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1 Introduction

The Krylov-Bogoliubov-Mitropolski averaging procedurea famous perturbation method for approxi-
mating the solution of a perturbed ordinary differentialiation of the form

J() = ef(y(r).me)
{ y(0) = v (1.1)

on intervals of length /e and for small: > 0. The usual, though fundamental, assumption adopted in
regard to this system is the existence of the average

1 T
:Ill_rélo T /0 f(y,T;e)dr.
In this contribution, we shall limit our investigations toet case of functiong that are periodic or quasi-
periodic inT, a sufficient condition for the above limit to exist.

Following the pioneering work of Krylov and Bogoliubok[B34], Bogoliubov and Mitropolski gave
the first comprehensive presentatid@i[55] of the method of averaging for first and second orders in
. Various authors have later considered higher order expamand have established a systematic pro-
cedure to derive them. However, to our knowledge, the figgirdus complete account to high-order
averaging was given by L. Perko. IR¢r68, the author constructs a change of variable together with a
autonomous differential equation whose solution satigfiel} up to terms of size” .
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For the case of periodic vector fields (i.e. whgin (1.1) is periodic in7), the construction offers
some freedom in the definition of the change of variableseadom which allows to cover several spe-
cific methods of averaging encountered in the literaturegragat which most prominentistroboscopic
(for which the change of variables coincides with the idgntiap at times that are multiple of the pe-
riod) andclassicalaveraging (for which the angular average of the change oabfas is the identity
map). In CMSS1(, we situated our work in a similar context and we demonsttdiow B-series could
be used to derivefally explicitexpansion of the averaged vector field obtained by strolpisemeraging.

Wheneverf is only assumed to be quasi-periodicanother theorem obtained by L. Perko ief6g
establishes the existence of a change of variable whiclg®sgstemX.1) to an autonomous differential
equation. Since we are specifically concerned by this caieeipresent paper, it seems convenient to
quote this result explicitly:

Theorem 1.1 Consider the system

y/ = €f(y,9), y(O) = Yo,
{9/ . 60) = 6 (1.2)

where f is a real-analytic function off ¢ T? for eachy in a convex regiorG (containingy,) and 27-
periodic in each component 6f Assume that the vectar ¢ R? satisfies thestrong non-resonnance
condition

vk € Z°/{0}, |k-w|>clk|™” (1.3)
for some positive constantsandv. Assume in addition that the solution of the differential@&ipn
{ Y, = €F1 (Y)
Y(0) = o

where
1
R(Y) = o7 [ SO0

has a solutiony; (7) which remains in for 7 < L/e: Then, for anyN > 1, there existgy > 0 such
that for0 < ¢ < ey, the systeml(2) has a unique solution ity for 0 < 7 < L /e satisfying

ly(r) = U¥n(7), 00 + wr)|| < Ce™
whereYy (1) is the solution of the differential equation
Y =eR(Y)+E2F (YY) +...+NFy(Y), Y(0)=¢

and where the change of variablgY,0) =Y + cu;(Y,0) + ... + un_1(Y, 8) and the functiong’; are



defined recursively by (fgr > 1)

1

~ = o O
=Y [n X GEo(wio. . 1e) - SR @
k=1 Cdtetip=5—1
1 -
F(Y) = G | Fo. (L5)
o Vo (¥,0) = BY.0) - B(Y), [ w(Y.e)i=o. (1.6)
Td

The initial condition¢ is determined implicitly by the equation

N-1

E=y0— Y u(€,00) + OEN).

j=1

A noticeable difference with the single frequency situatis that the change of variabl&ss constructed
in such a way that it has zero average (see equalid)(a procedure which we refer to as classical-
averaging. It is clear that the procedure of stroboscopécaging, for whichl/(y, 7) coincides with the
identity map at times that are multiple of the period, can not be generalizedgttéarwardly (there is
nothing such as a period in the quasi-periodic case). Howexeshow in this paper that it is possible,
upon using B-series, to derive a change of varidblgeuch that/ (Y, 6,) = Y, so that = y,. We have
called this averaging procedugeiasi-stroboscopic averagingor there exists a quasi-peridd, > 0
such thatU (Y, nTw) = Y + O(nv) for arbitrarily smallv. Actually, the change of variables can be
chosenarbitrarily, as this will be proved in Section 3. However and quite ssipgly, this does make
any difference as far as the long-term dynamical behaveuaoncerned, since all averaging procedures
are actually equivalent is the sense that any two averagedrvigelds so obtained are conjugate.
Another consequence of the results we get here is the catistiwof formal adiabatic invariants for
the Fermi-Pasta-Ulam problem and more generally, for systlat are non-linear perturbations of linear
ones.

