there is no significant relationship 
between kurtosis and subsequent industry returns. The analysis confirms robustness using both 
value- and equal-weighted returns.  

Research limitations/implications – The calculation of realized moments conventionally 
employs high-frequency intra-day data, regrettably unavailable for industries. In addition, the 
chosen portfolio-sorting method may omit some information as it compares only average group 
returns. Nonetheless, the close relationship between skewness and future returns at the industry 
level suggests variations in returns unexplained by common risk factors. This enriches 
knowledge of market anomalies and questions yet again weak-form market efficiency and the 
validity of conventional asset pricing models. One suggestion is that it is possible to 
significantly improve existing multi-factor asset pricing models by including industry 
skewness as a risk factor. 

Practical implications – Given the relationship between skewness and future returns at the 
industry level, investors may predict subsequent industry returns to select better-performing 
funds. They may even construct trading strategies based on return distributions that would 
generate abnormal returns. Further, as the evaluation of individual stocks also contains industry 
information, and stocks in industries with better performance earn higher returns, risks related 
to industry return distributions can also shed light on individual stock picking.  
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Originality – While there is abundant evidence of the relationships between higher moments 
and future returns at the firm level, there is little at the industry level. Further, by testing 
whether there is time variation in the relationship between industry higher moments and future 
returns, the paper yields novel evidence concerning the asymmetric effect of stock return 
predictability over business cycles. Lastly, the analysis supplements firm-level results focusing 
only on the decomposed components of higher moments. 

Keywords Market anomalies, Industry returns, Higher moments, Skewness, Kurtosis 

Paper type Research Paper 
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1. Introduction 

The US stock market, the largest in the world, plays a major role in raising funds for companies 

and offering investment opportunities for global investors. The ultimate goal of nearly all of 

these investors is to gain high returns, so they seek techniques to predict future returns. In 

response, the finance mainstay of the efficient market hypothesis (EMH) postulates that returns 

follow a random walk and cannot be predicted, while asset pricing models, including the capital 

asset pricing model (CAPM) (Lintner, 1965; Mossin, 1966; Sharpe, 1964) and the Fama–

French (1993, 2015) three- and five-factor models, endeavor to price these same returns.  

However, so-called market anomalies (situations where investors earn abnormal returns 

not captured by these conventional models) challenge both the EMH and asset pricing models, 

bringing a ray of hope for investors in predicting future returns and thereby earning larger gains. 

Many studies propose “a zoo of new factors” (Cochrane, 2011) and market anomalies 

associated with past higher moments (skewness and kurtosis) receive much attention in 

predicting individual stock returns (Amaya et al., 2015; Bali et al., 2019; Conrad et al., 2013). 

Nonetheless, as industry performance contains crucial information about individual stocks 

(Kadan et al., 2012; Wu and Mazouz, 2016), and as industry funds are widely available 

investment vehicles (Wu, 2015), we need to extend the results for individual stock returns and 

investigate whether past higher moments also relate to future returns at the industry level. 

Our first motivation for studying market anomalies associated with past higher 

moments is that these moments describe the risks of return movements, and are therefore 

primary factors for predicting future returns. Many studies argue that in addition to mean and 

volatility, skewness and kurtosis should also be included as risk factors in asset pricing, 

especially as returns are typically not normally distributed (Amaya et al., 2015; Bali et al., 

2019; Conrad et al., 2013). A second motivation is the significant role of industry performance 

in real-world investment activity. From an empirical perspective, most studies consider return 

predictability at the firm level. However, when selecting profitable individual stocks, industry 

performance can shed light on predicting the subsequent returns of individual stocks (Wu and 
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Mazouz, 2016). For example, some analysts believe that stocks in outperforming industries can 

generate higher returns (Kadan et al., 2012). 

More importantly, as the returns of firms belonging to the same industry exhibit 

comovements, theoretical models argue that risks at the firm level are driven by industry 

characteristics (Bustamante, 2015; Wu and Mazouz, 2016) and empirical studies subsequently 

find that industry risks can indeed explain individual stock returns (Hameed and Mian, 2015; 

Wu and Mazouz, 2016). Consequently, instead of holding individual stocks, some investors 

may prefer investing in industry funds, such as sector mutual funds and exchange-traded funds. 

Currently, these are receiving much attention (Wu, 2015), especially as funds managed by 

professionals may obtain higher returns (Barber and Odean, 2011). 

A third and final motivation is that stocks in the same industry or industries with similar 

characteristics, technology, and macroeconomic environments typically relate closely to each 

other, displaying comparable return distributions or return comovements (Jia and Yan, 2017; 

Parsons et al., 2020; Wu and Mazouz, 2016). Stocks in the same industry may also be subject 

to the same investor preferences, which may likewise determine return movements. Moreover, 

Zhang (2005) argues that moments measured using industry data are more accurate than those 

using individual data. This may be because industry moments capture common shocks or 

events that affect all the firms within the same industry (Wu and Mazouz, 2016).  

Applying portfolio-sorting strategies to the monthly returns of 48 US industries, we 

find that realized skewness positively relates to subsequent industry returns and that this 

relationship is uncaptured by common risk factors. Interestingly, this relationship is much 

stronger over business cycle expansions than recessions, which is consistent with the optimistic 

attitudes of investors during upturns in economic activity (Blau, 2017; Byun and Kim, 2016). 

However, there is no significant relationship between kurtosis and subsequent industry returns. 

Our results are robust when calculating moments and future returns using either value- or 

equal-weighted industry daily returns. 

Our study contributes to existing studies of asset pricing in three ways. First, while the 

relationships between higher moments and future returns at the firm level receive much 
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attention, industry returns are scarcely considered. This is somewhat a mystery as it is well 

known that industry return distributions are equally or even more important when making 

investment decisions (Hameed and Mian, 2015; Kadan et al., 2012; Wu and Mazouz, 2016) 

and that sector funds are increasingly common, suggesting a critical role in asset pricing (Wu, 

2015). By providing a useful return predictor in the form of realized skewness, we significantly 

extend our understanding of industry return distributions and industry investment.[1] 

Second, recent studies find that many return predictors entail asymmetric effects over 

business cycle recessions and expansions (Andrei et al., 2019; Gregoriou et al., 2020; Racicot 

and Théoret, 2019). Although Gregoriou et al. (2020) and Racicot and Théoret (2019) consider 

the relationship between systematic higher moment risks contained in hedge funds and 

economic conditions, to our best knowledge none has considered the predictive role of industry 

higher moments over business cycles. Motivated by these results, we test the relationships 

between industry higher moments and returns over business cycles. The stronger predictive 

role of industry skewness over expansions found in our study further highlights the need to link 

economic conditions to industry return pricing in academia and to portfolio investments in the 

real world. 

Finally, unlike many studies investigating the so-called “diversified” version of higher 

moments, namely, co-skewness and co-kurtosis (e.g., Back, 2014; Back et al., 2018; Gregoriou 

et al., 2020), we focus on total realized skewness and kurtosis. According to the EMH, it is 

possible to diversify idiosyncratic risks and price only systematic risks in an efficient market. 

However, many empirical studies argue that stock markets are not perfectly efficient and find 

that idiosyncratic skewness (kurtosis) significantly predicts future returns at the firm level (Bali 

et al., 2019; Boyer et al., 2010; Conrad et al., 2013). Rather than decomposing higher moments, 

our study investigates total skewness and kurtosis as they fit industry portfolios more 

appropriately. The results thus help us better understand industry return distributions and 

                                                 
[1] While Jia and Yan (2017) consider the relationship between skewness and momentum returns at both the firm and industry 
levels, we test whether industry higher moments can predict future industry returns, rather than industry momentum returns. 
Moreover, Jia and Yan (2017) only consider skewness, whereas we evaluate both skewness and kurtosis, in line with very early 
and more recent suggestions of the importance of their close relationship by Wilkins (1944) and Schopflocher and Sullivan 
(2005). 
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supplement firm-level results that only focus on the decomposed components of higher 

moments. The realized measures used in our analysis also help reduce estimation errors 

contained in the prevailing model-dependent and option-related measures (Andersen and 

Benzoni, 2008; Yu, 2002).  

The remainder of the paper is structured as follows. Section 2 reviews the related 

literature on higher moments and subsequent returns. Section 3 discusses the data and Section 

4 illustrates the method, including the trading strategies and the calculation of the returns and 

moments. Section 5 presents the empirical results and Section 6 provides robustness tests. 

Section 7 concludes. 

2. Literature review 

For decades, asset pricing studies have sought to identify potential pricing factors to 

capture returns, with historical patterns and risks of return movements being the primary factors 

for predicting future returns (Amaya et al., 2015; Bali et al., 2019; Conrad et al., 2013). Many 

studies find that in addition to mean and volatility, investors also care about the higher moments 

of their holding portfolio returns (e.g., Back, 2014; Back et al., 2018; Gregoriou et al., 2020). 

This raises the issue of pricing higher moments.  

