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We study the bulk-boundary correspondence for topological crystalline phases, where the crystalline

symmetry is an order-two (anti)symmetry, unitary or antiunitary. We obtain a formulation of the bulk-

boundary correspondence in terms of a subgroup sequence of the bulk classifying groups, which uniquely

determines the topological classification of the boundary states. This formulation naturally includes higher-

order topological phases as well as topologically nontrivial bulk systems without topologically protected

boundary states. The complete bulk and boundary classification of higher-order topological phases with an

additional order-two symmetry or antisymmetry is contained in this work.
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I. INTRODUCTION

A central paradigm in the field of topological insulators

and superconductors is the bulk-boundary correspondence:

A nontrivial topology of the bulk band structure uniquely

manifests itself through an anomalous gapless, topologi-

cally nontrivial boundary, irrespective of the orientation

of the boundary or the lattice termination [1–3]. On the

other hand, for topological crystalline phases, which are

protected by an additional nonlocal crystalline symmetry

[4–26], the existence of gapless boundary states for a

nontrivial bulk topology is guaranteed only if the boundary

is invariant under the crystalline symmetry.

Recently, it was realized that a nontrivial crystalline

topology of a d-dimensional crystal may also manifest itself

through protected boundary states of dimension less than

d − 1 [27–40]. A topological phase with such lower-

dimensional boundary states is called a “higher-order

topological phase,” where the order n of the topological

phase corresponds to the codimension of the boundary states

[28]. [According to this definition, a topological insulator or

superconductor with the conventional (d − 1)-dimensional

boundary states is a first-order topological phase.] The

condition that guarantees the protection of such higher-

order boundary states is that the orientation of the crystal

faces and the lattice termination be compatible with the

crystalline symmetry—i.e., the crystal faces and the corre-

sponding lattice terminationmust be related to each other by

the crystalline symmetry operation. This is a much weaker

condition than the condition that the crystal boundary be

invariant under the symmetry operation (compare with

Fig. 1). For example, whereas inversion symmetry leaves

no crystal faces invariant, compatibility with inversion

symmetry merely requires that crystal faces appear in

inversion-related pairs [see Fig. 1(c)]. Topological crystal-

line insulators with second-order boundary states were

theoretically predicted for models with certain magnetic

symmetries [28], mirror symmetry [28,30], and rotation and

inversion symmetries [20,29,31,41–43]. The latter two

symmetries are relevant for the semimetal Bi, which shows

boundary states reminiscent of that of a second-order

topological insulator [44].

The presence of a crystalline symmetry is not a necessary

requirement for the boundary phenomenology associated

with a higher-order phase. Indeed, early examples of

protected codimension-two boundary states include the

superfluid 3He-B phase [45] and a three-dimensional

topological insulator with a suitable time-reversal-breaking

perturbation [46,47], neither of which rely on the protection

(a) (b) (c)

FIG. 1. Schematic pictures of a two-dimensional crystal for

which the shape is compatible with mirror symmetry [(a) and (b)]

and with twofold rotation symmetry (c). The crystal in (b) has a

boundary that is invariant under the mirror symmetry, whereas the

boundaries of the crystals in (a) and (c) appear in symmetry-

related pairs. The special situation of a crystal with mirror-

symmetric boundary, as shown in panel (b), is excluded from the

definition of the higher-order topological phases.
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by a bulk crystalline symmetry. Instead, in these cases

the appearance of higher-order protected boundary states

can be solely attributed to a boundary termination that

is itself topologically nontrivial, whereas the underlying

bulk is essentially trivial. In Ref. [41] we called these

termination-dependent higher-order topological phases

extrinsic, to contrast them with the anomalous (intrinsic),

termination-independent higher-order boundary states of

topological crystalline phases. Although for anomalous

higher-order topological phases, too, the precise form of the

(d − 2)-dimensional boundary states may still depend on

details of the lattice termination, their very existence is a

consequence of a nontrivial bulk topology and is protected

as long as the crystal termination remains compatible with

the crystalline symmetry.

While a complete classification of higher-order topo-

logical phases (HOTPs) is still lacking, several authors have

obtained partial classifications of higher-order topological

phases, restricted to certain crystalline symmetries or for a

certain tenfold-way class [20,30,41,48]. (The tenfold-way

or Altland-Zirnbauer classes are defined with respect to the

presence or absence of the fundamental nonspatial sym-

metry operations time-reversal T , particle-hole conjugation

P and the chiral operation C ¼ PT [49]). Two approaches

have been taken for the classification of anomalous,

termination-independent HOTPs: A bulk-based approach,

which starts from the classification of the bulk band

structure and then shows under which circumstances a

nontrivial bulk topology implies a higher-order topological

phase [30,41], and a boundary-based approach, in which all

topologically nontrivial boundaries of HOTPs are classi-

fied first, and a classification of anomalous, termination-

independent HOTPs is obtained upon identification of

boundary states that are related by a change of termination

[20,41,48]. For crystalline phases with an order-two crys-

talline symmetry, for which a complete classification of the

bulk topology exists [21], the two approaches were found

to be in complete agreement for the second-order topo-

logical phases [41,48]. The boundary-based approach not

only classifies the anomalous, termination-independent

HOTPs, but also the extrinsic higher-order topological

phases, for which the higher-order boundary states are a

manifestation of a nontrivial boundary topology rather than

a nontrivial bulk topology.

In this work, we provide a full classification of higher-

order topological phases with an order-two crystalline

symmetry or antisymmetry, for arbitrary order n of the

topological phase and in arbitrary spatial dimension d. A
crystalline symmetry or antisymmetry S is called “order-

two” ifS2¼�1. Its spatial type is determined by the number

dk of inverted dimensions, such that dk ¼ 0 correspond to

on-site (anti)symmetry, and dk ¼ 1; 2; 3 to mirror, twofold

rotation, and inversion (anti)symmetry, respectively.

We present classifications both from a bulk perspective

and from a boundary perspective. Our bulk classification of

HOTPs with an order-two crystalline symmetry refines the

existing classification of Shiozaki and Sato [21], who

classified topological crystalline phases without accounting

for the type of the boundary signatures. Whereas Ref. [21]

described the topological classification in terms of a single

classifying group K, our refined classification takes the

form of a subgroup series

KðdÞ ⊆ � � � ⊆ K00 ⊆ K0 ⊆ K; ð1Þ

which resolves the topological crystalline phases according

to their associated anomalous boundary signature. The last

term in Eq. (1) K ≡ Kð0Þ is the classifying group of

Ref. [21], which classifies the bulk band structure with

an order-two symmetry or antisymmetry. The other terms

KðnÞ ⊆ K are subgroups that exclude topological phases

that are of order n and lower for any crystal shape

consistent with the crystalline symmetry. An illustration

of the definitions of the groups KðnÞ is shown in Fig. 2 for

the case of a three-dimensional crystal with twofold

rotation symmetry. The subgroup K0, which classifies

topological crystalline phases that are not first order was

previously studied in Ref. [41] in the context of crystals

with mirror, twofold rotation, or inversion symmetry, where

it was called the “purely crystalline subgroup.” Note that

the definition of the groups KðnÞ excludes crystals with

boundary states that can be removed by a symmetry-

respecting deformation of the crystal, such as the gapless

surface states on a mirror-symmetric surface of a mirror-

symmetric crystal, compare Figs. 1(a) and 1(b).

The bulk classification is complemented with a classi-

fication of anomalous boundary states of codimension n,

described by the boundary classification group K
ðnÞ
a . We

show that there exists a “bulk-boundary correspondence,” a

general relation between the boundary classification group

FIG. 2. The bulk classifying group K classifies all bulk phases,

regardless of the existence or type of anomalous boundary states.

Refined classification groups KðnÞ are obtained by excluding

topological phases with anomalous boundary states of codimen-

sions ≤ n. The figure illustrates this procedure for a crystal with a
twofold rotation symmetry R. Anomalous boundary states are

indicated in red.
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K
ðnÞ
a and the subgroup series (1) of the bulk classification

groups,

K
ðnþ1Þ
a ¼ KðnÞ=Kðnþ1Þ; n ¼ 0; 1; 2;…; d: ð2Þ

In case the number of inverted dimensions dk < d the

subgroup series (1) starts with one or more trivial groups,

KðnÞ ¼ 0 for n > dk; ð3Þ

so that Eq. (2) yields a complete bulk-boundary corre-

spondence for order-two crystalline symmetries: A topo-

logically nontrivial bulk is uniquely associated with a

higher-order topological phase. On the other hand, if dk ¼

d (inversion symmetry), the first group in the subgroup

series (1) KðdÞ may be nontrivial. In that case there is only a

partial bulk-boundary correspondence and KðdÞ classifies

the topological crystalline phases without topologically

protected boundary states, see Fig. 2. Topological phases

contained in KðdÞ are smoothly connected to atomic-limit

insulators or superconductors. A nontrivial classifying

group KðdÞ indicates the existence of multiple topologically

distinct atomic-limit phases [22,50,51].

All of the above results will be expanded and made more

precise in Sec. IV. There, we present a fully algebraic proof

of the central relation (2), making essential use of an

“order-raising” homomorphism ω, which maps the classi-

fying group KðnÞ for a d-dimensional crystal onto the group

Kðnþ1Þ of a (dþ 1)-dimensional crystal, while keeping the

spatial and nonspatial symmetries the same, except for an

increase of the number of inverted dimensions dk by one.

We construct the homomorphism ω by combination of two

maps known from the literature: The “dimension-raising

isomorphisms,” which relate bulk classifying groups K ≡

Kð0Þ in different dimensions and different tenfold-way

symmetry classes; see Refs. [21,52], and the dimension-

lowering “boundary map” of Ref. [6]. The map ω repre-

sents the same homomorphism between classifying groups

as the “stacking construction” of Refs. [53–55], which was

used recently for the construction of higher-order topo-

logical phases out of lower-dimensional structures [20,48].

It is the algebraic formulation in terms of the dimension-

raising isomorphism and the boundary map that allows us

to obtain the bulk-boundary correspondence (2) by purely

algebraic methods.

The remainder of this article is organized as follows: In

Sec. II we review the classification of the topological

crystalline phase stabilized by an order-two symmetry, and

introduce the dimension-raising isomorphisms, closely

following previous work by Shiozaki and Sato [21]. In

Sec. III we discuss Hamiltonians of “canonical form” and

show how higher-order phases naturally arise from the

presence of crystalline-symmetry-breaking mass terms,

generalizing the conclusions of Refs. [28,30,41] for

second-order topological phases. In Secs. IV and V we

give the formal definitions of the classifying groups KðnÞ

and K
ðnÞ
a , construct the order-raising homomorphism ω,

obtain explicit expressions, and establish the bulk-

boundary correspondence (2) using algebraic methods.

Section VI discusses a few representative examples of this

general classification and shows how the homomorphism ω

relates classification results in different dimensions to each

other. In Sec. VII we construct a procedure for lowering the

dimension d of the crystal, while preserving the dimension

of the anomalous boundary states, providing a general

realization of an idea put forward by Matsugatani and

Watanabe [56]. Finally, turning the arguments of our article

around, the bulk-boundary correspondence (2) can be used

to obtain the bulk classifying groups from the classification

of anomalous boundaries together with the classification of

the topologically nontrivial atomic limits, thus providing a

boundary-based alternative to the K-theory-based classi-

fication of Ref. [21]. This program is carried out in

Sec. VIII. We conclude in Sec. IX. The Appendixes contain

derivations not presented in the main text as well as a few

additional results.

II. SHIOZAKI-SATO CLASSES FOR

TOPOLOGICAL PHASES WITH

AN ORDER-TWO SYMMETRY

The tenfold-way or Altland-Zirnbauer [49] classes are

defined according to the presence or absence of time-

reversal symmetry T , particle-hole antisymmetry P, and

chiral antisymmetry C; see Table I. Shiozaki and Sato [21]

extend the tenfold-way classes to include an additional

crystalline unitary symmetry [8,9,16], unitary antisymme-

try, antiunitary symmetry, or antiunitary antisymmetry S.

The crystalline symmetry is an order-two symmetry, which

means that its square is proportional to the identity

operation.

TABLE I. The tenfold-way classes are defined according to the

presence or absence of time-reversal symmetry (T ), particle-hole

antisymmetry (P), and chiral antisymmetry (C). The entries T �

(P�) denote that T 2 ¼ �1 (P2 ¼ �1). The chiral antisymmetry

is assumed to square to one.

Cartan s T P C

A 0 � � � � � � � � �
AIII 1 � � � � � � C

AI 0 T þ � � � � � �
BDI 1 T þ Pþ C

D 2 � � � Pþ � � �
DIII 3 T − Pþ C

AII 4 T − � � � � � �
CII 5 T − P− C

C 6 � � � P− � � �
CI 7 T þ P− C
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It is sufficient to distinguish symmetry operations that

square to one (labeled by ηS ¼ þ) and to minus one

(ηS ¼ −). Further, the algebraic structure of the crystalline

symmetry is characterized by signs ηT ;P;C indicating

whether S commutes (η ¼ þ) or anticommutes (η ¼ −)

with the time-reversal operation T , particle-hole conjuga-

tion P, or the chiral symmetry operation C. Following

Ref. [21], we denote the number of spatial degrees of

freedom (d.o.f.) that are inverted under the crystalline

symmetry operation by dk, so that on-site symmetries O

have dk ¼ 0, reflectionsM have dk ¼ 1, twofold rotations

R have dk ¼ 2, and inversion I has dk ¼ 3. Specifically,

unitary symmetry (σS ¼ 1) and antisymmetry (σS ¼ −1)

operations are represented by unitary matrices US,

Hðk; mÞ ¼ SHðk; mÞ≡ σSUSHðSk; mÞU−1
S
; ð4Þ

with Sk¼ð−kk;k⊥Þ, kk¼ðk1;…;kdkÞ, k⊥ ¼ ðkdkþ1;…; kdÞ

and U2

S
¼ ηS , USUT ¼ ηT UT U

�
S
, USUP ¼ ηPUPU

�
S
, and

USUC ¼ ηCUCUS . Similarly, antiunitary symmetry and

antisymmetry operations are represented as

Hðk; mÞ ¼ SHðk; mÞ≡ σSUSH
�ð−Sk; mÞU−1

S
; ð5Þ

such that USU
�
S
¼ ηS , USU

�
T
¼ ηT UT U

�
S
, USU

�
P
¼

ηPUPU
�
S
, and USU

�
C
¼ ηCUCUS.

The above characterization of unitary and antiunitary

symmetry operations by the signs ηS;T ;P;C and σS may be

redundant [21], because symmetry operations that are

characterized differently may be mapped onto each other.

For example, if H satisfies a crystalline unitary symmetry

operation S which squares to one, then it also satisfies the

unitary symmetry operation iS, which squares to minus

one, or (provided T symmetry is present) it satisfies the

antiunitary symmetry T S. Using such equivalences,

Shiozaki and Sato group the symmetry operations S into

“equivalence classes,”which, together with the tenfold-way

class of Table I, are labeled by one integer s or by two

integers s and t. In this work, (as in Ref. [41]) we label the

equivalence classes by representative (anti)symmetries that

consist of a unitary crystalline symmetry S squaring to one

or the product of such a crystalline symmetry and T , P, or

C. These representatives are summarized in the first column

of Tables II–IV for the complex tenfold-way classes with

unitary (anti)symmetries, the complex tenfold-way classes

with antiunitary (anti)symmetries, and the real tenfold-way

classes with unitary (anti)symmetries, respectively. For the

complex tenfold-way classes with antiunitary (anti)sym-

metries we implicitly assume that T , P commute with S

when constructing these representatives; see Table VI.

The classification of topological phases (with or without

the additional crystalline symmetry or antisymmetry) has a

group structure, and the symbol K (or K) is used to denote

TABLE II. Bulk classification sequence KðdÞ ⊆ � � � ⊆ K0 ⊆ K for zero- (d ¼ 0), one- (d ¼ 1), and two-

dimensional (d ¼ 2) typological crystalline insulators and superconductors with an order-two crystalline symmetry

or antisymmetry for the complex tenfold-way classes. The symbols O, M, and R refer to a local on-site (dk ¼ 0),

mirror (dk ¼ 1), and twofold rotation symmetry (dk ¼ 2), respectively.

d ¼ 0 d ¼ 1 d ¼ 1 d ¼ 2 d ¼ 2 d ¼ 2

Class s t O O M O M R

AS 0 0 Z
2 0 ⊆ 0 Z ⊆ Z 0 ⊆ 0 ⊆ Z

2 0 ⊆ 0 ⊆ 0 Z ⊆ Z ⊆ Z
2

AIIISþ 1 0 0 0 ⊆ Z
2 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0

ACS 0 1 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z
2 0 ⊆ 0 ⊆ 0

AIIIS− 1 1 Z 0 ⊆ 0 Z ⊆ Z
2 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z

TABLE III. Same as Table II, but for antiunitary symmetries and antisymmetries.

d ¼ 0 d ¼ 1 d ¼ 1 d ¼ 2 d ¼ 2 d ¼ 2

Class s O O M O M R

AT þS 0 Z 0 ⊆ 0 Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z Z2 ⊆ Z2 ⊆ Z2

AIIIP
þSþ 1 Z2 0 ⊆ Z Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0

APþS 2 Z2 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 2Z

AIIIT
−S− 3 0 0 ⊆ Z2 0 ⊆ 2Z 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

AT −S 4 2Z 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0

AIIIP
−Sþ 5 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

AP−S 6 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z

AIIIT
þS− 7 0 0 ⊆ 0 0 ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2
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the corresponding classifying group. Formally, the group

structure is obtained by the Grothendieck construction

[6,57], where one considers equivalence classes of ordered

pairs ðH1; H2Þ of Hamiltonians represented by Hermitian

matrix-valued functions HðkÞ of equal dimension, the

equivalence relation being that two pairs ðH1; H2Þ and

ðH0
1
; H0

2
Þ are topologically equivalent if H1 ⊕ H0

2
is con-

tinuously deformable to H0
1
⊕ H2. Loosely speaking, the

ordered pair ðH1; H2Þ represents the “difference” of the two
Hamiltonians H1 and H2. Without loss of generality, one

may takeH1 orH2 to be a reference HamiltonianHref . With

this convention, the trivial element is represented by

ðHref ; HrefÞ, whereas the inverse of the group element

ðH;HrefÞ is ðHref ; HÞ. Alternatively, instead of the ordered

pair ðH;HrefÞ one may consider a one-parameter family of

Hamiltonians HðmÞ that interpolates between H and the

reference Hamiltonian Href [22,58]. In this work, we take

the latter approach and consider the one-parameter family

of HamiltoniansHðmÞ, such thatHðmÞ is in the topological
class of H for −2 < m < 0 and in the topological class of

Href for 0 < m < 2, with the transition between topological

classes (if any) taking place at m ¼ 0. When considering

Hamiltonian families HðmÞ, we will often omit the param-

eter m and refer to it simply as the “Hamiltonian H.” The

canonical-form Hamiltonians introduced in Sec. III are

examples of such m-dependent families of Hamiltonians.

