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1 Introduction

The Krylov-Bogoliubov-Mitropolski averaging procedure is a famous perturbation method for approxi-
mating the solution of a perturbed ordinary differential equation of the form

{

y′(τ) = εf(y(τ), τ ; ε)
y(0) = y0

(1.1)

on intervals of length1/ε and for smallε > 0. The usual, though fundamental, assumption adopted in
regard to this system is the existence of the average

lim
T→∞

1

T

∫ T

0

f(y, τ ; ε)dτ.

In this contribution, we shall limit our investigations to the case of functionsf that are periodic or quasi-
periodic inτ , a sufficient condition for the above limit to exist.

Following the pioneering work of Krylov and Bogoliubov [KB34], Bogoliubov and Mitropolski gave
the first comprehensive presentation [BM55] of the method of averaging for first and second orders in
ε. Various authors have later considered higher order expansions and have established a systematic pro-
cedure to derive them. However, to our knowledge, the first rigorous complete account to high-order
averaging was given by L. Perko. In [Per68], the author constructs a change of variable together with an
autonomous differential equation whose solution satisfies(1.1) up to terms of sizeεN .
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For the case of periodic vector fields (i.e. whenf in (1.1) is periodic inτ ), the construction offers
some freedom in the definition of the change of variables, a freedom which allows to cover several spe-
cific methods of averaging encountered in the literature, amongst which most prominentlystroboscopic
(for which the change of variables coincides with the identity map at times that are multiple of the pe-
riod) andclassicalaveraging (for which the angular average of the change of variables is the identity
map). In [CMSS10], we situated our work in a similar context and we demonstrated how B-series could
be used to derive afully explicitexpansion of the averaged vector field obtained by stroboscopic averaging.

Wheneverf is only assumed to be quasi-periodic, another theorem obtained by L. Perko in [Per68]
establishes the existence of a change of variable which brings system (1.1) to an autonomous differential
equation. Since we are specifically concerned by this case inthe present paper, it seems convenient to
quote this result explicitly:

Theorem 1.1 Consider the system
{

y′ = εf(y, θ), y(0) = y0,
θ′ = ω, θ(0) = θ0,

(1.2)

wheref is a real-analytic function ofθ ∈ Td for eachy in a convex regionG (containingy0) and2π-
periodic in each component ofθ. Assume that the vectorω ∈ Rd satisfies thestrong non-resonnance
condition

∀k ∈ Z
d/{0}, |k · ω| ≥ c|k|−ν (1.3)

for some positive constantsc andν. Assume in addition that the solution of the differential equation
{

Y ′ = εF1(Y )
Y (0) = y0

where

F1(Y ) =
1

(2π)d

∫

Td

f(Y, θ)dθ,

has a solutionY1(τ) which remains inG for τ ≤ L/ε: Then, for anyN ≥ 1, there existsεN > 0 such
that for0 < ε < εN , the system (1.2) has a unique solution inG for 0 ≤ τ ≤ L/ε satisfying

‖y(τ)− U(YN (τ), θ0 + ωτ)‖ ≤ CεN

whereYN(τ) is the solution of the differential equation

Y ′ = εF1(Y ) + ε2F1(Y ) + . . .+ εNFN (Y ), Y (0) = ξ

and where the change of variableU(Y, θ) = Y + εu1(Y, θ) + . . . + uN−1(Y, θ) and the functionsFj are
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defined recursively by (forj ≥ 1)

F̃j(Y, θ) =

j−1
∑

k=1

[ 1

k!

∑

i1+...+ik=j−1

∂kf

∂yk
(Y, θ)

(

ui1(Y, θ), . . . , uik(Y, θ)
)

−
∂uk

∂Y
(Y, θ)Fj−k(Y )

]

,(1.4)

Fj(Y ) =
1

(2π)d

∫

Td

F̃ (Y, θ)dθ, (1.5)

ω · ∇θuj(Y, θ) = F̃j(Y, θ)− Fj(Y ),

∫

Td

uj(Y, θ)dθ = 0. (1.6)

The initial conditionξ is determined implicitly by the equation

ξ = y0 −
N−1
∑

j=1

εjuj(ξ, θ0) +O(εN).

A noticeable difference with the single frequency situation, is that the change of variablesU is constructed
in such a way that it has zero average (see equation (1.6)), a procedure which we refer to as classical-
averaging. It is clear that the procedure of stroboscopic averaging, for whichU(y, τ) coincides with the
identity map at timesτ that are multiple of the period, can not be generalized straightforwardly (there is
nothing such as a period in the quasi-periodic case). However, we show in this paper that it is possible,
upon using B-series, to derive a change of variableU such thatU(Y, θ0) = Y , so thatξ = y0. We have
called this averaging procedurequasi-stroboscopic averagingfor there exists a quasi-periodTν > 0
such thatU(Y, nTω) = Y + O(nν) for arbitrarily smallν. Actually, the change of variables can be
chosenarbitrarily , as this will be proved in Section 3. However and quite surprisingly, this does make
any difference as far as the long-term dynamical behaviour is concerned, since all averaging procedures
are actually equivalent is the sense that any two averaged vector-fields so obtained are conjugate.

Another consequence of the results we get here is the construction of formal adiabatic invariants for
the Fermi-Pasta-Ulam problem and more generally, for systems that are non-linear perturbations of linear
ones.

Periodic case Quasi-periodic case
Perko’s recursion Stroboscopic aver. and classical-aver. classical-aver.

