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Higher Order Compact Implicit Schemes

for the Wave Equation *

By Melvyn Ciment and Stephen H. Leventhal**

Abstract.   Higher order finite-difference techniques have associated large star systems

which engender complications near the boundary. In the numerical solution of hyper-

bolic equations, such boundary conditions require careful treatment since errors or

instabilities generated there will in general pollute the entire calculation.   To circum-

vent this difficulty, we use a class of implicit schemes suggested by H.-O. Kreiss,

which achieves the highest order of accuracy possible on the smallest (most compact)

mesh system.   Here we develop a scheme which approximates the wave equation,

Un = a(x, y, t)Uxx + b(x, y, t)Uyy,

with fourth order accuracy in space and time.   After an appropriate factorization,

the resulting set of equations are tridiagonal and hence easily solved.   The tridiag-

onal nature also indicates that the boundary conditions do not create special dif-

ficulties.   Numerical experiments demonstrate the expected order of convergence

and fulfill our expectations on the treatment of boundary conditions.   An exper-

imental computation also demonstrates that our results hold on L-shaped domains.

I. Introduction.  The design of higher order accurate finite-difference methods

for hyperbolic equations is complicated by the need to provide stable schemes which

are efficient with respect to operation count and which do not experience difficulties

near the boundaries.  This last point is especially important to bear in mind when one

employs higher order schemes, which characteristically have a large number of mesh

points in the associated star of each point.  For the second order wave equation, most

of the work to date has been involved with second order methods as these will not

require fictitious boundary points.  Second order methods include the classical second

order explicit method [2], and the implicit schemes of von Neumann and Lees [3].

These implicit methods were developed because of their favorable stability condition.

Lees [3] devised an alternating direction (ADI) type modification of von Neumann's

method which allows one to solve multi-dimensional problems by solving tridiagonal

equations.

In this paper, we describe a fourth order implicit scheme.  Aside from the higher

order accuracy, the most important features of our method is the fact that we solve

only tridiagonal equations and that fictitious points are not needed at each time step

along the boundary.  Our scheme is a modification of a class of implicit difference
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986 MELVYN CIMENT AND STEPHEN H. LEVENTHAL

approximations suggested by Kreiss which achieve highest order of accuracy possible on

the smallest (most compact) mesh system.  Here we treat the wave equation

Utt = a(x, y, t)Uxx 4 b(x, y, t)Uyy

with fourth order accuracy in space and time on a star which yields tridiagonal equa-

tions.  Our method closely resembles the work of McKee [4] who claimed to have

achieved a fourth order space and time ADI type scheme for the above equation. How-

ever, the published version of McKee [4] contains errors which make his equations

only second order for time dependent coefficients.  McKee has personally communi-

cated his corrected equations to us and plans to publish an erratum.  Before his cor-

rected equations were known to us, we had already provided a fourth order scheme.

Our derivation in the time-dependent case resulted in an algorithm somewhat more

complicated than McKee's.  However, we are able to achieve an ADI factorization and

arrange the remaining computations in such a way that ultimately one only needs 13

operations (multiply or divide) per grid point in solving the implicit equations at each

time step.  Moreover, McKee reports that his method is unstable for time-dependent

coefficients, whereas our method appears to be stable in all cases tested and numb

results are presented to bear this out.

Our scheme is an ADI type factorization which requires no commutation and

thus should not be expected to suffer from the defects associated with some ADI

schemes which are limited to rectangular regions as in the elliptic case [6].  We present

a computation on an L-shaped domain which shows that our method can be extended

to more general domains and retain fourth order convergence.

II. Derivation of the Algorithm. A fourth order finite-difference approximation

to a second derivative Uxx can be obtained by using the five-point explicit difference

formula

(2.1) \I-f2    f2Ui = Uxx4 0(h*),
h¿

where S^U- = £/+1 - 2{/. + f/_1 represents the usual second central difference and

h is the mesh size in the x direction.