The classification of topological crystalline phases of

Ref. [21] is based on isomorphisms between the groups

TABLE IV. Bulk classification sequence KðdÞ ⊆ � � � ⊆ K0 ⊆ K for zero- (d ¼ 0), one- (d ¼ 1), and two-dimensional (d ¼ 2)

topological crystalline phases with an order-two crystalline symmetry or antisymmetry for the real tenfold-way classes. The symbolsO,

M, and R refer to a local on-site (dk ¼ 0), mirror (dk ¼ 1) and twofold rotation symmetry (dk ¼ 2), respectively.

d ¼ 0 d ¼ 1 d ¼ 1 d ¼ 2 d ¼ 2 d ¼ 2

Class s t O O M O M R

AISþ 0 0 Z
2 0 ⊆ 0 Z ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z

BDISþþ 1 0 Z
2

2
0 ⊆ Z

2 Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0

DSþ 2 0 Z
2

2
0 ⊆ Z

2

2
Z2 ⊆ Z2 0 ⊆ 0 ⊆ Z

2 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ Z

DIIISþþ 3 0 0 0 ⊆ Z
2

2
0 ⊆ 0 0 ⊆ 0 ⊆ Z

2

2
0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0

AIISþ 4 0 2Z
2 0 ⊆ 0 2Z ⊆ 2Z 0 ⊆ 0 ⊆ Z

2

2
0 ⊆ 0 ⊆ 0 4Z ⊆ 4Z ⊆ 2Z

CIISþþ 5 0 0 0 ⊆ 2Z
2 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0

CSþ 6 0 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z
2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z

CISþþ 7 0 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

AICS− 0 1 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

BDISþ− 1 1 Z 0 ⊆ 0 Z ⊆ Z
2 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z

DCSþ 2 1 Z2 0 ⊆ Z Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z

2 0 ⊆ Z2 ⊆ Z2

DIIIS−þ 3 1 Z2 0 ⊆ Z2 Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z

2

2
0 ⊆ Z2 ⊆ Z2

AIICS− 4 1 0 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ 0

CIISþ− 5 1 2Z 0 ⊆ 0 2Z ⊆ 2Z
2 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ 2Z

CCSþ 6 1 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z
2 0 ⊆ 0 ⊆ 0

CIS−þ 7 1 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

AIS− 0 2 Z 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

BDIS−− 1 2 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

DS− 2 2 2Z 0 ⊆ 0 2Z ⊆ Z 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z
2

DIIIS−− 3 2 0 0 ⊆ 2Z 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z 0 ⊆ Z2 ⊆ Z
2

2

AIIS− 4 2 Z 0 ⊆ 0 Z2 ⊆ Z2 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ Z2 Z2 ⊆ Z2 ⊆ Z
2

2

CIIS−− 5 2 0 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0

CS− 6 2 2Z 0 ⊆ 0 2Z ⊆ 2Z 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z
2

CIS−− 7 2 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0

AICSþ 0 3 Z2 0 ⊆ Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0

BDIS−þ 1 3 Z2 0 ⊆ Z2 0 ⊆ Z 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0

DCS− 2 3 0 0 ⊆ Z2 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0

DIIISþ− 3 3 2Z 0 ⊆ 0 4Z ⊆ 2Z 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ Z

AIICSþ 4 3 0 0 ⊆ 2Z 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 4Z ⊆ 2Z 0 ⊆ 0 ⊆ Z2

CIIS−þ 5 3 0 0 ⊆ 0 0 ⊆ Z 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ Z2 ⊆ Z2

CCS− 6 3 0 0 ⊆ 0 0 ⊆ 0 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0

CISþ− 7 3 Z 0 ⊆ 0 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z
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Kðs; tjd; dkÞ and Kðsjd; dkÞ classifying d-dimensional

Hamiltonians with the symmetries labeled by the corre-

sponding indices, where dk is the number of inverted spatial

dimensions. The above-mentioned isomorphisms are

extensions of Teo and Kane’s dimension-raising isomor-

phism [52] κ increasing the spatial dimension by one to the

systems with an order-two crystalline symmetry or anti-

symmetry [21]. Shiozaki and Sato introduce two isomor-

phisms κk and κ⊥, where the isomorphism κk increases both

the spatial dimension d and the number of the inverted

momenta dk, whereas the isomorphism κ⊥ increases only

the spatial dimension d while keeping dk unchanged.

For the complex and real classes with unitary (anti)

symmetry the classifying groups are denoted Kðs; tjd; dkÞ

and these isomorphisms are (with dk < d)

Kðs; tjd; dkÞ¼
κk
Kðsþ 1; tþ 1jdþ 1; dk þ 1Þ

¼
κ⊥
Kðsþ 1; tjdþ 1; dkÞ; ð6Þ

with the integers s and t takenmod 2 for complex classes, and

mod 8 andmod 4, respectively, for the real classes.We use the

same notation for the classifying groups for the real and

complex classes. When discussing specific examples we will

always specify the tenfold-way class using its Cartan symbol,

so that no confusion is possible. For complex classes with

antiunitary (anti)symmetry these isomorphisms are

Kðsjd; dkÞ¼
κk
Kðs − 1jdþ 1; dk þ 1Þ

¼
κ⊥
Kðsþ 1jdþ 1; dkÞ: ð7Þ

When applied repeatedly, these isomorphisms can be used to

relate the classification problem of d-dimensional Hami-

ltonians with an order-two crystalline symmetry to a zero-

dimensional classification problemwith an on-site symmetry

[21,25], which can be solved with elementary methods.

Following Teo andKane, Shiozaki and Sato also introduce

an isomorphism ρk relating a topological class of Hami-

ltonians HðkÞ with an additional crystalline (anti)symmetry

S to the topological class of one-parameter family of Hami-

ltoniansHðk;φÞ, 0 ≤ φ ≤ 2π, with the additional conditions

Hðk; 0Þ ¼ Hðk; 2πÞ and Hðk;φÞ ¼ SHðk; 2π − φÞ. This

isomorphism and the dimension-raising isomorphism κk

introduced above play a central role in our algebraic con-

struction of a higher-order bulk-boundary correspondence for

topological crystalline phases; see Secs. IV and V. Further

details of these isomorphisms are given in Appendix B.
The Shiozaki-Sato classifying groups K are the largest

groups in the sequence (1), which for crystals of dimension
d ¼ 0, 1, and 2 are listed in Tables II–IV for the complex
tenfold-way classes with unitary (anti)symmetries, the
complex tenfold-way classes with antiunitary (anti)sym-
metries, and the real tenfold-way classes with unitary (anti)
symmetries, respectively. The corresponding classification
of three-dimensional systems is given in Tables V–VII.
When no confusion is possible, we will omit the arguments
s and t in what follows, and write Kðd; dkÞ instead of

Kðs; tjd; dkÞ or Kðsjd; dkÞ.

The 44 Shiozaki-Sato classes represent all mathemati-

cally possible algebraic relations between a twofold crys-

talline symmetry or antisymmetry and the fundamental

nonspatial symmetries T , P, and C. Not all of these classes

are naturally realized in crystals, however. One important

reason why it is, nevertheless, important to classify all

mathematically allowed possibilities is the existence of the

isomorphisms (6) and (7), which connect different sym-

metry classes in different dimensions. Another reason is

that symmetry classes which at first sight may appear

“unphysical” may be realized in condensed matter systems

as effective symmetries; see, e.g., the examples presented in

Refs. [32,59–61]. To facilitate the translation between the

Shiozaki-Sato classes used in this article and the “physical”

symmetries of crystals, Tables VIII and IX list the relevant

Shiozaki-Sato classes for crystals with mirror, twofold

rotation, or inversion symmetry. Here, we note that, whereas

the physical inversion symmetry does not affect the spin

d.o.f., the physical mirror and twofold rotation operations

do. With our convention that (unitary) symmetries square to

one, this implies that inversion commutes with the time-

reversal operation T , whereas mirror and twofold rotation

anticommute with T in a crystal with strong spin-orbit

coupling. For a superconducting system with an order-two

crystalline symmetry, a crystalline symmetry S must only

leave the normal-state Hamiltonian unchanged, whereas the

superconducting order parameter Δ may eventually change

sign under S. The parity ofΔ under S determines whether S

commutes or anticommutes with particle-hole conjugation.

TABLE V. Bulk classification sequence (1) for three-dimensional topological crystalline phases with an order-two

unitary crystalline (anti)symmetry for the complex tenfold-way classes. The symbols O,M,R, and I refer to local

on-site (dk ¼ 0), mirror (dk ¼ 1), twofold rotation (dk ¼ 2), and inversion symmetry (dk ¼ 3), respectively.

Class s t O M R I

AS 0 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ Z ⊆ Z

AIIISþ 1 0 0 ⊆ 0 ⊆ 0 ⊆ Z
2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ Z ⊆ Z ⊆ Z

2 0 ⊆ 0 ⊆ 0 ⊆ 0

ACS 0 1 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

AIIIS− 1 1 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z
2 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ Z ⊆ Z ⊆ Z

2
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TABLE VI. Same as Table V, but for antiunitary (anti)symmetries.

Class s O M R I

AT þS 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

AIIIP
þSþ 1 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 2Z

APþS 2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

AIIIT
−S− 3 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

AT −S 4 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

AIIIP
−Sþ 5 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z

AP−S 6 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2

AIIIT
þS− 7 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ Z2 ⊆ Z2 ⊆ Z2

TABLE VII. Bulk classification sequence (1) for three-dimensional topological crystalline phases with an order-

two crystalline symmetry or antisymmetry for the real tenfold-way classes. The symbols O, M, R, and I refer to

local on-site (dk ¼ 0), mirror (dk ¼ 1), twofold rotation (dk ¼ 2), and inversion symmetry (dk ¼ 3), respectively.

Class s t O M R I

AISþ 0 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z ⊆ 2Z

BDISþþ 1 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

DSþ 2 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

DIIISþþ 3 0 0 ⊆ 0 ⊆ 0 ⊆ Z
2 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

AIISþ 4 0 0 ⊆ 0 ⊆ 0 ⊆ Z
2

2
0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 4Z ⊆ 2Z ⊆ Z

CIISþþ 5 0 0 ⊆ 0 ⊆ 0 ⊆ Z
2

2
0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 4Z ⊆ 4Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ Z2

CSþ 6 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2

CISþþ 7 0 0 ⊆ 0 ⊆ 0 ⊆ 2Z
2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

AICS− 0 1 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

BDISþ− 1 1 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ 2Z ⊆ 2Z

DCSþ 2 1 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0

DIIIS−þ 3 1 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z ⊆ Z
2 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ Z

AIICS− 4 1 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

CIISþ− 5 1 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ 0 ⊆ 0 8Z ⊆ 4Z ⊆ 4Z ⊆ 2Z

CCSþ 6 1 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 4Z ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

CIS−þ 7 1 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z
2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z

AIS− 0 2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

BDIS−− 1 2 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

DS− 2 2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ Z ⊆ Z

DIIIS−− 3 2 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ Z ⊆ Z
2 0 ⊆ 0 ⊆ Z2 ⊆ Z2

AIIS− 4 2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ Z2 ⊆ Z2

CIIS−− 5 2 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z2 ⊆ Z
2

2
0 ⊆ 0 ⊆ 0 ⊆ 0

CS− 6 2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 4Z ⊆ 2Z ⊆ 2Z

CIS−− 7 2 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z ⊆ 2Z
2 0 ⊆ 0 ⊆ 0 ⊆ 0

AICSþ 0 3 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 2Z ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0

BDIS−þ 1 3 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 2Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

DCS− 2 3 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ 0

DIIISþ− 3 3 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 4Z ⊆ 2Z ⊆ Z ⊆ Z
2

AIICSþ 4 3 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 4Z ⊆ 2Z ⊆ Z 0 ⊆ 0 ⊆ Z2 ⊆ Z
2

2

CIIS−þ 5 3 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 4Z ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ Z2 0 ⊆ Z2 ⊆ Z2 ⊆ Z
2

2

CCS− 6 3 0 ⊆ 0 ⊆ 0 ⊆ 2Z 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ Z2 ⊆ Z2 0 ⊆ 0 ⊆ 0 ⊆ 0

CISþ− 7 3 0 ⊆ 0 ⊆ 0 ⊆ 0 0 ⊆ 0 ⊆ 0 ⊆ Z 0 ⊆ 0 ⊆ 0 ⊆ 0 2Z ⊆ 2Z ⊆ 2Z ⊆ 2Z
2
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(Please note that there are physical symmetries not included

in Tables VIII and IX, such as magnetic symmetries.)

The classifying groups for the tenfold-way classes (i.e.,

without additional crystalline symmetries) are denoted by

KTFðsjdÞ. (See Table I for the symmetry label s; the

symmetry label t does not apply to the tenfold-way classes.)
We further define the subgroup

KTF;Sðs; tjdÞ ⊆ KTFðsjdÞ; ð8Þ

which consists of those tenfold-way phases that are

compatible with the crystalline (anti)symmetry S. Since

tenfold-way phases are first-order topological phases and

since the (anti)symmetry S is a nonlocal symmetry at a

generic boundary for dk ≥ 1, for dk ≥ 1 we have the

isomorphism

KTF;Sðs; tjdÞ ¼ Kðs; tjd; dkÞ=K
0ðs; tjd; dkÞ; ð9Þ

which identifies the quotient groupKðs;tjd;dkÞ=K
0ðs;tjd;dkÞ

as a regular subgroup of KTFðsjdÞ for dk ≥ 1. No such

isomorphism exists if dk ¼ 0 because in that case S is a local

symmetry at a generic crystal boundary, allowing for a richer

boundary classifying group than the one obtained from the

tenfold-way classification.

The tenfold-way classification and the Shiozaki-Sato

classification of topological phases with a crystalline order-

two symmetry contains only “strong” topological crystal-

line invariants, i.e., they address topological features that

are unaffected by resizing of the unit cell, thus allowing the

addition of perturbations that break the translation sym-

metry of the original (smaller) unit cell, while preserving

the crystalline symmetries. Throughout this work we only

consider HOTPs originating from such strong topology.

III. CRYSTALLINE-SYMMETRY-BREAKING

MASS TERMS

In this section, we consider model Hamiltonians of a

simple, canonical form, which are still sufficiently general

that the model description can be applied to all tenfold-way

and Shiozaki-Sato classes. We count how many indepen-

dent “mass terms” can be added to the Hamiltonian that

satisfy the fundamental nonspatial (anti)symmetries T , P,

and C defining the tenfold-way class, but break the

crystalline (anti)symmetry S that determines the

Shiozaki-Sato class and show that such mass terms can

be used to construct fully S-(anti)symmetric models in

which a “boundary mass term” appears on boundaries that

are not invariant under the crystalline (anti)symmetry S.

This naturally explains the phenomenology of higher-order

topological phases in these models. This section serves as

the summary of the approach of Refs. [30,41] and as an

interlude to the subsequent, more formal section.

Explicitly, the model Hamiltonians we consider have the

form

H0ðk; mÞ ¼
X

d

j¼0

djðkÞΓj; ð10Þ

with matrices Γj that anticommute mutually and square to

the identity. For the functions dj we choose

d0ðk; mÞ ¼ mþ
X

d

i¼1

ð1 − cos kiÞ;

djðkÞ ¼ sin kj for j ¼ 1;…; d; ð11Þ

although our considerations do not change if a different

choice for the functions dj is made, as long as the map

d=jdj∶ Td
→ Sd has a winding number equal to one for

TABLE VIII. Shiozaki-Sato classes that correspond to natural

physical realizations of the order-two symmetries for insulators.

The top and bottom panels are for crystals with and without

strong spin-orbit coupling, respectively. Time-reversal-symmetric

insulators have tenfold-way class AII or AI, otherwise the class

is A.

Spin orbit d ¼ 1 d ¼ 2 d ¼ 3

Mirror AM, AIIM− AM, AIIM− AM, AIIM−

Twofold rotation AM, AIIM− AR, AIIR− AR, AIIR−

Inversion AM, AIIMþ AR, AIIRþ AI , AIIIþ

No spin orbit d ¼ 1 d ¼ 2 d ¼ 3

Mirror AM, AIMþ AM, AIMþ AM, AIMþ

Twofold rotation AM, AIMþ AR, AIRþ AR, AIRþ

Inversion AM, AIMþ AR, AIRþ AI , AIIþ

TABLE IX. Shiozaki-Sato classes that correspond to natural

physical realizations of the order-two symmetries for super-

conductors with (top) and without (bottom) strong spin-orbit

coupling. For the time-reversal invariant superconductors the

tenfold-way class is DIII or CI, otherwise it is class D or C. The

parity of the superconducting order parameter under the order-

two symmetry S is denoted α ¼ �. For classes C and CI we

assume an s-wave superconductor.

Spin orbit d ¼ 1 d ¼ 2 d ¼ 3

Mirror DMα , DIIIM−α DMα , DIIIM−α DMα , DIIIM−α

Rotation DMα , DIIIM−α DRα , DIIIR−α DRα , DIIIR−α

Inversion DMα , DIIIMþα DRα , DIIIRþα DIα , DIIIIþα

No spin orbit d ¼ 1 d ¼ 2 d ¼ 3

Mirror CMα , CIMþα CMα , CIMþα CMα , CIMþα

Rotation CMα , CIMþα CRα , CIRþα CRα , CIRþα

Inversion CMα , CIMþα CRα , CIRþα CIα , CIIþα
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−2 < m < 0 and to zero for 0 < m < 2, and the vector

d ¼ ðd0; d1;…; ddÞ transforms the same as ð1; kÞ under the
crystalline (anti)symmetry S and the nonspatial (anti)

symmetries T , P, and C. The nonspatial (anti)symmetries

T , P, and C and the crystalline (anti)symmetry S impose

restrictions on the possible choices for the matrices

Γj; j ¼ 0; 1;…; d, which we do not specify explicitly here.

We consider the regime −2 < m < 0, for which the

Hamiltonian (10) has a band inversion near k ¼ 0 but not

elsewhere in the Brillouin zone. In this parameter range, a

Hamiltonian of the form (10) describes a nontrivial

topological crystalline phase if there exists no mass term

M—a Hermitian matrix M squaring to the identity and

anticommuting with the Hamiltonian—that satisfies the

constraints imposed by S and by T , P, and/or C. The

topological phase is a “tenfold-way phase”—i.e., it remains

nontrivial if the crystalline (anti)symmetry S is broken—if

there exists no mass term M which satisfies the constraints

imposed by the nonspatial (anti)symmetries T , P, and/or C

alone, irrespective of the crystalline (anti)symmetry S. On

the other hand, if such a S-breaking mass term exists, the

Hamiltonian (10) describes a “purely crystalline” topologi-

cal phase, which relies on the crystalline (anti)symmetry S

for its protection. Whereas a nontrivial tenfold-way phase is

always a first-order phase, the purely crystalline phases can

be higher-order topological phases.

In principle, a Hamiltonian of the form (10) may allow

for more than one S-breaking mass term—where we

require that different S-breaking mass terms Ml not only

anticommute with H, but also with each other. If a

canonical-form Hamiltonian has the minimum possible

dimension for a given topological class, the S-breaking

mass termsMl all change sign under the (anti)symmetry S.