Although skewness has long received empirical attention, the results concerning the 

relationship between skewness and subsequent returns remain mixed. On the one hand, and 

according to the EMH, we can diversify idiosyncratic risks and price only systematic risks in 

an efficient market. Given this phenomenon, studies employ dynamic methods to estimate the 

“diversified” version of skewness, being systematic skewness (or co-skewness) representing 

the sensitivity to the skewness of market portfolios and conclude a negative relationship 

between co-skewness and subsequent returns. For example, early work by Kraus and 

Litzenberger (1976) finds that unconditional co-skewness predicts the performance of the 

aggregate market portfolio and therefore should be included in the Lintner–Sharpe–Mossin 

CAPM. In contrast, Harvey and Siddique (2000) focus on conditional co-skewness and reveal 

a negative relationship with the future returns of both individual stocks and portfolios formed 

on dynamic criteria (e.g., industry, size and value).  
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Alternatively, Langlois (2020) develops a novel method for predicting future skewness 

risk and obtain a significant risk premium earned on the predicted systematic skewness factor 

of buying (selling) low (high) co-skewness stocks. The negative relationship in these empirical 

studies is consistent with the theoretical model in Kraus and Litzenberger (1976) whereby 

investors prefer positive skewness but require higher expected returns for holding securities 

with negative co-skewness. Other studies challenge the EMH and argue that stock markets are 

not always efficient. For example, Boyer et al. (2010) obtain a negative relationship between 

expected idiosyncratic skewness and returns. 

Most studies using another well-established skewness measure, namely, option-implied 

skewness, usually obtain opposing results. For instance, Rehman and Vilkov (2012) and Stilger 

et al. (2016) find that option-implied skewness positively relates to future realized returns, 

while Stilger et al. (2016) conclude that this relationship is driven by the idiosyncratic 

component of skewness. Bali et al. (2019) also consider the positive relationship between ex 

ante option-implied idiosyncratic skewness and price target-based expected stock returns, as 

explained by demand-based option pricing theory (Garleanu et al., 2009). In brief, informed 

investors prefer to buy (sell) calls (puts) when the underlying stocks are undervalued, and this 

pushes the call (put) price higher (lower), leading to a high right-tail probability associated with 

high skewness for stocks and higher expected returns. 

Assuming that investors care about both systematic and unsystematic risk, some studies 

also investigate total skewness rather than decomposing the higher moments. For instance, 

Amaya et al. (2015) identify a negative relationship between high-frequency realized skewness 

and the following week’s stock returns. Likewise, Zhang (2005) estimates intra-group cross-

sectional skewness and finds that a strategy of buying (selling) stocks with lower (higher) 

skewness could also earn excess returns.  

Compared with skewness, there is rather less attention given to kurtosis in the literature. 

Under the EMH, very early work by Wilkins (1944) and later Schopflocher and Sullivan (2005) 

proves a U-shaped relationship between skewness and kurtosis. For this reason, as skewness is 

known to be priced in stock markets, kurtosis should also predict returns. For instance, Dittmar 



9 
 

(2002) links diversified higher moments with investor behavior and finds that co-kurtosis 

provides better explanatory power than co-skewness for market returns. In contrast, Conrad et 

al. (2013) specify option-implied kurtosis and conclude that the idiosyncratic component drives 

the positive relationship between kurtosis and subsequent returns.  

However, the predictive power of neither systematic nor idiosyncratic kurtosis is robust. 

Recent analysis by Bali et al. (2019) reveals that systematic option-implied kurtosis has no 

influence on return predictability at the firm level. Ayadi et al. (2019) also point out that 

idiosyncratic kurtosis is not priced in Fama–MacBeth (1973) regressions, although it does 

relate to stock returns in some subsample periods. Alternatively, Amaya et al. (2015) conclude 

a positive relationship between realized total kurtosis and the following week’s returns, but 

find it is not always robust when using different measures of kurtosis. Similarly, Bai et al. 

(2016) suggest that kurtosis provides no incremental benefit in predicting future bond returns, 

especially after controlling for volatility and skewness. 

The limits of these and other existing studies motivate our method in three ways. First, 

we consider the predictive role of industry not individual stock skewness and kurtosis. This 

enhances our understanding of industry return distributions and investments. Second, unlike 

existing studies, we evaluate the predictive power of industry higher moments over business 

cycles. This reveals the time-varying effect of the relationship between industry higher 

moments and future returns. Finally, many studies use the model-dependent approaches that 

rely on assumptions for parameters (Andersen and Benzoni, 2008; Yu, 2002) or the option-

implied measurement that requires assumptions to translate option-related moments to physical 

moments (Langlois, 2020). Our constructed realized skewness and kurtosis, however, are free 

from pre-determined assumptions. This has the added benefit in that unlike the “diversified” 

moments (co-skewness or co-kurtosis) in existing studies (e.g., Back, 2014; Back et al., 2018; 

Harvey and Siddique, 2000), realized skewness and kurtosis better fit industry portfolios as 

these are ordinarily undiversified. 
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3. Data  

We collect data on 48 industry returns in the US stock market and the risk-free rate of 

return proxied using the one-month US Treasury bill rate from the Kenneth French data library 

(French, 2020). The sample period is from January 1, 1970 to December 30, 2019. This is the 

longest period for which the returns of all US industries and common risk factors are available. 

As small stocks typically have low liquidity, most investors, especially US institutional 

investors, prefer large stocks (Gompers and Metrick, 2001). For this reason, we use value-

weighted industry daily returns to calculate the moments and future returns. While other studies 

also use value-weighted returns (e.g., Dichev, and Yu, 2011; Fama et al., 1993; Nyberg and 

Vaihekoski, 2010), in Section 6 we check for the robustness of our results using equal-weighted 

daily industry returns.  

Table I provides summary statistics of the monthly returns of the 48 industries, 

including the four moments (mean, volatility, skewness, and kurtosis) along with the statistics 

for Jarque–Bera normality tests of monthly industry returns and average monthly excess returns. 

We use realized measures here as the trading strategies constructed later employ realized 

moments. Overall, the average monthly returns from 1970 to 2019 are all positive, and most 

industries perform better than the risk-free asset save Coal, Real Estate, and Others.  

<INSERT TABLE I HERE> 

Setting the mean return as zero, realized skewness measures the degree of distortion 

from the normal distribution around zero. Table I reveals that most industries have negative 

skewness, indicating that the distributions of their monthly returns have long tails extending to 

the left. For its part, kurtosis represents the degree of peakedness in a distribution. All the 

industry distributions exhibit a value of kurtosis greater than three, indicating the greater 

likelihood of more extreme returns, either negative or positive. The negative skewness, high 

kurtosis and significant Jarque–Bera statistics suggest that these monthly industry returns are 

not normally distributed. We also examine whether common risk factors (market, size, value, 

investment, profitability and illiquidity) can help explain the predictive power of moments. We 
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obtain the market, size, value, investment and profitability factors from the Kenneth French 

data library (French, 2020) and the illiquidity factor from Pastor (2020). 

4. Method 

Our objective is to investigate whether industry skewness (kurtosis) predicts future 

returns over multiple trading horizons in the US stock market, for which we employ the 

following testable hypotheses. The null hypothesis is that realized skewness (kurtosis) is 

unrelated to subsequent returns at the industry level over the short or medium term. As many 

studies identify the predictive power of higher moments at the firm level (Amaya et al., 2015; 

Bali et al., 2019; Stilger et al., 2016), we expect to reject the null. However, the expected signs 

of the relationships are empirically unknown.  

To test the relationship between industry higher moments and future returns, we first 

gather industry returns over the sample period and calculate realized skewness and kurtosis for 

each industry over different estimation periods. We then construct trading strategies over 

selected periods to test our hypotheses. We then adjust the holding-period returns using the 

CAPM, Fama–French three- and five-factor models, and the constructed six-factor model, and 

conclude that if these relationships remain significant, the moments additionally predict future 

returns at the industry level after adjusting for common risk factors. 

4.1 Trading strategies 

Following Amaya et al. (2015), we employ a single-sort strategy to evaluate the 

relationships between moments and future returns. Taking trading strategies with skewness as 

an example, at each beginning month t, industries are ranked in ascending order based on their 

past realized skewness over an E-month estimation period (E = 1, 3, 6, 9, 12, 24). A zero-cost 

portfolio of buying (selling) the highest- (lowest-) skewness group is formed, and then each 

portfolio is held over the next H-month holding period (H = 1, 3, 6, 9, 12, 24) to obtain the 

holding-period portfolio returns. This strategy is then repeated at the beginning of month t+1 

and so on. Finally, we adjust the holding-period returns using conventional asset pricing models 
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to further check whether the relationship between higher moments and future returns at the 

industry level is explained by common risk factors. 

When generating average monthly returns over the holding periods, we calculate equal-

weighted monthly raw returns. Although many studies of individual stock returns calculate 

both equal- and value-weighted portfolio returns, this is not possible with industry given the 

unavailability of the market size by industry data in this study.  