Periodic case Quasi-periodic case
Perko’s recursion Stroboscopic aver. and classical-aver. classical-aver.
B-series Stroboscopic aver. and classical-avegtroboscopic aver., classical-aver.| ...

Figure 1: Averaging methods available for the periodic anasitperiodic cases

As already mentioned, the expansion we get is completelliagxpin particular, we give recursive
formulas for the coefficients of the series we consider thatvalid in both the periodic case (and then
complement our previous work iICMSS1(Q) and the quasi-periodic case considered here.



2 Expansion of the exact solution as a mode-coloured B-sesie

We consider the multi-frequency highly-oscillatory preil (L.1) under the assumption thdt(y, 0) is
real-analytic on a domain &" x T? and thus possesses a Fourier expansion of the form

Fly,0) =Y ™ fi(y). (2.1)

kezd

The Fourier coefficientgi(y) are in general complex functions, but, in order to have asgstem, we
assume that, for eadh f, = f*, where* denotes the complex conjugate.

2.1 Mode-coloured trees and elementary differentials

As it has been done for the mono-frequency cas€M$S1(Q, the solutiony of (1.1) can be expanded as
aB-seriesthat is to say a formal series whose terms are indexed bye@dtrees. In this subsection we
describe a variant of the trees considereddW[ES1( and that will feature in the present expansionyof

In view of the structure of the right hand-side Gtf1), the vertices of the trees to be used here corre-
spond to the functiong, and their derivatives; hence, each vertex possesses hapelanhich is now a
multi-index inZ<. The set] of trees may now be defined recursively by the following twiesu

1. Forallk € Z4, () belongs taT;
2. Ifuy,...,u, aren trees ofT, then, the tree
w=[ug, ..., ux (2.2)
obtained by connecting their roots to a new root with multléxk € Z<, belongs tor.

The expansion of will be graded according to powers ofnh connection with the usual notion of order:
The orderu| of atreeu € T is simply defined as its number of nodes. We shall later usethésconcept
of total indexZ,, defined as the sum over all nodesuobf their multi-indices. Elementary differentials
can also be defined recursively by the formulae

" fx
oyn

(90) (Fus (), -+ Fa (0))-

2.2 Mode-coloured B-series

In accordance with previous paragraph, we now define mobiete B-series as power series indexed
by mode-coloured trees of the setof the form

clul
Bla,y) = oy + ) _ —auFu(y)

ueT ¢



whereo is thesymmetryfunction from7 to N that acts as a normalization factor, and it is defined as
its natural extension from standard trees (see for instatté$S1(Q) to mode-coloured trees, and where
a € CTY that is,

a:Tu{d} — C

U = Oy
Given two B-series3(«, ) and B(,y) (Wherea, 8 € CT{%)) consider their composition

B(8, B, y)).

It is well known that that, provided thaty = 1, the result is still a B-serieB(a + 3, y) with coefficients
ax B € CTYU% As established for standard B-series, the correspondingposition law induces a rich
structure oHopf algebrain which it happens to be @nvolution productFor the sake of this exposition,
it is not necessary to present the details of this consbu@nd in particular the precise form of this law.
We next fix some notation an recall some known results thateapgired in the present work.

We will denoteG = {a € CTV1} . oy = 1}. Givena € G andp € CTY% thena « 3 € CTV{0},
If 5 also belongs tg/, thena x 5 € G. Actually, G has a group structure, with neutral elemérttefined
by 1, = 1 and1, = 0 for all w € 7. Obviously, the neutral elemeiitin G corresponds to the B-series
representing the identity map, thati3(1,y) = y.