In this case, as we argue below, there is a connection

between the number of mutually anticommuting S-break-

ing mass terms and the order n of the topological phase:

The presence of n − 1 S-breaking mass terms Ml, l ¼
1;…; n − 1 gives rise to a topological phase of order

minðn; dk þ 1Þ if minðn; dk þ 1Þ ≤ d, and to a boundary

without protected in-gap states if dk ¼ d and n > d [62].

To establish this connection one constructs the low-

energy boundary theory for a Hamiltonian of the form (10)

[20,41]. This requires considering a Hamiltonian with a

slowly position-dependent parameter mðrÞ, such that the

topological phase occupies the region for which m < 0,

whereas the region m > 0 hosts a trivial gapped phase.

Whereas the Hamiltonian (10) becomes gapless at the

boundary atm ¼ 0, with the help of S-breaking mass terms

Ml one may construct a perturbation H1 that respects the

(anti)symmetry S and that gaps out the boundary, up to a

region of codimension maxðn; dk þ 1Þ,

H1 ¼ i
X

n−1

l¼1

X

dk

j¼1

b
ðlÞ
j MlΓ0Γj; ð12Þ

where, for technical convenience, we take the coefficients

b
ðlÞ
j numerically small. The relation between the number of

S-breaking mass terms and the order of the topological

phase then follows immediately.

We now verify this statement explicitly for d ¼ 2. The

construction is easily generalized to higher dimensions.

Starting from the low-energy limit of the Hamiltonian H0

of Eq. (10) with d ¼ 2 in the vicinity of a boundary with

normal n ¼ ðn1; n2Þ ¼ ðcosϕ; sinϕÞ, we find that the

projection operator onto low-energy boundary states is [41]

PðϕÞ ¼
1

2
ðiΓ1Γ0 cosϕþ iΓ2Γ0 sinϕþ 1Þ

¼ eϕΓ2Γ1=2Pð0Þe−ϕΓ2Γ1=2: ð13Þ

Projecting the bulk Hamiltonian H0 þH1 to the low-

energy boundary states gives

PðnÞHPðnÞ ¼ eϕΓ2Γ1=2Pð0Þ

×

�

−iℏΓ2∂xb
þ
X

n−1

l¼1

mlðϕÞMl

�

× Pð0Þe−ϕΓ2Γ1=2; ð14Þ

where mlðϕÞ ¼
Pdk

j¼1
b
ðlÞ
j nj and ∂xb

¼ cosϕ∂x2
− sinϕ∂x1

is the derivative with respect to a coordinate along the edge.

We conclude that the effective boundary Hamiltonian reads

Hboundary ¼ −iℏΓ0
2
∂xb

þ
X

n−1

l¼1

mlðϕÞM
0
l; ð15Þ

where Γ2
0 ¼ Pð0ÞΓ2Pð0Þ and M0

l ¼ Pð0ÞMlPð0Þ.
Alternatively, one may arrive at the effective boundary

Hamiltonian (15) by starting from the canonical-form

Hamiltonian (10) and adding the perturbation Ml locally

at the boundary, provided the boundary is not itself

invariant under S and the prefactor mlðϕÞ obeys the

restrictions imposed by S [as it does in Eq. (15)].

The boundary Hamiltonian (15) hosts zero-energy corner

states between crystal edges with opposite sign of mlðϕÞ,
provided all mass terms mlðϕÞ go through zero at the same

value of ϕ. For an on-site order-two symmetry O with

dk ¼ 0, the mass terms Ml cannot be used to construct an

O-preserving perturbation, which is consistent with the

absence of O-symmetry-breaking boundaries. Mirror sym-

metry has dk ¼ 1 flipped coordinates, which gives

mlðϕÞ ¼ b
ðlÞ
1
cosϕ: all mass terms mlðϕÞ vanish simulta-

neously on the mirror line and one obtains a second-order

phase whenever there is at least one mass term, i.e., if

n ≥ 2. Finally, a twofold rotation symmetry has dk ¼ 2,

and zero-energy corner states are obtained only if the

number n − 1 of crystalline-symmetry-breaking terms is
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exactly one. For n > 2, the coefficients b
ðlÞ
j can be chosen

to yield a fully gapped boundary, which describes the

situation where the bulk is topologically nontrivial but the

boundary does not host any anomalous states—in this case

the group KðdÞ is nontrivial.

IV. BULK AND BOUNDARY CLASSIFICATION OF

TOPOLOGICAL CRYSTALLINE INSULATORS

We now turn to a general topological classification of the

electronic structure of a d-dimensional crystal with an

order-two crystalline symmetry or antisymmetry S with dk
inverted dimensions. We assume that the crystal shape,

including the lattice termination, is compatible with the

crystalline symmetry. We recall that the system is in an nth
order topological phase if it has protected boundary states

of codimension n, whereas the bulk and all boundaries of

codimension smaller than n are gapped. In this section, we

establish the formal framework for a classification of such

nth-order topological phases, both from a bulk perspective

and from a boundary perspective, and show the extent to

which they are related.

As announced in the Introduction of this article, the bulk-

perspective classification amounts to the construction of the

subgroup series (1) of classifying groups KðnÞ, where KðnÞ

classifies the topology of bulk band structures excluding

topological phases of order ≤ n. Since taking the direct sum
of two topological phases cannot reduce the codimension

of anomalous boundary states, the KðnÞ defined this way

have a well-defined group structure in the Grothendieck

construction. Figure 2 illustrates the definitions of the

subgroup sequence for the case of a three-dimensional

crystal with twofold rotation symmetry.

The definition of the boundary-perspective classification

groups requires a little more care, because for boundary

states of order n > 1 their location, number, and type may

depend on the crystal shape and crystal termination. A

classifying group that is independent of such details is

obtained by considering equivalence classes of configura-

tions of codimension-n boundary states that differ by a

change in lattice termination only. This is the classifying

group K
ðnÞ
a of anomalous boundary states that appears in

the bulk-boundary correspondence (2). In this section, we

pursue a further resolution of the boundary classification,

by defining boundary classification groups K
ðnÞ
k of equiv-

alence classes of codimension-n boundary states that differ

by the lattice termination along boundaries of codimension

≥ k only, k ¼ 1;…; n − 1. With that definition, the clas-

sifying group of anomalous boundary states

K
ðnÞ
a ¼ K

ðnÞ
1
: ð16Þ

Specifically, for a three-dimensional crystal, K00
a ¼ K00

1

classifies configurations of protected gapless modes along

hinges, where configurations that differ by termination only

are identified. Similarly, K000
a ¼ K000

1
classifies configura-

tions of protected zero-energy states at crystal corners,

again identifying configurations of corner states that differ

by a change of lattice termination. The group K000
2
classifies

configurations of protected zero-energy corner states,

identifying configurations that differ by changing the

termination along crystal hinges, without affecting the

crystal faces.

Location of boundary states for n > dk.—A crystalline

symmetry S with dk inverted dimensions necessarily leaves

a manifold Ωd−dk
invariant. For dk ¼ 1 this is the mirror

plane; for dk ¼ 2 it is the twofold rotation axis; see Fig. 3.

For boundary states of codimension n > dk it is always

possible to change the crystal termination along boundaries

of codimension n − 1 only, such that all boundary states

end up on the intersection ∂Ωd−dk
of the invariant manifold

Ωd−dk
and the crystal boundary. Examples of such a

procedure are shown schematically in Fig. 4 for a two-

dimensional crystal with mirror symmetry and for a three-

dimensional crystal with twofold rotation symmetry. We

conclude, that for n > dk it is sufficient to consider

configurations of codimension-n boundary states with

support on ∂Ωd−dk
only.

Classifying groups for n > dk þ 1.—We now combine

this conclusion with the observation that the crystalline

symmetry S is a local (i.e., on-site) symmetry inside the

invariant manifold Ωd−dk
. The “conventional” tenfold-way

bulk-boundary correspondence, according to which any

anomalous states are the first-order boundary phase of a

topological phase, remains valid in the presence of a local

crystalline symmetry. Applying this bulk-boundary corre-

spondence to protected gapless boundary states of codi-

mension n > dk þ 1 within ∂Ωd−dk
, such states can be

(b)(a)

(c)

FIG. 3. Manifolds Ωk with d − dk ≤ k < d for three-

dimensional crystals with mirror (a), twofold rotation (b), and

inversion (c) symmetry. The manifold Ωd is equal to the entire

crystal, see Eq. (19), and is not shown in the figure.
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interpreted as the first-order boundary states of a codi-

mension-(n − 1) topological phase, still located within the

invariant part ∂Ωd−dk
of the crystal boundary. Obviously,

such boundary states can be removed by changing crystal

termination along boundaries of codimension n − 1. It

follows that the boundary classification groups K
ðnÞ
k are

all trivial,

K
ðnÞ
k ¼ 0; for n>dkþ1 and k¼ 1;…;n−1: ð17Þ

A similar argument can be made for the bulk classification

groups KðnÞ for n > dk þ 1. Again, because S is a local

symmetry on ∂Ωd−dk
, a nontrivial bulk topology implies the

presence of protected gapless boundary states of codimen-

sion dk þ 1 or less (see, e.g., Sec. III and Refs. [41,48]).

Equation (3) follows immediately from this observation,

which, combined with the relation (17), yields the bulk-

boundary correspondence (2) highlighted in the introduc-

tion for n > dk.

Boundary classification for n ¼ dk þ 1.—The calcula-

tion the groups K
ðnÞ
k for n ¼ dk þ 1 proceeds via a series of

auxiliary groups D
ðnÞ
k . The first of these, D

ðnÞ
0
, is defined as

the classifying group of codimension-n boundary states

with support entirely within ∂Ωd−dk
. We refer to this group

as the “extrinsic boundary classification group.” To relate

D
ðnÞ
0

to the known classification groups of first-order

topological phases, we argue that (i) the ðd − dk − 1Þ-

dimensional boundary states on ∂Ωd−dk
may be interpreted

as first-order boundary states of Ωd−dk
and (ii) S is a local

symmetry on Ωd−dk
. For (i) it is essential that the crystal

boundary is fully gapped away from ∂Ωd−dk
, so that the

crystal away from Ωd−dk
may be considered effectively

topologically trivial and one may consider the manifold

Ωd−dk
in isolation. This immediately gives the identification

D
ðnÞ
0

¼ Kðd − dk; 0Þ; ð18Þ

where Kðd − dk; 0Þ is the Shiozaki-Sato classifying group

for a ðd − dkÞ-dimensional crystal with an on-site crystal-

line symmetry. Before we proceed with the definition of the

remaining groups D
ðnÞ
k and the construction of the boun-

dary classification groups K
ðnÞ
k , we first discuss how the

above construction is generalized to boundary states of

codimension n ≤ dk.

Boundary classification for n ≤ dk.—To calculate the

boundary classifying groups K
ðnÞ
k for n ≤ dk, we define a

sequence of manifolds

Ωd−dk
⊂ Ωd−dkþ1 ⊂ … ⊂ Ωd; ð19Þ

where Ωd equals the entire crystal, whereas the k-dimen-

sional manifolds Ωk for d − dk ≤ k < d are mapped into

themselves under the crystalline symmetry S. We addi-

tionally require that the intersection ∂Ωdþ1−n with the

crystal boundary is along crystal boundaries of codimen-

sion n. Examples of such a sequence of manifolds Ωk are

shown in Figs. 3(b) and 3(c). With this construction, one

easily verifies that by changing crystal termination along

boundaries of codimension n − 1 only, any configuration of

codimension-n boundary states can be made to lie entirely

within ∂Ωdþ1−n.

Generalizing the above discussion for the case

n ¼ dk þ 1, we define the extrinsic classifying group

D
ðnÞ
0

as the classifying group of codimension-n boundary

states with support entirely within ∂Ωdþ1−n. To relate D
ðnÞ
0

to the known classification groups of first-order topological

phases, we again interpret boundary states on ∂Ωdþ1−n as

first-order boundary states of Ωdþ1−n. A difference with the

case n ¼ dk þ 1 is that now the order-two crystalline (anti)

symmetry S is a nonlocal symmetry with dk þ 1 − n

inverted dimensions. We thus find

D
ðnÞ
0

¼ KTF;Sðdþ 1 − n; dk þ 1 − nÞ; ð20Þ

where KTF;S ⊆ KTF classifies the tenfold-way phases

compatible with the nonlocal crystalline symmetry S;

see Sec. II.

(a) (b)

(c)

FIG. 4. By attaching a “decoration” consisting of a first-order

topological phase on a boundary of codimension n − 1, an

arbitrary configuration of boundary state of codimension n can

be moved to the subset ∂Ωdþ1−n. The figure shows three

examples: Corner states of a two-dimensional crystal with mirror

symmetry (n ¼ 2), which can always be moved to the inter-

section of the mirror line and the crystal boundary upon changing

the crystal termination (a), corner states of a three-dimensional

crystal with twofold rotation symmetry (n ¼ 3), which can

always be moved to the intersection points of the twofold rotation

axis and the crystal boundary upon changing the termination

along crystal hinges (b), and hinge states of a three-dimensional

crystal with twofold rotation symmetry, which can always be

moved to the intersection of the two-dimensional manifold Ω2

and the crystal boundary upon changing the termination at crystal

faces (c).
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The boundary classification groups K
ðnÞ
k describe equiv-

alence classes of configurations of codimension-n boun-

dary states with respect to changes of the lattice termination

for boundaries of codimension ≥ k. In other words, when

seen as an element of K
ðnÞ
k , a codimension-n state on

∂Ωdþ1−n is considered trivial if it can be obtained as the

boundary state of a (d − k)-dimensional (n − k)th order

topological phase entirely contained within the crystal

boundary and respecting the global (anti)symmetry S.

Denoting the classifying group for such “trivial” boundary

states as D
ðnÞ
k , the boundary classification group K

ðnÞ
k can

thus be obtained as the quotient

K
ðnÞ
k ¼ D

ðnÞ
0
=D

ðnÞ
k ; k ¼ 2;…; n; ð21Þ

where D
ðnÞ
0

is the extrinsic boundary classifying group

introduced above. The groups D
ðnÞ
k , which we call “deco-

ration groups,” form a subgroup sequence that also includes

the extrinsic boundary classification group,

D
ðnÞ
n−1 ⊆ � � � ⊆ D

ðnÞ
1

⊆ D
ðnÞ
0
: ð22Þ

Figure 5 shows examples of this subgroup sequence for a

two-dimensional crystal with mirror symmetry and a three-

dimensional crystal with twofold rotation symmetry. Since

the crystalline symmetry S acts nonlocally for a generic

position in a (d − k)-dimensional boundary state, the

Hamiltonian of such a decoration state is “separable,”

i.e., it may be written as

�

hd−kðkÞ 0

0 S̃hd−kðkÞ

�

;

where hd−k is a (d − k)-dimensional Hamiltonian without

crystalline symmetries and

S ¼

�

0 1

1 0

�

S̃; ð23Þ

where S̃ is an (anti)symmetry operator with dk − k inverted

dimensions acting on (d − k)-dimensional Hamiltonians.

[Note that the boundary of a decoration need not be a

separable in this sense. This is illustrated schematically in

Fig. 5(b). Further examples are given in Sec. VI.]

Bulk-boundary correspondence for n ≤ dk.—To estab-

lish a relation between the bulk classifying groups KðnÞ and

the decoration subgroups D
ðnÞ
k for n ≤ dk we make use of a

homomorphism

Kðd; dkÞ!
ω
Kðdþ 1; dk þ 1Þ; ð24Þ

which maps an equivalence class of d-dimensional

Hamiltonians H in Shiozaki-Sato class ðs; t; dkÞ to a

(dþ 1)-dimensional Hamiltonian in Shiozaki-Sato class

ðs; t; dk þ 1Þ. The precise definition of the homomorphism

will be given in Sec. VI. For the derivation of the bulk-

boundary correspondence (2), it will be sufficient to use

three key properties of ω:

(i) ωðHÞ is in the trivial class if and only if H is

separable if H can be deformed to a separable

Hamiltonian.

(ii) The homomorphismω commutes with the dimension-

raising isomorphisms κk and κ⊥, up to a possible sign

change of the topological invariants.

(iii) If H is a nonseparable Hamiltonian with n − 1 crys-

talline-symmetry-breaking mass terms, then ωðHÞ
is aHamiltonianwithn crystalline-symmetry-breaking

FIG. 5. Examples of the subgroup sequence (22) for the

decoration subgroups D
ðnÞ
k and the extrinsic boundary classifying

group D
ðnÞ
0
. (a) For a two-dimensional crystal with mirror

symmetry, the group D00
0
classifies all possible configurations

of corner states on the mirror axis, whereas the decoration

subgroup D00
1
classifies corner states on the mirror axis that

can be obtained by “gluing” two mirror-related first-order

topological phases to the crystal boundary. (b) For a three-

dimensional crystal with twofold rotation symmetry,D00
0
classifies

all configurations of protected hinge modes along the intersection

∂Ω2 of the reference manifold Ω2 and the crystal boundary,

whereas the decoration subgroupD00
1
classifies all protected hinge

modes along ∂Ω2 that are obtained by gluing two rotation-related

first-order topological phases to the crystal boundary. (c) For a

three-dimensional crystal with twofold rotation symmetry, D000
0

classifies all configurations of protected zero-energy states at the

two corners on the rotation axis. The subgroups D000
2

and D000
1

contain corner states on the rotation axis that are obtained from

decorating rotation-related hinges or surfaces with first-order and

second-order topological phases, respectively.
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mass terms. The inverse is also true: H ∈ imgω if H
has at least one S-breaking mass term.

The third property ensures that ω does not change the

dimension of the protected boundary states (if any). For that

reason, we refer to ω as the order-raising homomorphism,

as it increases the order of the topological phase by one.

A proof of these three properties will be given in

Appendix C for the homomorphism that we will introduce

in Sec. VI. The stacking construction previously considered

in the literature [53,54,63] is another realization of the

order-raising homomorphism—this is explicitly demon-

strated in Sec. VI C.

The proof of the bulk-boundary correspondence (2)

makes use of the three properties of ω, without requiring

knowledge of the specific form of the homomorphism.

