
Higher-Order Abstract Syntax with Induction in
Isabelle/HOL: Formalizing the π-Calculus and

Mechanizing the Theory of Contexts

Christine Röckl1, Daniel Hirschkoff2, and Stefan Berghofer1

1 Fakultät für Informatik, Technische Universität München, D-80290 München
Email: {roeckl,berghofe}@in.tum.de

2 LIP – École Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon Cedex 7
Email: Daniel.Hirschkoff@ens-lyon.fr

Abstract. Higher-order abstract syntax is a natural way to formal-
ize programming languages with binders, like the π-calculus, because
α-conversion, instantiations and capture avoidance are delegated to the
meta-level of the provers, making tedious substitutions superfluous. How-
ever, such formalizations usually lack structural induction, which makes
syntax-analysis impossible. Moreover, when applied in logical frame-
works with object-logics, like Isabelle/HOL or standard extensions of
Coq, exotic terms can be defined, for which important syntactic proper-
ties become invalid.
The paper presents a formalization of the π-calculus in Isabelle/HOL,
using well-formedness predicates which both eliminate exotic terms and
yield structural induction. These induction-principles are then used to
derive the Theory of Contexts fully within the mechanization.

1 Motivation

The π-calculus was introduced to model and analyse mobile systems [18,17]. In
it, communication channels and messages belong to the same sort, called names.
This simplicity gives the π-calculus the power to encode the λ-calculus [16], as
well as higher-order object-oriented and imperative languages [27,26]. Commu-
nications are synchronous, that is, a sender āb.P transmits a message b to a
recipient ax.Q, in a transition āb.P |ax.Q

τ−→ P |Q{b/x}. Usually, a substi-
tution is applied to describe that b replaces x in Q. This can be tedious for
processes with binders, like Q = (νb)Q′, where a further substitution is nec-
essary to avoid name-capture: Q{b/x} =α (νb′)Q′{b′/b,b/x}. Higher-order
abstract syntax builds upon a functional view, considering binders as abstrac-
tions with respect to an underlying λ-calculus to which the replacement of names
and capture-avoidance are delegated. The above transition could thus be rewrit-
ten as āb.P |ax.fQ(x) τ−→ P | fQ(b), where the function fQ(x) = (νb)fQ′(b, x)
corresponds to the process Q, and the process fQ(b) represents Q{b/x}.

Proofs in the π-calculus, and in particular bisimulation proofs, tend to be
very large and tedious, hence machine-assistance is necessary to prevent errors.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 364–378, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 365

The work at hand is part of a larger project to provide a platform for machine-
assisted reasoning in and about the π-calculus. We have chosen Isabelle/HOL
[22,20], as it is generic and offers a large range of powerful proof-techniques.

Formalizing the π-calculus. General-purpose theorem provers distinguish two
levels of reasoning. Upon a meta-logic provided by the implementors, users can
create object-logics, in which they define new data-structures and derive proofs.
Programming-languages or calculi can be formalized, either fully within the
object-level using a first-order syntax (deep embedding), or by exploiting the
functional mechanisms of the meta-level (shallow embedding).

• Following the classical way, the syntax of the π-calculus is described in
terms of a recursive datatype P ::= 0 | āb.P | ab.P | . . . , and substitution
functions are introduced explicitely by the user. These deep embeddings of first-
order syntax allow the user to make full use of structural induction, which is a
vital proof-tool in syntax analysis. Several formalizations of this kind have been
studied in various theorem provers [14,1,9,12,8]. They give evidence that proofs
about π-calculus processes in deep embeddings are generally hard, and that it
would be tedious to try to tackle larger proofs. The reason is that the π-calculus
is particularly characterized by its binders, input and restriction; hence, a lot of
effort goes into intricate reasoning about substitutions.

• In contrast, higher-order abstract syntax used in a shallow embedding,
builds on a recursive datatype of the form P ::= 0 | āb.P | ax.fP (x) | . . . , where
fP is a function mapping names to π-calculus processes. Here, the capture-
avoiding replacement of names are dealt with automatically by the meta-level of
the theorem-prover, freeing the user from a tedious implementation and applica-
tion of substitutions. Shallow embeddings of the π-calculus have been studied in
Coq and λProlog [15,11,3]. Unfortunately, higher-order datatypes are not recur-
sive in a strict sense, due to the functions in the continuations of binders. As a
consequence, plain structural induction does not work, making syntax-analysis
impossible. Even worse, in logical frameworks with object-level constructors,
so-called exotic terms can be derived. Consider, for example,

fE
def
= λ(x : names). if x = a then 0 else ay.0,

fW
def
= λ(x : names). ay.0.

The term fE is exotic, because it is built from an object-level conditional (not
from a π-calculus conditional, which we represent in terms of matching and
mismatching), and does not correspond to any process in the usual syntax of the
π-calculus, whereas fW can be considered as valid, or well-formed.

• A third variation uses higher-order abstract syntax, but within a deep
embedding, using a first-order formalization of a λ-calculus as a (pseudo) “meta-
level” for embedding the π-calculus thereupon. As a consequence, substitutions
do not have to be defined for the (large) language, but only for the (smaller)
λ-calculus, while still reasoning entirely on the object-level. For formalizations
of the π-calculus, this approach has been followed in [7,6]. Up to this point,
however, these frameworks have not been tested in larger-scale syntax-analyses.