Givena € G andp € CTY% (ax 3)y = By, and for each tree € T, (a % 3), is of the form

Jul &
(ax B)y = aufp + Bu + Z Z Curyeectim P H Lu;
m=2 |us 4.+ |um|=|u| =2

where the:,, . ,,.’S are integer coefficients.

In particular, it will be relevant here that the products linear in the right factor, and also that
(axB)y — a8y — By is a polynomial in the coefficients, ands,, for treesv, w with less vertices than
(which will allow to prove results by induction on the numlaévertices). We will also use the fact that,
wheng, = 0 for all trees with|u| # 1, then,

(Oé*ﬁ)u = 5@0%1 s Oy,

provided that, = [u; - - - u,,], (including the case = [()];).

2.3 Formal expansion

As stated in the introduction of this section, our aim is Herexpress formally the exact solution Gf 1)
as

y(1) = B(a(7),y0), 0(7) =6y + Tw.



Clearly,a(7)y = 1, and thusy(7) will represent a curve i. Our first task is to rewrite the vector field
itself as a B-series

5|u‘

e > e ily) = BBO)y) = D —Bu(0)Fuly) (2:3)
kezd ue7
with coefficientss, (0) defined foru € 7 U {0} as follows:
i(k0) if L, d
B.(60) = { e if u= @for somek € Z°, (2.4)
0 otherwise.

Writing the initial value problemi(.1) in terms of B-series, we obtain

%BM Bla(r) * B(0(7)). o),

B(a(0),0) = yo = B(1, ),

\\
~—
<
(=)
~—

I

and thusy : R — G satisfies the initial value problem

La(r) = a(r)« 5(6(r), a(0)=1, (25)

with 6(7) = 6y + Tw. Sincep,(0) = 0 whenevertu| # 1, we obtain for eacly = [u; - - - u, |k

i.e., taking into account the definition ¢f¢) and the initial conditiorv(0) = 1 (i.e., o, (0) = 0 for all
u € T), we eventually get

ay (1) = ei(kbo) / eis(k'w)aul(s) ceu, (8)ds.
0

Clearly, the coefficients,, () depend on bothy andf,. Whenever we want to stress the dependence
of a(r) on 6, we will write o (7). We do not reflect the dependence on the vector of non-resonan
frequenciesv, which is assumed to be fixed. A straightforward inductioal#es to show that for all

u € T, one has

ag (1) = e al (7).

The coefficients for trees with less than four vertices avemin Figure2.
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Figure 2: Trees of orders less or equabtwith their associated elementary differentials and caefiits.

3 Extension of the ODE-solution to the associated transpo®DE

Now, one can observe that for anyc 7, o?(7) is a combined algebraic-trigonometric Laurent polyno-
mial of the form

(1) = Py(1,€™, ... €Wl e e i)
where P, is a Laurent polynomial of [ X, Z,, ..., Z4, Z;'', ..., Z;'] defineduniquely as soon as is
non-resonant (i.e. such that for allZ4/{0}, k - w # 0). Let us define for each € T,
Yu(7,0) = Py(1,e, ... e 70 o) (3.1)

so thaty(r,7w) = a?(7), and in particular;(0,0) = o°(7) = 1. It should be emphasized here that
(T, 0) depends polynomially imr (i.e. with no negative powers).

3.1 The transport equation and its B-series solution
The fact that’(7) = (7, Tw) is the solution of 2.5) implies that

O:y(7,0) +w - Voy(7,0) = ~(7,0) x B(0) (3.2)

provided that) = Tw. Conversely, if there exists : R x T — G such thaty(0,0) = 1 and 3.2
holds for all(r, #) in R x T¢, then one has that’(7) = ~(7, Tw). However, the solution of the transport
equation 8.2) with initial condition~(0,0) = 1 is not uniqué: if relation v(7, 7w) = a°(7) holds true

1Generally speaking, solutions &.¢) onR x T< are recursively defined by
A1) = x(0 =)+ [ (5,04 (5= 1)) BB+ (5 = 7))
0

for an arbitrary initial value functiory of # € T¢ satisfyingx(0) = 1.
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for a given functiony, then for any real, it also holds for the function

(1,0) — 7(7‘, A+ 7(1 — )\)w),

which is thus solution 0f%.2) with, for 7 = 0, 7(7, A+ (1 — )\)w) — 4(0,0) = 1. Uniqueness is
nonetheless recovered as soon as we impose tteppends polynomially im, as this is the case i (1).