Here, too, we first note that the last of these properties can

be used to calculate the bulk classifying groups KðnÞ in the

subgroup series (1), since the number n − 1 of crystalline-

symmetry-breaking mass terms is related to the order n of

the topological phase (provided n ≤ d − 1); see Sec. III and

Refs. [30,41]. We conclude that Hamiltonians in KðnÞ must

have at least n mass terms on a boundary if n ≤ dk, so that

KðnÞðd; dkÞ ¼ ωn½Kðd − n; dk − nÞ�: ð25Þ

In particular, the purely crystalline subgroup K0ðd; dkÞ

consists of the (classes of) Hamiltonians with at least

one mass term on the boundary,

K0ðd; dkÞ ¼ ω½Kðd − 1; dk − 1Þ�: ð26Þ

Similarly, the first property of the order-raising homo-

morphism ω leads to an expression for the decoration

subgroups. We first consider the case n ¼ dk þ 1, for

which one has D
ðnÞ
0

¼ Kðdþ 1 − n; 0Þ; see Eq. (20). In

this case, we find that the decoration subgroups D
ðnÞ
k ⊆

D
ðnÞ
0

are given by

D
ðnÞ
k ¼ kerωn−k; ð27Þ

since D
ðnÞ
k classifies codimension-n boundary states from

separable (k − 1)th order Hamiltonians. For the classifying

group K
ðnÞ
k this gives

K
ðnÞ
k ¼ Kðdþ 1 − n; dk þ 1 − nÞ= kerωn−k ð28Þ

if n ¼ dk þ 1. For n < dk þ 1 one finds similarly, using the

isomorphism (9),

D
ðnÞ
k ¼ K0ðdþ 1 − n; dk þ 1 − nÞ kerωn−k

=K0ðdþ 1 − n; dk þ 1 − nÞ; ð29Þ

where the subgroup K0ðdþ 1 − n; dk þ 1 − nÞ kerωn−k ⊆

Kðdþ 1 − n; dk þ 1 − nÞ consists of direct sums g ⊕ h,

with g ∈ K0ðdþ 1 − n; dk þ 1 − nÞ and h ∈ kerωn−k.

(Note that all classifying groups considered here are

Abelian.) This gives the compact expression

K
ðnÞ
k ¼ Kðdþ 1 − n; dk þ 1 − nÞ

=K0ðdþ 1 − n; dk þ 1 − nÞ kerωn−k: ð30Þ

Note that Eq. (28) can be considered a special case of

Eq. (30) since K0ðdþ 1 − n; dk þ 1 − nÞ is trivial if

n ¼ dk þ 1. The bulk-boundary correspondence (2) now

follows from Eqs. (30) with k ¼ 1 and Eqs. (26) and (25)

upon applying the general group isomorphism

K=G ker α ¼ α½K�=α½G� for any subgroup G ⊆ K and

homomorphism α to the case K ¼ Kðdþ 1 − n;
dk þ 1 − nÞ, G ¼ ω½Kðd − n; dk − nÞ�, and α ¼ ωn [64].

In Appendix A we discuss a possible way to extend the

above proof to an arbitrary crystalline symmetry.

Calculation of the subgroup sequence.—The bulk clas-

sifying groups Kðd; dkÞ were calculated by Shiozaki and

Sato in Ref. [21]. The purely crystalline subgroups

K0ðd; dkÞ were calculated in Refs. [30,41] by explicit

calculation for each Shiozaki-Sato symmetry class sepa-

rately. (Although Ref. [41] considered dk ≥ 1 for d ¼ 2 and

d ¼ 3 only, the results can be transferred to all other

Shiozaki-Sato classes using the dimension-raising and

lowering isomorphisms κk and κ⊥.) As shown in

Appendix D, the kernels kerω ⊆ Kðd; dkÞ can be obtained

from the known results for K0 and K.

The remainder of the calculation of the classifying

groups can be done without further explicit calculations.

This relies on the key observation that the nontrivial groups

in the sequence

K0ðdþ 1; dk þ 1Þ → K0ðdþ 2; dk þ 2Þ

→ K0ðdþ 3; dk þ 3Þ →… ð31Þ

TABLE X. Boundary classification of third-order phases in

three-dimensional systems with an order-two symmetry (anti-

symmetry) for complex tenfold-way classes. The symbolsO,M,

R, and I refer to a local on-site (dk ¼ 0), mirror (dk ¼ 1),

twofold rotation (dk ¼ 2), and inversion symmetry (dk ¼ 3),

respectively. The boundary classification groups are given in the

order D000
0
, K000

2
, K000

1
¼ K000

a .

TF class s t O M R I

AS 0 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

AIIISþ 1 0 Z
2, 0, 0 Z

2, 0, 0 Z
2, Z, Z 0, 0, 0

ACS 0 1 Z, 0, 0 Z, 0, 0 Z, Z, Z 0, 0, 0

AIIIS− 1 1 0, 0, 0 0, 0, 0 0, 0, 0 Z, Z2, Z2
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are isomorphic to Z or to Z2 and that the succession Z →

Z2 does not occur. Since both Z and Z2 have a single

generator, it follows that any homomorphism K0ðdþ l;
dk þ lÞ → K0ðdþ lþ 1; dk þ lþ 1Þ is either injective, or

it maps K0ðdþ l; dk þ lÞ to the trivial element. Applying

this observation to the order-raising homomorphism ω and

denoting the first instance in which ω maps K0ðdþ l;
dk þ lÞ to the trivial element by K0ðdþ q; dk þ qÞ, we

obtain the sequence

K0ðdþ 1; dk þ 1Þ↪
ω
K0ðdþ 2; dk þ 2Þ↪

ω
…

↪
ω
K0ðdþ q; dk þ qÞ→

ω
0;

TABLE XI. Same as Table X, but for antiunitary symmetries

and antisymmetries.

Shiozaki-Sato

class s O M R I

AT þS 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

AIIIP
þSþ 1 Z, 0, 0 Z, 0, 0 Z, Z2, Z2 0, 0, 0

APþS 2 Z2, 0, 0 Z2, 0, 0 Z2, Z2, 0 0, 0, 0

AIIIT
−S− 3 Z2, 0, 0 Z2, 0, 0 Z2, 0, 0 2Z, 0, 0

AT −S 4 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

AIIIP
−Sþ 5 2Z, 0, 0 2Z, 0, 0 2Z, 0, 0 0, 0, 0

AP−S 6 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

AIIIT
þS− 7 0, 0, 0 0, 0, 0 0, 0, 0 Z, Z2, Z2

TABLE XII. Boundary classification of third-order phases in three-dimensional systems with an order-two

symmetry (antisymmetry) for real tenfold-way classes. The symbols O, M, R, and I refer to a local on-site

(dk ¼ 0), mirror (dk ¼ 1), twofold rotation (dk ¼ 2), and inversion symmetry (dk ¼ 3), respectively. The boundary

classification groups are given in the order D000
0
, K000

2
, K000

1
¼ K000

a .

Class s t O M R I

AISþ 0 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

BDISþþ 1 0 Z
2, 0, 0 Z

2, 0, 0 Z
2, Z, Z 0, 0, 0

DSþ 2 0 Z
2

2
, 0, 0 Z

2

2
, 0, 0 Z

2

2
, Z2, 0 0, 0, 0

DIIISþþ 3 0 Z
2

2
, 0, 0 Z

2

2
, 0, 0 Z

2

2
, Z2, 0 0, 0, 0

AIISþ 4 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

CIISþþ 5 0 2Z
2, 0 2Z

2, 0 2Z
2, 2Z, 2Z 0, 0, 0

CSþ 6 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

CISþþ 7 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

AICS− 0 1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

BDISþ− 1 1 0, 0, 0 0, 0, 0 0, 0, 0 Z, Z2, Z2

DCSþ 2 1 Z, 0, 0 Z, 0, 0 Z, Z, Z Z2, Z2, 0

DIIIS−þ 3 1 Z2, 0, 0 Z2, 0, 0 Z2, Z2, 0 Z2, Z2, 0

AIICS− 4 1 Z2, 0, 0 Z2, 0, 0 Z2, Z2, 0 0, 0, 0

CIISþ− 5 1 0, 0, 0 0, 0, 0 0, 0, 0 2Z, Z2, Z2

CCSþ 6 1 2Z, 0, 0 2Z, 0, 0 2Z, 2Z, 2Z 0, 0, 0

CIS−þ 7 1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

AIS− 0 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

BDIS−− 1 2 2Z, 0, 0 2Z, 0, 0 2Z, 0, 0 0, 0, 0

DS− 2 2 0, 0, 0 0, 0, 0 0, 0, 0 Z2, Z2, Z2

DIIIS−− 3 2 2Z, 0, 0 2Z, 0, 0 2Z, 2Z, 2Z Z2, Z2, 0

AIIS− 4 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

CIIS−− 5 2 2Z, 0, 0 2Z, 0, 0 2Z, Z2, Z2 0, 0, 0

CS− 6 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

CIS−− 7 2 2Z, 0, 0 2Z, 0, 0 2Z, 2Z, 2Z 0, 0, 0

AICSþ 0 3 Z, 0, 0 Z, 0, 0 Z, Z, Z 0, 0, 0

BDIS−þ 1 3 Z2, 0, 0 Z2, 0, 0 Z2, 0, 0 2Z, 0, 0

DCS− 2 3 Z2, 0, 0 Z2, 0, 0 Z2, 0, 0 0, 0, 0

DIIISþ− 3 3 0, 0, 0 0, 0, 0 0, 0, 0 Z2, Z2, Z2

AIICSþ 4 3 2Z, 0, 0 2Z, 0, 0 2Z, 2Z, 2Z 0, 0, 0

CIIS−þ 5 3 0, 0, 0 0, 0, 0 0, 0, 0 2Z, Z2, Z2

CCS− 6 3 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

CISþ− 7 3 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
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where the symbol “↪” denotes an injection. Since

K0ðdþ 1; dk þ 1Þ ¼ ω½Kðd; dkÞ�, it follows that

kerωk ¼

�

kerω for 0 < k ≤ q;

Kðd; dkÞ for k > q;
ð33Þ

where kerω ⊆ Kðd; dkÞ. The cut-off q can be obtained

from the calculation of kerω; see Appendix D.

Once kerωk and K0 are known, the boundary classi-

fication groups K
ðnþ1Þ
k follow from Eq. (30), whereas the

subgroup sequence of bulk classification groups follows

from the bulk-boundary correspondence (2). The results of

this calculation are summarized in Tables II–VII for the

bulk classifying sequence for d ¼ 0, 1, 2, and 3, and in

Tables X–XII for the boundary classifying groups for

d ¼ 3. Tables with boundary classifying groups for

d ¼ 2 can be found in Ref. [41].

V. ORDER-RAISING HOMOMORPHISM ω

In this section, we give an explicit expression for the

order-raising homomorphism ω in terms of the dimension-

raising maps κk and ρk introduced by Shiozaki and Sato

[21] and the boundary map δ of Turner et al., give explicit

expressions for the action of ω on the Hamiltonians

Hðk; mÞ introduced in Sec. II, and discuss the relation

between ω and the “layer-stacking construction”

[20,48,53,54], which was previously used to construct

topological crystalline phases and classify the boundary

states. The expression of ω in terms of the maps κk, ρk, and

δ relates it to the K-theory approaches to the classification

of topological crystalline phases. It plays a key role for

establishing the properties of the homomorpishm used in

our demonstration of the bulk-boundary correspondence.

On the other hand, the explicit realization of the order-

raising homomorphism and its relation to the layer-stacking

construction are of more use for concrete examples.

A. Construction using dimension-raising isomorphisms

The order-raising homomorphism ω is obtained by

sequential application of the dimension-raising maps κk
and ρk of Shiozaki and Sato [21] (see also Sec. II and

Appendix B) and the boundary map δ of Turner et al. [6],

ω ¼ κk∘δ∘ρk: ð34Þ

Here, the dimension-raising isomorphism ρk maps an equi-

valence class of Hamiltonians H to a one-parameter family

HðφÞ, 0 ≤ φ ≤ 2π, with Hð0Þ ¼ Hð2πÞ, on which the

crystalline symmetry S acts nonlocally, σSUSHðφÞU†

S
¼

Hð2π − φÞ; the boundary map δ then maps the equivalence

class of one-parameter families HðφÞ to

δ½HðφÞ� ¼ HðπÞ⊖Hð0Þ; ð35Þ

which gives a Hamiltonian with the topological numbers

equal to the difference between the topological numbers of

HðφÞ at φ ¼ 0, π. (The operation “⊖” formally requires the

use of theGrothendieck construction; see, e.g., Refs. [6,57].)

Last, the dimension-raising isomorphism κk maps the

equivalence class of d-dimensional Hamiltonians thus

obtained to an equivalence class of (d − 1)-dimensional

Hamiltonians, thus defining an element in the group

Kðdþ 1; dk þ 1Þ. Although the dimension-raising isomor-

phisms ρk and κk also change the Shiozaki-Sato symmetry

class, the symmetry class is not changed by combination of

the two maps in Eq. (34).

The maps κk, ρk, and δ all respect the group structure of

the classifying groups and they commute with the dimen-

sional-raising maps κk and κ⊥, immediately proving the

second property of the order-raising homomorphism adver-

tised in the previous section. A proof of the remaining two

properties is given in Appendix C.

B. Explicit realization of the order-raising

homomorphism ω

We recall that the group structure of the bulk and

boundary classifying groups is given by the

Grothendieck construction. As discussed in Sec. II this

motivates us to consider m-dependent Hamiltonians

Hðk; mÞ, such that Hðk; mÞ is in well-defined topological

phases for −2 < m < 0 and for 0 < m < 2, with the

transition between topological classes (if any) taking place

at m ¼ 0. The canonical-form Hamiltonians of Sec. III are

examples of suchm-dependent Hamiltonians. The action of

the order-raising homomorphism ω on Hamiltonians

Hðk; mÞ follows from the known action of the maps κk,

ρk, and δ on such m-dependent Hamiltonians Hðk; mÞ

[21,52]. Specifically, for an equivalence class containing

the d-dimensional Hamiltonian Hðk; mÞ, the mapped class

is represented by the Hamiltonian [22]

ω½Hðk; mÞ� ¼ Hωðk; mþ 1 − cos k0Þ þ Γω sin k
0;

where the pair ðHω;ΓωÞ is given in Tables XIII–XV and

the (dþ 1)-dimensional momentum is defined as ðk0; kÞ.

TABLE XIII. The action (36) of the order-raising homomor-

phism ω on a Hamiltonian H in the complex tenfold-way classes

with a unitary order-two symmetry or antisymmetry. Mn is the

crystalline-symmetry-breaking mass term generated by the

homomorphism ω.

TF class S ðHω;ΓωÞ ωðUCÞ ωðUSÞ Mn

A S ðτ3H; τ1Þ � � � τ3US τ2
AIII Sþ ðτ3H; τ2Þ τ1 τ1UCUS τ3UC

A CS ðτ3H; τ1Þ � � � τ0US τ2
AIII S− ðτ3H; τ2Þ τ1 τ3US τ3UC

HIGHER-ORDER BULK-BOUNDARY CORRESPONDENCE FOR … PHYS. REV. X 9, 011012 (2019)

011012-15



The maps κk, δ, and ρk featuring in the definition (34) can

be represented in a similar way; see Appendix C.

C. Stacking construction

References [53–55] construct higher-order topological

phases by stacking layers of lower-dimensional ones. Like

the order-raising homomorphism ω considered here, the

stacking construction also involves simultaneously increas-

ing the spatial dimension d and the number of inverted

dimensions dk by one, so that it, too, provides a homo-

morphism σ

σ∶ Kðd; dkÞ → Kðdþ 1; dk þ 1Þ: ð36Þ

Further, in Ref. [55] it is argued, from the boundary

perspective, that the stacking of d-dimensional “layers”

that differ by a separable phase yields topologically equiv-

alent (dþ 1)-dimensional crystals. This, too, is a property

that is shared by the order-raising homomorphismω. Indeed,

below we show that the stacking homomorphism σ has all

three defining properties of the order-raising homomor-

phism specified in Sec. IV. The order-raising homomor-

phism ω of Sec. VA and the stacking construction are two

realizations of the same homomorphism.

Specifically, the stacking procedure constructs a (dþ 1)-

dimensional crystal by alternating d-dimensional layers

with opposite topological numbers as shown schematically

in Fig. 6(a). Denoting the Hamiltonians of the alternating

d-dimensional layers as HdðkÞ and H̄dðkÞ, respectively, the
Hamiltonian of the (dþ 1)-dimensional stack is

Hdþ1ðk; kdþ1Þ ¼

�

HdðkÞ 0

0 H̄dðkÞ

�

: ð37Þ

If the d-dimensional Hamiltonians Hd and H̄d have a

crystalline (anti)symmetry with dk inverted dimensions

encoded by the unitary matrix US, the (dþ 1)-dimensional

Hamiltonian Hdþ1 has two crystalline (anti)symmetries,

encoded by diagðUS; USÞ and diagðeikdþ1US; USÞ, with dk
and dk þ 1 inverted dimensions, respectively. The former

(anti)symmetry yields a weak topological crystalline phase

and will not be considered here. The latter (anti)symmetry

has a kdþ1-dependent transformation matrix, which reflects

the fact that it does not map the unit cell defined by the

representation (37) of Hdþ1 to itself, see Fig. 6(a). To

remedy this situation we replace Eq. (37) by

σðHdÞ≡

�

H0
dþ1

ðk; kdþ1Þ 0

0 H̄dðkÞ

�

¼

�

eiρ̂kdþ1=2HdðkÞe
−iρ̂kdþ1=2 0

0 H̄dðkÞ

�

; ð38Þ

where ρ̂ is a matrix that commutes with the nonspatial

(anti)symmetries T , P, and C, and anticommutes with US,

and the crystalline (anti)symmetry is represented by

diagðUS; USÞ. (Being able to find a matrix ρ̂ with these

properties may require the addition of additional, topo-

logical trivial bands.) Loosely speaking, the transformation

described by Eq. (38) involves the redefinition of the unit

cell as in Fig. 6(b), so that the additional crystalline

symmetry S maps the (dþ 1)-dimensional unit cell to

itself for the new choice of the unit cell.

TABLE XIV. The action (36) of the order-raising homomor-

phism ω on a Hamiltonian in the complex tenfold-way classes

with an antiunitary order-two symmetry or antisymmetry. Mn is

the crystalline-symmetry-breaking mass term generated by the

homomorphism ω.

TF class S ðHω;ΓωÞ ωðUCÞ ωðUSÞ Mn

A T þS, T −S ðτ3H; τ1Þ � � � τ0US τ2
AIII PþSþ, P

−Sþ ðτ3H; τ2Þ τ1 τ0US τ3UC

A PþS, P−S ðτ3H; τ1Þ � � � τ3US τ2
AIII T þS−, T

−S− ðτ3H; τ2Þ τ1 τ3US τ3UC

TABLE XV. The action (36) of the order-raising homomor-

phism ω on a Hamiltonian in the real tenfold-way classes with a

unitary order-two symmetry or antisymmetry. Mn is the crystal-

line-symmetry-breaking mass term generated by the homomor-

phism ω.