Consider approximating the wave equation Utt = Uxx, using a fourth order ex-

plicit scheme in its most obvious form.  This would involve differencing over five time

levels and five spatial points; namely, let W denote an approximation  to £/(x.-, t"), then

where x, = jh and t" = nk and where h and k are the spatial and temporal grids, re-

spectively.  Aside from the fact that this scheme is unconditionally unstable, there still

would be a problem of providing a fictitious point near the boundary.  In this paper

we follow a suggestion of Kreiss, cited in Orszag [5], as to how to construct higher or-

der compact difference approximations which reduces the number of fictitious points

needed near the boundary.  They note that by using a Neumann series expansion that
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(2-2) flST'-t' + T?;/     - \( - I) + Ö(Ä4).

Substituting (2.2) into (2.1) we obtain

(2.3) {I4^J      -±u. = uxx4 0(h*).

The approximation to Uxx is obtained by solving

(2.4) ^j^=^' + °(n

Since (2.4) is a tridiagonal system the problem of fictitious points for £/• does not

arise. However, one must have boundary values for Uxx. How this is handled depends

on the analytical circumstances of the problem and will be discussed for our specific

case in Section IV.

Let us now formally apply the above implicit difference approximations to the

derivatives occurring in the following initial boundary value problem for the two-di-

mensional wave equation

U„ = a(x, y, t)Uxx 4 b(x, y, t)Uyy   in £2,

(2-5) U(x,y,0)=f(x,y)l

Ut(x,y,0)=g(x,y)\'

U(x, y, t) = h(x, y, t),      (x, y) E bSl,

where a(x, y, t) > 0, b(x, y, t) > 0, £2 is a rectangle in R2axxd 9Í2 is its boundary. We

divide £2 x [0, T] into a rectangular mesh with mesh spacings h, k in space and time,

respectively. Direct application of (2.3) yields

(2.6) QT'^m =°"mQ-x1 hf2U"rn+Kn,Q-yl~2Uf¡m,

where the/, m, and n indices represent displacements in x, y, and t directions, respectively,

and Qx, Q , and Qt are defined as in (2.2).

The approximation represented by (2.6) has truncation error 0(h4 4 k4). How-

ever, (2.6) as it stands, seems to suggest that a large number of operations are needed to

solve the implicit equations. Clearly, if one could factor the difference operators into the

separate spatial variables, then it would only be necessary to solve tridiagonal equations.

Here we provide a simple stable ADI type factorization (of a modified equation (2.6))

which remains tridiagonally implicit in its one-dimensional factors. It appears that McKee's

corrected equations result in a factored explicit scheme which, unfortunately, is unstable

for time-dependent coefficients [4]. Below, we give a simple factorization which is correct

for time-dependent   coefficients. Modify (2.6) in the following manner:
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c2 c2 c2

(2.7) *
k* 8? r &l «îl

-—CT1 — la-1   0~x — ¿>?   0~x — \U?
144 «i        2 ^/,m^x     h2DI,mVy    ^^l.m-

The term added on in (2.7) is an 0(fc4) term; therefore, the accuracy of the method

is unchanged.

Multiplying (2.7) by Qt we obtain

(2.8)

s?[/-f^^ô,-15^][/-^/:mô;1s^%

= *KmQ-xl*l+blmQyXfyU»n

or

2+1

,m

(2.9)

+ *2KmQ;1t2x + b»mQ-x82y]U£m,

where X — k/h.

The numerical implementation of (2.9) is discussed in Section IV. However, let us

note the following:

1. The left-hand side of (2.9) is a factorization into x and y differences which allows

us to solve (2.9) by sweeping first in the x and then in the y directions. It will be seen

that these sweeps only require the solution of tridiagonal systems.

2. The intermediate boundary conditions necessary for the sweeps are easily ob-

tained using the differential equation and the analytic representation of the difference

formulas.

3. The right-hand side of (2.9) is computed as a combination of the two previous

right-hand sides, the previous intermediate step, and one tridiagonal sweep.

4. The previous remarks are all easily seen to hold for the obvious generalization to

three space dimensions.