366 C. Röckl, D. Hirschkoff, and S. Berghofer

The theory of contexts. The theory of contexts for the π-calculus consists of
three syntactic properties that are essential for a semantic analysis of processes
in a shallow embedding. It was introduced in the shape of axioms by Honsell,
Miculan, and Scagnetto to reason about strong transitions of π-calculus processes
in a in Coq formalization, with justification on paper [11,10]. Our own experience
gives evidence that the three properties are sufficient for weak transitions as
well1. One of the properties, which Honsell et al. call extensionality of contexts,
deserves further mention, as it does not hold in the presence of exotic terms:
Two process abstractions are equal, if they are equal for a fresh name. Consider
fE and fW from above, and some b 6= a. Then fE(b) = ay.0 = fW (b), because
the conditional in fE evaluates to the negative argument. Yet, still fE 6= fW ,
because fE(a) 6= fW (a). See also [10] for a discussion.

Outlook of the paper. In this paper, we present a shallow embedding of the π-
calculus in Isabelle/HOL using inductive well-formedness predicates which rule
out exotic terms and, simultaneously, allow us to perform structural induction
on π-calculus processes. Our work was inspired by a similar approach for shallow
embeddings of the λ-calculus in Coq, by Despeyroux, Felty, and Hirschowitz [5,4].
As a result, we are able to derive the theory of contexts fully mechanically within
Isabelle/HOL. The resulting formalization thus provides a generic framework for
the semantic analysis of the π-calculus (for instance, transitions, bisimulations),
as well as of concurrent and mobile systems modelled within the π-calculus.

The paper is organized as follows: In Section 2, we give some background of
Isabelle/HOL. In Section 3, we introduce the π-calculus, and describe how it is
formalized in our framework. In Section 4, we derive the theory of contexts. In
Section 5, we discuss some questions related to our results.

2 Isabelle/HOL

We use the general-purpose theorem-prover Isabelle [22], implementing higher-
order intuitionistic logic on its meta-level, and formalize the π-calculus in its in-
stantiation HOL for higher-order logic [20]. Proofs in Isabelle are based on unifi-
cation, and are usually conducted in a backward-resolution style: the user formu-
lates the goal he/she intends to prove, and then—in interaction with Isabelle—
continuously reduces it to simpler subgoals until all of the subgoals have been
accepted by the tool. Upon this, the goal can be stored in the theorem-database
of Isabelle/HOL to be applicable in further proofs. The prover offers various
tactics, most of them applying to single subgoals. The basic resolution tactic
resolve tac, for instance, allows the user to instantiate a theorem from Is-
abelle’s database so that its conclusion can be applied to transform a current
subgoal into instantiations of its premises. Besides these classical tactics, Is-
abelle offers simplification tactics based on algebraic transformations. Powerful
automatic tactics apply the basic tactics to prove given subgoals according to
1 Technically, properties of weak transitions are usually derived from corresponding

properties of strong transitions by induction on the number of silent steps.

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 367

different heuristics. These heuristics have in common that a provable goal is
always transformed into a set of provable subgoals; rules that might yield un-
provable subgoals are only applied if they succeed in terminating the proof of a
subgoal. In Isabelle/HOL, the user can define, for instance, recursive datatypes
and inductive sets. Isabelle then automatically computes rules for induction and
case-injection. It should be noted that all these techniques have been fully for-
malized and verified on the object-level, that is, they are a conservative generic
extension of Isabelle/HOL [2,21]. A recent extension of Isabelle/HOL allows
function types in datatype definitions to contain strictly positive occurrences of
the type being defined [2]. This allows for formalizations of programming lan-
guages in higher-order abstact syntax, like the one we develop in Section 3 of
this paper. Isabelle/HOL implements an extensional equality, =, which relates
functions if they are equal for all arguments. We employ this equivalence as
syntactic equivalence of π-calculus processes.

3 Formalizing Processes

The π-calculus is a value-passing calculus, and was introduced to reason about
mobile systems [17,18]. In the π-calculus, names are used both for the commu-
nication channels and the values sent along them, allowing processes to emit
previously private names and create new communication links with the recipi-
ents. The π-calculus is particularly characterized by its binding operators input,
ay.P , and restriction, (νx)P . The former implements the functional aspects of
the calculus—apply a process abstraction to a received name—whereas the lat-
ter characterizes its imperative aspects—create a fresh location, that is, a fresh
name. In this section, we present a shallow embedding of the π-calculus, and
present inductive well-formedness predicates that simultaneously rule out exotic
terms and provide structural induction. We use the same datatype as [3,11], so
that our results are comparable to these formalizations.

Names. In semantic analysis, processes are often instantiated with fresh names;
hence, the type of names has to be at least countably infinite. Also the theory of
contexts hinges on fresh names. We do not commit ourselves to a specific type
but use an axiomatic type-class inf class comprising all types T for which there
exists an injection from IN into T . We neither require nor forbid the existence
of a surjection, see also our discussion in Section 5. We use a,b, . . . to range
over names, and fa and ffa to denote names-abstractions, that is, functions
mapping one, respectively two, names to names. In order to make names and
meta-variables distinguishable, we use bold face letters for the former, as above,
and italics, that is, x, y, . . . , for the latter.