TF classes S ðHω;ΓωÞ ωðUT Þ ωðUPÞ ωðUSÞ Mn

AI, AII Sþ;S− ðτ3H; τ1Þ τ3UT � � � τ3US τ2
AI, AII CSþ; CS− ðτ3H; τ1Þ τ3UT � � � τ0US τ2
BDI, CII Sþþ;S−− ðτ3H; τ2Þ τ0UT τ1UT τ1UCUS τ3UC

BDI, CII Sþ−;S−þ ðτ3H; τ2Þ τ0UT τ1UT τ3US τ3UC

D, C Sþ;S− ðτ3H; τ1Þ � � � τ0UP τ3US τ2
D, C CSþ; CS− ðτ3H; τ1Þ � � � τ0UP τ0US τ2
DIII, CI Sþþ;S−− ðτ3H; τ2Þ τ2UP τ3UP τ1UCUS τ3UC

DIII, CI Sþ−;S−þ ðτ3H; τ2Þ τ2UP τ3UP τ3US τ3UC

(b)(a)
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FIG. 6. Layer-stacking construction of higher-order topological

phases: (a) A (dþ 1)-dimensional crystal is constructed out of

alternating d-dimensional layers with opposite topological num-

bers. The unit cell consisting of two such layers is not mapped to

itself under the (anti)symmetry operation S, which inverts the

coordinate xdþ1 in the stacking direction. (b) The unit cell may be

redefined, so that it is mapped to itself under S. This redefinition

of the unit cell involves splitting the odd layers into two parts that

are mapped onto each other under S, eventually after adding

topological trivial bands.
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The form of the bulk Hamiltonian (38) immediately

allows us to conclude that for HdðkÞ separable, the

Hamiltonian HdðkÞ can be deformed to manifestly sepa-

rable form and the matrix ρ̂ can be chosen to commute with

it, resulting in a kdþ1-independent, and therefore topologi-

cally trivial Hamiltonian σðHdÞ (aside from possible weak

invariants). The reverse is also true: σðHdÞ topologically

trivial implies that the upper-right block H0
dþ1

of Eq. (38)

has only weak topological invariants. Thus, H0
dþ1

can be

continuously deformed to a kdþ1-independent Hamiltonian.

The only possible way to remove kdþ1 dependence from

eiρ̂kdþ1=2HdðkÞe
−iρ̂kdþ1=2 is to continuously deform the

Hamiltonian Hd and/or the matrix ρ to mutually commute.

We have therefore shown that σðHÞ is in the trivial class if

and only if H is separable.

The above statement is obtained from the bulk perspec-

tive; accordingly, it also holds for d-dimensional topologi-

cal phases from KðdÞ that do not support topologically

protected boundary states.

The d-dimensional Hamiltonian HdðkÞ in Eq. (38) is

to be understood as an m-dependent family Hdðk; mÞ that
represents a topologically trivial Hamiltonian for m > 0.

A topologically trivial Hamiltonian is separable, and

we choose a parametrization where Hdðk; mÞ is

manifestly separable for m > 0. With this choice, the term

eiρ̂kdþ1=2Hdðk; mÞe−iρ̂kdþ1=2 is kdþ1 independent for m > 0,

thus trivial without any additional weak invariants.

Using the definition (38) and Eq. (36) applied to the

dimension-raising maps κk and κ⊥, i.e., with ω replaced by

κk or κ⊥, we obtain the following: the stacking homomor-

phism σ commutes with the dimension-raising isomor-

phisms κk and κ⊥.

The stacking construction has the property that if a

nonseparable Hamiltonian Hd supports topologically pro-

tected states on its (d − 1)-dimensional boundary, σðHÞ
also supports topologically protected states of the same

dimensionality on its d-dimensional boundary, see

Refs. [53–55]—combined with the above property this

gives the following: If H is a nonseparable Hamiltonian

with n − 1 crystalline-symmetry-breaking mass terms,

then σðHÞ is a Hamiltonian with n crystalline-symmetry-

breaking mass terms.

To see this, consider a d-dimensional HamiltonianHd with

n crystalline-symmetry-breaking mass terms. By repeatedly

applying the dimension-raising isomorphism κ⊥ and κk or

their inverse, we can change both the values of d and dk to

nþ 1. The resulting inversion-symmetric (nþ 1)-dimen-

sional Hamiltonian Hnþ1 is guaranteed to have zero-dimen-

sional protected boundary states; see Sec. III. Thus, σðHnþ1Þ
has also zero-dimensional topologically protected boundary

states [53–55], and accordingly σðHnþ1Þ has nþ 1 crystal-

line-symmetry-breaking mass terms (boundary mass terms).

Since the homomorphism σ commutes with the dimension-

raising isomorphism κ⊥ and κk, the same is true for σðHdÞ.

We additionally checked that ωðH0Þ ≅ σðH0Þ for zero-

dimensional Hamiltonians H0.

Although the realizations σ and ω are indistingui-

shable as homomorphisms between classifying groups,

their action on a specific Hamiltonian is rather different.

When acting on a nearest-neighbor hopping Hamiltonian,

the homomorphism ω gives a Hamiltonian of the same

form. In particular, if H is a minimal canonical-form

Hamiltonian, ωðHÞ is also a minimal canonical-form

Hamiltonian. On the other hand, as is evident from the

definition (38), the stacking homomorphism σ generates

hopping elements beyond the nearest neighbors. Section VI

illustrates these differences for three examples.

VI. EXAMPLES

In this section, we illustrate the full classification using

the subgroup sequence (1) for a few representative exam-

ples and show how the order-raising homomorphism ω

relates topological crystalline phases in different dimen-

sions. We further compare the realization of the order-

raising homomorphism ω, see Sec. VA and Appendix C, to

that of the layer-stacking procedure of Refs. [20,48,53,54];

see Sec. V C. Additionally, we discuss the connection to

recently studied embedded topological phases [65]. As in

the previous section, we reserve the symbol ω for the

concrete realization of the order-raising homomorphism

given in Secs. VA and V B.

The models we consider can all be expressed in the

canonical form of Eq. (10), where we add the perturbation

(12) or a crystalline-symmetry-breaking mass term local-

ized at the sample boundaries to gap out the boundaries (if

applicable). The action of the order-raising homomorphism

ω on H0 is defined by Eq. (36) and Tables XIII–XV.

A. Higher-order phases originating

from the quantum Hall phase

In two dimensions, systems with broken time-reversal

symmetry but without crystalline symmetries admit a

quantum Hall phase, which has chiral propagating modes

along crystal edges. This first-order topological phase in

tenfold-way class A is compatible with an on-site crystal-

line symmetry O, with a mirror antisymmetry CM, and

with a twofold rotation symmetry R. Further, in the

presence of CM a two-dimensional second-order topo-

logical phase with protected zero-energy states at mirror-

symmetric corners is possible, too. The order-raising

homomorphism links these two-dimensional topological

phases to three-dimensional topological phases with an

additional mirror symmetryM, rotation antisymmetry CR,

or inversion symmetry I, respectively. For each of these

cases we describe the action of the order-raising homo-

morphism in detail and show how it connects the subgroup

sequences classifying the bulk crystalline topology for the

two-dimensional and three-dimensional phases.
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Higher-order phases originating from class AO in two

dimensions.—Without loss of generality we may represent

the on-site crystalline symmetryO using UO ¼ τ3. The on-

site crystalline symmetry forces the Hamiltonian H to have

a block-diagonal structure, H ¼ diagðhþ; h−Þ, with sepa-

rate blocks hþ and h− for even and odd-parity states,

respectively. In two dimensions the bulk band structure

in class AO is classified by the subgroup sequence

0 ⊆ 0 ⊆ Z
2; see Table II. The existence of first-order

topological phases with a Z2 classification follows directly

from the well-known Z classification for the tenfold-way

class A, because the individual blocks h� are not subject to

any constraints from the crystalline symmetry. The minimal

canonical-form generators for the Z2 classifying group are

quantum-Hall phases for each parity block separately,

which have Γ0 ¼ σ1, Γ ¼ ðσ2; σ3Þ, i.e., Hamiltonians

h�ðk; mÞ ¼ σ2ð2þm − cos kx − cos kyÞ

þ σ3 sin kx þ σ1 sin ky: ð39Þ

(The Pauli matrices σj act on a different d.o.f. than the Pauli

matrix τ3 used to represent the on-site crystalline sym-

metry.) Applying the order-raising homomorphism ω to

such a generator gives a three-dimensional canonical-form

Hamiltonian with (see Table XIII)

Γ0 ¼ τ3σ2; Γ ¼ ðτ1; τ3σ3; τ3σ1Þ; ð40Þ

which satisfies an additional mirror symmetry with the

representation UM ¼ τ3. This Hamiltonian has one crys-

talline-symmetry-breaking mass term M1 ¼ τ2, so that it

represents a second-order topological phase.

One verifies that two-dimensional Hamiltonians for class

AO are separable if and only if the even and odd parity

blocks have equal Z topological indices. This implies

ker ω ¼ Z, so that the image of the classifying group

ω½Kð2; 0Þ� ¼ K0ð3; 1Þ ¼ Z. [We recall our notation accord-

ing to which the groups KðnÞðd; dkÞ classify the bulk

topology for d-dimensional phases with a crystalline

symmetry with dk inverted dimensions.] Since the ten-

fold-way class A is trivial for d ¼ 3 there are no first-order

phases, i.e., Kð3; 1Þ ¼ K0ð3; 1Þ, consistent the subgroup

sequence 0 ⊆ 0 ⊆ Z ⊆ Z for class AM in three dimensions;

see Table V.

From the boundary perspective, for class AM in three

dimensions one finds D00
0
ð3; 1Þ ¼ Z

2, where the two Z

indices counts the number of chiral hinge modes for each

mirror parity. Equal numbers of chiral hinge modes for the

twomirror parities correspond to a separable boundary phase,

so that D00
1
ð3; 1Þ ¼ Z. The anomalous boundary classifying

group is, hence, K00
að3; 1Þ ¼ D00

0
ð3; 1Þ=D00

1
ð3; 1Þ ¼ Z [28].

Higher-order phases originating from class ACM in two

dimensions.—This class has a 0 ⊆ Z ⊆ Z
2 subgroup

sequence for its bulk topological classification in two

dimensions; see Table II. For definiteness we choose to

represent the mirror antisymmetry by UCM ¼ σ3, so that

Hðkx; kyÞ ¼ −σ3Hð−kx; kyÞσ3: ð41Þ

At the high-symmetry lines kx ¼ 0 or π the mirror anti-

symmetry CM effectively simplifies to a chiral antisym-

metry C represented by UC ¼ σ3, allowing one to define the

difference W of winding numbers for 0 ≤ ky ≤ 2π at

kx ¼ 0 and kx ¼ π as a suitable topological index.

The second topological invariant of the Hamiltonian H
is the Chern number C, which counts the number of chiral

boundary modes. Since C and W have the same parity,

the Z
2 bulk topological index ðp; qÞ can be defined

setting p ¼ ðCþWÞ=2, q ¼ ðC −WÞ=2. A common set

of generators for the classifying groups Kð2; 1Þ ¼ Z
2 and

K0ð2; 1Þ ¼ Z is given by the canonical-form Hamiltonians

Hð1;0Þ and Hð1;−1Þ, with

Γ0 ¼ σ2; Γ ¼ ðσ3; σ1Þ; for Hð1;0Þ;

Γ0 ¼ σ2τ0; Γ ¼ ðσ3τ3; σ1τ0Þ; for Hð1;−1Þ: ð42Þ

The Hamiltonian Hð1;0Þ represents a first-order topological

phase with a single anomalous chiral boundary mode; it is a

generator of Kð2; 1Þ, but not of K0ð2; 1Þ. The Hamiltonian

Hð1;−1Þ, which has the CM-breaking mass terms M1 ¼

σ3τ1 andM2 ¼ σ3τ2, represents a second-order topological

phase, with anomalous zero-energy corner states at mirror-

symmetric corners; it is a generator of both Kð2; 1Þ and

K0ð2; 1Þ; see Fig. 7.

The order-raising homomorphism ω maps a two-

dimensional Hamiltonian with a mirror antisymmetry

CM to a three-dimensional Hamiltonian with a rotation

antisymmetry CR. To see how the order-raising map ω

maps between the subgroup sequence of the two classes,

we first consider its action on the Hamiltonian Hð1;0Þ

considered above. Application of the order-raising

homomorphism ω to Hð1;0Þ gives the three-dimensional

canonical-form Hamiltonian with

Γ0 ¼ σ2τ3; Γ ¼ ðσ0τ1; σ3τ3; σ1τ3Þ; ð43Þ

p

q

FIG. 7. The full bulk classifying group Kð2; 1Þ for classes ACM

is Z2. The purely crystalline subgroup K0ð2; 1Þ and the separable

subgroup kerω are denoted by solid and hatched circles,

respectively.
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which satisfies a twofold-rotation antisymmetry CR with

the representationUCR ¼ σ2. This Hamiltonian has a single

crystalline-symmetry-breaking mass term M1 ¼ τ2, corre-

sponding to a second-order topological phase with a single

chiral mode along a hinge. To further specify the action of

the order-raising homomorphism ω, we search for sepa-

rable two-dimensional Hamiltonians, since these are

mapped to the trivial class under ω. With a little algebra

one verifies that the canonical-form Hamiltonian with

Γ0 ¼ σ2τ0; Γ ¼ ðσ3τ1; σ1τ1Þ ð44Þ

has topological indices ðp; qÞ ¼ ð1; 1Þ and is separable.

We thus identify Hð1;1Þ as the generator of the separable

subgroup ker ω; see Fig. 7. SinceHð2;0Þ differs fromHð1;−1Þ

by a separable Hamiltonian, Hð2;0Þ and Hð1;−1Þ must be

mapped to the same topological class under ω, i.e.,

ωðHð2;0ÞÞ must be a representative of a third-order topo-

logical phase. It follows that K0ð3; 2Þ ¼ ω½Kð2; 1Þ� ¼ Z

and K00ð3; 2Þ ¼ ω½K0ð2; 1Þ� ¼ 2Z. Combined with the

observation that there are no first-order topological

phases for the tenfold-way class A, we arrive at the

subgroup sequence 0 ⊆ 2Z ⊆ Z ⊆ Z for three-dimensional

Hamiltonians with a twofold-rotation antisymmetry, con-

sistent with Table V.

From the boundary perspective, we note that chiral hinge

modes have a Z classification: The Z topological index

simply counts the number of chiral hinge modes. Hence,

D00
0
ð3; 2Þ ¼ Z. The presence of the CR antisymmetry plays

no role here, as it does not leave any hinges invariant. An

even number of hinge modes represents a separable phase,

so that D00
1
ð3; 2Þ ¼ 2Z. It follows that K00

að3;2Þ¼D00
0
ð3;2Þ=

D00
1
ð3;2Þ¼Z2. To describe the third-order phases from the

boundary perspective, we note that the rotation antisym-

metry is a local symmetry for a corner on the rotation axis.

For this situation one finds a Z topological index, counting

the difference of the number of zero-energy corner states

for even and odd CR parity. Since none of these boundary

classes is separable, one has D000
0
ð3; 2Þ ¼ Z, D000

1
ð3; 2Þ ¼

D000
2
ð3; 2Þ ¼ 0, so that and K000

2
ð3; 2Þ ¼ K000

a ð3; 2Þ ¼ Z; see

Table X.

Higher-order phases originating from class AR in two

dimensions.—The bulk topological classification of a two-

dimensional topological insulator with an additional two-

fold rotation symmetry R is given by the subgroup

sequence Z ⊆ Z ⊆ Z
2, implying a Z topological index

for first-order phases and a Z topological index classifying

topological phases without boundary states. (Such

phases are essentially atomic-limit insulators.) The two

topological invariants are the Chern number C and the

number N¼noð0;0Þ−noðπ;0Þ−noð0;πÞþnoðπ;πÞ, where

nðkx; kyÞ is the number of occupied odd-parity bands at the

high-symmetry momentum ðkx; kyÞ [16,18,21]. Since C

and N have the same parity, the Z2 bulk topological index

ðp; qÞ is defined setting p ¼ ðC − NÞ=2, q ¼ ðCþ NÞ=2.
A common set of generators for the classifying groups

KðnÞð2; 2Þ, n ¼ 0; 1; 2, is given by the canonical-form

Hamiltonians Hð1;0Þ and Hð1;−1Þ of Eq. (42), where we

have chosen the representation UR ¼ σ2. The Hamiltonian

Hð1;0Þ, which has the R-breaking mass terms σ3τ1 and

σ3τ2, represents a first-order topological phase with a

single anomalous chiral boundary mode; it is a generator

of Kð2; 2Þ, but not of K0ð2; 2Þ and K00ð2; 2Þ. The

Hamiltonian Hð1;−1Þ represents an atomic insulator with

no boundary states; it is a generator of Kð2; 2Þ, K0ð2; 2Þ,
and K00ð2; 2Þ.
The order-raising homomorphism ω maps a two-

dimensional Hamiltonian with a twofold rotation symmetry

R to a three-dimensional Hamiltonian with inversion

symmetry I. To see how the order-raising map ω maps

between the subgroup sequence of the two classes, we first

consider its action on the Hamiltonian Hð1;0Þ considered

above. Application of the order-raising homomorphism ω

to Hð1;0Þ gives the three-dimensional canonical-form

Hamiltonian specified by Eq. (43), which satisfies an

inversion symmetry represented by UI ¼ τ3σ2. As in the

previous example, one verifies that the canonical-form

Hamiltonian with

Γ0 ¼ σ2τ1; Γ ¼ ðσ3τ1; σ1τ0Þ ð45Þ

has topological indices ðp; qÞ ¼ ð1; 1Þ and is separable.

Accordingly, Hð1;1Þ is the generator of the subgroup

kerω ⊆ Kð2; 2Þ. Since Hð1;−1Þ differs from Hð2;0Þ by a

separable Hamiltonian, we conclude that Hð2;0Þ and Hð1;1Þ

must be mapped to the same topological class underω. Since

Hð1;1Þ represents an atomic insulator without boundary

states, its image ωðHð2;0ÞÞ must also represent an atomic

insulator without boundary states. It follows that K0ð3; 3Þ ¼
ω½Kð2; 2Þ� ¼ Z and K00ð3; 3Þ ¼ ω½K00ð2; 2Þ� ¼
K000ð3; 3Þ ¼ ω½K000ð3; 3Þ� ¼ 2Z. As in the previous exam-

ple, since there are no first-order topological phases for the

tenfold-way class A, we thus arrive at the subgroup sequence

2Z ⊆ 2Z ⊆ Z ⊆ Z for class AI in three dimensions, con-

sistent with Table V.

We conclude this example with a discussion of the

classification from the boundary perspective. We first

note that chiral hinge modes have a Z classification,

whereby the Z topological index simply counts the number

of chiral hinge modes. Hence, D00
0
ð3; 2Þ ¼ Z. The presence

of the inversion symmetry plays no role here, as I does not

leave any hinges invariant. An even number of hinge

modes represents a separable phase, so that D00
1
ð3; 2Þ ¼

2Z. It follows that K00
að3; 2Þ ¼ D00

0
ð3; 2Þ=D00

1
ð3; 2Þ ¼ Z2.

Finally, since no protected zero-energy corner states are

possible in the absence of an antisymmetry, the boundary

classification of third-order phases is entirely trivial,

HIGHER-ORDER BULK-BOUNDARY CORRESPONDENCE FOR … PHYS. REV. X 9, 011012 (2019)

011012-19



D000
0
ð3;2Þ¼D000

1
ð3;2Þ¼D000

2
ð3;2Þ¼K000

2
ð3;2Þ¼K000

a ð3;2Þ¼0;

see Table X.

B. Separable higher-order topological phases

As discussed in Sec. IV, the boundary classification

considers classifying groups K
ðnÞ
k for protected states at

boundaries of dimension d − n, whereby such boundary

states are considered equivalent if they differ by a lattice

termination along a boundary of dimension ≤ d − k.