4.2 Calculations 

Estimation-period moments 

We transform the raw industry returns sourced from the Kenneth French Data Library 

to continuously compounded (log) returns, as below: 

r𝑡𝑡,𝑖𝑖 = ln(1 + 𝑥𝑥𝑖𝑖,𝑡𝑡
100

),                              (1) 

where 𝑥𝑥 is the daily raw return for industry i at day t multiplied by 100 and 𝑟𝑟𝑡𝑡,𝑖𝑖 are the daily 

natural log returns.[ 2 ] We measure total skewness and kurtosis in undiversified industry 

portfolios. As discussed, for skewness, we use realized skewness, being a model-free approach 

that reduces estimation errors (Andersen and Benzoni, 2008; Yu, 2002). While it is 

commonplace for studies to employ intra-day high frequency realized skewness when 

considering the higher moments of individual stocks, it is difficult to obtain this information 

by industry. That said, high frequency realized moments are also excessively noisy, so monthly 

realized moments are normally used when high-frequency data is not available (Chauvet et al., 

2015; Eriksson et al., 2019; Yu, 2002). Following this same logic for monthly realized and 

quarterly realized moments, we expand this to estimation-period realized higher moments.  

Following Amaya et al. (2015), the estimation-period skewness and kurtosis are: 

RSkew𝑇𝑇,𝑖𝑖 =  √𝑁𝑁∑ 𝑟𝑟𝑡𝑡,𝑖𝑖
3𝑁𝑁

𝑡𝑡=1

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇
3/2 ,                           (2) 

RKurt𝑇𝑇,𝑖𝑖 =  𝑁𝑁∑ 𝑟𝑟𝑡𝑡,𝑖𝑖
4𝑁𝑁

𝑡𝑡=1

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇
2 .                            (3) 

                                                 
[2 ] It is common to measure stock returns and the changes in other financial variables in their natural logarithmic form, 
especially when the returns and changes are not normally distributed (e.g., Diaz and de Gracia, 2017; Hudson and Gregoriou, 
2015; Khan et al., 2019). In addition, log returns have the advantage of being addable when calculating holding-period returns 
over multiple trading horizons (Hudson and Gregoriou, 2015). Palazzo (2009) and Baur and Löffler (2015) that use the data 
in the Kenneth French Data Library also transform raw to logarithmic returns. 
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where rt, i is the daily return (1) for each industry i on trading day t and N is the number of 

observations in the estimation period T. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇  is the estimation-period realized variance, 

written as:  

RVar𝑇𝑇,𝑖𝑖 =  ∑ 𝑟𝑟2𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑡𝑡=1 .                             (4) 

Holding-period raw returns 

We measure holding-period zero-cost portfolio returns by using the average monthly 

excess returns over that holding period. The average monthly returns over holding periods are 

as below: 

𝑅𝑅𝑖𝑖,𝑇𝑇 = 1
𝑇𝑇
∑ r𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑡𝑡=1 ,                           (5) 

where 𝑅𝑅𝑖𝑖,𝑇𝑇  is the monthly average return of the zero-cost portfolio i over a holding-period T 

and r𝑡𝑡,𝑖𝑖 is the daily return for the zero-cost portfolio i at day t. N is the number of trading days 

and T is the number of months in that holding period.  

Holding-period adjusted returns 

We also adjust the holding-period raw returns for common risk factors. If the 

relationships between moments and future returns remain (statistically) significant, moments 

may predict future returns at the industry level.  

First, we apply the Lintner–Sharpe–Mossin CAPM to adjust returns. The CAPM is: 

𝑅𝑅𝑖𝑖,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇� + 𝜀𝜀𝑖𝑖,𝑇𝑇,                (6) 

where 𝑅𝑅𝑖𝑖,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇 is the monthly excess return of zero-cost portfolio i at holding period T. 

𝑅𝑅𝑚𝑚,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇 is the excess market return and 𝛽𝛽𝑖𝑖 represents how the return of industry i changes 

with the level of market excess return.  

Second, due to the poor empirical performance of the CAPM, Fama and French (1992, 

1993) extend it to their three-factor model by adding size and value factors. The three-factor 

model is: 

𝑅𝑅𝑖𝑖,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇� + 𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇 + ℎ𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇 + 𝜀𝜀𝑖𝑖,𝑇𝑇,  (7) 
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where 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇 is the monthly average return on small-size portfolios minus that on big-size 

portfolios over a holding-period T, and 𝑠𝑠𝑖𝑖 captures how the size factor influences the excess 

return. 𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇 is the average return on high book-to-market portfolios minus that on low book-

to-market portfolios, and ℎ𝑖𝑖 represents the risk related to this factor.  

Third, although the three-factor model remains widely used, it still cannot capture some 

market anomalies and Fama and French (2015) extend it into a five-factor model by further 

including profitability and investment factors. The five-factor model is:  

𝑅𝑅𝑖𝑖,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇� + 𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇 + ℎ𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇 + 𝑟𝑟𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 + 𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇 + 𝜀𝜀𝑖𝑖,𝑇𝑇, (8) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇  is the monthly average return difference between portfolios with strong 

profitability and those with weak profitability over holding period T, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇 is the return 

difference between portfolios with low and high investment ratios. 

Finally, in addition to Fama and French’s traditional factors, liquidity is also widely 

used in asset-pricing models (Pastor and Stambaugh, 2003, 2019; Racicot et al., 2018). More 

importantly, Stilger et al. (2016) find that the underperformance of illiquid stocks with lowest 

skewness partially explains the predictive power of risk-neutral skewness for individual stock 

returns. Following Racicot et al. (2018), we extend the Fama–French five-factor model by 

adding an illiquidity factor for buying (selling) stocks with high (low) liquidity betas as 

constructed by Pastor and Stambaugh (2003, 2019).[3] The six-factor model is: 

𝑅𝑅𝑖𝑖,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑇𝑇 − 𝑅𝑅𝑓𝑓,𝑇𝑇� + 𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇 + ℎ𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇 + 𝑟𝑟𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 + 𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇 

+𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 + 𝜀𝜀𝑖𝑖,𝑇𝑇, (9) 

where 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 is the monthly average returns of a mimicking portfolio of buying (selling) 

illiquid (liquid) stocks over holding period T. 

                                                 
[3 ] Pastor and Stambaugh (2003, 2019) and Amihud (2002, 2019) also use other measurements for constructing liquidity 
indicators. However, it will be difficult to interpret the alpha in an asset pricing model when using these alternative liquidity 
factors to construct models. So, we add the traded illiquidity factor that is comparable to Fama–French factors in the six-factor 
model. 
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5. Empirical results 

5.1 Realized skewness and returns 

Table II provides the results of the single-sort trading strategies using past realized 

skewness calculated on value-weighted industry daily returns. As shown, the excess returns of 

the zero-cost portfolios are positive and significant over the 1/12, 3/9, 3/12, 6/9, 6/12, 9/6, 9/9, 

9/12, 12/3, 12/6, 12/9, and 12/12 trading horizons. The largest high-minus-low return is on the 

12/3 trading strategy, with a 0.383% excess return and a t-statistic of 2.12, being statistically 

significant at the 5% level. This return is also economically significant, with an annualized 

return of 4.596% (= 0.383% × 12). The positive relationship found in our study is consistent 

with these found in Bali et al. (2019), Langlois (2020), and Stilger et al. (2016). 

<INSERT TABLE II HERE> 

Table III details the realized skewness results for the adjusted returns of the zero-cost 

portfolios. Newey and West (1987) adjusted t-statistics with six lags used are in parentheses. 

As shown, strategies that earn significant raw returns also show significant abnormal returns 

with large t-statistics. This indicates that the positive relationship between realized skewness 

and future industry returns is uncaptured by common risk factors. Compared with the raw 

results shown in Table II, abnormal returns become highly significant over more trading 

horizons. Many t-statistics are even greater than three, the high critical value suggested by 

Harvey et al. (2016) to reduce data mining issues. These results suggest a stronger positive 

relationship between realized skewness and adjusted industry returns. Stronger abnormal 

returns found in our study are consistent with the results of Conrad et al. (2013) and Stilger et 

al. (2016).  

<INSERT TABLE III HERE> 

Based on these findings, we reject the null hypothesis that realized skewness is 

unrelated to subsequent returns at the industry level. One possible explanation is the poor 

performance of the low-skewness securities. Harvey and Siddique (2000) find that most 
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investors prefer lottery-like assets with positive skewness. Because of this preference for 

positive skewness, industries with low (high) skewness are normally undervalued (overvalued). 

With the entrance of arbitrageurs, we expect the prices of the undervalued low-skewness 

industries to increase. However, over short- and medium-term holding periods, prices of low-

skewness industries may remain at a low level rather than increasing dramatically because of 

the slow price correction mechanism, resulting in low returns (Rehman and Vilkov, 2012).  

This slow price correction mechanism may derive from the illiquidity of the 

undervalued low-skewness industries (Stilger et al., 2016). Investors here may find it difficult 

to sell low-skewness industries due to the high-skewness preference (Harvey and Siddique, 

2000). Therefore, Table II reveals that low-skewness industries will still exhibit low future 

returns over the short to medium term. We also test the exposure of the lowest-skewness 

industries to illiquidity risk. To do so, we regress the holding-period returns of the lowest-

skewness group on the traded illiquidity factor constructed by Pastor and Stambaugh (2003, 

2019) and on a control variable (excess market return) over trading horizons earning significant 

zero-cost portfolio raw returns on past skewness. In the results (not shown), we find that the 

estimated coefficients on illiquidity are positive over the selected trading strategies. These 

results indicate that illiquidity risk exposes the lowest-skewness industries, and this may result 

in a slow price correction mechanism and the poor performance of these lowest-skewness 

industries.  