B-series Stroboscopic aver. and classical-aver.Stroboscopic aver., classical-aver. ...

Figure 1: Averaging methods available for the periodic and quasi-periodic cases

As already mentioned, the expansion we get is completely explicit. In particular, we give recursive
formulas for the coefficients of the series we consider that are valid in both the periodic case (and then
complement our previous work in [CMSS10]) and the quasi-periodic case considered here.
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2 Expansion of the exact solution as a mode-coloured B-series

We consider the multi-frequency highly-oscillatory problem (1.1) under the assumption thatf(y, θ) is
real-analytic on a domain ofRn × T

d and thus possesses a Fourier expansion of the form

f(y, θ) =
∑

k∈Zd

ei(k·θ)fk(y). (2.1)

The Fourier coefficientsfk(y) are in general complex functions, but, in order to have a realsystem, we
assume that, for eachk, fk ≡ f ∗

−k
where∗ denotes the complex conjugate.

2.1 Mode-coloured trees and elementary differentials

As it has been done for the mono-frequency case in [CMSS10], the solutiony of (1.1) can be expanded as
a B-series, that is to say a formal series whose terms are indexed by (rooted) trees. In this subsection we
describe a variant of the trees considered in [CMSS10] and that will feature in the present expansion ofy.

In view of the structure of the right hand-side of (1.1), the vertices of the trees to be used here corre-
spond to the functionsfk and their derivatives; hence, each vertex possesses here a label which is now a
multi-index inZd. The setT of trees may now be defined recursively by the following two rules:

1. For allk ∈ Zd, k belongs toT ;

2. If u1, . . . ,un aren trees ofT , then, the tree

u = [u1, . . . , un]k (2.2)

obtained by connecting their roots to a new root with multi-indexk ∈ Zd, belongs toT .

The expansion ofy will be graded according to powers ofǫ in connection with the usual notion of order:
The order|u| of a treeu ∈ T is simply defined as its number of nodes. We shall later use also the concept
of total indexIu, defined as the sum over all nodes ofu of their multi-indices. Elementary differentials
can also be defined recursively by the formulae

F k (y0) = fk(y0) andF[u1,...,un]k(y0) =
∂nfk
∂yn

(y0)
(

Fu1(y0), . . . ,Fun
(y0)

)

.

2.2 Mode-coloured B-series

In accordance with previous paragraph, we now define mode-coloured B-series as power series indexed
by mode-coloured trees of the setT of the form

B(α, y) = α∅y +
∑

u∈T

ε|u|

σu

αuFu(y)
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whereσ is thesymmetryfunction fromT to N that acts as a normalization factor, and it is defined as
its naturalextension from standard trees (see for instance [CMSS10]) to mode-coloured trees, and where
α ∈ CT ∪{∅}, that is,

α : T ∪ {∅} → C

u 7→ αu.

Given two B-seriesB(α, y) andB(β, y) (whereα, β ∈ CT ∪{∅},) consider their composition

B(β,B(α, y)).

It is well known that that, provided thatα∅ = 1, the result is still a B-seriesB(α ⋆ β, y) with coefficients
α ⋆ β ∈ C

T ∪{∅}. As established for standard B-series, the corresponding composition law induces a rich
structure ofHopf algebrain which it happens to be aconvolution product. For the sake of this exposition,
it is not necessary to present the details of this construction and in particular the precise form of this law.
We next fix some notation an recall some known results that arerequired in the present work.

We will denoteG = {α ∈ CT ∪{∅} : α∅ = 1}. Givenα ∈ G andβ ∈ CT ∪{∅}, thenα ⋆ β ∈ CT ∪{∅}.
If β also belongs toG, thenα ⋆ β ∈ G. Actually,G has a group structure, with neutral element11 defined
by 11∅ = 1 and11u = 0 for all u ∈ T . Obviously, the neutral element11 in G corresponds to the B-series
representing the identity map, that is,B(11, y) ≡ y.

Givenα ∈ G andβ ∈ C
T ∪{∅}, (α ⋆ β)∅ = β∅, and for each treeu ∈ T , (α ⋆ β)u is of the form

(α ⋆ β)u = αuβ∅ + βu +

|u|
∑

m=2

∑

|u1|+...+|um|=|u|

cu1,...,um
βu1

m
∏

i=2

αui

where thecu1,...,um
’s are integer coefficients.

In particular, it will be relevant here that the product⋆ is linear in the right factor, and also that
(α ⋆ β)u −αuβ∅ − βu is a polynomial in the coefficientsαv andβw for treesv, w with less vertices thanu
(which will allow to prove results by induction on the numberof vertices). We will also use the fact that,
whenβu = 0 for all trees with|u| 6= 1, then,

(α ⋆ β)u = β
k
αu1 · · ·αum

provided thatu = [u1 · · ·um]k (including the caseu = [∅]k).