Definition 3.1 We will say that a smooth functian: R x T¢ — C is polynomialif it depends polynomi-
ally on7. A functiony : R x T? — G is polynomialif +,, is polynomial for allu’s in 7.

Lemma 3.2 There exists a unique polynomial solutipn R x T¢ — G of (3.2) such thaty(0,0) = 1.
Furthermore, for eachu € T, v,(,0) has degree at most| in 7, and it is a trigonometric Laurent
polynomial in each component @&f

Proof: We proceed by induction and assume that foralin 7 U {()} with degrees less or equale- 1,
p > 1, v, is of the form

Yu(T0) =D Aua(r)e™ with Y~ 4,1(0) = 6y,

1Sy 1€Sy

where9,1(7) is a polynomial of degree less or equaltd and S, a finite subset oZ<. Consider now a
treeu = [uq, ..., u,| of degreep: v, is solution of 8.2), i.e. of an equation of the form

3 () i1 wua(r))e™ = 3 4 ()™

lesS, lesH

whereS .= {l; +...+1,: 1, € S,,,...,1, € S,, } and where the;/,()’s are polynomials of degree
less or equal tp — 1. This implies thatS, = SI U {0} and the equation is then decomposed into the
system

d . . .
VL€ Su, o Aua(r) + il w)Fua(r) = Yo (7).

Forl # 0, this determines a unique polynomial solution, which is efjicee less or equal jo— 1. For
1 = 0, the solutiony, o(7) is determined up to a constafitwhich is then obtained in a unique way from
> 1es, Yu1(0) = 0. Itis again a polynomial, of degree less or equai.ta]

Remark 3.3 Lemma3.2 also holds if5,(0) is for eachu € T an arbitrary trigonometric polynomial in
0 = (6y,...,04) (not necessarily defined as i@.§)) and 5y(¢#) = 0. Even more generally and provided
that the vector of frequencies satisfies the Diophantine conditions.§), the result carries over to the
case whered, : T — C is an arbitrary analytic function for each € 7.

From now on, we will denote ag’(r, #) the unique polynomial solution oB(2) with v(0,0) = 1.
Consider now equatior8(2 with 3(#) replaced by3(# + 6,), and denote as’(r, §) its solution with
initial value % (0,0) = 1. The linearity ofx with respect to the right factor and Lemr& imply the
following Corollary.



Corollary 3.4 Forany prescribed; € G, equation 8.2 complemented with the initial conditiofir, 0y) =
x has a unique polynomial solution given by

(T, 0) = X*VGO(T — 70,60 — o).

In the particular case witly = 1, we get thaty(r,0) = v% (7 — 75,0 — 6,) is the unique polynomial
solution of @.2) with (7, 6y) = 1.

As 3(0) is given by @.4), replacing5(0) by 5(0 + 6,) in (2.3) is equivalent to considerin@ (3) with
fr(y) replaced by:x%) f, (), and henceF,(y) replaced by «%) F, (3). This shows that

VueT, ~%(r,0) =eT%0(7,0),

or more brieflyy% (,0) = eZ%~0(7, §).

3.2 Extended flow-maps and their composition

System {.1) beingautonomousin the phase-spadg, /) € R" x T¢, its flow map obeys group laws.
Hence, denoting

d,:R"x T — R"xT
(y,0) +— (B(o/’(T),y), 0 + Tw)
one has for al(ry, ) € R?, &, 0 ®,, = &, ,,,, Where
b, 00, R"xT? — R"xT?

(y,0) = (B(a’(m) x ™ %(13),y),0 + (11 + T2)w) .

This means that the following relation
(1 + 1) = (1) x 7T ().

holds true for all(r;, 72) € R?, or equivalently that

9+T1°J(7'2, Tow).