III. Stability Analysis. For completeness we include the stability analysis of (2.7)

(see [1 ] -for case a -b = 1) for the case of constant coefficients a and b. That the scheme

is stable for the case of nonconstant coefficients will be apparent from the numerical ex-

amples in Section V.

To analyze stability, one substitutes a solution of the form Ifjm = p"e'/9eim* into

the difference equation (2.7). Observing that the implicit scheme is three-level in time, one

obtains a quadratic in p
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(3.1) p2+r-2(. + flZ,X4)+10XV^s)-|p+i=0)

L    (rs 4 X4ab) 4 \2(ar 4 bs)    J

where r = (5 + cos 0)/(l - cos 0), and s = (5 + cos 0)/(l - cos 0).  It is clear that for

the above real polynomial, since the product of the roots is one, that the necessary and

sufficient condition for stability is that the discriminant be nonpositive.

This leads to the condition

(3.2) ab\4 - 2\2iar 4bs)4rs>0,

on X and assures that \p\ = 1.  The above quadratic inequality on X2 holds for all 9

and 4> if X2 is less than the smallest X2 root obtained by taking equality in (3.2).  This

implies that

If we set c = max(a, b), then one observes that this last inequality certainly still

holds if one replaces a given a or b by c.  Since the case when the three are all equal

(a = b = c) is possible, it is thus necessary and sufficient for stability that

(3.4) X2 < - + - - Vr2 4rs4s2.v     ' c      c     cv

Now by definition, 2 < r, s < °°.  Inspection reveals that the minimum is assumed at

(2,2). Thus we have for stability

cX2 < 4 - y/ñ = 2(2 - V3)

or

(3.5) N/c:X<\/2(2-V3) = \/3-l.

IV. Numerical Implementation.  The major features to be discussed in the num-

erical implementation of (2.9) are the splitting of the left-hand side for the x and y

sweeps, the computation of the right-hand side, the computation of intermediate bound-

ary conditions, and the initialization of the procedure.

Defining

(4-la) Z^x = \l-^bl+mxQyxb^Uf;mx,

then (2.9) becomes

(4.1b) [/-gtí,C,8í]Ci,-C5JÍ,I

where G?+x is the right-hand side of (2.9).

Dividing (4.1b) by ¿r"^1 and then multiplying by Qx, the solving of (4.1b) re-

duces to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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which only requires the solution of a tridiagonal system for each m.

Similarly, reduce (4.1a) to solving a tridiagonal system for each/ by dividing by

b"^x and then multiplying by Q   to obtain

Note that the right-hand side of (2.9) is G"+!.  Thus,

_[/_ *1 an-i o-x82~\\i - — ̂ -1o-1s2l m~x

+ ^K,mQx^2x+b"mQ;xô2y]uj-tm

- 2V,m - G^-1 4- X^fl^i» + blmQ;xo2y]U»m.

Hence, the first two terms in Gfmx are known from previous time steps and need not

be computed.  Also known from the previous time step is that

1?
-lz2TTn      - (ijn     _ 7n   -j_¿£

X2
(4.4) WU^KmQ-y   byU"m = (<£« ̂ /V"

Thus, it is only necessary to compute

(4-5) Vlm=Qrxxh2xUlm,

i.e., we solve the tridiagonal system,

(4-6) QxV?,m=t>lUfim,

for each m.

From (4.2a), (4.3), (4.4), and (4.6) we see that the intermediate boundary con-

ditions that must be computed are for Z"*1 and V?.  From (4.1b) and (4.5) it is

clear that Z?m x  and   K"TO are respectively approximations to

k2
Y2 bix, y, t)UyyZ(x, y, t) = Uix, y,t)-jA7 bix, y, t)Uvv 4 Oik2h4)

and

V(x, y, t) = h2Uxxix, y, t) 4 Oih6).

To solve for the Z."m and K."„ values, it is sufficient to approximate t/vv and {/„„ on

the boundary up to fourth order of accuracy.