The boundary classifying groups K
ðnÞ
k ¼ D

ðnÞ
0
=D

ðnÞ
k are

the quotient of the group D
ðnÞ
0

classifying all possible

(d − n)-dimensional boundary states and the “decoration

subgroup” D
ðnÞ
k , which classifies (d − n)-dimensional

boundary states that can be attributed to the combination

of a topological nontrivial boundary of dimension ≤ d − k
and a topologically trivial bulk.

In the examples of the previous subsection, all decora-

tion groups D
ðnÞ
k with k ¼ 2;…; n are equal, so that

effectively it is sufficient to consider the (a priori) smallest

decoration subgroup D
ðnÞ
n−1, which classifies the (d − n)-

dimensional boundary states of a symmetry-compatible

ðd − nþ 1Þ-dimensional topological phase located on the

crystal boundary. This ðd − nþ 1Þ-dimensional topologi-

cal phase is a separable phase, i.e., it consists of two halves,

which are mapped onto each other by the crystalline

symmetry S; see Fig. 5. Although the groupD
ðnÞ
n−1 describes

codimension-n boundary states of the crystal as a whole, it

describes first-order boundary states of the separable

ðd − nþ 1Þ-dimensional topological phase located on

the crystal boundary.

There are seven Shiozaki-Sato symmetry classes, for

which the decoration subgroups D
ðnÞ
k are not the same for

all k. For those classes, the integer q in Eq. (33) is finite and

one must consider higher-order separable phases to obtain

the boundary classification. Five of these classes are relevant

for the boundary classification of third-order phases in three

dimensions. These classes originate from two-dimensional

separable second-order phases in classes DIIIMþþ , DIIIM−þ ,

DMþ , AIICM− , and APþM. Two of these classes are relevant

for the boundary classification of fourth-order phases in four

dimensions. These classes can be traced to separable three-

dimensional third-order phases in classes CIIR−− and

AIIIT
þRþ . We now discuss two of these classes in detail.

Class DIIIMþþ in two dimensions.—We choose the

representation UT ¼ σ2 and UP ¼ τ1 for time-reversal and

particle-hole conjugation, respectively. Starting from the

tenfold-way canonical-form Hamiltonian specified by

Γ0 ¼ σ0τ3; Γ ¼ ðσ1τ1; σ0τ2Þ; ð46Þ

which has a single helical Majorana boundary mode,

we construct the manifestly separable Hamiltonian

diag½Hðk1; k2Þ; σ1Hð−k1; k2Þσ1�, which has the canoni-

cal-form representation

Γ0 ¼ μ0σ0τ3; Γ ¼ ðμ3σ1τ1; μ0σ0τ2Þ; ð47Þ

where the μj are Pauli matrices acting on a different d.o.f.

than the Pauli matrices σj and τj. The Hamiltonian (47)

satisfies the mirror symmetry UM ¼ σ1μ1, which com-

mutes with T and P. It has a singleM-breaking mass term

M ¼ μ2σ1τ1, which makes it a second-order topological

superconductor with protected zero-energy states at the two

mirror-symmetric corners.

Two-dimensional separable Hamiltonians can be used to

decorate a three-dimensional bulk, as shown schematically

in Fig. 8. Specifically, the separable two-dimensional

system is deformed into a two-dimensional “shell”

embedded in three-dimensional space, where the mirror

symmetry Mþþ of the two-dimensional model becomes a

twofold rotation symmetryRþþ in three dimensions. When

localized near the sample boundaries, the M-breaking

mass term μ2σ1τ1 does not obstruct this deformation

procedure, while ensuring that any helical boundary modes

running along the two “seams” of the shell are gapped out

apart from the two corners on the rotation axis; see Fig. 8.

The corners on the rotation axis each host a Kramers pair of

zero-energy states.

We now discuss the consequences for the boundary

classification of third-order topological phases in class

DRþþ in three dimensions. Since the twofold rotation

symmetry is a local symmetry at the two corners on the

rotation axis, zero-energy corner states have an extrinsic

D000
0
¼ Z

2

2
classification, the two Z2 topological indices

counting the parities of the numbers of Kramers pairs of

such corner states that are even or odd under R, respec-

tively. Kramers pairs of zero-energy corner states can be

obtained by decoration with one-dimensional topological

superconductors along crystal hinges, but such a procedure

FIG. 8. Two copies of a topologically nontrivial superconductor

in class DIII that are related by mirror symmetry M form a

separable topological phase (left). The separable phase can be

deformed into a hollow shell, such that the mirror symmetry M

becomes a twofold rotation symmetry R (center). Upon addition

of a mass term along the “seams” of the shell, while preserving

the global twofold rotation symmetry, any pairs of counter-

propagating Majorana hinge modes can be gapped out, leaving

behind Kramers pairs of zero-energy states at the two corners on

the rotation axis (right).
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always gives equal number of even-parity and odd-parity

states. Hence, corner states obtained from decorations

along hinges have classifying groupD000
2
¼ Z2, correspond-

ing to the “diagonal” elements of D000
0
¼ Z

2

2
. To obtain a

single Kramers pair of zero-energy corner states one must

decorate the crystal boundary with a two-dimensional shell

as constructed above. As a result, one finds D000
1
ð3; 2Þ ¼

D000
0
¼ Z

2

2
. The resulting boundary classifying groups then

follow by taking quotients, K000
a ð3; 2Þ ¼ K000

1
ð3; 2Þ ¼ 0,

K000
2
ð3; 2Þ ¼ Z2; see Table XII.

Class APþM in two dimensions.—A separable second-

order phase in class APþM can be constructed from two

copies of a quantum Hall system related to each other

by particle-hole conjugation. The minimal canonical-

form Hamiltonian describing such a separable phase is

specified by

Γ0 ¼ τ3σ1; Γ ¼ ðτ0σ2; τ0σ3Þ: ð48Þ

This Hamiltonian has an antiunitary mirror antisymmetry

represented by UPM ¼ τ1. It has two PM-breaking mass

termsM1 ¼ τ1σ1 andM2 ¼ τ2σ1, which render it a second-

order topological phase with a single zero-energy state at

mirror-symmetric corners. Proceeding as before, we can

use this Hamiltonian to decorate a three-dimensional

crystal, whereby the PþM mirror antisymmetry of the

two-dimensional Hamiltonian turns into a PþR rotation

antisymmetry in three dimensions. Again, the mass terms

M1 and M2 do not obstruct the deformation procedure if

they are localized near the seams of the shell only, while the

presence of such mass terms ensures that the entire shell is

gapped out, except for the corners at the twofold rotation

axis, which host zero-energy states. From the boundary

perspective, one has the extrinsic classifying group

D000
0
¼ Z2, which counts the parity of the number of such

zero-energy corner states. One-dimensional decorations

along hinges cannot result in any protected zero-energy

corner states in this symmetry class. However, zero-energy

corner states can be obtained from a two-dimensional

shell-like decoration as described above. We conclude that

D000
1
ð3; 2Þ ¼ Z2 and D000

2
ð3; 2Þ ¼ 0, giving the boundary

classifying groups K000
a ð3; 2Þ ¼ K000

1
ð3; 2Þ ¼ 0 and

K000
2
ð3; 2Þ ¼ Z2; see Table XI.

C. Stacking construction

We now discuss three examples that compare the action

of the order-raising homomorphism ω and the stacking

homomorphism σ. The first example is the canonical-form

Hamiltonian Hd from Shiozaki-Sato class DO− with d ¼ 0

H0ðmÞ ¼ mσ1; ð49Þ

with UO ¼ σ1 and UP ¼ σ3. (Keeping the dependence on

the parameter m is necessary to allow for a meaningful

distinction between topological phases in zero dimensions.

For zero-dimensional Hamiltonians, one can uniquely

assign topological invariants only to the one-parameter

family of Hamiltonians, but not to the Hamiltonian itself;

see the discussion in Sec. II.) The stacking procedure gives

a one-dimensional Hamiltonian σ½H0ðmÞ� in class DM− .

The upper-left block H0
1
of Eq. (38) takes the form

H0
1
ðkÞ ¼ mðσ1 cos kþ σ2 sin kÞ; ð50Þ

where we take ρ̂ ¼ σ3 in Eq. (38). The lower-right block of

the Hamiltonian H1 of Eq. (38) is k independent and it

does not carry any strong topological invariants. Since the

above Hamiltonian is not in canonical form, we calculate

the topological invariant N ¼ noðπÞ − noð0Þ for the

Hamiltonian H0
1
ðk1Þ, where noðkÞ is the number of the

odd-parity negative-energy eigenvalues at the inversion-

symmetric momentum k ¼ 0, π. We find that H0
1
ðk1Þ has

N ¼ 1 form < 0 andN ¼ −1 form > 0, therefore the one-

parameter family (50) has topological invariant N ¼ 2. The

same is true for ωðH0Þ, as one verifies using the explicit

representation of ω given in Table XV.

For the second example, we consider a canonical-form

HamiltonianHd from Shiozaki-Sato class DM− with d ¼ 1,

specified by

Γ0 ¼ σ1; Γ ¼ ðσ2Þ; ð51Þ

with UM ¼ σ1 and UP ¼ σ3. The above Hamiltonian

describes a one-dimensional p-wave superconductor with

a single Majorana mode localized at each end. The

application of the stacking construction to the one-dimen-

sional superconductor with Hamiltonian Hd specified by

matrices (51) gives the Hamiltonian σðHdÞ with d ¼ 1, and

the upper-right block H0
dþ1

H0
2
¼ ðmþ 1 − cos k1Þðσ1 cos k2 − σ3 sin k2Þ

þ sin k1σ2; ð52Þ

where we used ρ̂ ¼ σ2, compare with Eq. (38). Since this

Hamiltonian is not of minimal canonical form, its topo-

logical invariant cannot simply be determined by counting

the number of bands. The topological invariant N in this

class takes integer values [6,21]

N ¼ noðπ; πÞ − noðπ; 0Þ − noð0; πÞ þ noð0; 0Þ; ð53Þ

where noðkÞ counts the number of odd-parity negative

eigenvalues at the high-symmetry momentum k ¼ ðk1; k2Þ.
Direct calculation gives that both σðHdÞ and ωðHdÞ have
N ¼ 2 for d ¼ 2.

Finally, we apply the stacking homomorphism σ to a

first-order nonseparable superconductor in class DR− , with

two-dimensional Hamiltonian specified by
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Γ0 ¼ σ1; Γ ¼ ðσ2; σ3Þ; ð54Þ

with UR ¼ σ1 and UP ¼ σ3. We choose ρ̂ ¼ σ2 and obtain

the upper-left block H0
dþ1

of Eq. (38) as

H0
3
ðk1; k2; k3Þ ¼ ðmþ 2 − cos k1Þðσ1 cos k3 − σ3 sin k3Þ

þ σ2 sin k1 − σ1 cosðk1 þ k3Þ

þ σ3 sinðk1 þ k3Þ; ð55Þ

which has inversion symmetry with UI ¼ σ1, and particle-

hole antisymmetry UP ¼ σ3. For class DI− in three

dimensions, similar to the previously considered classes,

the topological invariant N can be evaluated via the

inversion eigenvalues of the occupied bands [6,21]

N ¼ ½noðπ; π; πÞ − noðπ; π; 0Þ − noðπ; 0; πÞ

− noð0; π; πÞ þ noðπ; 0; 0Þ þ noð0; π; 0Þ

þ noð0; 0; πÞ − noð0; 0; 0Þ�=2; ð56Þ

We find that both ωðHdÞ and σðHdÞ have N ¼ 1 for d ¼ 2,

accordingly they are deformable into each other.

D. Embedded topological phases

It was pointed out recently [65] that in the presence of

crystalline symmetries a lower-dimensional topological

phase embedded in a higher-dimensional topologically

trivial bulk—a so-called “embedded topological phase”—

has the same boundary phenomenology as the higher-order

topological phases considered in this work. Can an

embedded topological phase with Hamiltonian H be

deformed into a higher-order topological crystalline phase

with Hamiltonian ωðHÞ? The same question was recently

addressed by Matsugatani and Watanabe using a slightly

different approach [56].

Figure 9(a) shows that the stacked-layer system σðHÞ
can be deformed to the corresponding embedded topologi-

cal system by breaking the crystalline symmetry S locally

by dimerizing the layers, while globally preserving S

symmetry. Using the conclusions of the previous section

we obtain that ωðHÞ ≅ σðHÞ is deformable to the corre-

sponding embedded system using a deformation that breaks

S locally, while preserving it globally—below we arrive at

the same conclusion using a different argument.

Assuming for concreteness that the Hamiltonian ωðHÞ is
a three-dimensional inversion-symmetric, second-order

Chern insulator with a single hinge mode at its boundary,

Fig. 9(b) shows that its halves above and below the hinge

mode can be trivialized as the local symmetry is broken,

because ωðHÞ has only purely crystalline topological

invariants. This construction immediately enables us to

conclude that ωðHÞ is deformable to an embedded topo-

logical insulator.

VII. ORDER-LOWERING MAP ω̄

In this section, we introduce an order-lowering map ω̄

that acts on a canonical-form Hamiltonian H with anoma-

lous boundary states of order n > 1 and gives a

Hamiltonian ω̄ðHÞ such that ω½ω̄ðHÞ� is continuously

deformable to the original Hamiltonian H. Although the

map ω̄ can be defined entirely algebraically, there is a

simple geometric picture underlying the construction of ω̄,

which we discuss first.

To explain the geometrical picture underlying the con-

struction of the order-lowering map ω̄, we recall the

introduction of the sequence of manifolds (19) in

Sec. IV and the subsequent observation that an nth-order
topological phase with n > 1 is essentially trivial away

from Ωd−nþ1 ⊆ Ωd−1. For a Hamiltonian in canonical

form we choose Ωd−1 to be the intersection of the crystal

with the hyperplane x1 ¼ 0. Since x1 → −x1 under the

crystalline (anti)symmetry S, the hyperplane x1 ¼ 0

divides the crystal into two symmetry-related “halves.”

We smoothly deform the Hamiltonian by adding the term

m1Misignðx1Þ, where Mi is a crystalline-symmetry-break-

ing mass term andm1 > 0. Although this extra term locally

breaks the crystalline (anti)symmetry S, S is preserved

globally. Taking the limit m1 → ∞ amounts to a projection

onto the hyperplane x1 ¼ 0, which gives the (d − 1)-

dimensional Hamiltonian

ω̄ðH;MiÞ ¼ PiHPi; ð57Þ

where Pi ¼ ðiMiΓ1 þ 1Þ=2 is a projection operator. The

Hamiltonian ω̄ðH;MiÞ obeys a crystalline (anti)symmetry

with dk − 1 inverted dimensions, which is obtained by

restricting S to the plane x1 ¼ 0. If H has anomalous

boundary states of codimension n, so has ω̄ðH;MiÞ
anomalous boundary states of codimension n − 1. (The

inverse is not true; see the discussion below.) A variant of

this construction was suggested by Matsugatani and

Watanabe, who instead of adding a crystalline-sym-

metry-breaking mass term proposed to symmetrically

remove the crystal on both sides of Ωd−1 [56].

We illustrate this procedure using the example of a three-

dimensional second-order Chern insulator with inversion

(b)(a)

FIG. 9. (a) Dimerization of a stacked-layer system that locally

breaks S (anti)symmetry, while preserving S globally. (b) After

breaking the local inversion symmetry, the upper and the lower

halves of three-dimensional second-order Chern insulator can be

trivialized, resulting in a embedded topological insulator.
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symmetry I, see Fig. 10. The canonical-form Hamiltonian

for this topological phase is specified by

Γ0 ¼ σ2τ3; Γ ¼ ðσ0τ1; σ3τ3; σ1τ3Þ; ð58Þ

where we use the representation UI ¼ τ3σ2. There is one

crystalline-symmetry-breakingmass termM1 ¼ τ2. Adding

a term m1M1signðx1Þ preserves the global inversion sym-

metry,whilemanifestly opening up a spectral gap away from

the plane x1 ¼ 0. If the spectral gap from this additional

mass term is much larger than the other spectral gaps, we

may perform a partial low-energy expansion along the x1
direction, which yields the three-dimensional Hamiltonian

H ¼ ðmþ 2 − cos k1 − cos k2ÞΓ0 þ sin k2Γ2 þ sin k3Γ3

þm1M1signðx1Þ − i∂x1
Γ1: ð59Þ

Taking m1 ≫ jmj ∼ 1, we obtain the two-dimensional

effective Hamiltonian

H2 ¼ P1½ðmþ 2 − cos k1 − cos k2ÞΓ0

þ sin k2Γ2 þ sin k3Γ3�P1; ð60Þ

which describes the quantum Hall phase [compare

with Eq. (39)].

The above construction of the inverse map ω̄ depends

explicitly on the form of the crystalline-symmetry-breaking

mass term Mi and on the choice of the hyperplane Ωd−1.

Indeed, in general there is no unique inverse map for the

order-raising map ω, because ω is a homomorphism, not an

isomorphism. However, the order-raising homomorphism

ω becomes an isomorphism when seen as a map between

the quotient groups KðnÞðd; dkÞ= kerω and its image

Kðnþ1Þðdþ 1; dk þ 1Þ. Regarded as a map between these

two groups, the above-defined map ω̄ is a true inverse map

that does not depend on the choice of Mi.

To illustrate the “nonuniqueness” of the order-

lowering map, we consider the trivial inversion-symmetric

Hamiltonian H in three dimensions specified by

Γ0 ¼ μ3τ0σ1; Γ ¼ ðμ1; μ3τ0σ2; μ3τ0σ3Þ: ð61Þ

Inversion symmetry is represented using UI ¼ μ3τ1σ1.

The above Hamiltonian has the crystalline-symmetry-

breaking mass term M1 ¼ μ2, as well as a symmetry-

preserving mass term M ¼ μ2τ3. A direct application of

Eq. (57) gives that ω̄ðH;M1Þ is a canonical-form

Hamiltonian specified by

Γ0 ¼ τ0σ1; Γ ¼ ðτ0σ2; τ0σ3Þ; ð62Þ

and with the twofold rotation symmetry UR ¼ τ1σ1. This

Hamiltonian has two chiral boundary modes, implying that

it corresponds to a nontrivial element ofKð2; 2Þ, despite the
three-dimensional Hamiltonian H being trivial (because of

the existence of the mass term M). However, ω̄ðH;M1Þ is
manifestly separable, so that it corresponds to the trivial

element of the group Kð2; 2Þ= kerω. On the other hand, a

different choice of the crystalline-symmetry-breaking mass

term, M1 ¼ μ2τ1, gives a different inverse, ω̄ðH; μ2τ1Þ,
which is a topologically trivial member of Kð2; 2Þ since

there is a nonzero crystalline-symmetry-preserving mass

term P1MP1.