V(1 4 7o, (1 + T2)w) = A% (11, Tw) *
Actually, such a relation is true in a wider sense.
Theorem 3.5 For all 7, 7, € R and allé,, 6,, 6, € T,
V() + 72,01 + 02) = % (11, 0,) x YT (13, 05).
Proof: Considery : R x T¢ — G defined as
(7, 0) =A% (1,6 — 6)). (3.3)

Clearly,~(7, ) is a polynomial solution of3.2), which trivially satisfies the initial condition(ry, 6 +
6,) = v% (7, 6,). By virtue of Corollary3.4 (with x := 7% (7, 6,) and(ry, 6) := (11,00 + 01)),

~(r,0) = A0 (11,61) x o th (1 —m11,0 — 6y — 07). (3.4)
so that the statement follows fror8.8) and @.4) with (7,60) = (11 + 72,0y + 01 + 65). O
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Example 3.6 For instance, consider the tree= %With k = —1, for which we have

T —i(lw)s __ 1 T ei(l-w)s i ei(l-w)ﬂ- -1 i 1— ei(l-w)T
0 _ z(lw)se ds = / ds = —
(7) /0 C TTlw YT Tilw Tl Gw)? Te we

so thaty?(7,0) = = + % TheorenB.5gives

V(T + 7o, 01+ 02) = (71, 01) + 140 (12, 0) + 70®(7‘1, 91)761@(72, 6s)

= (11, 601) +70(72,02) + 70®(71> 91)€il'9170@(72, 6s).

Here, we have used that

(14Kk)-6;

Vo (12, 00) = €' Vo (T2, 02) = 7 (72, 62).

4 Perko’s Theorem revisited

In this section, we will show how Theorefh5 may be used to exhibit very easily a modified vector
field and a change of variables in the spirit of Perko’s Theotel. In particular, we will see that the
(formal) vector fieldF'(Y) := eFy(Y) + e2F5(Y) + ..., the (formal) change of variablg (Y, ) =

Y + euy (Y, 0) + 2uy(Y,0) + - - - of TheoremLl.1, and the (formal) solutiol (1) of Y’ = F(Y') can all

be expanded in B-series

F(Y)=B(3,Y), U(Y.0)=B(x(0),Y), Y(r)=B(a(r),Y(0)),

where3 € CTY{% with 3 = 0, x : T¢ — G, @ : R — G. Recall that the solutiop(7) of (1.1) can be
written asy(7) = B(a(7), yo), Wherea : R — G is the solution of 2.5). The formal part of the statement
of Theoreml.1can then be re-interpreted as followgr) = B(x(0(7)), Y (7)), whered(r) = 0y + Tw,
andY (1) = B(a(7), Y)) is the solution of

d _

5. Ba(7), Yo) = B(B, B(a(7), Yo)),  B(a(0),Yo) = Yo, (4.1)
whereY, = B(x(6y)~!,vo), and

1

/ B(r(0),Y)d0 = Y = B(L,Y).

(2m)4
In terms ofo, &, /3, k, this means that
a(t) = a(r) * k(0 + Tw), dia(f) =a(r) x 3, (4.2)
T
wherea(0) = k(6y)~t, andx(0) is such that
1

In the sequel, we give an algebraic proof of the existence, &ff), a(r) satisfying ¢.2) such that
(4.3), and extend it by allowing different choices for determupic other than 4.3).

10



W= cf(y.0), y(0) =y y(7) = B(a(7), o) da —axpB(0), a(0)=1
o =w 0(0) ar = =

_ 80 ef(y,0) = B(B(0),y)

Qi

axp, a(0)=r"(b)
W, 9(0) = 90

av _ eF(Y), Y(0)=Y, Y (r) = B(a(r), Yo)
="

(0) = 6, sF(Y) = B(B,Y)

|

|
>
I

SIS

Figure 3: Perko’s Theorem in terms of B-series

4.1 Quasi-stroboscopic averaging

Although the initial valueY (0) in Theorem1.1 does not coincide witly(0), we now show that it is
in fact possible to choose in such a way that(0) = 1, and thusY (0) = y(0). In this sense, we
extend stroboscopic averaging to the multi-frequency,Gs@call this generalizatiajquasi-stroboscopic
averaging Note however, that recovering the exact solution of thgioal system 1.1) from the solution
of the averaged differential equation is not as straight#md as for stroboscopic averaging, since nothing
such as a period exists here.