On y = constant lines £/vv may be computed from (4.6); however, t/vv may not

be computed. Similarly on x = constant lines Uxx is not computable and U may be

computed by solving the tridiagonal system

S2
U    = QZX —U?
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However, on both these lines Utt may be computed.  Therefore, on y = constant Unes

U    is obtained from the formula

uyy = (utt - <x> y> t)Uxx)lb(x, y, t),

and on x = constant lines Uxx is obtained from

Uxx = (Utt - b(x, y, t)Uyy)/a(x, y, t).

The above computation of Uxx and Uyy on / = constant and x = constant lines re-

quires the value of these functions at the corners.  These corner values are obtained by

using the fourth order explicit difference formula (2.1) and then a fourth order extrap-

olation at the two fictitious points required in (2.1).   Thus a fourth order approxima-

tion at the corner of Uxx and U    requires six points.

As initial conditions for this problem, we are given the value of U and Ut at t = 0.

From these values there are many ways (e.g. Taylor series) to obtain a fourth order ap-

proximation to U at t = Ar.  Therefore, assume that U is known at t = 0 and t = Ai.

The problem of initialization is the one of computing the right-hand side G2m, i.e.,

Glrn=2[I-\j4rnQ:^l][-^KmQ;Xoy]uXm

-\j-^^mQ:^x][i-%^mQ;xs2y]u^

+ ^KmQx^l+blmQyxb2y]Ulr

(4.7)

Jl,m-

It is necessary to compute the last term of (4.7) on every time step, so the pro-

cedure for doing this is the same as described above in (4.4)-(4.6).  The first and sec-

ond terms, Gj m and Gfm, are computed in the same fashion, thus it is only necessary

to discuss the first term Gjm.  This term is computed in the opposite way to (4.1), i.e.,

Uxm is known and we want to compute

(4-8) Gxm = [l-^Q^S^ll-^b^Q^U^.

Noting the definition of Wxm and Vjm, (4.4) and (4.5), we see that by computing

these terms separately that

Í49) Gx    =Ur    - — a1    V)    -—Wy    4 — a1   0_152^?
\-r.jj ¡,m i,m       ]2   J.m   ],m       j2     I,m       \44   J.m^x   "x"),m-

Thus we only have to compute (X4/144)(z/?m(2j152H'/|m, which requires the solution

of a tridiagonal system.  The boundary conditions for this system are obtained by

appealing to the corresponding analytical expression as was done previously for Z"m

and F"m above.  For consistency one should use fourth order accurate boundary con-

ditions; however, for convenience on the initial step, only second order accurate meth-

ods were used.  This did not change the order of accuracy of the method in the cal-

culations we performed.

Let us perform an operation (multiply and divide) count per time step for the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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solving of (2.9).  Let J and M be the number of x and y unknown grid points, respec-

tively.  For the computation of F"m there are M backsolves, each of which requires

(see [2]) 3J - 2 operations.  Solving (4.2a) requires M decompositions and backsolves

each of which takes 5/ - 4 operations.  Similarly, (4.2b) requires Y(5Af - 4) operations.

Finally, the computation of the boundary conditions requires 2 backsolves with 3/ - 2

operations and 2 backsolves with 3M - 2 operations.  Thus, the total number of opera-

tions is 13J • M 42J-8.

V. Numerical Examples.   In this section we present three examples demonstrating

the fourth order accuracy, the effectiveness, and the stability of the method.  The first

example was also presented by McKee [4]. We compare our results to his. However,

we are unable to explain the different stability characteristics of the two methods.  In

the second example the solution grows exponentially with time; however, we shall see

that the fourth order accuracy and the stability of the method are retained.  Finally,

the second example is repeated on an L-shaped domain.

Example 5.1.  Let £2 be defined by \fh. < x, y < 1] and let us define the coef-

ficients, initial conditions, and boundary conditions of (2.5) by

a(*, y) = }¿(1 - sin* sin;'),

bix, y) = cot2* - cot* sin.y cos* + sin* sin.y,

fix, y) = 0,

g(x, y) = sin2* sin.y,

h(x, y, t) = sin2* sinjp sini on 9£2.

The exact solution is

u(x, y, t) = sin2* sin y sin t.