The slow price correction process may also be due to a persistent preference for 

skewness. Back et al. (2018) conclude that many funds and portfolios do not earn positive 

abnormal returns after controlling for co-skewness. This indicates that most investors or fund 

managers show persistent demand for high-skewness securities and do not sacrifice favorable 

(positive) skewness to seek higher adjusted returns (Duarte et al., 2007). This persistent 

demand for high-skewness securities necessarily leads to a slow price correction mechanism 

in the market. 
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5.2 Realized kurtosis and returns 

Table IV details the results for realized kurtosis calculated on value-weighted industry 

daily returns. Overall, all raw excess returns of the zero-cost portfolios based on realized 

kurtosis are insignificant. After applying conventional asset pricing models to adjust these raw 

returns, we find that abnormal returns are also insignificant over dynamic horizons. These 

insignificant adjusted results are not reported for brevity but are available upon request. These 

raw and adjusted results together suggest that there is no relationship between kurtosis and 

future industry returns in the US. Our finding is consistent with Ayadi et al. (2019) and Bali et 

al. (2019). 

<INSERT TABLE IV HERE> 

We explain these insignificant returns earned on the spread of kurtosis using the trade-

off between skewness and kurtosis. As the Wilkins’ (1944) lower bound shows that 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ≥ 1 +  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2  and Schopflocher and Sullivan (2005) document that 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =  𝐴̂𝐴 + �𝐵𝐵� × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2� for turbulent distributions, there should be a U-shaped 

relationship between skewness and kurtosis, whereby both large positive and negative 

skewness will lead to high kurtosis. Based on this relationship, the highest-kurtosis group 

should contain industries with both high (largely positive) or low (largely negative) skewness 

and the average skewness for the highest-kurtosis group will then be either small or close to 

zero, while the lowest-kurtosis group should contain industries with near-zero skewness.  

Table IV also reports the average skewness for each ranked kurtosis group. Consistent 

with the trade-off between skewness and kurtosis suggested by Wilkins (1944) and 

Schopflocher and Sullivan (2005), the average skewness for the highest- and lowest-kurtosis 

groups and the spreads of skewness between these ranked kurtosis groups are all smaller than 

the average skewness ranked in Table II. This small skewness spread should therefore lead to 

insignificant returns on the high-minus-low kurtosis portfolios.  
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5.3 Realized moments and returns over business cycles 

Many studies find that stock return predictability is sensitive to business cycles, as the 

variation in economic conditions will influence investor behavior and will eventually drive 

stock returns (Andrei et al., 2019; Racicot and Théoret, 2019; Wen and Li, 2020). Moreover, 

the relationship between higher moments contained in hedge funds and future returns has an 

asymmetric effect over the business cycles (Gregoriou et al., 2020; Racicot and Théoret, 2019).  

Motivated by these findings, we further investigate whether the full-sample results 

found in the previous subsections are robust over business cycles. We apply a sub-sample 

analysis by constructing the zero-cost portfolios formed on the spread of the past-realized 

skewness (kurtosis) in business cycle expansions and recessions respectively. The Organization 

of Economic Development’s (OECD) US recession indicators from the Federal Reserve Bank 

of St. Louis (2020) determine the economic condition for each portfolio-construction month, 

taking the form of a dummy variable with a value of one in recessionary months and zero 

elsewhere.  

Table V details the returns of the ranking portfolios with the lowest and highest 

skewness and these of the zero-cost portfolio with t-statistics over expansions and recessions. 

Compared with the full-sample results ignoring economic conditions shown in Table II, more 

trading horizons earn significant returns on the spread of skewness in business cycle expansions. 

However, the relationship between realized skewness and future industry returns is 

insignificant when constructing trading strategies in recessionary months.  

<INSERT TABLE V > 

Interestingly, Table V shows that the skewness spread in expansions is larger than that 

in recessions, except for the trading strategies over the 24-month estimation period. Moreover, 

the lowest-skewness portfolios exhibit even less skewness in expansions than recessions and 

as a result earn even lower future returns when constructing trading strategies in expansions 

than in recessions over most trading horizons. These larger spreads of skewness and the poorer 

performance of the low-skewness industries may help explain the stronger predictive role of 
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skewness in expansions found elsewhere. Blau (2017) and Byun and Kim (2016) argue that 

investors are more optimistic during business cycle expansions and they are then likely to seek 

more lottery-like assets in their investments. Therefore, high- (low-) skewness securities will 

be overpriced (underpriced) more in expansions than in recessions. As discussed in Subsection 

5.1, the prices of these overpriced (underpriced) securities will remain at a high (low) level due 

to a possible slow price correction mechanism. 

Table VI displays the adjusted returns of the high-minus-low skewness portfolios 

constructed during expansions. Overall, strategies constructed during expansions that earn 

significant raw returns exhibit significant abnormal returns with large t-statistics. This indicates 

that the stronger relationship between realized skewness and future industry returns over 

expansions is unexplained by common risk factors. We also check the adjusted results of the 

strategies constructed in recessions and find insignificant abnormal returns over dynamic 

trading horizons. These insignificant results are unreported for brevity but are available upon 

request. Lastly, in an unreported analysis, we find no relationship between kurtosis and future 

industry returns during either recessions or expansions. This is consistent with the full-sample 

results shown in Table IV. 

<INSERT TABLE VI > 

6. Robustness check 

We use value-weighted industry daily returns to calculate moments and holding-period 

returns in Section 5. In this section, we further check whether our results remain robust when 

calculating moments and future returns by using equal-weighted industry daily returns. Table 

VII reports the results using equal-weighted daily returns for realized skewness. Overall, both 

raw and adjusted returns earned on the spread of skewness calculated on equal-weighted returns 

are significant over more trading horizons than these calculated on value-weighted returns as 

shown in Table II and Table III. Raw or adjusted returns earned on the spread of skewness 

calculated on equal-weighted returns are also much stronger than these calculated on value-

weighted returns over most trading horizons.  
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<INSERT TABLE VII> 

These stronger results using equal-weighted daily returns suggest that equal-weighted 

industry returns are more sensitive to skewness risks, which is consistent with Plyakha et al.’s 

(2014) argument concerning the exposure of equal-weighted returns to systematic risks. As 

large firms dominate value-weighted returns, our results also indicate that small stocks are more 

subject to industry skewness risk. Zaremba (2016) finds that small stocks are more sensitive to 

risks and earn higher abnormal returns than large stocks, as small stocks are normally thinly 

traded and are easily mispriced (Sadka, 2006). Consistent with the value-weighted return 

results, kurtosis calculated using equal-weighted daily returns is unrelated to future industry 

returns over dynamic trading windows (results not shown). 

7. Concluding remarks 

Many existing studies have confirmed the relationships between moments and 

subsequent returns at the firm level (Amaya et al., 2015; Bali et al., 2019; Conrad et al., 2013). 

As industry performance contains crucial information for individual stock investments (Kadan 

et al., 2012), and as industry funds are prevalent investment vehicles in the stock market (Wu, 

2015), we considered these same relationships at the industry level in the US stock market. 

Our findings indicate that realized skewness positively relates to subsequent industry 

returns. This relationship is unexplained by common risk factors, including market, size, value, 

profitability, investment, and illiquidity. We argue that the poor performance of low-skewness 

industries and a slow price correction mechanism might explain these results. We also find that 

the predictive role of skewness is much stronger over business cycle expansions than recessions. 

This result is consistent with the optimistic attitudes of investors in expansions (Blau, 2017; 

Byun and Kim, 2016). However, there is no significant relationship between kurtosis and 

subsequent industry returns. Our results are robust when calculating moments and future 

returns by using either value- or equal-weighted industry daily returns. 

Taken together, these findings provide useful implications for both the theoretical and 

empirical literature and practical investor behavior. First, our findings enrich our knowledge of 
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market anomalies and allow us to question yet again the validity of the EMH and the 

conventional asset pricing models. One possibility is to improve existing asset pricing models 

by including industry skewness as an additional risk factor in the spirit of Fama and French 

(1993, 2015). Further, while we only address industry returns, we can infer that the results may 

also shed light on the pricing of individual stocks as industry return movements also contain 

information about individual stock return variance (Kadan et al., 2012). 

As discussed, the findings also suggest practical real-world trading strategies. Based on 

the relationship between skewness and future returns at the industry level, investors may 

predict subsequent industry returns to pick better-performing sector funds. They may even 

construct trading strategies based on return distributions that would generate abnormal returns. 

For example, as skewness positively relates to future industry returns, investors may buy past 

high skewness industries to earn higher future returns. Since the evaluation of individual stocks 

also contains industry information and stocks in industries with better performance earn higher 

returns, the information of risks related to industry return distributions can shed light on picking 

the right stocks (Wu and Mazouz, 2016). Investors may forecast profitable industries and then 

choose stocks within these industries to gain higher returns. 