VIII. BULK CLASSIFYING GROUPS FROM

BOUNDARY AND ATOMIC-LIMITS

CLASSIFICATION

The bulk-boundary correspondence (2), together with

the observation that the classifying groups KðdÞ represent

atomic-limit phases, can be used to calculate the subgroup

series (1) of bulk classifying groups (see Tables II–VII)

without using the K-theory-based classification of Shiozaki
and Sato [21]. In this section we explain how such a

calculation proceeds. The advantage of such an approach is

that in principle it is not restricted for the order-two

crystalline (anti)symmetries, for which the K-theory

approach of Ref. [21] was derived.

The inputs for the calculation described below are the

tenfold-way classifying groups in d dimensions KTFðdÞ,
their subgroups KTF;Sðd; dkÞ describing tenfold-way

phases compatible with the crystalline symmetry S, as

well as the groups Kðd; 0Þ classifying tenfold-way phases

with an additional on-site symmetry, all of which can be

obtained by elementary means from the known tenfold-way

classification. The construction below requires an explicit

realization of the order-raising homomorphism ω and its

inverse map ω̄, which can be done using the geometric

construction of the previous section in the case of an order-

two symmetry.

(b)(a)

FIG. 10. A three-dimensional, inversion-symmetric, second-

order phase can be mapped onto a two-dimensional first-order

phase. The map is achieved by adding a crystalline-symmetry-

breaking mass termMi with opposite prefactors on both sides of a

plane that symmetrically divides the crystal into two halves and

that contains the anomalous boundary states (a). Such an addi-

tional mass term respects the inversion rotation symmetry and

manifestly trivializes the three-dimensional bulk away from the

boundary states. The low-energy theory consists of a first-order

two-dimensional Hamiltonian (b).
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A. Calculation of KðdÞ

The group KðdÞ is obtained from the Shiozaki-Sato group

Kð0; 0Þ that classifies topological zero-dimensional phases

protected with an on-site (i.e., internal) symmetry.

Following the discussion of Sec. IV, the calculation of

KðdÞ amounts to the calculation of the subgroup

ker ωd ⊆ Kð0; 0Þ. IfH0 is a generator of the corresponding

zero-dimensional tenfold-way phase, the manifestly sepa-

rable Hamiltonian diagðH0;SH0Þ is the generator of ker ω.
Similarly, H1, a generator of one-dimensional tenfold-way

phase, defines a one-dimensional separable Hamiltonian

H0
1
¼ ½H1;SH1�. If H

0
1
is topologically nontrivial (i.e., has

no additional mass terms) and has at least one crystalline-

symmetry-breaking mass term M1, then the zero-dimen-

sional Hamiltonian ω̄ðH0
1
;M1Þ exists and is an element the

group Kð0; 0Þ. The kernel ker ω2 is the subgroup of

Kð0; 0Þ generated by kerω and ω̄ðH0
1
;M1Þ. (Note that

the subgroup ker ω2 defined this way is uniquely defined,

in spite of the nonuniqueness of ω̄.) This procedure can be

continued until ker ωd is obtained, which then gives

KðdÞ ¼ Kð0; 0Þ= ker ωd.

B. Classification anomalous boundary of codimension n

The calculation of the anomalous boundary classification

K
ðnÞ
a starts from the extrinsic boundary classification group

D
ðnÞ
0

and the decoration subgroups D
ðnÞ
k ; see Sec. IV.

For n ¼ dk þ 1, the extrinsic classifying group D
ðnÞ
0

¼

Kðd − dk; 0Þ is the classification of ðd − dkÞ-dimensional

tenfold-way phases protected with an on-site (internal)

symmetry. The decoration groups are subgroups of the

extrinsic classifying group, D
ðnÞ
k ¼ ker ωn−k ⊆ D

ðnÞ
0
. Their

calculations proceed along the same line as in the calcu-

lation of KðdÞ discussed above.

To calculate K
ðnÞ
a for n ≤ dk, we need the classification

of the tenfold-way phases KTF;Sðd; dkÞ ⊆ KTFðdÞ that are

compatible with the crystalline (anti)symmetry S. To this

end, we notice that a canonical-form tenfold-way

Hamiltonian H has the most symmetric form—its low-

energy expansion has the full rotational symmetry, with

generators that are pairwise products of the kinetic terms.

Accordingly, it is sufficient to check if a canonical-form

Hamiltonian H is compatible with the (anti)symmetry S,

which is a matter of algebra. Once the extrinsic boundary

classification group D
ðnÞ
0

is known, the decoration group

D
ðnÞ
n−1 is generated by the Hamiltonian diagðHdþ1−n;

SHdþ1−nÞ, where Hdþ1−n is a generator Hamiltonian of

ðdþ 1 − nÞ-dimensional tenfold-way phase without addi-

tional crystalline symmetry. Furthermore, if the Hami-

ltonian H0
dþ2−n ¼ diagðHdþ2−n;SHdþ2−nÞ is topologically

nontrivial and has one crystalline-symmetry-breaking mass

term M1, then the Hamiltonian ω̄ðHdþ2−n;M1Þ is a

ðdþ 1 − nÞ-dimensional Hamiltonian representing an

element of KTF;S. In this way we obtain D
ðnÞ
n−2 as the

subgroup spanned by D
ðnÞ
n−1 and ω̄ðHdþ2−n;M1Þ. This

procedure is repeated until the group D
ðnÞ
1

is reached.

C. Calculating KðnÞ from the groups KðdÞ and K
ðkÞ
a

The bulk-boundary correspondence (2) can be rewritten

in form of an exact sequence

0 → Kðnþ1Þ
→ KðnÞ

→ K
ðnþ1Þ
a → 0; n ¼ 0; 1;…; d:

ð63Þ

If the boundary classification groupK
ðnþ1Þ
a is a free Abelian

group (i.e., it is of the form Z
k), then the above exact

sequence splits and has the unique solution KðnÞ ¼

Kðnþ1Þ ⊕ K
ðnþ1Þ
a . On the other hand, if the boundary

classification has a torsion subgroup (e.g., it contains

Z2) then the above exact sequence has in general more

than one solution and knowledge of the groups K
ðnþ1Þ
a and

Kðnþ1Þ is not sufficient to determineKðnÞ. Such an extension

problem can be formulated as an algebraic problem:Assume

g is a torsion element fromK
ðnþ1Þ
a , i.e.,⊕k g ¼ e is the trivial

element for some k. (For the order-two symmetries one

always has k ¼ 2.) Let H be a bulk Hamiltonian that

generates the state g on its boundary. The Hamiltonian H

represents an element of KðnÞ, but not of Kðnþ1Þ. The k-fold

direct sum ⊕k H is either trivial or it is a generator of the

subgroup Kðnþ1Þ ⊆ KðnÞ. With this additional knowledge,

which can be determined by checking for additional mass

terms of the Hamiltonian ⊕k H, the group KðnÞ can be

uniquely determined from Kðnþ1Þ and K
ðnþ1Þ
a .

D. Example: Classification of inversion-symmetric

3D topological insulator in class A

As an example, we now show how the above procedure
can be used to obtain the full classifying subgroup
sequence of an inversion-symmetric topological insulator

in three dimensions. We start with the group KðdÞ classify-

ing atomic-limit insulators. To obtain KðdÞ, we need the
classification Kð0; 0Þ of zero-dimensional Hamiltonians
protected by an on-site symmetry O. Such zero-
dimensional Hamiltonians can be block diagonalized where
each block has the classification of the zero-dimensional
Hamiltonian of symmetry class A,

Kð0; 0Þ ¼ fðn1; n2Þ; n1; n2 ∈ Zg ¼ Z
2; ð64Þ

where the integers n1 and n2 count the numbers of occupied
states of even and odd parity, respectively. Furthermore,
takingH0 ¼ σ3 as a generator of the tenfold-way classA, the
separable Hamiltonian diagðH0; H0Þ ¼ τ0σ3 has on-site
symmetry UO ¼ τ1 and has topological number (1, 1),
so that
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ker ω ¼ fðn; nÞ; n ∈ Zg ¼ Z: ð65Þ

Further, since there are no topologically nontrivial one-
dimensional tenfold-way phases in A, it follows that

ker ω2 ¼ ker ω, and since the separable nontrivial two-
dimensional phase is a first-order phase (it has two chiral

modes on its boundary) one even has ker ω3 ¼ ker ω. In this
way, we arrive at the classification of atomic limits

K000ð3; 3Þ ¼ Kð0; 0Þ= ker ω3 ¼ Z: ð66Þ

For the classification of anomalous boundary states, we

can immediately conclude that the groups K000
a and K0

a are

trivial since there are no topologically nontrivial tenfold-

way phases in class A in one and three dimensions and

since inversion leaves no points on the boundary invariant.

To obtain the second-order boundary classification group

K00
a we first need to check if a (two-dimensional) Chern

insulator is compatible with twofold rotation symmetry.

This is indeed the case, as demonstrated by the canonical-

form Hamiltonian

Γ0 ¼ σ1; Γ ¼ ðσ2; σ3Þ; ð67Þ

which is compatible with the twofold rotation symmetry

represented by UR ¼ σ1. Thus,

D00
0
¼ KTF;Rð2; 2Þ ¼ Z: ð68Þ

Moreover, since the diagonal sum diagðH2;RH2Þ has a

Chern number equal to two (i.e., it has two copropagating

chiral boundary modes), one finds

D00
1
¼ 2Z ⊆ KTFð2; 2Þ; ð69Þ

so that

K00
a ¼ Z2: ð70Þ

To obtain the bulk subgroup sequence (1) from the

classification results K000ð3; 3Þ ¼ Z, K000
a ¼ 0, K00

a ¼ Z2,

and K0
a ¼ 0, we need to solve the exact sequence (63)

to obtain K00ð3; 3Þ, K0ð3; 3Þ, and Kð3; 3Þ. Here, only the

case n ¼ 1 is nontrivial,

0 → Z → K0ð3; 3Þ → Z2 → 0: ð71Þ

In order to resolve the above sequence we need to know if

the sum of two second-order phases yields a trivial phase,

in which case one has K0ð3; 3Þ ¼ Z2 ⊕ Z, or if it yields a

topologically nontrivial atomic insulator, in which case the

bulk classification is K0ð3; 3Þ ¼ Z. We answer this ques-

tion by considering the direct sum of two second-order

phases. Such a direct sum is given by the sum of two

second-order Chern insulators with copropagating chiral

modes along hinges. Following the procedure outlined in

Sec. VII, these three-dimensional inversion-symmetric

second-order Chern insulators can be seen as two-dimen-

sional (first-order) Chern insulators embedded in an other-

wise trivial three-dimensional crystal. By rotating one of

the two embedded Chern insulators with respect to the

other, the system may be deformed such that the two chiral

hinge modes are counterpropagating, corresponding to the

two-dimensional Hamiltonian

Γ0 ¼ τ0σ1; Γ ¼ ðτ0σ2; τ3σ3Þ: ð72Þ

The inversion symmetry of the three-dimensional host

crystal becomes a twofold rotation symmetry for the two-

dimensional Chern insulator, represented by UR ¼ τ0σ1.

The above Hamiltonian has two mass terms τ1σ3 and τ2σ3
which break the twofold rotation symmetryR. We therefore

conclude that the resulting Hamiltonian is a topologically

nontrivial atomic limit, so that K0ð3; 3Þ ¼ Z. The resulting

bulk subgroup sequence then reads

2Z ⊆ 2Z ⊆ Z ⊆ Z; ð73Þ

which agrees with the corresponding entry in Table VII.

(Note that although we originally identifiedK000 withZ, this

identification must be reconsidered in view of the fact that

K000 ¼ K00 is a subgroup of K0 ¼ K and that K0=K00 ¼ Z2.)

IX. CONCLUSIONS

Topological crystalline insulators and superconductors

have a more subtle boundary signature of a nontrivial bulk

topology than topological phases that do not rely on the

protection by a crystalline symmetry. Whereas the latter

have a bulk-boundary correspondence involving the crys-

tal’s full boundary, such that a nontrivial topology is

uniquely associated by a gapless boundary state, topologi-

cal crystalline insulators or superconductors may also have

protected gapless boundary states of codimension larger

than one or they may have no boundary signatures at all. In

this work, we provide the formal framework for a classi-

fication of topological crystalline phases that fully accounts

for these different scenarios and provide such a classifica-

tion for topological crystalline phases with an order-two

crystalline symmetry or antisymmetry. This classification

of bulk crystalline phases consists of a subgroup sequence

KðdÞ ⊆ Kðd−1Þ ⊆ � � � ⊆ K, where the subgroup KðnÞ classi-

fies bulk phases with boundary states of codimension larger

than n. The first group in the sequence, KðdÞ classifies those

bulk phases for which no boundary signature exists. Our

classification identifies such phases as d-dimensional

“stacks” of disconnected (zero-dimensional) objects, i.e.,

as an “atomic-limit” insulator. We contrast the subgroup

sequence describing the bulk topology with a classification

of codimension-n boundary states. After dividing out

codimension-n boundary states which can also be obtained

as boundary states of topological phases residing on the

boundary—i.e., after dividing out boundary states that can

be fully attributed to the crystal’s termination—the result-

ing anomalous boundary classifying group K
ðnÞ
a ¼ Kðn−1Þ=

KðnÞ. This is the bulk-boundary correspondence for topo-

logical crystalline insulators.
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A central role in our construction is played by an order-

raising homomorphism, which simultaneously raises the

dimensionality d of the Hamiltonian, the number of inverted

dimensions dk of the order-two crystalline symmetry or

antisymmetry, and the codimension n of the boundary states
(if any). For order-two symmetries, we find that the layer-

stacking construction used in Refs. [48,53,54,63] is a

realization of the order-raising homomorphism. This is an

important observation, since we found the explicit expres-

sion for the order-raising homomorphism ω only for order-

two crystalline (anti)symmetries, whereas the layer-stacking

construction can be applied to arbitrary crystalline (anti)

symmetry, which makes it a valuable tool in obtaining

the anomalous boundary classification of higher-order

topological phases [48]. Finding anomalous boundary

classifying groups is a simpler task [20] compared to finding

the bulk classifying groups [23].

Our algebraic approach allowed us to obtain a full

classification of higher-order phases of topological crys-

talline phases with an order-two crystalline symmetry

without having to analyze each symmetry class in detail.

This “efficiency” of the method also has a disadvantage, as

it does not provide explicit expressions for topological

invariants. Nevertheless, since our approach allows one

to construct canonical-form Hamiltonians for the gener-

ators of the bulk classifying groups, the combined knowl-

edge of the full classification and of the generators can

be used to estimate to what extent topology can be

described by “proxies,” such as the symmetry-based

indicators of Refs. [18,66]. (For example, a single Z2

indicator will provide a full description of a bulk topology

if the classifying group is Z2, but not if it is Z
2

2
or Z.)

Examples of such a procedure are given in Sec. VI.

The relation of our algebraic approach to other classifica-

tion approaches, such as the momentum space Atiyah-

Hirzebruch spectral sequence [24] is still an open question.

The first element in the group sequence, KðdÞ, is zero for

crystalline (anti)symmetries with dk < d. These include

mirror (anti)symmetry in dimensions d ≥ 2 and twofold

rotation (anti)symmetry in dimensions d ≥ 3. On the other

hand, for mirror symmetry with d ¼ 1, twofold rotation

symmetry with d ¼ 2, and inversion symmetry with d ¼ 3,

KðdÞ may be nonzero. A nonzero KðdÞ indicates that there

topological phases with a nontrivial bulk topology but

without topologically protected boundary states. In some

cases, such topologically nontrivial phases without pro-

tected boundary states are characterized by other observ-

able signatures, such as the presence of boundary charges

(not states) [51,67], or quantized electric [32,33,68–70] or

magnetic moments. Such signatures of a nontrivial bulk

topology are not part of the higher-order bulk-boundary

correspondence that we establish here, and it is an

interesting open problem how they can be incorporated.

We hope the results of this work not only bear theoretical

relevance, but will also help experimental efforts [71–73] to

observe some of the rich boundary phenomenology of

crystalline topological insulators and superconductors in

solid-state systems. Currently the list of candidate materials

for a second-order topological insulators consists of tin-

telluride [28], bismuth [44], magnetically doped bismuth

selenide [74] and certain transition metal dichalcogenides

[75]. Our complete classification may facilitate the search

for other material candidates. Finally, we note that in this

work only strong crystalline invariants were considered.

We leave it for future works the study of HOTPs originating

from weak crystalline topological invariants [76], which

would further expand the list of potential solid-state

material candidates.
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APPENDIX A: BULK-BOUNDARY

CORRESPONDENCE

In this Appendix we show that a bulk-boundary corre-

spondence for general topological crystalline phases fol-

lows immediately from the following statement, which has

been proven for the phases with an order-two symmetry S

in the main text: The topological classification of atomic

limits KA is the same as the topological classification of the

bulk phases with no boundary states KðdÞ.

From the above statement, it follows that every topo-

logically nontrivial nonatomic-limit bulk, classified by

K=KðdÞ, needs to have anomalous boundary states of a

certain codimension. Thus, to prove the bulk-boundary

correspondence we need to show that for every anomalous

boundary state of codimension n there is a bulk that is

generating such boundary state. The existence of such bulk

readily follows since each boundary state of given codi-

mension can be generated by embedding a tenfold-way

bulk phase (assuming bulk-boundary correspondence for

the tenfold-way phases) in a topologically trivial bulk. (The

stacking map σ of Sec. V C or the order-raising homo-

morphism ω of Sec. VA are nothing but implementations

of such an embedding procedure.)

To prove the statement that KA ¼ KðdÞ for an arbitrary

symmetry group, it is enough to show that KðdÞ ⊆ KA,

since atomic limits have no boundary states, so that

automatically KA ⊆ KðdÞ. Since a bulk Hamiltonian with

topological invariants from KðdÞ has no boundary states,

we can perform the cutting procedure of Sec. VII of the

main text, to reduce the system to a phase that consists of a

zero-dimensional topologically nontrivial Hamiltonian
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embedded in a topologically trivial bulk—clearly, an

atomic-limit phase, thus KA ¼ KðdÞ.

APPENDIX B: DIMENSION-RAISING

ISOMORPHISMS

The construction of the order-raising homomorphism ω

requires us to include “defect Hamiltonians” Hðk;φÞ into
our classification. Defect Hamiltonians were introduced for

the tenfold-way classes by Teo and Kane [52], and

considered for crystalline topological phases with an

order-two symmetry or antisymmetry by Shiozaki and

Sato [21]. Defect Hamiltonians with a one-dimensional

defect variable φ appear in the algebraic construction of the

order-raising map; see Sec. VA. Following Ref. [21], in

this section we introduce defect Hamiltonians of canonical

form in a slightly more general setting, using defect

variables of arbitrary dimension φ. We proceed with a

discussion of the associated dimension-raising isomor-

phisms κk, κ⊥, ρk, and ρ⊥, as well as the boundary map δ.