Processes. Processes in the π-calculus are built from inaction and the basic
mechanisms for the exchange and creation of names, input, output, and restric-
tion, by applying constructors for choice (or, summation), parallel composition,
matching, mismatching, and replication. In a shallow embedding, we formalize

368 C. Röckl, D. Hirschkoff, and S. Berghofer

Table 1. Computing the free names fn and depth of binders db of a process.

fn (0) = ∅
fn (τ.P) = fn (P)

fn (āb.P) = {a,b} ∪ fn (P)
fn (ax.fP (x)) = {a} ∪ fna (fP)

fn ((ν x)fP (x)) = fna (fP)
fn (P + Q) = fn (P) ∪ fn (Q)
fn (P ‖ Q) = fn (P) ∪ fn (Q)

fn ([a = b]P) = {a,b} ∪ fn (P)
fn ([a 6= b]P) = {a,b} ∪ fn (P)

fn (!P) = fn(P)

fna (fP)
def
= {a | ∀b. a ∈ fn (fP (b)) }

fnaa (ffP)
def
= {a | ∀b. a ∈ fna (λx. ffP (b, x)) }

db (0, c) = 0
db (τ.P, c) = db (P, c)

db (āb.P, c) = db (P, c)
db (ax.fP (x), c) = 1 + dba (fP , c)

db ((ν x)fP (x), c) = 1 + dba (fP , c)
db (P + Q, c) = max (db (P, c), db (Q, c))
db (P ‖ Q, c) = max (db (P, c), db (Q, c))

db ([a = b]P, c) = db (P, c)
db ([a 6= b]P, c) = db (P, c)

db (!P, c) = db (P, c)

dba (fP , c)
def
= db (fP (c), c)

input and restriction by means of process-abstractions fP , that is, functions from
names to processes. This can be implemented directly in Isabelle/HOL, because
in the type of the declaration, processes only occur in a positive position.

P ::= 0 Inaction
| τ.P Silent Prefix
| āb.P Output Prefix
| ax.fP (x) Input Prefix
| (ν x)fP (x) Restriction
| P + P Choice (Summation)
| P ‖P Parallel Composition
| [a = b]P Matching
| [a 6= b]P Mismatching
| !P Replication

It is obvious that this datatype definition is not recursive in a strict sense, due
to the use of process abstractions fP as continuations of input and restriction.
Therefore, induction and case injection are not applicable. Further, it is possible
to derive exotic terms in Isabelle/HOL, like fE from the motivation. We use
P, Q, . . . to range over processes, and fP and ffP for process abstractions.

Free and Fresh Names. Names which are not in the scope of a binder are called
free, whereas names in the scope of a binder are called bound. In higher-order
abstract syntax, it is neither necessary nor possible to compute the bound names
of a process, because they are represented by meta-variables of the theorem-
prover. Free names are represented by object-variables, and we compute them
with a primitively recursive function fn, see Table 1. Note that for exotic process

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 369

Table 2. Well-formed Processes.

wfp (0) W0
wfp (P)

wfp (τ.P) W1
wfp (P)

wfp (āb.P) W2
wfpa (fP)

wfp (ay.fP (y)) W3

wfpa (fP)
wfp ((ν y)fP (y)) W4

wfp (P) wfp (Q)
wfp (P + Q) W5

wfp (P) wfp (Q)
wfp (P ‖ Q) W6

wfp (P)
wfp ([a = b]P) W7

wfp (P)
wfp ([a 6= b]P) W8

wfp (P)
wfp (!P) W9

Table 3. Well-formed Process-Abstractions.

wfpa (λx. 0) Wa
0

wfpa (fP)
wfpa (λx. τ.fP (x)) Wa

1
wfna (fa) wfna (fb) wfpa (fP)

wfpa (λx. fa(x)fb(x).fP (x))
Wa

2

wfna (fa) ∀ b. wfpa (λx. ffP (b, x)) ∀ b. wfpa (λx. ffP (x, b))
wfpa (λx. fa(x)y.ffP (y, x)) Wa

3

∀ b. wfpa (λx. ffP (b, x)) ∀ b. wfpa (λx. ffP (x, b))
wfpa (λx. (ν y)ffP (y, x)) Wa

4

wfpa (fP) wfpa (fQ)
wfpa (λx. fP (x) + fQ(x)) Wa

5
wfpa (fP) wfpa (fQ)

wfpa (λx. fP (x) ‖ fQ(x)) Wa
6

wfna (fa) wfna (fb) wfpa (fP)
wfpa (λx. [fa(x) = fb(x)].fP (x)) Wa

7
wfna (fa) wfna (fb) wfpa (fP)
wfpa (λx. [fa(x) 6= fb(x)].fP (x)) Wa

8

wfpa (fP)
wfpa (λx. !fP (x)) Wa

9

terms like fE from Section 1, fn and fna need not necessarily compute the free
names as one might expect; for fE , for instance, fna computes the empty set. For
all well-formed processes, however, fn and fna yield the expected results. A name
is fresh in a process or process abstraction if it is not among its free names. This
can be formalized in terms of fresh (a, P) iff a 6∈ fn (P), and fresha (a, fP) iff a 6∈
fna (fP) and freshaa (a, ffP) iff a 6∈ fnaa (ffP), respectively.