2.3 Formal expansion

As stated in the introduction of this section, our aim is hereto express formally the exact solution of (1.1)
as

y(τ) = B(α(τ), y0), θ(τ) = θ0 + τω.
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Clearly,α(τ)∅ ≡ 1, and thusα(τ) will represent a curve inG. Our first task is to rewrite the vector field
itself as a B-series

ε
∑

k∈Zd

ei(k·θ)fk(y) = B(β(θ), y) =
∑

u∈T

ε|u|

σu

βu(θ)Fu(y) (2.3)

with coefficientsβu(θ) defined foru ∈ T ∪ {∅} as follows:

βu(θ) =

{

ei(k·θ) if u = k for somek ∈ Zd,

0 otherwise.
(2.4)

Writing the initial value problem (1.1) in terms of B-series, we obtain

d

dτ
B(α(τ), y0) = B(α(τ) ⋆ β(θ(τ)), y0),

B(α(0), y0) = y0 = B(11, y0),

and thusα : R → G satisfies the initial value problem

d

dτ
α(τ) = α(τ) ⋆ β(θ(τ)), α(0) = 11, (2.5)

with θ(τ) = θ0 + τω. Sinceβu(θ) = 0 whenever|u| 6= 1, we obtain for eachu = [u1 · · ·un]k

dαu(τ)

dτ
= β

k
(θ)αu1(τ) . . . αun

(τ)

i.e., taking into account the definition ofβ(θ) and the initial conditionα(0) = 11 (i.e.,αu(0) = 0 for all
u ∈ T ), we eventually get

αu(τ) = ei(k·θ0)
∫ τ

0

eis(k·ω)αu1(s) · · ·αun
(s)ds.

Clearly, the coefficientsαu(τ) depend on bothω andθ0. Whenever we want to stress the dependence
of α(τ) on θ0, we will write αθ0(τ). We do not reflect the dependence on the vector of non-resonant
frequenciesω, which is assumed to be fixed. A straightforward induction enables to show that for all
u ∈ T , one has

αθ0
u (τ) = eiIu·θ0α0

u(τ).

The coefficients for trees with less than four vertices are given in Figure2.
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u Fu(y) αu(τ) σu

k
fk(y)

∫ τ

0
ei(k·ω)τ1 dτ1 1

l

k

f ′
l
(y)fk(y)

∫ τ

0

∫ τ2

0
ei(kτ1+lτ2)·ω dτ1 dτ2 1

m

l

k

f ′
m
(y)f ′

l
(y)fk(y)

∫ τ

0

∫ τ3

0

∫ τ2

0
ei(kτ1+lτ2+mτ3)·ω dτ1 dτ2 dτ3 1

m

l k

f ′′
m
(y)(fl(y), fk(y))

∫ τ

0
eiτ3(m·ω)

(

∫ τ3

0
eiτ1(k·ω) dτ1

∫ τ3

0
eiτ2(l·ω) dτ2

)

dτ3 1 + δk,l

Figure 2: Trees of orders less or equal to3 with their associated elementary differentials and coefficients.

3 Extension of the ODE-solution to the associated transportPDE

Now, one can observe that for anyu ∈ T , α0
u(τ) is a combined algebraic-trigonometric Laurent polyno-

mial of the form

α0
u(τ) = Pu(τ, e

iτω1 , . . . , eiτωd , e−iτω1, . . . , e−iτωd)

wherePu is a Laurent polynomial ofC[X,Z1, . . . , Zd, Z
−1
1 , . . . , Z−1

d ] defineduniquely as soon asω is
non-resonant (i.e. such that for all∈ Zd/{0}, k · ω 6= 0). Let us define for eachu ∈ T ,

γu(τ, θ) = Pu(τ, e
iθ1, . . . , eiθd, e−iθ1 , . . . , e−iθd) (3.1)

so thatγ(τ, τω) = α0
u(τ), and in particular,γ(0, 0) = α0(τ) = 11. It should be emphasized here that

γu(τ, θ) depends polynomially inτ (i.e. with no negative powers).

3.1 The transport equation and its B-series solution

The fact thatα0(τ) = γ(τ, τω) is the solution of (2.5) implies that

∂τγ(τ, θ) + ω · ∇θγ(τ, θ) = γ(τ, θ) ⋆ β(θ) (3.2)

provided thatθ = τω. Conversely, if there existsγ : R × Td → G such thatγ(0, 0) = 11 and (3.2)
holds for all(τ, θ) in R× T

d, then one has thatα0(τ) = γ(τ, τω). However, the solution of the transport
equation (3.2) with initial conditionγ(0, 0) = 11 is not unique1: if relation γ(τ, τω) = α0(τ) holds true

1Generally speaking, solutions of (3.2) onR× Td are recursively defined by

γ(τ, θ) = χ(θ − τω) +

∫ τ

0

γ(s, θ + (s− τ)ω) ⋆ β(θ + (s− τ)ω)ds

for an arbitrary initial value functionχ of θ ∈ Td satisfyingχ(0) = 11.
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for a given functionγ, then for any realλ, it also holds for the function

(τ, θ) 7→ γ
(

τ, λθ + τ(1− λ)ω
)

,

which is thus solution of (3.2) with, for τ = 0, γ
(

τ, λθ + τ(1 − λ)ω
)

= γ(0, 0) = 11. Uniqueness is

nonetheless recovered as soon as we impose thatγ depends polynomially inτ , as this is the case in (3.1).

Definition 3.1 We will say that a smooth functionw : R×Td → C is polynomialif it depends polynomi-
ally on τ . A functionγ : R× Td → G is polynomialif γu is polynomial for allu’s in T .

Lemma 3.2 There exists a unique polynomial solutionγ : R × Td → G of (3.2) such thatγ(0, 0) = 11.
Furthermore, for eachu ∈ T , γu(τ, θ) has degree at most|u| in τ , and it is a trigonometric Laurent
polynomial in each component ofθ.