Of course, our analysis is not without its limitations. First, the literature normally uses 

high-frequency intra-day data to calculate realized moments. Unfortunately, this data is 

generally unavailable for industry portfolios. As a possible solution, future studies could collect 

high-frequency individual stock returns from the Trade and Quote (TAQ) database and then 

construct industry portfolio data. Second, our chosen portfolio-sorting method may omit some 

information as it compares only the average returns between the top and bottom groups. Future 

studies could then consider model-dependent methods (e.g., Fama–MacBeth (1973) 

regressions) and again use moments to price returns at the industry level.  
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Table I. Summary statistics by industry 
No. Industry Mean Volatility Skewness Kurtosis Jarque-Bera Excess R 
1 Agriculture 0.759 1.571 0.007 5.150 153.996 0.381 
2 Food Products 0.977 1.112 0.466 4.691 104.421 0.599 
3 Candy and Soda 0.90 1.605 -0.004 6.529 398.399 0.523 
4 Beer and Liquor 0.987 1.30 0.146 5.183 195.078 0.61 
5 Tobacco Products 1.201 1.561 0.021 5.154 220.256 0.823 
6 Recreation 0.552 1.768 -0.406 5.256 194.544 0.174 
7 Entertainment 1.012 1.970 -0.373 6.286 415.831 0.634 
8 Printing and Publishing 0.678 1.452 0.031 4.994 130.172 0.30 
9 Consumer Goods 0.756 1.162 -0.086 5.065 195.815 0.378 
10 Apparel 0.869 1.628 -0.130 5.959 307.70 0.491 
11 Healthcare 0.625 2.014 -0.571 7.598 664.317 0.248 
12 Pharmaceutical Products 0.878 1.310 -0.131 4.268 119.124 0.501 
13 Pharmaceutical Products 0.929 1.244 0.362 4.855 116.195 0.551 
14 Chemicals 0.867 1.406 -0.098 5.755 292.506 0.489 
15 Rubber and Plastic Products 0.839 1.485 -0.326 6.278 424.231 0.461 
16 Textiles 0.683 1.817 -0.314 9.440 1181.843 0.305 
17 Construction Materials 0.819 1.559 -0.248 7.133 572.858 0.442 
18 Construction 0.674 1.789 -0.236 4.659 115.201 0.296 
19 Steel Works etc. 0.436 1.910 -0.504 5.877 277.455 0.058 
20 Fabricated Products 0.472 1.80 -0.327 4.581 101.998 0.094 
21 Machinery 0.799 1.598 -0.50 6.434 473.334 0.421 
22 Electrical Equipment 0.942 1.572 -0.166 5.501 260.532 0.565 
23 Automobiles and Trucks 0.608 1.715 -0.285 8.344 819.235 0.23 
24 Aircraft 1.023 1.661 -0.292 5.545 303.479 0.645 
25 Shipbuilding, Railroad Equipment 0.814 1.824 -0.128 4.974 145.15 0.437 
26 Defense 1.114 1.618 -0.165 5.666 319.855 0.736 
27 Precious Metals 0.381 2.570 0.062 4.557 61.707 0.003 
28 Non-Metallic and Industrial Metal Mining 0.676 1.888 -0.510 6.529 433.302 0.298 
29 Coal 0.299 2.668 -0.316 4.965 117.132 -0.078 
30 Petroleum and Natural Gas 0.840 1.393 0.209 3.892 34.408 0.462 
31 Utilities 0.834 1.007 0.278 3.805 44.503 0.456 
32 Communication 0.842 1.173 0.092 3.949 64.060 0.464 
33 Personal Services 0.399 1.658 -0.496 5.343 204.309 0.022 
34 Business Services 0.893 1.615 -0.111 4.627 125.449 0.515 
35 Computers 0.639 1.761 -0.345 5.506 229.627 0.262 
36 Electronic Equipment 0.817 1.881 -0.482 5.272 244.589 0.439 
37 Measuring and Control Equipment 0.803 1.756 -0.222 4.687 130.562 0.425 
38 Business Supplies 0.807 1.369 0.155 5.353 179.261 0.429 
39 Shipping Containers 0.822 1.440 -0.329 5.463 282.857 0.445 
40 Transportation 0.827 1.460 -0.173 4.811 159.39 0.45 
41 Wholesale 0.805 1.365 -0.353 6.488 486.952 0.427 
42 Retail 0.936 1.369 -0.045 5.672 289.395 0.558 
43 Restaurants, Hotels, Motels 0.888 1.506 -0.572 6.830 634.70 0.511 
44 Banking 0.807 1.515 -0.314 5.551 279.639 0.43 
45 Insurance 0.917 1.367 -0.154 5.377 262.416 0.539 
46 Real Estate 0.232 1.881 -0.162 9.159 967.633 -0.146 
47 Trading 0.906 1.564 -0.322 4.671 177.253 0.528 
48 Other 0.287 1.654 -0.792 5.899 319.957 -0.091 
Notes: This table provides summary statistics of the monthly log returns for the 48 industries from January 1970 to December 
2019, comprising the mean return (%), realized volatility, skewness, kurtosis, Jarque–Bera statistics using monthly industry 
returns, and excess returns (%).  
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Table II. Realized skewness and subsequent returns 
E  Skewness H 1 3 6 9 12 24 
1 Low -0.920  0.145 0.230 0.271 0.283 0.273 0.366 
 2 -0.297  0.313 0.380 0.406 0.411 0.397 0.404 
 3 0.017  0.483 0.465 0.469 0.463 0.456 0.436 
 4 0.292  0.492 0.404 0.423 0.435 0.449 0.435 
 5 0.586  0.546 0.545 0.527 0.504 0.516 0.455 
 High 1.123  0.454 0.368 0.416 0.451 0.460 0.422 
 H–L 2.044  0.308 0.137 0.144 0.167 0.186** 0.056 
 t(H–L)   (1.03) (0.73) (1.10) (1.61) (2.15) (0.98) 
3 Low -0.792  0.214 0.203 0.268 0.272 0.265 0.366 
 2 -0.256  0.344 0.445 0.443 0.414 0.389 0.404 
 3 -0.020  0.446 0.510 0.506 0.486 0.473 0.448 
 4 0.183  0.467 0.511 0.491 0.463 0.453 0.429 
 5 0.414  0.514 0.465 0.483 0.484 0.497 0.451 
 High 0.880  0.440 0.410 0.415 0.479 0.486 0.422 
 H–L 1.672  0.226 0.207 0.147 0.207** 0.221** 0.055 
 t(H–L)   (0.75) (1.12) (1.12) (2.01) (2.52) (0.97) 
6 Low -0.748  0.246 0.246 0.253 0.225 0.262 0.361 
 2 -0.257  0.476 0.477 0.436 0.387 0.380 0.407 
 3 -0.062  0.547 0.531 0.513 0.493 0.472 0.446 
 4 0.108  0.509 0.528 0.505 0.486 0.463 0.425 
 5 0.303  0.529 0.501 0.474 0.492 0.458 0.425 
 High 0.711  0.463 0.412 0.456 0.496 0.493 0.438 
 H–L 1.459  0.216 0.166 0.202 0.271*** 0.231*** 0.077 
 t(H–L)   (0.73) (0.91) (1.56) (2.59) (2.62) (1.34) 
9 Low -0.737  0.224 0.202 0.176 0.206 0.259 0.359 
 2 -0.269  0.373 0.383 0.377 0.359 0.373 0.405 
 3 -0.086  0.528 0.525 0.466 0.453 0.450 0.422 
 4 0.067  0.483 0.502 0.499 0.466 0.451 0.435 
 5 0.241  0.494 0.512 0.536 0.516 0.469 0.419 
 High 0.619  0.50 0.481 0.480 0.479 0.465 0.429 
 H–L 1.356  0.275 0.278 0.303** 0.273*** 0.205** 0.069 
 t(H–L)   (0.93) (1.52) (2.32) (2.60) (2.33) (1.19) 
12 Low -0.734  0.135 0.125 0.199 0.242 0.280 0.367 
 2 -0.282  0.386 0.343 0.320 0.330 0.358 0.405 
 3 -0.108  0.458 0.439 0.423 0.433 0.455 0.424 
 4 0.035  0.488 0.557 0.513 0.489 0.465 0.421 
 5 0.199  0.541 0.516 0.517 0.471 0.435 0.418 
 High 0.560  0.561 0.509 0.455 0.466 0.453 0.417 
 H–L 1.294  0.425 0.383** 0.255** 0.223** 0.172** 0.050 
 t(H–L)   (1.44) (2.12) (1.98) (2.15) (1.96) (0.88) 
24 Low -0.774  0.251 0.260 0.311 0.327 0.353 0.460 
 2 -0.351  0.407 0.409 0.411 0.423 0.437 0.425 
 3 -0.191  0.405 0.413 0.415 0.432 0.426 0.421 
 4 -0.061  0.511 0.463 0.386 0.360 0.356 0.435 
 5 0.088  0.465 0.421 0.427 0.412 0.406 0.422 
 High 0.419  0.447 0.457 0.440 0.446 0.433 0.394 
 H–L 1.193  0.196 0.196 0.129 0.119 0.079 -0.065 
 t(H–L)   (0.65) (1.08) (0.99) (1.14) (0.89) (-1.11) 
Note: This table provides the equal-weighted excess returns (%) for each ranked group using realized skewness calculated on 
value-weighted industry daily returns over the selected estimation (E) and holding (H) periods from January 1970 to December 
2019. “Skewness” reports average realized skewness for each ranked portfolio. “Low” (“High”) represent the group with the 
lowest (highest) skewness. “H-L” reports equal-weighted returns earned on the spread of skewness. t-statistics are in 
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
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Table III. Adjusted returns and realized skewness 
E 𝜶𝜶 H 1 3 6 9 12 24 