Well-formedness. We introduce well-formedness predicates with which we simul-
taneously eliminate exotic processes like fE from Section 1, and obtain struc-
tural induction. The predicates are defined inductively, and concern three levels
of reasoning: wfp defines the set of well-formed processes, see Table 2 for the
introduction rules, wfpa yields the set of well-formed process-abstractions, see
Table 3, and wfna and wfnaa describe the well-formed names-abstractions, see
Table 4. Rules W3, W4, Wa

3 , and Wa
4 , concerning the binders, are of partic-

ular interest. For a restricted or input process to be well-formed according to
wfp, the continuation fP has to be well-formed according to wfpa. With fP

possibly containing inputs and/or restrictions itself, this argument could have
to be continued ad infinitum. However, a second-order predicate suffices to rule

370 C. Röckl, D. Hirschkoff, and S. Berghofer

Table 4. Well-formed Names-Abstractions.

wfna (λx. x) Wn
1 wfna (λx. a) Wn

2

wfnaa (λ(x, y). x) Wn
3 wfnaa (λ(x, y). y) Wn

4 wfnaa (λ(x, y). a) Wn
5

out at least those exotic terms that might render syntactic properties of the
original language incorrect in the encoding, see Section 5 for a discussion. The
process abstraction fE from the introduction, for instance, is ruled out as exotic
by wfpa. We are thus able to derive in Section 4 the validity of the theory of
contexts for the set of well-formed processes and abstractions.

Counting Binders. In the proof in Section 4.4, we use coercion from higher-order
syntax to first-order syntax by instantiating meta-variables with fresh names. In
order to provide a sufficient amount of fresh names, we statically compute the
depth of binders with a primitively recursive function, db; for a formal definition,
see Table 1. The function computes the maximal number of binders along each
path in the process-tree, instantiating process-abstractions with an auxiliary
name c. Like fn above, db only yields sensible results for well-formed processes.

4 Deriving Syntactic Properties in Isabelle/HOL

We now turn to a formal derivation of the theory of contexts [11] for well-formed
processes. It consists of three general syntactic properties of languages with
binders, which can be described intuitively as follows:

(Mon) Monotonicity: If a name a is fresh in an instantiated process-
abstraction fP (b), it is fresh in fP already.

(Ext) Extensionality: Two process-abstractions fP and fQ are equal, if
they are equal for a fresh name a.

(Exp) β-Expansion: Every process P can be abstracted over an arbitrary
name a, yielding a suitable process-abstraction.

A formal description is depicted in Table 5, for well formed processes and process
abstractions. Recall from Section 1 that extensionality only holds for well-formed
process-abstractions. Also in the third law (Exp), describing β-expansion, we
only consider well-formed processes and process-abstractions. The reason is that,
although β-expansion holds for arbitrary processes and abstractions over them,
we want to strengthen it as much as possible, so that it can be used together
with (Ext) in the semantic analysis of processes.

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 371

Table 5. Formalizations of monotonicity, extensionality, and β-expansion.

fresh (a, fP (b))
fresha (a, fP) (Mon) fresha (a, λx. ffP (b, x))

freshaa (a, ffP) (Mona)

wfpa (fP) wfpa (fQ) fresha (a, fP) fresha (a, fQ) fP (a) = fQ(a)
fP = fQ

(Ext)

wfp (P)
∃ fP . wfpa (fP) ∧ fresha (a, fP) ∧ P = fP (a) (Exp)

4.1 Free and Fresh Names

In the proofs of (Ext) and (Exp), we rely on the fact that there exist at least
countably infinitely many names—see Section 3—so we can always find a fresh
name with which to instantiate a process abstraction. Laws (f1)–(f7) formal-
ize these basic properties; their proofs in Isabelle/HOL are standard, and yield
scripts of a few lines only.

(f1) ∃b. a 6= b (f2) finite (A)
∃b. b 6∈ A

(f3) finite (fn (P)) (f4) finite (fna (fP)) (f5) finite (fnaa (ffP))

(f6) wfpa (fP) fresha (a, fP) c 6= a
fresh (a, fP (c))

(f7) ∀b. wfpa (λx. ffP (b, x)) ∀b. wfpa (λx. ffP (x,b)) freshaa (a, ffP) c 6= a
fresha (a, λx. ffP (c, x))

Laws (f6) and (f7) express that a name a which is fresh for a well-formed process-
abstraction, is necessarily fresh for every instantiation except a. (f6) is proved
by induction over wfpa, and all cases are proved automatically by Isabelle; (f7)
can then be derived as a corollary, by a single call to an automatic tactic.

4.2 Monotonicity

The monotonicity law, see (Mon) in Table 5, is implicitely encoded in our for-
malization. That is, a name a is only free in a process-abstraction fP according
to fnaa, if it is free in every instantiation; hence for a to be fresh in fP , it suffices
to present a single name b as a witness for which a is fresh in fP (b). The proof
in Isabelle requires one call to a standard automatic tactic. Monotonicity can be
derived similarly for freshaa, see (Mona) in Table 5.