Proof: We proceed by induction and assume that for allu’s in T ∪{∅} with degrees less or equal top−1,
p ≥ 1, γu is of the form

γu(τ, θ) =
∑

l∈Su

γ̂u,l(τ)e
il·θ with

∑

l∈Su

γ̂u,l(0) = δ∅,u,

whereγ̂u,l(τ) is a polynomial of degree less or equal to|u| andSu a finite subset ofZd. Consider now a
treeu = [u1, . . . , un] of degreep: γu is solution of (3.2), i.e. of an equation of the form

∑

l∈Su

( d

dτ
γ̂u,l(τ) + i(l · ω)γ̂u,l(τ)

)

eil·θ =
∑

l∈SΠ
u

γΠ
u,l(τ)e

il·θ

whereSΠ
u := {l1 + . . . + ln : l1 ∈ Su1 , . . . , ln ∈ Sun

} and where theγΠ
u,l(τ)’s are polynomials of degree

less or equal top − 1 . This implies thatSu = SΠ
u ∪ {0} and the equation is then decomposed into the

system

∀l ∈ Su,
d

dτ
γ̂u,l(τ) + i(l · ω)γ̂u,l(τ) = γΠ

u,l(τ).

For l 6= 0, this determines a unique polynomial solution, which is of degree less or equal top − 1. For
l = 0, the solution̂γu,0(τ) is determined up to a constantC which is then obtained in a unique way from
∑

l∈Su
γ̂u,l(0) = 0. It is again a polynomial, of degree less or equal top. �

Remark 3.3 Lemma3.2also holds ifβu(θ) is for eachu ∈ T an arbitrary trigonometric polynomial in
θ = (θ1, . . . , θd) (not necessarily defined as in (2.4)) andβ∅(θ) ≡ 0. Even more generally and provided
that the vector of frequenciesω satisfies the Diophantine conditions (1.3), the result carries over to the
case whereβu : Td → C is an arbitrary analytic function for eachu ∈ T .

From now on, we will denote asγ0(τ, θ) the unique polynomial solution of (3.2) with γ(0, 0) = 11.
Consider now equation (3.2) with β(θ) replaced byβ(θ + θ0), and denote asγθ0(τ, θ) its solution with
initial valueγθ0(0, 0) = 11. The linearity of⋆ with respect to the right factor and Lemma3.2 imply the
following Corollary.
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Corollary 3.4 For any prescribedχ ∈ G, equation (3.2) complemented with the initial conditionγ(τ0, θ0) =
χ has a unique polynomial solution given by

γ(τ, θ) = χ ⋆ γθ0(τ − τ0, θ − θ0).

In the particular case withχ = 11, we get thatγ(τ, θ) = γθ0(τ − τ0, θ − θ0) is the unique polynomial
solution of (3.2) with γ(τ0, θ0) = 11.

As β(θ) is given by (2.4), replacingβ(θ) by β(θ + θ0) in (2.3) is equivalent to considering (2.3) with
fk(y) replaced byei(k·θ0)fk(y), and henceFu(y) replaced byei(Iu·θ0)Fu(y). This shows that

∀u ∈ T , γθ0
u (τ, θ) = eiIu·θ0γ0

u(τ, θ),

or more briefly,γθ0(τ, θ) = eiI·θ0γ0(τ, θ).

3.2 Extended flow-maps and their composition

System (1.1) beingautonomousin the phase-space(y, θ) ∈ Rn × Td, its flow map obeys group laws.
Hence, denoting

Φτ : Rn × T
d → R

n × T
d

(y, θ) 7→
(

B(αθ(τ), y), θ + τω
)

one has for all(τ1, τ2) ∈ R2, Φτ1 ◦ Φτ2 = Φτ1+τ2 , where

Φτ1 ◦ Φτ2 : R
n × T

d → R
n × T

d

(y, θ) 7→
(

B(αθ(τ1) ⋆ α
θ+τ1ω(τ2), y), θ + (τ1 + τ2)ω

)

.

This means that the following relation

αθ(τ1 + τ2) = αθ(τ1) ⋆ α
θ+τ1ω(τ2).

holds true for all(τ1, τ2) ∈ R2, or equivalently that

γθ(τ1 + τ2, (τ1 + τ2)ω) = γθ(τ1, τ1ω) ⋆ γ
θ+τ1ω(τ2, τ2ω).

Actually, such a relation is true in a wider sense.

Theorem 3.5 For all τ1, τ2 ∈ R and allθ0, θ1, θ2 ∈ Td,

γθ0(τ1 + τ2, θ1 + θ2) = γθ0(τ1, θ1) ⋆ γ
θ0+θ1(τ2, θ2).

Proof: Considerγ : R× T
d → G defined as

γ(τ, θ) = γθ0(τ, θ − θ0). (3.3)

Clearly,γ(τ, θ) is a polynomial solution of (3.2), which trivially satisfies the initial conditionγ(τ1, θ0 +
θ1) = γθ0(τ1, θ1). By virtue of Corollary3.4(with χ := γθ0(τ1, θ1) and(τ0, θ0) := (τ1, θ0 + θ1)),

γ(τ, θ) = γθ0(τ1, θ1) ⋆ γ
θ0+θ1(τ − τ1, θ − θ0 − θ1). (3.4)

so that the statement follows from (3.3) and (3.4) with (τ, θ) = (τ1 + τ2, θ0 + θ1 + θ2). �
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Example 3.6 For instance, consider the treeu =
k

l

with k = −l, for which we have

α0
u(τ) =

∫ τ

0

ei(l·ω)s
e−i(l·ω)s − 1

−i(l · ω)
ds =

∫ τ

0

1− ei(l·ω)s

−i(l · ω)
ds =

iτ

l · ω
+

ei(l·ω)τ − 1

(i(l · ω))2
=

iτ

l · ω
+

1− ei(l·ω)τ

(l · ω)2

so thatγ0
u(τ, θ) =

iτ
l·ω

+ 1−eil·θ

(l·ω)2
. Theorem3.5gives

γ0
u(τ1 + τ2, θ1 + θ2) = γ0

u(τ1, θ1) + γθ1
u (τ2, θ2) + γ0

k
(τ1, θ1)γ

θ1
l
(τ2, θ2)

= γ0
u(τ1, θ1) + γ0

u(τ2, θ2) + γ0
k (τ1, θ1)e

il·θ1γ0
l (τ2, θ2).