1 𝛼𝛼𝐶𝐶  0.0034*** (2.84) 0.0018** (2.50) 0.0016*** (3.20) 0.0018*** (3.43) 0.0020*** (4.13) 0.0005 (1.32) 

 α3  0.0034*** (2.85) 0.0022*** (2.99) 0.0019*** (3.66) 0.0021*** (3.94) 0.0023*** (4.03) 0.0007** (1.99) 

 α5  0.0035*** (2.68) 0.0016** (2.16) 0.0018*** (3.03) 0.0024*** (3.42) 0.0022*** (2.88) 0.0007 (1.40) 

 α6  0.0036*** (2.74) 0.0018** (2.30) 0.0018*** (2.87) 0.0024*** (3.40) 0.0022*** (2.83) 0.0009* (1.74) 

3 𝛼𝛼𝐶𝐶  0.0032** (2.27) 0.0028*** (2.84) 0.0019*** (2.85) 0.0023*** (3.60) 0.0026*** (4.08) 0.0007 (1.20) 

 α3  0.0034** (2.33) 0.0031*** (3.16) 0.0020*** (2.80) 0.0023*** (3.54) 0.0026*** (3.87) 0.0008 (1.25) 

 α5  0.0030** (1.99) 0.0025** (2.31) 0.0019** (2.26) 0.0026*** (2.98) 0.0025*** (2.80) 0.0004 (0.63) 

 α6  0.0033** (2.16) 0.0026** (2.44) 0.0018** (2.12) 0.0025*** (2.86) 0.0024*** (2.79) 0.0006 (0.93) 

6 𝛼𝛼𝐶𝐶  0.0032** (2.55) 0.0026** (2.48) 0.0028*** (3.08) 0.0032*** (3.55) 0.0031*** (3.79) 0.0011 (1.41) 

 α3  0.0035*** (2.86) 0.0028*** (2.69) 0.0028*** (3.24) 0.0034*** (3.73) 0.0033*** (4.20) 0.0013 (1.51) 

 α5  0.0032** (2.49) 0.0023** (2.04) 0.0030*** (2.96) 0.0039*** (3.56) 0.0036*** (3.91) 0.0014 (1.56) 

 α6  0.0034*** (2.68) 0.0024** (2.15) 0.0029*** (2.78) 0.0037*** (3.36) 0.0035*** (3.85) 0.0016* (1.79) 

9 𝛼𝛼𝐶𝐶  0.0035*** (2.65) 0.0037*** (3.31) 0.0038*** (3.73) 0.0033*** (3.22) 0.0028*** (3.02) 0.0011 (1.41) 

 α3  0.0039*** (3.04) 0.0039*** (3.54) 0.0039*** (3.73) 0.0035*** (3.37) 0.0031*** (3.55) 0.0014 (1.64) 

 α5  0.0040*** (3.10) 0.0039*** (3.18) 0.0043*** (3.51) 0.0044*** (3.77) 0.0037*** (3.98) 0.0020** (2.34) 

 α6  0.0041*** (3.08) 0.0039*** (3.14) 0.0041*** (3.35) 0.0041*** (3.57) 0.0036*** (3.83) 0.0023** (2.52) 

12 𝛼𝛼𝐶𝐶  0.0050*** (3.83) 0.0048*** (4.10) 0.0033*** (3.04) 0.0029*** (2.58) 0.0024** (2.39) 0.0010 (1.19) 

 α3  0.0053*** (4.16) 0.0050*** (4.41) 0.0033*** (3.20) 0.0031*** (2.98) 0.0029*** (3.11) 0.0013 (1.53) 

 α5  0.0055*** (4.19) 0.0053*** (4.36) 0.0043*** (3.81) 0.0044*** (4.07) 0.0040*** (4.30) 0.0020** (2.31) 

 α6  0.0055*** (4.13) 0.0054*** (4.33) 0.0040*** (3.58) 0.0042*** (3.86) 0.0039*** (4.17) 0.0023** (2.53) 

24 𝛼𝛼𝐶𝐶  0.0028** (2.06) 0.0031*** (2.67) 0.0023** (2.08) 0.0021** (1.98) 0.0016* (1.74) -0.0001 (-0.21) 

 α3  0.0033*** (2.67) 0.0036*** (3.38) 0.0027** (2.47) 0.0027*** (2.66) 0.0024*** (2.81) 0.0005 (0.82) 

 α5  0.0036*** (2.92) 0.0039*** (3.56) 0.0036*** (3.39) 0.0038*** (3.88) 0.0034*** (3.90) 0.0005 (0.66) 

 α6  0.0038*** (3.01) 0.0039*** (3.49) 0.0034*** (3.06) 0.0037*** (3.54) 0.0035*** (3.68) 0.0010 (1.33) 
Note: This table provides the abnormal returns of each zero-cost portfolio using realized skewness calculated on value-weighted 
industry returns after controlling for common risk factors over different estimation (E) and holding (H) periods from January 
1970 to December 2019. 𝜶𝜶𝑪𝑪, 𝛂𝛂𝟑𝟑, 𝛂𝛂𝟓𝟓, and 𝛂𝛂𝟔𝟔 are abnormal returns adjusted by the CAPM, Fama–French three- and five-
factor models, and the six-factor model adding illiquidity factor, respectively. Newey-West adjusted t-statistics are in 
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
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Table IV. Realized kurtosis and subsequent returns 
E  Kurtosis Skewness H 1 3 6 9 12 24 

1 Low 2.101 0.116  0.415 0.415 0.419 0.415 0.436 0.406 
 2 2.474 0.122  0.462 0.460 0.437 0.422 0.421 0.408 
 3 2.771 0.134  0.368 0.355 0.416 0.424 0.414 0.412 
 4 3.112 0.129  0.376 0.409 0.405 0.433 0.430 0.437 
 5 3.598 0.144  0.470 0.442 0.477 0.479 0.466 0.450 
 High 5.097 0.156  0.342 0.312 0.359 0.375 0.385 0.406 
 H–L 2.995 0.040  -0.073 -0.102 -0.060 -0.040 -0.051 0.001 
 t(H–L)    (-0.25) (-0.56) (-0.47) (-0.39) (-0.59) (0.01) 
3 Low 2.705 0.118  0.447 0.434 0.407 0.413 0.415 0.382 
 2 3.124 0.102  0.392 0.438 0.459 0.434 0.444 0.418 
 3 3.457 0.084  0.436 0.512 0.522 0.486 0.459 0.435 
 4 3.830 0.075  0.450 0.502 0.484 0.472 0.466 0.445 
 5 4.373 0.065  0.422 0.369 0.414 0.440 0.424 0.436 
 High 6.592 -0.003  0.276 0.289 0.320 0.353 0.357 0.404 
 H–L 3.887 -0.121  -0.170 -0.145 -0.087 -0.060 -0.058 0.022 
 t(H–L)    (-0.57) (-0.80) (-0.67) (-0.58) (-0.65) (0.38) 
6 Low 3.158 0.092  0.554 0.471 0.439 0.446 0.417 0.356 
 2 3.619 0.065  0.542 0.537 0.484 0.456 0.452 0.449 
 3 3.995 0.036  0.519 0.529 0.501 0.483 0.447 0.431 
 4 4.411 0.016  0.510 0.497 0.476 0.437 0.423 0.431 
 5 5.032 -0.006  0.358 0.390 0.420 0.422 0.421 0.440 
 High 7.839 -0.112  0.287 0.273 0.318 0.336 0.366 0.392 
 H–L 4.681 -0.204  -0.266 -0.196 -0.120 -0.110 -0.051 0.036 
 t(H–L)    (-0.90) (-1.09) (-0.93) (-1.06) (-0.57) (0.62) 
9 Low 3.470 0.072  0.447 0.427 0.412 0.401 0.364 0.339 
 2 3.985 0.036  0.563 0.456 0.462 0.439 0.445 0.423 
 3 4.411 0.005  0.442 0.496 0.447 0.441 0.438 0.436 
 4 4.881 -0.024  0.468 0.485 0.473 0.447 0.431 0.449 
 5 5.595 -0.043  0.429 0.423 0.401 0.396 0.414 0.439 
 High 8.778 -0.175  0.254 0.318 0.338 0.356 0.375 0.382 
 H–L 5.308 -0.246  -0.192 -0.109 -0.074 -0.045 0.011 0.043 
 t(H–L)    (-0.65) (-0.62) (-0.57) (-0.43) (0.12) (0.74) 
12 Low 3.725 0.057  0.447 0.428 0.411 0.371 0.336 0.319 
 2 4.309 0.005  0.475 0.458 0.445 0.447 0.434 0.427 
 3 4.790 -0.012  0.511 0.534 0.476 0.470 0.473 0.459 
 4 5.332 -0.049  0.427 0.429 0.439 0.442 0.463 0.442 
 5 6.115 -0.072  0.415 0.300 0.323 0.360 0.373 0.427 
 High 9.509 -0.222  0.293 0.339 0.334 0.341 0.366 0.378 
 H–L 5.783 -0.279  -0.153 -0.089 -0.077 -0.030 0.030 0.059 
 t(H–L)    (-0.52) (-0.49) (-0.59) (-0.29) (0.34) (1.01) 
24 Low 4.521 0.004  0.406 0.348 0.330 0.337 0.337 0.378 
 2 5.430 -0.070  0.410 0.391 0.414 0.401 0.396 0.397 
 3 6.249 -0.099  0.548 0.473 0.468 0.486 0.474 0.460 
 4 7.012 -0.135  0.475 0.557 0.536 0.502 0.517 0.495 
 5 8.120 -0.182  0.281 0.293 0.315 0.352 0.343 0.388 
 High 12.120 -0.352  0.366 0.360 0.327 0.322 0.344 0.438 
 H–L 7.598 -0.356  -0.040 0.012 -0.003 -0.015 0.007 0.060 
 t(H–L)    (-0.13) (0. 07) (-0.03) (-0.14) (0.08) (1.0) 
Note: This table provides equal-weighted excess returns (%) for each ranked group using realized kurtosis calculated on value-
weighted industry returns over the selected estimation (E) and holding periods (H) from January 1970 to December 2019. 
“Kurtosis (Skewness)” reports average realized kurtosis (skewness) for each ranked portfolio. t-statistics are in parentheses. 
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
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Table V. Realized skewness and returns over business cycles 
   H 1 3 6 9 12 24  1 3 6 9 12 24 