372 C. Röckl, D. Hirschkoff, and S. Berghofer

4.3 Extensionality

Two process-abstractions should be equal if they are equal for a single fresh
name. This variation of extensionality, where usually a universal quantification
is used, is natural in the absence of exotic terms, yet does not hold in their
presence, as the counter-example in Section 1 shows.

We prove (Ext) by induction over one of the two involved well-formed pro-
cesses, fP , using case-injection for the other, fQ. Eight out of the ten cases re-
sulting from the induction are purely technical. The two intricate cases are those
concerning input and restriction, because they involve process-abstractions tak-
ing two names as arguments. For them, induction yields the following subgoal:

∀b, fQ,a. wfpa (fQ) ∧ fresha (a, λx. ffP (b, x)) ∧ fresha (a, fQ) ∧
ffP (b,a) = fQ (a) −→ λx. ffP (b, x) = λx. fQ(x)

∀b, fQ,a. wfpa (fQ) ∧ fresha (a, λx. ffP (x,b)) ∧ fresha (a, fQ) ∧
ffP (a,b) = fQ (a) −→ λx. ffP (x,b) = λx. fQ(x)

∀b. wfpa (λx. ffP (b, x)) ∀b. wfpa (λx. ffP (x,b))
∀b. wfpa (λx. ffQ (b, x)) ∀b. wfpa (λx. ffQ (x,b))

freshaa (a, ffP) freshaa (a, ffQ) λx. ffP (x,a) = λx. ffQ (x,a)
λx. ffP (x, c) = ffQ (x, c)

The first two premises are the induction-hypotheses corresponding to instantia-
tions of the first (respectively second) parameter of ffP . We use both of them by
subsequently instantiating the first arguments of ffP and ffQ and then the sec-
ond. Laws (f5) and (f2) from Section 4.1 allow us to choose a name d which does
not occur in {a, c} ∪ fnaa (ffP) ∪ fnaa (ffQ). Instantiating the first components
of ffP and ffQ in the first induction hypothesis, we obtain,

wfpa (λx. ffQ(d, x)) ∧ fresha (a, λx. ffP (d, x)) ∧ fresha (a, λx. ffQ(d, x)) ∧
ffP (d,a) = ffQ (d,a) −→ λx. ffP (d, x) = λx. ffQ(d, x).

As all the hypotheses for the implication can be established directly from the
premises, or from (f7) and the fact that d 6= a, this implication can be resolved
into a new premise of the form λx. ffP (d, x) = λx. ffQ(d, x). Similarly, by
instantiating the second arguments of ffP and ffQ with c in the second induction
hypothesis, we obtain,

wfpa (λx. ffQ(x, c)) ∧ fresha (d, λx. ffP (x, c)) ∧ fresha (d, λx. ffQ(x, c)) ∧
ffP (d, c) = ffQ (d, c) −→ λx. ffP (x, c) = λx. ffQ(x, c).

The conditions of the implications can be derived like in the above case, this time
employing that c 6= d, yielding the conclusion λx. ffP (x, c) = λx. ffQ(x, c).

In all of the proofs, we have used standard Isabelle proof-techniques. Alto-
gether, the proofs of the theorems leading to the extensionality result, contain a
bit less than 200 lines of proof-script code. Note that it was not obvious at the
beginning that our well-formedness predicate would suffice to prove (Ext), as
it does not rule out all exotic terms. From the fact that we have been able to

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 373

Table 6. Abstracting over a name in a process.

[[a, []]] = λx. x

[[a, (b, fa)xs]] = if a = b then fa else [[a, xs]]

[[0, xs, ys]] = λx. 0
[[τ.P, xs, ys]] = λx. τ.[[P, xs, ys]]

[[āb.P, xs, ys]] = λx. [[a, xs]](x)[[b, xs]](x).[[P, xs, ys]](x)
[[ay.fP (y), xs, ys]] = λx. [[a, xs]](x)y. [[fP (fst (ys)), (fst (ys), (λx. y))xs, tl (ys)]](x)

[[(ν y)fP (y), xs, ys]] = λx. (ν y) [[fP (fst (ys)), (fst (ys), (λx. y))xs, tl (ys)]](x)
[[P + Q, xs, ys]] = λx. [[P, xs, ys]](x) + [[Q, xs, ys]](x)
[[P ‖ Q, xs, ys]] = λx. [[P, xs, ys]](x) ‖ [[Q, xs, ys]](x)

[[[a = b]P, xs, ys]] = λx. [[[a, xs]](x) = [[b, xs]](x)][[P, xs, ys]](x)
[[[a 6= b]P, xs, ys]] = λx. [[[a, xs]](x) 6= [[b, xs]](x)][[P, xs, ys]](x)

[[!P, xs, ys]] = λx. ![[P, xs, ys]](x)

prove ext, we can infer that every remaining exotic term is extensionally equal
(in the universally quantified sense) to a term which directly corresponds to a
process in the π-calculus.