Here, we have used that
γθ1
u (τ2, θ2) = ei(l+k)·θ1γ0

u(τ2, θ2) = γ0
u(τ2, θ2).

4 Perko’s Theorem revisited

In this section, we will show how Theorem3.5 may be used to exhibit very easily a modified vector
field and a change of variables in the spirit of Perko’s Theorem 1.1. In particular, we will see that the
(formal) vector fieldF (Y ) := εF1(Y ) + ε2F2(Y ) + . . ., the (formal) change of variableU(Y, θ) =
Y + εu1(Y, θ) + ε2u2(Y, θ) + · · · of Theorem1.1, and the (formal) solutionY (τ) of Y ′ = F (Y ) can all
be expanded in B-series

F (Y ) = B(β̄, Y ), U(Y, θ) = B(κ(θ), Y ), Y (τ) = B(ᾱ(τ), Y (0)),

whereβ̄ ∈ CT ∪{∅} with β̄∅ = 0, κ : Td → G, ᾱ : R → G. Recall that the solutiony(τ) of (1.1) can be
written asy(τ) = B(α(τ), y0), whereα : R → G is the solution of (2.5). The formal part of the statement
of Theorem1.1can then be re-interpreted as follows:y(τ) = B(κ(θ(τ)), Y (τ)), whereθ(τ) = θ0 + τω,
andY (τ) = B(ᾱ(τ), Y0) is the solution of

d

dτ
B(ᾱ(τ), Y0) = B(β̄, B(ᾱ(τ), Y0)), B(ᾱ(0), Y0) = Y0, (4.1)

whereY0 = B(κ(θ0)
−1, y0), and

1

(2π)d

∫

Td

B(κ(θ), Y )dθ = Y = B(11, Y ).

In terms ofα, ᾱ, β̄, κ, this means that

α(τ) = ᾱ(τ) ⋆ κ(θ0 + τω),
d

dτ
ᾱ(τ) = ᾱ(τ) ⋆ β̄, (4.2)

whereᾱ(0) = κ(θ0)
−1, andκ(θ) is such that

1

(2π)d

∫

Td

κ(θ)dθ = 11. (4.3)

In the sequel, we give an algebraic proof of the existence ofβ̄, κ(θ), ᾱ(τ) satisfying (4.2) such that
(4.3), and extend it by allowing different choices for determiningκ other than (4.3).
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{

dy

dτ
= εf(y, θ), y(0) = y0

dθ
dτ

= ω, θ(0) = θ0

y(τ) = B(α(τ), y0)
←−−−−−−−−−−−−−−−−−−−−→

εf(y, θ) = B(β(θ), y)

{

dα
dτ

= α ⋆ β(θ), α(0) = 11
dθ
dτ

= ω, θ(0) = θ0

y = U(Y, θ) l l α = ᾱ ⋆ κ(θ)

{

dY
dτ

= εF (Y ), Y (0) = Y0
dθ
dτ

= ω, θ(0) = θ0

Y (τ) = B(ᾱ(τ), Y0)
←−−−−−−−−−−−−−−−−−→

εF (Y ) = B(β̄, Y )

{

dᾱ
dτ

= ᾱ ⋆ β̄, ᾱ(0) = κ−1(θ0)
dθ
dτ

= ω, θ(0) = θ0

Figure 3: Perko’s Theorem in terms of B-series

4.1 Quasi-stroboscopic averaging

Although the initial valueY (0) in Theorem1.1 does not coincide withy(0), we now show that it is
in fact possible to chooseκ in such a way thatκ(0) = 11, and thusY (0) = y(0). In this sense, we
extend stroboscopic averaging to the multi-frequency case, and call this generalizationquasi-stroboscopic
averaging. Note however, that recovering the exact solution of the original system (1.1) from the solution
of the averaged differential equation is not as straightforward as for stroboscopic averaging, since nothing
such as a period exists here.

Consider the solutionα(τ) of (2.5) with θ(τ) = θ0 + τω, so thatα(τ) = γθ0(τ, τω). Application of
Theorem3.5with τ1 = τ , τ2 = 0, θ1 = 0, andθ2 = ∆θ gives

γθ0(τ,∆θ) = γθ0(τ, 0) ⋆ γθ0(0,∆θ). (4.4)

Let us denotēα(τ) = γθ0(τ, 0), andκ(θ) = γθ0(0, θ − θ0), so that (4.4) with ∆θ = τω gives the
factorization

γθ0(τ,∆θ) = ᾱ(τ) ⋆ κ(θ0 +∆θ), (4.5)

hence,α(τ) = γθ0(τ, τω) = ᾱ(τ) ⋆ κ(θ0 + tω).
By consideringθ1 = θ2 = 0 in Theorem3.5, we get

γθ0(τ1 + τ2, 0) = γθ0(τ1, 0) ⋆ γ
θ0(τ2, 0),

which leads, after differentiating with respect toτ2 in both sides and substitutionτ1 = τ , τ2 = 0, to

∂

∂τ
γθ0(τ, 0) = γθ0(τ, 0) ⋆

∂

∂τ
γθ0(0, 0), (4.6)

and thus second equality in (4.2) holds true with

β̄ =
∂

∂τ
γθ0(0, 0).