Consider the solution(r) of (2.5 with §(7) = 6, + 7w, so thata(7) = 7% (7, 7w). Application of
Theorem3.5with 7, = 7, » =0, 6; = 0, andf, = A#d gives

7% (1, AG) = 4% (7,0) x % (0, AG). (4.4)

Let us denotei(r) = 7%(7,0), andx(0) = 7%(0,0 — 6;), so that ¢.4) with Ad = Tw gives the
factorization
(7, A0) = a(r) * k(By + AB), (4.5)

hencen(7) = 7% (1, 7w) = a(7) * k(0o + tw).
By considering); = 0, = 0 in Theorem3.5, we get
Y (71 + 73,0) = 4% (11, 0) x v (12, 0),

which leads, after differentiating with respecttoin both sides and substitution = 7, » = 0, to
—~%(1,0) = 4% (7,0) % QVBO(O, 0), (4.6)
or or
and thus second equality i4.@) holds true with
=0 4

In addition, we have that(0) = v%(0,0) = 1 = «(0), and we obtain precisely the condition required
for what we have called quasi-stroboscopic averaging.

11



4.2 General averaging

We next show that classical averaging can be effectivelgrdesd using B-series. That is, that there exist
k:T4— G, a:R— G, andg € CT1 with 35 = 0, such that4.2) holds with é.3). Indeed, starting
from the fundamental decompositiofi4), we introduce an arbitrary € G, so that

(7, AG) = 4P (1,0) x v 1w v 4%(0, AG),
and then define:(0) = v x 7(0,0 — 6y) anda(r) = 7% (7,0) « v}, so that we effectively have the
factorization ¢.5. We now determines = x(6;) = a(0)~! by imposing ¢.3). By applying angular
averages in both sides 6f.6), and taking into account the linearity efwith respect to the right factor,

(4.3) implies that

and hence

From equation4.6) we obtain

%(7’, 0)xv ' =4(1,0) v xv* %(O, 0)xv!
which gives the second equality i.g) for 3 = v x 92(0,0) x v~1. Observe that, we also have that
_ d 1 o 6
= 9(0, 6)d6.
- dr o) o (2m)7 Jra ar ! ©.9)

4.3 Equivalence of averaging procedures

From previous subsections, it is clear that there exists @levblass of possible averaging procedures
depending on the specific choicewot= x(6), i.e., on the choice of the change of variablé@) = ¢,

Ug(Y)=U(Y,0y)) = B(v,Y).
All of such averaging procedures are conjugate to each ,atheris, they give rise to a formal change
of variabley = U(Y,0) = B(x(#),Y), an averaged vector field(Y) = B(S,Y), and an expansion

of the averaged solutiok (1) = B(a(7),y(0)), whose B-series coefficients are related to the B-series
coefficients of stroboscopic averaging as follows:

k(0) =vxv(0,0 —6y), a(r) =~"(r,0)xv7, B—V*g (0,0) %!
This is equivalent to the relations
U(Y,0) = B("(0,0 — o), Uo(Y)), (4.7)
Y(r) = Uy (B(y"(7.0),y(0))), (4.8)
FY) = U5 (WY ) B(2A"(0,0), Un(Y)). (4.9)

12



Theorem 4.1 Consider the differential systeri.(), and an averaged vector field(Y') and a change of
variabley = U(Y, ), 2r-periodic in each anglé;, not necessarily expanded as B-series, such that

y(r) = U (7),0(7)), 6(r) =06+ 71w,

where

ay
dr
Then, the relations4(.7)—(4.9) hold true, wherd/y(Y") := U(Y, 6y).

F(Y) with U(Y (0), 85) = vo.

5 An Arnold-Liouville-like theorem for quasi-periodic systems and
its consequences
The emphasis in this section is put, in accordance with threaiing of this paper, on formal transfor-

mations (expanded in B-series) and formal results and nth@equally important aspects of obtaining
error estimates.