  Returns in Expansions Returns in Recessions 
E  Skewnes

 

       Skewness       
1 Low -0.932  0.371 0.413 0.284 0.240 0.201 0.209 -0.906 -0.130 0.007 0.256 0.338 0.365 0.568 
 High 1.130  0.621 0.525 0.425 0.436 0.398 0.257 1.115 0.250 0.175 0.405 0.470 0.540 0.634 
 H–L 2.061  0.249 0.112 0.141 0.196* 0.196** 0.049 2.021 0.381 0.168 0.148 0.132 0.175 0.066 
 t(H–L)   (0.69) (0.52) (1.03) (1.88) (2.21) (0.62)  (0.76) (0.52) (0.62) (0.68) (1.08) (0.83) 
3 Low -0.790  0.379 0.343 0.266 0.206 0.189 0.213 -0.775 0.011 0.029 0.271 0.355 0.364 0.564 
 High 0.879  0.644 0.512 0.413 0.438 0.423 0.258 0.889 0.189 0.284 0.418 0.532 0.568 0.632 
 H–L 1.669  0.264 0.168 0.146 0.231** 0.234*** 0.045 1.664 0.178 0.255 0.147 0.177 0.204 0.068 
 t(H–L)   (0.73) (0.79) (1.07) (2.26) (2.66) (0.57)  (0.35) (0.80) (0.61) (0.91) (1.23) (0.88) 
6 Low -0.739  0.306 0.322 0.186 0.137 0.160 0.196 -0.737 0.171 0.151 0.338 0.338 0.394 0.576 
 High 0.728  0.570 0.496 0.459 0.485 0.442 0.265 0.703 0.330 0.307 0.453 0.511 0.560 0.664 
 H–L 1.467  0.263 0.174 0.272** 0.347*** 0.281*** 0.069 1.440 0.159 0.155 0.114 0.173 0.166 0.088 
 t(H–L)   (0.73) (0.82) (2.02) (3.34) (3.17) (0.86)  (0.32) (0.49) (0.48) (0.87) (1.0) (1.13) 
9 Low -0.739  0.295 0.258 0.132 0.130 0.155 0.185 -0.718 0.136 0.131 0.232 0.304 0.397 0.589 
 High 0.645  0.645 0.587 0.503 0.475 0.413 0.265 0.597 0.319 0.348 0.450 0.485 0.534 0.645 
 H–L 1.385  0.349 0.327 0.371*** 0.344*** 0.258*** 0.080 1.315 0.182 0.217 0.217 0.180 0.137 0.056 
 t(H–L)   (0.96) (1.53) (2.69) (3.23) (2.82) (0.99)  (0.37) (0.69) (0.90) (0.91) (0.83) (0.71) 
12 Low -0.751  0.211 0.233 0.185 0.178 0.183 0.178 -0.687 0.039 -0.012 0.218 0.325 0.408 0.617 
 High 0.587  0.713 0.662 0.490 0.461 0.403 0.253 0.542 0.369 0.315 0.411 0.472 0.519 0.635 
 H–L 1.338  0.501 0.427** 0.304** 0.282*** 0.219** 0.075 1.229 0.330 0.327 0.193 0.146 0.110 0.017 
 t(H–L)   (1.39) (2.02) (2.26) (2.71) (2.45) (0.95)  (0.67) (1.05) (0.81) (0.74) (0.67) (0.22) 
24 Low -0.814  0.295 0.298 0.201 0.179 0.177 0.230 -0.932 0.197 0.213 0.447 0.513 0.578 0.754 
 High 0.425  0.589 0.560 0.430 0.390 0.342 0.238 1.130 0.275 0.330 0.453 0.517 0.548 0.595 
 H–L 1.239  0.293 0.261 0.229* 0.211** 0.165* 0.008 2.061 0.078 0.117 0.006 0.004 -0.029 -0.159 
 t(H–L)   (0.80) (1.22) (1.66) (1.96) (1.80) (0.10)  (0.16) (0.38) (0.02) (0.02) (-0.18) (-2.06) 
Note: This table provides the equal-weighted excess returns (%) for the lowest- (Low), highest- (High), and the high-minus-low (H-L) skewness portfolios constructed in business cycle recessions 
or expansions over the selected estimation (E) and holding (H) periods from January 1970 to December 2019. The left (right) part of the table reports returns of the portfolios constructed in 
business cycle recessions (expansions). Industry portfolio returns used to construct these ranking groups are value-weighted industry returns. t-statistics in parentheses are for zero-cost portfolio 
returns. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
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Table VI. Adjusted returns and realized skewness in business cycle expansions 
E 𝜶𝜶 H 1 3 6 9 12 24 

1 𝛼𝛼𝐶𝐶  0.0037** (2.26) 0.0023** (2.40) 0.0017** (2.43) 0.0030*** (3.58) 0.0027*** (3.47) 0.0006 (1.11) 

 α3  0.0040** (2.40) 0.0027*** (3.14) 0.0020*** (2.72) 0.0031*** (3.61) 0.0030*** (3.36) 0.0008 (1.49) 

 α5  0.0045*** (2.62) 0.0029*** (3.25) 0.0022*** (3.05) 0.0036*** (3.79) 0.0033*** (3.40) 0.0008 (1.48) 

 α6  0.0045*** (2.58) 0.0029*** (3.25) 0.0027*** (3.63) 0.0039*** (3.82) 0.0037*** (3.31) 0.0011* (1.77) 

3 𝛼𝛼𝐶𝐶  0.0043*** (2.89) 0.0025** (2.20) 0.0021** (2.19) 0.0033*** (2.90) 0.0031*** (3.01) 0.0006 (0.66) 

 α3  0.0047*** (3.05) 0.0029** (2.57) 0.0022** (2.19) 0.0031*** (2.82) 0.0033*** (3.07) 0.0008 (0.90) 

 α5  0.0055*** (3.68) 0.0035*** (3.33) 0.0028*** (2.97) 0.0038*** (3.55) 0.0039*** (3.76) 0.0012* (1.67) 

 α6  0.0058*** (3.93) 0.0036*** (3.44) 0.0029*** (3.03) 0.0037*** (3.10) 0.0041*** (3.55) 0.0014* (1.79) 

6 𝛼𝛼𝐶𝐶  0.0040*** (2.67) 0.0028* (1.82) 0.0037*** (2.71) 0.0042*** (2.79) 0.0033** (2.44) 0.0007 (0.61) 

 α3  0.0042*** (2.74) 0.0026* (1.86) 0.0035*** (2.64) 0.0044*** (3.16) 0.0038*** (3.02) 0.0011 (0.91) 

 α5  0.0047*** (3.05) 0.0029** (2.05) 0.0040*** (2.92) 0.0055*** (4.15) 0.0047*** (4.09) 0.0022** (2.33) 

 α6  0.0048*** (3.10) 0.0026* (1.78) 0.0038*** (2.63) 0.0056*** (3.99) 0.0053*** (4.41) 0.0026** (2.50) 

9 𝛼𝛼𝐶𝐶  0.0048*** (2.89) 0.0044*** (2.68) 0.0044*** (2.95) 0.0038** (2.32) 0.0027* (1.73) 0.0009 (0.74) 