In addition, we have that̄α(0) = γθ0(0, 0) = 11 = α(0), and we obtain precisely the condition required
for what we have called quasi-stroboscopic averaging.
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4.2 General averaging

We next show that classical averaging can be effectively described using B-series. That is, that there exist
κ : Td → G, ᾱ : R → G, andβ̄ ∈ CT ∪{∅} with β̄∅ = 0, such that (4.2) holds with (4.3). Indeed, starting
from the fundamental decomposition (4.4), we introduce an arbitraryν ∈ G, so that

γθ0(τ,∆θ) = γθ0(τ, 0) ⋆ ν−1 ⋆ ν ⋆ γθ0(0,∆θ),

and then defineκ(θ) = ν ⋆ γ(0, θ − θ0) and ᾱ(τ) = γθ0(τ, 0) ⋆ ν−1, so that we effectively have the
factorization (4.5). We now determineν = κ(θ0) = ᾱ(0)−1 by imposing (4.3). By applying angular
averages in both sides of (4.5), and taking into account the linearity of⋆ with respect to the right factor,
(4.3) implies that

ᾱ(τ) =
1

(2π)d

∫

Td

γθ0(τ, θ)dθ,

and hence

ν−1 = ᾱ(0) =
1

(2π)d

∫

Td

γ(0, θ)dθ.

From equation (4.6) we obtain

∂γ

∂τ
(τ, 0) ⋆ ν−1 = γ(τ, 0) ⋆ ν−1 ⋆ ν ⋆

∂γ

∂τ
(0, 0) ⋆ ν−1

which gives the second equality in (4.2) for β̄ = ν ⋆ ∂γ

∂τ
(0, 0) ⋆ ν−1. Observe that, we also have that

β̄ =
d

dτ
ᾱ(τ)

∣

∣

∣

∣

τ=0

=
1

(2π)d

∫

Td

∂

∂τ
γθ0(0, θ)dθ.

4.3 Equivalence of averaging procedures

From previous subsections, it is clear that there exists a whole class of possible averaging procedures
depending on the specific choice ofν = κ(θ0), i.e., on the choice of the change of variable atθ(0) = θ0

U0(Y ) = U(Y, θ0) = B(ν, Y ).

All of such averaging procedures are conjugate to each other, that is, they give rise to a formal change
of variabley = U(Y, θ) = B(κ(θ), Y ), an averaged vector fieldF (Y ) = B(β̄, Y ), and an expansion
of the averaged solutionY (τ) = B(ᾱ(τ), y(0)), whose B-series coefficients are related to the B-series
coefficients of stroboscopic averaging as follows:

κ(θ) = ν ⋆ γ(0, θ − θ0), ᾱ(τ) = γθ0(τ, 0) ⋆ ν−1, β̄ = ν ⋆
∂γ

∂τ
(0, 0) ⋆ ν−1.

This is equivalent to the relations

U(Y, θ) = B(γθ0(0, θ − θ0), U0(Y )), (4.7)

Y (τ) = U−1
0 (B(γθ0(τ, 0), y(0))), (4.8)

F (Y ) =
∂

∂Y
U−1
0 (U0(Y ))B( ∂

∂τ
γθ0(0, 0), U0(Y )). (4.9)
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Theorem 4.1 Consider the differential system (1.1), and an averaged vector fieldF (Y ) and a change of
variabley = U(Y, θ), 2π-periodic in each angleθi, not necessarily expanded as B-series, such that

y(τ) = U(Y (τ), θ(τ)), θ(τ) = θ0 + τω,

where

dY

dτ
= F (Y ) with U(Y (0), θ0) = y0.

Then, the relations (4.7)–(4.9) hold true, whereU0(Y ) := U(Y, θ0).

5 An Arnold-Liouville-like theorem for quasi-periodic systems and
its consequences

The emphasis in this section is put, in accordance with the remaining of this paper, on formal transfor-
mations (expanded in B-series) and formal results and not onthe equally important aspects of obtaining
error estimates.

Theorem 5.1 Assume thatω is a non-resonant vector ofRd and consider the associated coefficientsγ.
Consider now∆1θ, ...,∆mθ, m vectors ofTd and define, for each∆iθ, i = 1, . . . , m, the following flow:

Ψ∆iθ
τ : Rn × T

d → R
n × T

d

(y, θ) 7→
(

B(γθ(τ,∆iθ), y), θ +∆iθ
)

Then, the following relation holds true for all(τ1, . . . , τm) ∈ Rm:

Ψ∆1θ
τ1

◦ · · · ◦Ψ∆mθ
τm

= Ψ∆1θ+...+∆mθ
τ1+...+τm

.

In particular, any two such flows commute.