Extensionality for process abstractions taking two names as arguments can
be derived from (Ext) if the process abstractions are well-formed for all instan-
tiations of their first and second arguments. In the proof, a fresh name is chosen,
and (Ext) is instantiated twice, once with that new fresh name, and a second
time with the fresh name from the premise; that is, the argument from the proof
of (Ext) is replayed, in an Isabelle proof-script of about 20 lines of code.

4.4 Beta Expansion

Though seeming fully natural, β-expansion (Exp) has turned out to be the
trickiest law to prove. The reason for this is two-fold: (1) Unlike in the proof of
(Ext), we cannot directly apply induction, due to the existential quantification
in the conclusion. Instead, we encode a primitively recursive translation-function
[[]] abstracting over a name in a well-formed process. (2) This function has to
compare all names with the name to be abstracted over, which works well for
object-variables, but in a naive implementation, could accidentally replace every
meta-variable with a conditional. As a result, every well-formed process with
binders would be transformed into an exotic process-abstraction. For example,
an abstraction ay.0 over a would result in λx. x(if a = y then x else y).0.

The transformation. We therefore propose a function coercing from higher-order
to first-order syntax and back. The two lists, xs and ys, in [[P, xs, ys]] are com-
puted prior to the transformation. List xs is the transformation list telling for

374 C. Röckl, D. Hirschkoff, and S. Berghofer

every free name in P the names-abstraction it shall be mapped to during the
transformation; except for the name to be abstracted over, it associates a con-
stant function λx.a with every free name a in P . List ys contains as many fresh
names as are necessary to instantiate every meta variable in P ; we compute it
with the help of db(P, c) (see Table 1) for some arbitrary name c, and law (f2).
The transformation intuitively proceeds as follows (refer to Table 6 for its for-
malization): every name that is encountered is mapped to the names-abstraction
denoted in the transformation list xs. Only the name that is to be abstracted
over does not occur in xs, hence it is transformed into λx.x. Whenever the trans-
formation comes across a binder, that is, input or restriction, it instantiates the
continuation with the first fresh name from ys, that is, fst (ys), and adds a pair
(fst (ys), (λx. y)) to xs, where y is the meta-variable given by the binder. When
the transformation later encounters the instantiated (object-level) name, it thus
abstracts over it again. This methodology—that is, first instantiating and later
restoring meta-variables in a process abstraction—prevents meta-variables from
being compared with the object-variable to be abstracted over.

Well-formedness. We call an abstraction over a transformation list well-formed
if it only applies well-formed names-abstractions (see Table 4 for a definition):

wftrl (λx. [])
Wt

1
wfnaa (ffa) wftrl (fxs)

wftrl (λx. (a, ffa(x))fxs(x))
Wt

2

The following two theorems prove that the transformation described above pro-
duces well-formed process abstractions when applied to well-formed processes:

wfpa (fP) wftrl (fxs)
wfpa ([[fP (c), fxs(d), ys]]) ∧

wfpa (λx. [[fP (c), fxs(x), ys]](b))

wfp (P) ∀(a, fa) ∈ xs. wfna (fa)
wfpa ([[P, xs, ys]])

The proofs of the two theorems are tedious but purely technical inductions. The
main difficulty was to formulate a suitable notion of abstraction over transforma-
tion-lists (see above), and the first of the two theorems. Note that the second
theorem can only be proved as a consequence of the first.

Freshness. In order to prove that the transformation really eliminates the in-
tended name a, we choose a name b 6= a, and derive by two technical inductions,

wfpa (fP) ∀(d, fd) ∈ xs. a 6= fd(b) a 6= b
fresh (a, [[fP (c), xs, ys]](b))

wfp (P) ∀(d, fd) ∈ xs. a 6= fd(b) a 6= b
fresh (a, [[P, xs, ys]](b))

Again the proof of the second theorem is based on that of the first. In the proofs,
we make extensive use of law (f6) from Section 4.1.

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 375

Equality. It remains to show, again by induction, that a reinstantiation of a
transformation yields the original process. The proofs make use of the mono-
tonicity and extensionality theorems proved in Sections 4.2 and 4.3, as well as of
the well-formedness and freshness results from the previous two sections. There-
fore, we have to guarantee, by using db, that ys contains at least as many names
as there are nested binders in a process. We use a predicate nodups, to ensure
that ys does not contain duplicates. The function fst maps pairs to their first
item; when applied to a list (a1, b1) . . . (an, bn) it returns a1 . . . an.

wfpa (fP) ∀(b, fb) ∈ xs. fb = λx. b dba (fP , c) ≤ |ys| fna (fP) ⊆ {a} ∪ fst (xs)
a 6∈ fst (xs) d ∈ fst (xs) nodups (ys) ys ∩ ({a} ∪ fst (xs)) = ∅

[[fP (d), xs, ys]](a) = fP (d)

wfp (P) ∀(b, fb) ∈ xs. fb = λx. b db (P, c) ≤ |ys| fn (P) ⊆ {a} ∪ fst (xs)
a 6∈ fst (xs) nodups (ys) ys ∩ ({a} ∪ fst (xs)) = ∅

[[P, xs, ys]](a) = P

The proofs are tedious but purely technical. Whenever a process abstraction is
encountered, the first name in ys is used as a fresh name, and (Ext) is applied.