 α3  0.0051*** (3.10) 0.0044*** (2.78) 0.0046*** (3.08) 0.0042*** (2.81) 0.0034** (2.42) 0.0014 (1.14) 

 α5  0.0056*** (3.39) 0.0049*** (3.01) 0.0053*** (3.50) 0.0054*** (3.80) 0.0045*** (3.57) 0.0028*** (2.99) 

 α6  0.0055*** (3.29) 0.0047*** (2.78) 0.0056*** (3.59) 0.0059*** (3.99) 0.0053*** (4.10) 0.0033*** (3.16) 

12 𝛼𝛼𝐶𝐶  0.0061*** (3.31) 0.0053*** (3.05) 0.0036** (2.46) 0.0033* (1.81) 0.0024 (1.35) 0.0009 (0.75) 

 α3  0.0063*** (3.49) 0.0053*** (3.17) 0.0036*** (2.62) 0.0036** (2.32) 0.0031** (2.07) 0.0014 (1.17) 

 α5  0.0069*** (3.78) 0.0060*** (3.51) 0.0045*** (3.30) 0.0050*** (3.56) 0.0046*** (3.58) 0.0028*** (2.81) 

 α6  0.0068*** (3.62) 0.0059*** (3.31) 0.0047*** (3.41) 0.0057*** (3.87) 0.0058*** (4.64) 0.0033*** (3.03) 

24 𝛼𝛼𝐶𝐶  0.0042** (2.37) 0.0042** (2.58) 0.0034** (2.42) 0.0029* (1.87) 0.0021 (1.33) 0.0003 (0.28) 

 α3  0.0044*** (2.58) 0.0042*** (2.72) 0.0039*** (2.86) 0.0037*** (2.80) 0.0031** (2.54) 0.0011 (1.32) 

 α5  0.0049*** (2.93) 0.0049*** (3.25) 0.0049*** (3.85) 0.0050*** (4.45) 0.0045*** (4.36) 0.0017** (2.10) 

 α6  0.0049*** (2.89) 0.0050*** (3.16) 0.0056*** (4.14) 0.0061*** (5.22) 0.0062*** (6.02) 0.0028*** (3.24) 
Note: This table provides the abnormal returns (𝜶𝜶𝑪𝑪 , 𝛂𝛂𝟑𝟑 , 𝛂𝛂𝟓𝟓 , and 𝛂𝛂𝟔𝟔 ) of each zero-cost portfolio using realized skewness 
constructed in business cycle expansions after controlling for common risk factors over different (E) estimation and holding (H) 
periods from January 1970 to December 2019. Newey-West adjusted t-statistics are in parentheses. *, **, and *** denote 
significance at the 10%, 5%, and 1% levels respectively. 
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Table VII. Realized skewness and subsequent returns formed on equal-weighted industry returns 
E  H 1 3 6 9 12 24 

1 H-L 0.556 (1.63) 0.438* (1.93) 0.375** (2.31) 0.347*** (2.72) 0.338*** (3.12) 0.171** (2.24) 

 𝛼𝛼𝐶𝐶 0.0059*** (4.10) 0.0050*** (5.96) 0.0042*** (6.96) 0.0036*** (5.95) 0.0036*** (6.14) 0.0017*** (3.86) 

 α3 0.0058*** (3.78) 0.0051*** (5.67) 0.0041*** (6.36) 0.0033*** (5.38) 0.0031*** (5.60) 0.0012*** (3.06) 

 α5 0.0052*** (3.09) 0.0049*** (5.01) 0.0047*** (6.06) 0.0039*** (5.29) 0.0034*** (4.67) 0.0012** (2.21) 

 α6 0.0052*** (3.07) 0.0049*** (5.06) 0.0046*** (5.87) 0.0039*** (4.96) 0.0034*** (4.47) 0.0013** (2.27) 

3 H-L 0.504 (1.46) 0.500** (2.24) 0.421*** (2.67) 0.427*** (3.44) 0.391*** (3.67) 0.199*** (2.62) 

 𝛼𝛼𝐶𝐶 0.0058*** (4.23) 0.0058*** (5.41) 0.0050*** (6.51) 0.0045*** (6.29) 0.0042*** (6.39) 0.0018*** (3.11) 

 α3 0.0055*** (3.72) 0.0056*** (4.60) 0.0046*** (5.59) 0.0039*** (5.84) 0.0036*** (5.63) 0.0011** (2.07) 

 α5 0.0046*** (2.78) 0.0049*** (3.83) 0.0045*** (4.95) 0.0042*** (5.03) 0.0038*** (4.80) 0.0011 (1.61) 

 α6 0.0049*** (2.91) 0.0053*** (4.15) 0.0047*** (5.16) 0.0043*** (5.12) 0.0040*** (5.02) 0.0013* (1.85) 

6 H-L 0.620* (1.83) 0.519** (2.35) 0.499*** (3.17) 0.497*** (4.02) 0.428*** (4.0) 0.250*** (3.24) 

 𝛼𝛼𝐶𝐶 0.0070*** (5.05) 0.0062*** (5.52) 0.0058*** (6.03) 0.0056*** (6.08) 0.0049*** (5.83) 0.0024*** (3.09) 

 α3 0.0068*** (4.57) 0.0059*** (4.94) 0.0053*** (5.78) 0.0050*** (5.89) 0.0041*** (5.31) 0.0014* (1.84) 

 α5 0.0062*** (3.52) 0.0056*** (4.21) 0.0052*** (4.86) 0.0055*** (5.17) 0.0041*** (3.98) 0.0014 (1.36) 

 α6 0.0063*** (3.55) 0.0059*** (4.41) 0.0053*** (4.91) 0.0055*** (5.27) 0.0043*** (4.20) 0.0016 (1.59) 

9 H-L 0.636* (1.89) 0.593*** (2.71) 0.570*** (3.66) 0.496*** (4.03) 0.417*** (3.88) 0.256*** (3.27) 

 𝛼𝛼𝐶𝐶 0.0072*** (4.99) 0.0069*** (5.59) 0.0067*** (6.18) 0.0057*** (5.54) 0.0050*** (5.09) 0.0025*** (2.63) 

 α3 0.0068*** (4.57) 0.0064*** (5.15) 0.0059*** (5.93) 0.0047*** (5.13) 0.0039*** (4.41) 0.0010 (1.07) 

 α5 0.0062*** (3.52) 0.0061*** (4.27) 0.0057*** (4.53) 0.0051*** (4.20) 0.0040*** (3.18) 0.0012 (0.90) 

 α6 0.0063*** (3.59) 0.0063*** (4.41) 0.0058*** (4.58) 0.0053*** (4.37) 0.0044*** (3.52) 0.0016 (1.20) 

12 H-L 0.756** (2.22) 0.607*** (2.81) 0.511*** (3.29) 0.443*** (3.58) 0.371*** (3.44) 0.231*** (2.91) 

 𝛼𝛼𝐶𝐶 0.0083*** (5.74) 0.0070*** (5.67) 0.0061*** (5.40) 0.0053*** (4.89) 0.0045*** (4.17) 0.0023** (2.40) 

 α3 0.0079*** (5.41) 0.0065*** (5.38) 0.0051*** (5.02) 0.0043*** (4.42) 0.0034*** (3.48) 0.0009 (0.83) 

 α5 0.0072*** (4.47) 0.0060*** (4.34) 0.0049*** (4.03) 0.0044*** (3.29) 0.0035** (2.51) 0.0011 (0.69) 

 α6 0.0074*** (4.53) 0.0062*** (4.52) 0.0051*** (4.12) 0.0047*** (3.51) 0.0038*** (2.82) 0.0014 (0.95) 

24 H-L 0.364 (1.08) 0.326 (1.50) 0.279* (1.76) 0.249** (1.96) 0.221** (2.0) 0.124 (1.56) 

 𝛼𝛼𝐶𝐶 0.0045*** (3.44) 0.0043*** (3.49) 0.0038*** (3.18) 0.0034*** (3.05) 0.0030*** (2.87) 0.0016* (1.90) 

 α3 0.0039*** (3.07) 0.0036*** (2.97) 0.0028** (2.35) 0.0024** (2.03) 0.0020* (1.65) 0.0006 (0.49) 

 α5 0.0028** (2.14) 0.0021* (1.73) 0.0016 (1.20) 0.0012 (0.91) 0.0008 (0.56) -0.0003 (-0.24) 

 α6 0.0031** (2.39) 0.0024* (1.94) 0.0017 (1.35) 0.0016 (1.19) 0.0012 (0.87) 0.0001 (0.06) 
Note: This table provides the equal-weighted excess returns (%) and abnormal returns (𝜶𝜶𝑪𝑪, 𝛂𝛂𝟑𝟑, 𝛂𝛂𝟓𝟓, and 𝛂𝛂𝟔𝟔) for the zero-cost 
portfolio formed on realized skewness calculated by using equal-weighted industry returns over the selected estimation (E) and 
holding periods (H) from January 1970 to December 2019. Newey-West adjusted t-statistics are in parentheses. *, **, and *** 
denote significance at the 10%, 5%, and 1% levels, respectively. 
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