Proof: This is a straightforward consequence of Theorem3.5. �

Note that for∆θ = τω̃, Ψ∆θ
τ is the flow map of the autonomous differential equation

{

y′ = εf ω̃(y, θ),
θ′ = ω̃,

(5.1)

where

f ω̃(y, θ) =
∑

u∈T

ε|u|

σu

βω̃eIu·θFu(y),

where, as before,βω̃ = dγu(τ,τ ω̃)
dτ

∣

∣

∣

τ=0
. The first coefficients of the expansion are given in Table1.
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Tree µ Index range Order σu βω̃
u

0 I ∅ 1 1 1

k II k 6= 0 1 1 k·ω̃
k·ω

0

k

III k 6= 0 2 1 ik·(ω−ω̃)
(k·ω)2

k

0

IV k 6= 0 2 1 ik·(ω̃−ω)
(k·ω)2

l

−l

V l 6= 0 2 1 i l·(ω−ω̃)
(l·ω)2

l

k

VI k 6= 0, l 6= 0,k 6= −l 2 1 i (l·ω̃)(k·ω)−(l·ω)(k·ω̃)
(l·ω)(k·ω)((l+k)·ω)

Table 1: Coefficients of thẽω-averaged solution for first- and second-order trees

Example 5.2 Consider the following vector field:

f(y, θ) = cos2 (ω1τ + θ1) + cos (ω2τ + θ2) y.

Denoting∆θ = (∆1,∆2) and againθ = (θ1, θ2), we have

Ψ(∆1,∆2)
τ

(

y, θ
)

= y +
ετ

2
−

ε

4

(sin (2θ1)ω2 + 4 y sin (θ2)ω1 − ω2 sin (2∆1 + 2θ1)− 4 y sin (∆2 + θ2)ω1)

ω1ω2

Ψ(∆1,0)
xτ (y, (0, 0)) =

(

y +
ε

2

(cos (∆1) sin (∆1) + xτ ω1)

ω1
, 0 + ∆1, 0 + 0

)

Ψ
(0,∆2)
(1−x)τ (y, (∆1, 0)) =

(

y +
ε

2

(ω2τ(1 − x) + 2 y sin (∆2))

ω2

, ∆1 + 0, 0 + ∆2

)

Ψ(∆1,∆2)
τ

(

y, (0, 0)
)

=

(

y +
ε

2

(ω2 cos (∆1) sin (∆1) + τ ω1ω2 + 2 y sin (∆2)ω1)

ω1ω2
, ∆1, ∆2

)
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It is interesting to notice that the case where the angle is also perturbed as follows
{

x′ = εk(x, ξ) ∈ Rn

ξ′ = ω + εg(x, ξ) ∈ Td

can simply be rewritten in the form (1.1) with y = (y1, y2) andf(y, θ) =
(

k(y1, y2+ θ), g(y1, y2+ θ)
)

so

that perturbed integrable systems are part of our analysis.We explore this connection a bit further in next
section.

5.1 Averaging for a class of near-integrable systems

Consider a system of the form

z′ = k(z) + εg(z) ∈ R
n

and assume that the flowΦτ of z′ = k(z) is of the formΨθ with θ = τω andω ∈ Td, whereΨθ satisfies

∀(θ1, θ2) ∈ T
d × T

d,Ψθ1+θ2 = Ψθ1 ◦Ψθ2. (5.2)

Writing z(τ) = Ψτω(y(τ)) we get

z′ =
dΨτω

dτ
(y) +

∂Ψτω

∂y
(y) y′

= k(Ψτω(y)) +
∂Ψτω

∂y
(y) y′

so that
{

y′ = ε
(

∂Ψ−θ

∂y
(Ψθ(y))

)

g(Ψθ(y))

θ′ = ω

where we have used relation (5.2) with θ1 = −θ2 = θ. The system for(y, θ) is thus exactly of the

form considered in this paper withf(y, θ) =
(

∂Ψ−θ

∂y
(Ψθ(y))

)

g(Ψθ(y)) and we can compute its B-series

expansion in terms of the Fourier coefficients off , namely

fk(y) =
1

(2π)d

∫

Td

e−i(k·θ)
(∂Ψ−θ

∂y
(Ψθ(y))

)

g(Ψθ(y))dθ.

The expansion is of the form derived in previous sections, that is to say

{

y(τ) = y +
∑

u∈T
ε|u|

σu
γθ(τ, τω)Fu(y)

θ(τ) = θ + τω
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and the corresponding quasi-stroboscopic averaged differential equations are of the form
{

dy

dτ
=

∑

u∈T
ε|u|

σu

dγu(τ,τ ω̃)
dτ

∣

∣

∣

τ=0
eIu·θFu(y)

θ′ = ω̃

for arbitraryω̃ ∈ Rd. In order to get an equation forz = Ψτω̃(y) we first have to compute

fk (Ψ−θ2(z)) =
1

(2π)d

∫

Td

e−i(k·θ1)
(∂Ψ−θ1

∂y
(Ψθ1(Ψ−θ2(z)))

)

g(Ψθ1(Ψ−θ2(z)))dθ1

=
1

(2π)d

∫

Td

e−i(k·θ1)
(∂Ψ−θ1

∂y
(Ψθ1−θ2(z))

)

g(Ψθ1−θ2(z))dθ1

=
1

(2π)d

∫

Td

e−i(k·(χ+θ2))
(∂Ψ−(χ+θ2)

∂y
(Ψχ(z))

)

g(Ψχ(z))dχ

where we have used relation (5.2). Now, using once again (5.2), we have

Ψ−(χ+θ2) ◦Ψχ = Ψ−θ2

so that, by differentation

(∂Ψ−(χ+θ2)

∂y
(Ψχ(z))

)

·
(∂Ψχ

∂y
(z)

)

=
∂Ψ−θ2

∂y
(z).