Theorem 5.1 Assume thab is a non-resonant vector @“ and consider the associated coefficients
Consider nowA,4, ..., A,.0, m vectors ofl' and define, for each\;0, i = 1, ..., m, the following flow:
UA0 R x T4 — R™ x T¢
(y,0) = (BO(r,4:0),y),0 + Ab)

Then, the following relation holds true for dlt, . .., 7,,,) € R™:

VANY/ . Am0 A10+...+A 0
\:[]Tl © © \Ile - \Iln—‘,-...—i-ﬂ'm :

In particular, any two such flows commute.

Proof: This is a straightforward consequence of TheoBh[]

Note that forAf = 7@, U429 is the flow map of the autonomous differential equation

{y’ = cf*(y.9),

v (5.1)

where ul
@ _ i @, Ty-0
f*(y,0) —u; B IF),

dyu (1,70)

w0 __
where, as befored” = =2

. The first coefficients of the expansion are given in Tdble
7=0

13



Tree| p Index range Order| o, o
® I 0 1 1 1
k@
® | k#0 1|1 ko
° ke (w—0)
@ [ k#0 2 |1 i
0 k(0—w)
® |V k#0 2 |1 e
% v 140 2 |1 z%
(@) (kw)—(lw) (k)
8 VI k#£0,1£0k#-1]| 2 |1 |2k el

Table 1: Coefficients of the-averaged solution for first- and second-order trees

Example 5.2 Consider the following vector field:
f(y,0) = cos® (wiT + 01) + cos (waT + 62) y.

DenotingAfd = (A, Ay) and againd = (6, 6,), we have

\1/<A1A2)<y 9) _ eT € (sin(201) wp + 4y sin (f2) w1 — wasin (2A; +26,) — 4y sin (A + b) wi)

2 4 Wiwa
in (A
PB10) (| <y+% cos (Ay) sin ( 1)+x7w1)7 01 A, 0+0)
w1
(1— 2 A
‘IIEOAQ (v, (A1,0) <y+§ el x); ysin 2>), Ay +0, 0+A2)
2

\IISAl,Ag)(y’ (070)> _ (y L < (wg cos (Ap) sin (Ay) + 7 wiwy + 2y sin (Ay) wy) Al Az)
2 Wiws
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It is interesting to notice that the case where the angless pérturbed as follows

¥ = ek(z,§) eR”
5/ = w—l—Eg([L’,f)GTd

can simply be rewritten in the formi.(1) with y = (y1, ) andf(y, 0) = (k:(yl, Yo +60),9(y1,y2 + 9)) o]
that perturbed integrable systems are part of our anaié&sexplore this connection a bit further in next
section.

5.1 Averaging for a class of near-integrable systems

Consider a system of the form
7 =k(z) +eg(z) e R
and assume that the flow, of ' = k(z) is of the form¥, with § = 7w andw € T¢, whereV, satisfies
V(01,0y) € T x T4 Wy, 19, = Wy, 0 Uy,. (5.2)

Writing z(7) = V., (y(7)) we get

;o AP, OV, ,
do= =W+ o W)y
ov
— ‘II TW /
k(W (y)) + o )y
so that
/ oV _g
yo= (%5 (W) g(Wolw))
0 = w
where we have used relatioB.p) with 6, = —6, = 6. The system fory, 0) is thus exactly of the
form considered in this paper witf(y, §) = <8‘g;0(‘1’9(y))>g(‘1’9(y)) and we can compute its B-series

expansion in terms of the Fourier coefficientsfohamely

1 , ov_
_ —i(k-0) (Y E -0
) = o [, € (T (Wt )a(Walo)o
The expansion is of the form derived in previous sectiord, ito say

{ym = Y+ Duer (7 mw) Fuly)
() = 0+ 71w
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and the corresponding quasi-stroboscopic averagedaetitfiet equations are of the form

Ay _ elul dyu(r,7@)
dr ZUET Ou dr
P =

" Fu(y)

7=0

for arbitrary® € R?. In order to get an equation for= ¥_.;(y) we first have to compute

fie (W, (2)) = (271T)d /Td e~ i(k-01) (8\18]7;91(\1’91(\1’—02 (Z)))>g(@91(\11_92(2)))d91
1 it (0T o,
- (27 /Td e ik0 )(Tye(\lfel—@(z)))g(\lfgl_92(z))d91