The mechanization of the proofs of β-expansion in Isabelle/HOL consist of about
350 lines of proof-script code.

4.5 General Evaluation and Further Work

In this section, we have formally derived the theory of contexts for a shallow
embedding of the π-calculus in Isabelle/HOL, using structural induction as pro-
vided by a well-formedness predicate for processes and process-abstractions. A
similar theory of contexts can be applied to every languages with binders for
which free names play a role in the semantic analysis.

Applying (Ext) from the theory of contexts, we have further derived ade-
quacy of the encoding in Isabelle/HOL [25] with respect to a first-order formal-
ization of the π-calculus. An interesting fact is that it would have been hardly
possible to derive adequacy without the previous establishment of the theory of
contexts.

All proof-scripts referred to in this section, including adequacy, are available
at http://www7.in.tum.de/˜roeckl/PI/syntax.shtml.

5 Discussion

Why well-formed processes? Like for the replacement of names, there are two
principal ways of ruling out exotic terms. [15,11] rely on λProlog and Coq to
produce the set of well-formed processes. They hence delegate well-formedness
to the meta-level of the provers. In our formalization, we do not rely on Isabelle
to rule out exotic terms, but do this explicitely on the object-level by means

376 C. Röckl, D. Hirschkoff, and S. Berghofer

of inductive predicates. As a consequence, we can mimic structural induction—
which is generally non-existent in shallow embeddings—by rule-induction over
the well-formedness predicates. This gives us a powerful tool for syntax analysis,
which the formalizations in [15,11] do not possess. As a result, we can reason
both within and about the π-calculus. Further, we are not restricted to specialized
inductive frameworks for making (Ext) valid, but could adapt our framework
to any general-purpose theorem-prover allowing for shallow embeddings.

What about other provers than Isabelle/HOL? In principle, our mechanization
can be replayed on any theorem prover offering shallow embeddings, recursive
functions, and inductive sets. There is no need that the framework rules out ex-
otic terms automatically. Adapting our proofs to Coq would require modifying
the notion of equality, by adding an extensionality axiom, and stating decidabil-
ity of equality on names: both properties come indeed for free in Isabelle/HOL.
In principle, one could then—and would have to, in that case (See Section 1 and
[10])—add well-formedness predicates to the formalization presented in [11] and
formally derive (Mon), (Ext), and (Exp).

In logical frameworks like λProlog [19] and Elf [23], encodings naturally ex-
ploit higher-order abstract syntax, and exotic terms are excluded automatically
by the meta-logic. On the other hand, these frameworks do not offer adequate in-
duction principles, hence syntactic properties often cannot be derived within the
encoding. Recent work attemps to bridge this gap: the theorem-prover Twelf [24]
implements a meta-logic based on Elf which offers a form of automated induc-
tion. Similarly, McDowell and Miller propose FOλ∆N [13], a meta-logic where
induction over natural numbers can be used to reason on a subset of simply
typed λ-calculus. While it may be possible to adapt the results presented in this
paper to such frameworks, it remains an open question how much support these
systems can offer in semantic proofs about transition-systems and bisimulations.

How many names do we need? Any type with at least countably infinitely many
elements fits our formalization. The reason why there cannot be less names is
that the proofs of extensionality and β-expansion are based on the creation of
fresh names for processes or process-abstractions. The situation is less simple
in the work of Honsell et al. [11], where the meta-level of Coq is used as an
inductive logical framework, fully stripped of an object-logic. Still, to guarantee
for the absence of exotic terms, it is necessary that the ability to compare names
is only defined in Prop and not in Set. This rules out in particular any inductive
type for names.

What about justifying the theory of contexts? This work is not a mechanized
justification of the work of Honsell, Miculan, and Scagnetto [11]. To do this,
we would have to encode the meta-level of Coq, that is, the Calculus of Con-
structions, in a prover, and then employ, for instance, a category-theoretical
argument, which seems quite illusive. Our work should rather be seen as a for-
mal justification of the theory of contexts within a shallow embedding of the
π-calculus. As such, our work can be related to that of Gordon and Melham

Higher-Order Abstract Syntax with Induction in Isabelle/HOL 377

[7]. There, an axiomatization of α-conversion in HOL is proposed, which serves
as a framework for the derivation of syntax definitions, as well as principles for
substitution and induction.

Is the theory of contexts really necessary? The three properties presented in the
theory of contexts, and formally justified in this paper, are essential for the se-
mantic analysis of π-calculus processes. The reason is that in transition-systems
and bisimulation-proofs, both free and bound names play a role. Recently, De-
speyroux has proposed a formalized strong transition-system for a fragment of
the π-calculus within a shallow embedding, which reduces the number of instan-
tiations by modelling derivatives in terms of functions [3]. More precisely, she
presents a shallow embedding of Milner’s transition system for the π-calculus
based on abstractions and concretions [16]. It will have to be investigated how
this formalism can be extended to the full π-calculus, and whether a theory of
contexts is also necessary to reason about semantics or not.