Eventually, we get

fk (Ψ−θ2(z)) = e−ik·θ2
∂Ψ−θ2

∂y
(z)fk(z). (5.3)

From now on, we assume in addition thatΨθ is linear, so that its second derivative w.r.t.y vanishes. Then,
relation (5.3) leads to

f ′
k
(Ψ−θ2(z)) = e−ik·θ2

∂Ψ−θ2

∂y
(z)f ′

k
(z)

(∂Ψ−θ2

∂y
(z)

)−1

and more generally to

Fu (Ψ−θ2(z)) = e−iIu·θ2
∂Ψ−θ2

∂y
(z)Fu(z)

Getting back to the differential equation forz, we obtain

{

z′ = kω̃(z) +
∑

u∈T
ε|u|

σu
βω̃Fu(z)

θ′ = ω̃

wherekω̃(z) = dΨτω̃

dτ
(Ψ−τω̃(z)) is independent ofτ .
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5.2 Application to the case of the FPU problem

We consider the Hamiltonian system with Hamiltonian

1

2
pT1 p1 +

1

2
pT2 p2 +

1

2ε2
qT2 Ω

2q2 + U(q1, q2; ε),

whereU is a real-valued potential that may be expanded in non-negative powers ofε andΩ is ad × d
symmetric positive definite matrix of the formΩ = QTDiag(ω1, . . . , ωd)Q with QTQ = I. Whenτ =
ε−1t is used as independent variable, the Hamiltonian function becomes

H(p1, p2, q1, q2) = H1(p1, p2, q1, q2) +H2(p1, p2, q1, q2),

with

H1(p1, p2, q1, q2) :=
1

2

(

εpT2 p2 +
1

ε
qT2 Ω

2q2

)

andH2(p1, p2, q1, q2) :=
ε

2
pT1 p1 + εU(q1, q2; ε), (5.4)

and the equations of motion are then














d
dτ
p1 = −ε∇1U(q1, q2; ε),

d
dτ
p2 = −1

ε
Ω2q2 − ǫ∇2U(q1, q2; ε),

d
dτ
q1 = ε p1,

d
dτ
q2 = ε p2.

Now, consider the flowΦτ of the system with HamiltonianH1(p1, p2, q1, q2) =
1
2

(

εpT2 p2 +
1
ε
qT2 Ω

2q2
)

:

Φτ









p1
p2
q1
q2









=









p1
cos(τΩ)p2 − ε−1Ω sin(τΩ)q2

q1
εΩ−1 sin(τΩ)p2 + cos(τΩ)q2









and rewrite it asΨτω with

Ψθ









p1
p2
q1
q2









=









p1
cos(Θ)p2 − ε−1Ω sin(Θ)q2

q1
εΩ−1 sin(Θ)p2 + cos(Θ)q2









whereΘ = QTDiag(θ1, . . . , θd)Q. Note that relation (5.2) can be easily checked. The change of variables
Ψτω(p̂1, p̂2, q̂1, q̂2) = (p1, p2, q1, q2) then transforms the system into













d
dτ
p̂1

d
dτ
p̂2

d
dτ
q̂1

d
dτ
q̂2

d
dτ
θ













=













−ε∇1U(q̂1, cos(Θ)q̂2 + εΩ−1 sin(Θ)p̂2; ε)
−ε cos(Θ)∇2U(q̂1, cos(Θ)q̂2 + εΩ−1 sin(Θ)p̂2; ε)

ε p̂1
−ε2Ω−1 sin(Θ)∇2U(q̂1, cos(Θ)q̂2 + εΩ−1 sin(Θ)p̂2; ε)

ω













=

(

εf(y, θ)
ω

)
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with y = (p̂1, p̂2, q̂1, q̂2). The functionf can also be written asf(y, θ) = J−1∇yĤ(y, θ) with

Ĥ(p̂1, p̂2, q̂1, q̂2, θ; ε) =
ǫ

2
p̂T1 p̂1 + ǫ U(q̂1, cos(Θ)q̂2 + εΩ−1 sin(Θ)p̂2; ε). (5.5)

It is easy to verify that, given any vectorω̃ ∈ Rd, we have

dΨτω̃

dτ

(

Ψ−τω̃(p1, p2, q1, q2)
)

=









0 0 0 0

0 0 0 −ε−1ΩΩ̃
0 0 0 0

0 εΩ−1Ω̃ 0 0

















p1
p2
q1
q2









= kω̃(z). (5.6)

whereΩ̃ = QTdiag(ω̃1, . . . , ω̃d)Q. This is the flow of a Hamiltonian system with HamiltonianH ω̃
1 (p1, p2, q1, q2) =

1
2
(εpT2Ω

−1Ω̃p2 + ε−1qT2 ΩΩ̃q2). Enventually, the averaged HamiltonianH ω̃ is of the form

H ω̃(p1, p2, q1, q2) = ε
(1

2
(pT2Ω

−1Ω̃p2 + ε−2qT2 ΩΩ̃q2) +
1

2
pT1 p1 + U0(q1, q2, p2) +

∑

k 6=0

k · ω̃

k · ω
Uk(q1, q2, p2)

)

+O(ε2).

Now, according to Theorem5.1, for any pair of vectors̃ω, the corresponding flows commute, and we have
in particularϕω

τ ◦ ϕω̃
τ = ϕω

τ ◦ ϕω̃
τ so that

{H ω̃, Hω} = 0

implying thatH − H ω̃ is constant along the exact solution of the Hamiltonian system with Hamiltonian
H. This implies that all highly-oscillatory energies are preserved up toO(ε)-terms.
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