= (271r)d /Td e~k (x+02)) (w%;'k@(‘llx(z)))g(‘llx(z))dx

where we have used relatiof.). Now, using once agairb(2), we have
\P—(X-l-@z) © \IIX = \11—92

so that, by differentation

(o) (o) -0

Eventually, we get

FeWo () = BT (), 53)

From now on, we assume in addition thatis linear, so that its second derivative w.i.tvanishes. Then,
relation £.3) leads to

FelWoa(e) = BT )

and more generally to

FAUn(2) = TR )

Getting back to the differential equation ferwe obtain

{z' = K(2) + Loer 5 07Fu(2)

0 = o

wherek® (z) = £ (V_,;(z)) is independent of.
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5.2 Application to the case of the FPU problem

We consider the Hamiltonian system with Hamiltonian

1 T 1 T 1 T2 .
PPt opapa F 22k Vg2 + U(q1, g2 ),

whereU is a real-valued potential that may be expanded in non-ivegpbwers ofs and2 is ad x d
symmetric positive definite matrix of the fortd = QT Diag(w,, . .., wq)Q With QTQ = I. Whent =
£~ !t is used as independent variable, the Hamiltonian functemoimes

H(p1,p2,01,02) = Hi(p1,p2: @1, ¢2) + Ha(p1, p2, 415 42),
with

1

1 €
Hi(p1,p2, 1, q2) := = <€p§p2 + EQQTQ2Q2> andHy(p1,p2, 1, @2) i= =

2p1Tp1 +eU(q1,q25¢), (5.4)

2

and the equations of motion are then

Ly = —eViU(q, q2¢),

d%p2 = —592612 —eVoU(q1, q2;€),
%Ch = &P,

w42 = €D

Now, consider the flowb., of the system with Hamiltonia#l; (p1, p2, q1, ¢2) = 3 (ep3 p2 + 15 0%go):

b P
o | P2 | = cos(T7Q)ps — e 1Qsin(7Q) g2
T a1 qQ
0 eQ 7 sin(7Q)pa + cos(7Q) e
and rewrite it asl ., with
b1 D1
v | P2 cos(©)py — e71Qsin(0)qy
o q1 q1
0 eQ 1 sin(O)py + cos(0)ge

where® = QT Diag(dy, . . ., 0,)Q. Note that relationq.2) can be easily checked. The change of variables
‘IITUJ (ﬁlv ﬁZa quv QAZ) = (plv P2, q1, q2) then tranSfOI’mS the SyStem |nt0

Lp, —eV1U(G1,c08(0) gy + Q71 sin(O)po; €)

d . . 1 -

ng - —e cos(0) VU (qy, Cosg(g)l)qg +eQ71sin(O)py; ) - < cF(y.0) )
- — —

g, 2201 5in(0) VU (G, cos(0)da + £ sin(O)py: €) w

49 w

dr
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with y = (p1, P2, 1, ¢2). The functionf can also be written ag(y, ) = J~'V,H(y, §) with

~

N A A A € 7. ~ ~ 1 . “
H(p1, D2, G1, G2, 0;€) = §pipp1 + € U(G1, cos(©) gy + Q' sin(O)po; €). (5.5)

It is easy to verify that, given any vectorc R¢, we have

0 0 0 0 p1
A, o o 0o -0 p |
0 Q1 0 0 42

where() = Q"diag(wy, . . .,@q)Q. Thisis the flow of a Hamiltonian system with Hamiltoni&ly (p1, p2, g1, ¢2) =
$(epE Q1 Qps + e71q3 Qo). Enventually, the averaged Hamiltoniaft is of the form

i 1 i e 1 k@
H(p1,p2.qr,q2) = 6<§(p2TQ pa + 725 9002) + 5pipy + Ular, g2.02) + Y3 — Uk, Qz,pz))
K20

+0(e?).

Now, according to Theorei. 1, for any pair of vectors, the corresponding flows commute, and we have
in particulary® o p* = ¥ o ¢* so that

{H® H*} =0

implying that H — H* is constant along the exact solution of the Hamiltonianesystvith Hamiltonian
H. This implies that all highly-oscillatory energies areggeved up t@)(¢)-terms.
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