Is HOAS worth it? So far, work on higher-order abstract syntax for the π-
calculus has focused on introducing the main concepts [15,11] or presenting fun-
damental applications [11,3]. The work at hand belongs to the first category,
in that it provides a framework for reasoning within the π-calculus in a shal-
low embedding. It should not be regarded as a case-study for the application
of HOAS to the π-calculus; we rather hope it might contribute to a language-
independent method of syntax analysis in shallow embeddings, in terms of the
general concepts and proofs described in the previous sections. The practical
aspects of applying HOAS to the π-calculus will have to be further examined by
large-scale case-studies based on frameworks like the ones presented in [11] and
in this paper.

Acknowledgements. We thank Joëlle Despeyroux, Gilles Dowek, Javier Es-
parza, René Lalement, Tobias Nipkow, and Peter Rossmanith, for helpful com-
ments and discussions. This work has been supported by the PROCOPE project
9723064, “Verification Techniques for Higher Order Imperative Concurrent Lan-
guages”.

References

1. O. Aı̈t-Mohamed. Pi-Calculus Theory in HOL. PhD thesis, Henry Poincarré
University, Nancy, 1996.

2. S. Berghofer and M. Wenzel. Inductive datatypes in HOL — lessons learned in
Formal-Logic Engineering. In Proc. TPHOL’99, volume 1690 of LNCS, pages 19–
36, 1999.

3. J. Despeyroux. A higher-order specification of the π-calculus. In Proc. TCS’00,
LNCS. Springer, 2000. To appear.

4. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq.
In Proc. TLCA’95, volume 902 of LNCS, pages 124–138. Springer, 1995.

5. J. Despeyroux and A. Hirschowitz. Higher-order abstract syntax with induction
in Coq. In Proc. LPAR’94, volume 822 of LNCS, pages 159–173. Springer, 1994.

378 C. Röckl, D. Hirschkoff, and S. Berghofer

6. S. Gay. A framework for the formalisation of pi-calculus type-systems in Is-
abelle/HOL. Technical report, University of Glasgow, 2000.

7. A. Gordon and T. Melham. Five axioms of alpha-conversion. In Proc. TPHOL’96,
volume 1125 of LNCS, pages 173–190. Springer, 1996.

8. L. Henry-Gréard. Proof of the subject reduction property for a pi-calculus in Coq.
Technical Report RR-3698, INRIA, 1999.

9. D. Hirschkoff. A full formalisation of π-calculus theory in the calculus of con-
structions. In Proc. TPHOL’97, volume 1275 of LNCS, pages 153–169. Springer,
1997.

10. M. Hofmann. Semantical analysis of higher-order abstract syntax. In Proc.
LICS’99, volume 158, pages 204–213. IEEE, 1999.

11. F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive type theory.
Theoretical Computer Science, 253(2):239–285, 2001.

12. B. Mammass. Méthodes et Outils pour les Preuve Compositionnelles de Systèmes
Paralleèles (in french). PhD thesis, Pierre et Marie Curie University, Paris, 1999.

13. R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a
logical framework. Transactions on Computational Logic, 2000. to appear.

14. T. Melham. A mechanized theory of the π-calculus in HOL. Nordic Journal of
Computing, 1(1):50–76, 1995.

15. D. Miller. Specification of the pi-calculus. available at
http://www.cse.psu.edu/ d̃ale/lProlog/examples/pi-calculus/toc.html.

16. R. Milner. Functions as processes. Journal of Math. Struct. in Computer Science,
17:119–141, 1992.

17. R. Milner. Communicating and Mobile Processes. Cambridge University Press,
1999.

18. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1–77, 1992.

19. G. Nadathur and D. Miller. An overview of λprolog. In M. Press, editor, Proc.
LPC’98, pages 810–827, 1998.

20. L. C. Paulson. Isabelle’s object-logics. Technical Report 286, University of Cam-
bridge, Computer Laboratory, 1993.

21. L. C. Paulson. A fixedpoint approach to implementing (co)inductive definitions.
In Procs CADE’94, volume 814 of LNAI, pages 148–161. Springer, 1994.

22. L. C. Paulson, editor. Isabelle: a generic theorem prover, volume 828 of LNCS.
Springer, 1994.

23. F. Pfenning. Elf: A language for logic definition and verified metaprogramming.
In Proc. LICS’89, pages 313–321. IEEE, 1989.

24. F. Pfenning and C. Schürmann. System description: Twelf – a meta-logical frame-
work for deductive systems. In Proc. CAD’99, volume 1632 of LNAI, pages 202–
206. Springer, 1999.

25. C. Röckl. On the Mechanized Validation of Infinite-State and Parameterized Re-
active and Mobile Systems. PhD thesis, Technische Universität München, 2001.
Submitted.

26. C. Röckl and D. Sangiorgi. A π-calculus process semantics of concurrent idealised
ALGOL. In Proc. FOSSACS’99, volume 1578 of LNCS, pages 306–321. Springer,
1999.

27. D. Walker. Objects in the π-calculus. Information and Computation, 116:253–271,
1995.

	Motivation
	Isabelle/HOL
	Formalizing Processes
	Deriving Syntactic Properties in Isabelle/HOL
	Free and Fresh Names
	Monotonicity
	Extensionality
	Beta Expansion
	General Evaluation and Further Work

	Discussion