Defect Hamiltonians.—We consider families of

Hamiltonians Hðk;φ; mÞ, where the D-dimensional

“defect coordinate” φ ¼ ðφk;φ⊥Þ is defined on a torus

[77]. Denoting the number of “inverted” defect coordinates

as Dk, the family of Hamiltonians Hðk;φ; mÞ transforms

under unitary order-two (anti)symmetry S as

Hðk;φ; mÞ ¼ SHðk;φ; mÞ

≡ σSUSHðSk;Sφ; mÞU−1
S
;

Sk ¼ ð−kk; k⊥Þ;Sφ ¼ ð−φk;φ⊥Þ; ðB1Þ

where kk ¼ ðk1;…; kdkÞ, k⊥ ¼ ðkdkþ1;…; kdÞ, φk ¼

ðφ1;…;φDk
Þ, φ⊥ ¼ ðφDkþ1;…;φDÞ, and we use the

notation of Sec. II. Similarly, antiunitary symmetry

and antisymmetry operations are represented by unitary

matrices US,

Hðk;φ; mÞ ¼ SHðk;φ; mÞ

≡ σSUSH
�ð−Sk;Sφ; mÞU−1

S
: ðB2Þ

Dimension-raising isomorphisms.—The dimension-rais-

ing isomorphisms κk and κ⊥, which increase the dimension

d by one, were introduced in the main text. For defect

Hamiltonians, two additional dimension-raising isomor-

phisms can be defined: The isomorphism ρk, which

increases by one both the defect dimension D and the

number of inverted defect coordinates Dk, and the map ρ⊥,

which changes only the defect dimension D, such that [21]

Kðs; tjd; dk; D;DkÞ¼
ρk
Kðs − 1; t − 1jd; dk; Dþ 1; Dk þ 1Þ;

¼
ρ⊥
Kðs − 1; tjd; dk; Dþ 1; DkÞ; ðB3Þ

for complex and real tenfold-way classes with a crystalline

unitary order-two (anti)symmetry, and

Kðsjd; dk; D;DkÞ¼
ρk
Kðsþ 1jd; dk; Dþ 1; Dk þ 1Þ

¼
ρ⊥
Kðs − 1jd; dk; Dþ 1; DkÞ; ðB4Þ

for complex tenfold-way classes with a crystalline anti-

unitary order-two (anti)symmetry.

The action of these isomorphisms is defined [22,58]

analogously to Eq. (36),

κ½Hðk;φ; mÞ� ¼ Hκðk;φ; mþ 1 − cos k0Þ þ Γκ sin k
0:

ðB5Þ

ρ½Hðk;φ; mÞ� ¼ Hρðk;φ; mþ 1 − cosφ0Þ þ Γρ sinφ
0:

ðB6Þ

If the defect coordinate φ0 is flipped under the resulting

crystalline symmetry, then the (dþ 1)-dimensional defect

coordinate takes the form ðφ0;φÞ, otherwise it is ðφ;φ0Þ.
The form of the mapped Hamiltonian is listed in

Tables XVI–XIX. The additional unitary (anti)symmetry

S transforms as summarized in Tables XXI and XX.

TABLE XVI. The mapped Hamiltonian (B6) and the repre-

sentation of the chiral symmetry C under application of the

dimension-raising isomorphism ρ for the complex tenfold-way

classes.

TF class ðHρ;ΓρÞ ρðUCÞ

A ðτ3H; τ2Þ τ1
AIII ðH;UCÞ � � �

TABLE XVII. The mapped Hamiltonian (B6) and the repre-

sentation of the antiunitary (anti)symmetries T and P under

application of the dimension-raising isomorphism ρ for the real

tenfold-way classes.

TF classes ðHρ;ΓρÞ ρðUT Þ ρðUPÞ

AI, AII ðτ3H; τ2Þ τ3UT τ2UT

BDI, CII ðH;UCÞ UT � � �
D, C ðτ3H; τ2Þ τ1UP τ0UP

DIII, CI ðH;UCÞ � � � UP

TABLE XVIII. The mapped Hamiltonian (B5) and the repre-

sentation of the chiral symmetry C under application of the

dimension-raising isomorphism κ for the complex tenfold-way

classes.

TF class ðHκ;ΓκÞ κðUCÞ

A ðτ3H; τ2Þ τ1
AIII ðH;UCÞ � � �
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As explained in Ref. [21], the introduction of defect

dimensions can be used to define the dimension-raising

isomorphisms for tenfold-way classes with an order-two

antiunitary (anti)symmetry, making use of the fact that

the complex Shiozaki-Sato classes with antiunitary

(anti)symmetry are isomorphic to real tenfold-way classes.

Such an isomorphism is most easily constructed [21] by

noticing that renaming the coordinates ðk⊥;φkÞ → k̃ and

ðφ⊥; kkÞ → φ̃ gives a Hamiltonian in the corresponding

tenfold-way class; see the transformation law (B2). Such a

transformation defines the isomorphism

Kðsjd; dk; D;DkÞ ¼ KTFðsjd − dk þDk; D −Dk þ dÞ:

ðB7Þ

Correspondingly, for the complex Shiozaki-Sato classes

with an antiunitary symmetry the dimension-raising

isomorphisms are defined by first applying the above

isomorphism to a real tenfold-way class, then using Teo

and Kane’s dimension-raising isomorphisms κ and ρ [52],

and then using the inverse of the isomorphism (B7). From

this procedure it is readily seen that for complex Shiozaki-

Sato classes with an antiunitary order-two symmetry one

has, up to the isomorphism (B7),

ρk ¼ κ⊥ ¼ κ; κk ¼ ρ⊥ ¼ ρ: ðB8Þ

Boundary homomorphism δ.—From the definition (35)

of the boundary map δ, we can write the action of the

homomorphism δ∘ρ

δ∘ρ½Hðk;φ; mÞ� ¼ Hρðk;φ; mÞ: ðB9Þ

Together with the definition of Hρ given above this fully

specified the product δ∘ρ.

APPENDIX C: PROPERTIES OF THE

ORDER-RAISING HOMOMORPHISM ω

The explicit expression (34) for the order-raising homo-

morphism ω arises naturally in the context of an exact

sequence containing tenfold-way classifying groups KTF

and Shiozaki-Sato groups K. This exact sequence is a

variant of an exact sequence considered by Turner et al. [6]

and by us [16] for the classification of inversion-symmetric

and mirror-symmetric topological insulators and super-

conductors,

Kðd; dk; D;Dk − 1Þ!
i
KTFðd;DÞ

!
cS
Kðd; dk; D;DkÞ

!
ω
Kðdþ 1; dk þ 1; D;DkÞ

!
i
KTFðdþ 1; DÞ: ðC1Þ

Here, i is the natural homomorphism, in the literature [22]

also called a “symmetry forgetting functor,” that identifies a

member of Shiozaki-Sato group as a member of the

corresponding tenfold-way group, and cS is the homomor-

phism that constructs separable Hamiltonians

cS½H� ¼

�

H 0

0 SH

�

; ðC2Þ

where the symmetry S has dk inverted spatial dimensions

and Dk inverted defect dimensions. The homomorphism ω

is defined by Eq. (34), where—using the more general

definitions of the maps ρk, δ, and κk given in the previous

Appendix—the homomorphism ω appearing here is a map

between defect Hamiltonians.

We first show that exactness of the sequence (C1) leads

to the three properties of the order-raising homomorphism

TABLE XX. The mapped representation of the unitary order-

two (anti)symmetry S under application of the dimension-raising

isomorphisms κk, κ⊥, ρk, and ρ⊥ for the complex tenfold-way

classes. The mapping of the Hamiltonian and the tenfold-way

symmetries is given in Table XVIII.

TF classes S symmetry κk; ρkðUSÞ κ⊥; ρ⊥ðUSÞ

A S τ3US τ0US

AIII Sþ UCUS US

A CS τ1US τ2US

AIII S− US iUCUS

TABLE XXI. The mapped representation of the unitary order-

two (anti)symmetry S under application of the dimension-raising

isomorphisms κk, κ⊥, ρk, and ρ⊥ for the real tenfold-way classes.

The mapping of the Hamiltonian and the tenfold-way symmetries

is given in Table XIX.

TF classes S symmetry κk; ρkðUSÞ κ⊥; ρ⊥ðUSÞ

AI, AII, D;C Sþ;S− τ3US τ0US

AI, AII, D;C CSþ; CS− τ1US τ2US

BDI, CII, DIII, CI Sþþ;S−− UCUS US

BDI, CII, DIII, CI Sþ−;S−þ US UCUS

TABLE XIX. The mapped Hamiltonian (B5) and the repre-

sentation the antiunitary (anti)symmetries T and P under

application of the dimension-raising isomorphism κ for the real

tenfold-way classes.

TF classes ðHκ;ΓκÞ κðUT Þ κðUPÞ

AI, AII ðτ3H; τ2Þ τ0UT τ1UT

BDI, CII ðH;UCÞ � � � UP

D, C ðτ3H; τ2Þ τ2UP τ3UP

DIII, CI ðH;UCÞ UT � � �
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listed in Sec. IV. Exactness of the sequence (C1) will then

be shown at the end of this Appendix.

Properties 1–3 of the order-raising homomorphism.—

The maps in the exact sequence (C1) all preserve the

group operations (i.e., they are homomorphisms), and

the image of every map is the same as the kernel of the

subsequent one. Thus, exactness at KTFðd;DÞ immedi-

ately gives that ωðHÞ is trivial if and only if H is

separable, i.e., H ∈ cS½K�. This proves the first property

of the order-raising homomorphism ω listed in Sec. IV of

the main text.

To prove the second property, we first notice that the

natural homomorphism i commutes with the dimension-

raising isomorphisms, since the latter act the same way on

the Hamiltonians from the tenfold-way and Shiozaki-Sato

classes, see Sec. VI,

i∘χk ¼ χ∘i; i∘χ⊥ ¼ χ∘i; ðC3Þ

with χ ¼ ρ; κ. Exactness of the sequence (C1) at

Kðd; dk; D;DkÞ and KTFðd;DÞ yields the isomorphism

ker ω ¼ img cS

¼ KTFðd;DÞ=KTF;Sðd; dk; D;Dk − 1Þ; ðC4Þ

with kerω ⊆ Kðd; dk; D;DkÞ and i½K� ¼ KTF;S ¼ K=K0.

Because of commutation relations (C3), we conclude

that the dimension-raising isomorphisms preserve the

subgroups KTF;S, and from Eq. (C4) the same applies to

the subgroups kerω. Furthermore, the exactness at

Kðd; dk; D;DkÞ gives

imgω ¼ ker i; ðC5Þ

thus the dimension-raising isomorphisms also preserve

the subgroups imgω. We conclude that the homomor-

phism ω commutes with the dimension-raising isomor-

phisms up to an automorphism of imgω. Since the

groups imgω ¼ K0 are at most Z and AutðZÞ ¼ Z2, the

mentioned automorphism changes at most the sign of

the topological invariants. Such sign change is inessen-

tial and therefore the dimension-raising isomorphisms

preserve the bulk classifying groups of HOTPs KðnÞ.

This proves the second property of the order-raising

homomorphism ω.

We prove the third property using the explicit expression

(34) for the ω homomorphism. First, by comparing the

dimension of a nontrivial ωnðHÞ, where H is a minimal

canonical model [9,21,78], a representative of K=K0 kerω,

to the minimal dimension of the representative of

KðnÞ=Kðnþ1Þ we find that ωnðHÞ is also a minimal canonical

model. We therefore conclude that for a minimal canonical

model H, representative of either KðnÞ=Kðnþ1Þ or

K=K0 kerω, ωðHÞ is also a minimal canonical model.

Next, we show that under the assumption that a minimal

canonical model with n − 1 crystalline-symmetry-breaking

mass terms HðnÞ (for a fixed n) is a representative of

Kðn−1Þ=KðnÞ for n > 1 andK=K0 ker ω for n ¼ 1, ωðHÞ has
n boundary mass terms. Since under these assumptions,

ωðHÞ is a minimal canonical model, the number of its

S-symmetry-breaking mass terms does not change under

the continuous Hamiltonian deformations. It is now a

matter of simple algebra to show that there are no additional

S-symmetry-breaking mass terms beyond the ones given in

Tables XV–XIV; we illustrate how this proof works for

classes BDISþþ ;BDIS−− ;CIISþþ , and CIIS−− . Proofs for the

other symmetry classes are analogous. In order to satisfy

chiral symmetry, the additional mass term needs to be of the

form τ3Mnþ1 which has to anticommute with Mn ¼ τ3UC.

Thus,Mnþ1 anticommutes with UC, which makes it a valid

S-symmetry-breaking mass term of the HðnÞ Hamiltonian,

contradicting the initial assumption on the number of the

crystalline symmetry breaking mass terms. This proves the

first statement of the third property of the ω homomor-

phism. The second statement of the third property directly

follows from exactneses of the sequence (C1) at Kðdþ 1;
dk þ 1; D;DkÞ since ker i consists of those Hamiltonians

that have at least one crystalline-symmetry-breaking

mass term.

Exactness of the sequence (C1).—The exactness of the

sequence (C1) can be proven as follows: Consider a

one-parameter family HðφÞ of a Hamiltonian H from

Kðd; dk; D;Dk − 1Þ, with the order-two symmetry (anti-

symmetry) US acting locally as σSUSHðφÞU†

S
¼ HðφÞ.

This one-parameter family is mapped via the homomor-

phism cS∘i to H0,

H0ðφÞ ¼ HðφÞ ⊕ Hð−φÞ; ðC6Þ

that is, the S symmetry now acts nonlocally on the

coordinate φ. The loop (C6) is a topologically trivial loop.

Alternatively, each topologically trivial loop can be

deformed to the above form with an arbitraryHðφÞ proving
that img i ¼ ker cS.
We next show that every Hamiltonian in ker ω can be

continuously deformed to the diagonal form (C2). Since κk
and ρk are isomorphisms that preserve a diagonal form, it is

sufficient to show that every Hamiltonian in ker δ can be

deformed into the diagonal form. Here, to we note that

δðHÞ ¼ 0 implies thatHð0Þ andHðπÞ are both in the trivial
equivalence class (nontrivial Hð0Þ ¼ HðπÞ would corre-

spond to a weak topological phase, which we do not

consider here), for which after continuous deformation, we

may set Hð0Þ ¼ HðπÞ ¼ e, e being the trivial element.

Under stable equivalence we may replaceHðφÞ byHðφÞ ⊕
e which may be smoothly deformed into
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HðφÞ≡

�

HðφÞ ⊕ e for 0 ≤ φ < π

e ⊕ HðφÞ for π ≤ φ < 2π;
ðC7Þ

and subsequently, into a Hamiltonian of the form (C2),

since ρkSρ
−1

k Hð2π − φÞ ¼ HðφÞ. As the procedure can

be run backwards we conclude ker ω ¼ imgcS giving

the exactness of the sequence (C1) at Kðd; dk; D;DkÞ.

Figure 11(a) illustrates the above steps of the proof.

Similarly, because κk is an isomorphism, to show exact-

ness at the second stage of the sequence (C1) it is sufficient

to show that any element of img δ can be smoothly

deformed to the trivial element e if the crystalline symmetry

ρkSρ
−1

k is no longer imposed, and vice versa; see Fig. 11(b).

Again, we may assume that Hð0Þ ¼ e, and the continuous

deformation linking HðπÞ⊖Hð0Þ to e⊖e is HðφÞ⊖Hð0Þ
with 0 < φ < π. Similarly, if such a transformation

exists, i.e., if there exists a continuous function H̃ðφÞ ¼
HðφÞ⊖Hð0Þ interpolating between Hð0Þ⊖Hð0Þ and

HðπÞ⊖Hð0Þ, then there also exists a family of ρkSρ
−1

k -

symmetric Hamiltonians

HðφÞ≡

�

HðφÞ for 0 ≤ φ < π

Hð2π − φÞ for π ≤ φ < 2π;
ðC8Þ

such that H̃ðφÞ ¼ HðφÞ⊖Hð0Þ.

APPENDIX D: CALCULATION

OF ker ω
k AND KTF;S

Because the order-raising map ω commutes with the

isomorphisms κk and κ⊥ it is sufficient to calculate

the groups ker ω and KTF;O for the case d ¼ dk ¼ 0.

The results for d ¼ 0 can be lifted to d > 0 by suitable

application of the dimension-raising isomorphisms κk and

κ⊥. To obtain ker ω for d ¼ 0 we note that the bulk-

boundary correspondence (2) then gives

K0ð1; 1Þ ¼ K00
a ¼ Kð0; 0Þ= ker ω; ðD1Þ

whereas KTF;S can be obtained from the isomorphism (C4).

For most symmetry classes these two relations are suffi-

cient to determine ker ω and KTF;S from the known groups

[21] K and [30,41] K0, owing to the simple structure of

these groups. There are a few cases for which both K0 and

ker ω are nontrivial and nonunique subgroups of K. For
these an explicit calculation is needed. These special cases

are considered below. The results for the groups ker ω and

KTF;O for d ¼ 0 are given in Tables XXII–XXIV and

XXV–XXVII, respectively.

1. Classes AO, ðs;tÞ= ð0;0Þ;AIO + , ðs;tÞ= ð0;0Þ
and AIIO+ , ðs;tÞ= ð4;0Þ

A zero-dimensional Hamiltonian H0 in classes A and AI

with an order-two on-site symmetry O is classified by

K ¼ fðnþ; n−Þ; nþ; n− ∈ Zg ¼ Z
2; ðD2Þ

where n� is the difference between the number of positive

and negative energy levels of H0 with � parity under O

symmetry. In class AII, due to Kramers degeneracy, the

integers n� need to be even. Since the local symmetry O

commutes with the time-reversal symmetry (class AI), the

subgroups ker i and ker ω are easily obtained,

ker i ¼ fðn;−nÞ; n ∈ Zg ¼ Z;

ker ω ¼ fðn; nÞ; n ∈ Zg ¼ Z; ðD3Þ

since Hamiltonians with nþ ¼ n− ¼ n can be deformed

into a separable Hamiltonian, whereas Hamiltonians with

nþ þ n− ¼ 0 are trivial when the protection by the on-site

symmetry O is lifted.

2. Classes BDIO + + , ðs;tÞ= ð1;0Þ and DO+ , ðs;tÞ= ð2;0Þ

Hamiltonians H from these classes are classified by

K ¼ fðnþ; n−Þ; n� ∈ Z2g ¼ Z
2

2
; ðD4Þ

with n� ¼ sign½PfðH�Þ�, where H� is the block of the

Hamiltonian H with � parity under O. The Hamiltonian H

(a)

(b)

FIG. 11. Hamiltonians from kerω can be deformed to the

form (C2) and vice versa (a). For Hamiltonians from imgω, a

path can be constructed that connects them to the trivial

element (b). Similarly for every Hamiltonian in ker i, the loop

in canonical form can be constructed that yields H from

imgω.

TABLE XXII. The subgroups kerωk ⊆ Kðs; tj0; 0; 0; 0Þ for

complex Shiozaki-Sato classes with a unitary order-two (anti)

symmetry.

s TF class t ¼ 0 t ¼ 1

0 A Z 0

1 AIII 0 0
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is taken in a basis where particle-hole antisymmetry is

represented by UP ¼ 1. In this class, the subgroups ker i
and ker ω are identical,

ker i ¼ fðn; nÞ; n ∈ Z2g ¼ Z2;

ker ω ¼ fðn; nÞ; n ∈ Z2g ¼ Z2: ðD5Þ
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