The first experiment shows the OQi4 4 k4) accuracy of the method.  First the

problem was solved with k — h\2 = .05 then with k = h/2 = .025.  The fourth order

accuracy predicts a factor sixteen decrease in the error.  The results of this experiment

showing the fourth order convergence are in Table 5.1.

#TIME
STEPS

L2-ERROR       ¿2-RATE   MAX-ERROR   MAX-RATE

15

30

.1

.05

.05

.025

2.361129-09

1.359418-10
4.1184

1.25968-08

6.75579-10
4.2207

20

40

.1

.05

.05

.025

4.610927-09

1.870124-10
4.6238

1.92659-08

8.7666-10
4.4534

30

60

.1

.05

.05

.025

4.496657-09

2.193196-10
4.3577

2.3732-08

9.8161-10
4.5980

Table 5.1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HIGHER ORDER COMPACT IMPLICIT SCHEMES 993

In verifying the accuracy of (2.9) as compared to McKee's method, we see that for

X = .5 and 200 time steps (i.e., h = .05, k = .025, T = 5) McKee had an absolute max-

imum relative error of 2 x 10~8 while (2.9) had an absolute maximum relative error of

3.4 x 10-9.

McKee warns the user that his method has a possible weak instability and an ex-

ponential instability when the coefficients depend on time.  McKee does not indicate in

what type of situations this occurs.  For the example which we considered below, (2.9)

does not seem to possess time-dependent instabilities.

Example 5.2.  Let £2 be defined as above and let us define

*2 v2
a(x, y, t) = _   _ ^„ ,      b(x, y, t)

/(*, y) = e= es*y

2(i+5)2' '   '        2(/ + 5)2'

g(x, y) = xye5xy,      h(x, y, t) = e^<f+5)    on 3£2.

The exact solution to (2.5) with the above conditions is U(x, y, t) = exy(-t+s\

Similar experiments to those that were run in Example 5.1 were run for this

problem to study the accuracy and stability.  The results are in Table 5.2.  However,

due to the size of the solution, we are concerned with maximum relative error.

#TIME
STEPS

¿2-ERROR L2-RATE RELATIVE
MAX-ERROR

RELATIVE
MAX-RATE

10 .1 .06

20 .05 .03

40       .025 .015

5.904951-04

1.828673-05

1.136046-06

5.0130

4.0087

6.13764-05

1.5200-06

1.1886-07

5.3355

3.6767

Table 5.2

Example 5.3.  ADI type methods that require commutation of difference opera-

tors have been limited to rectangular domains [6].  However, no commutation of oper-

ators occurred in the derivation of (2.9), hence (2.9) is still fourth order on nonrectang-

ular domains.  In order to test our method in a region where the solution has large

truncation error near the reentrant corner, we define £2 as the ¿-shaped domain derived

by taking the rectangle [1. < *, y < 1.5] and removing the rectangle [1.25 < *, y < 1.5].

Let us solve for the same solution as in Example 5.2.  Table 5.3 shows that the fourth

order accuracy still holds on the L-shaped region.

#TIME
STEPS

L2ERROR L2-RATE RELATIVE
MAX-ERROR

RELATIVE
MAX-RATE

100    .05      .03

200    .025    .015

400    .0125  .0075

1.375034-01

6.0967-01

4.0108-02

4.49

3.92

1.0267-03

1.1451-05

5.5963-07

6.49

4.35

Table 5.3
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VI. Conclusion and Remarks.   The type of factorization given in (2.9) may be

achieved also when the equation (2.5) contains lower order terms, i.e.,

Utt = a(x, y, t)Uxx 4 b(x, y, t)U    4 c(x, y, t)Ux

(6.1)
+ d(x, y, t)Uy 4 e(x, y, t)U.

As in Section II for second derivatives it is easy to see that the difference operator

«îV1 So
I + l>)    Thui>

is a fourth order approximation to Ux, where 5qC/- = (t/.+ 1 - i//_1)/2 is the first

central difference.  Denoting (I + 52/6) and (/ + 52/6) by Rx and R    respectively, one

obtains the following fourth order in time and space difference approximation to (6.1).

§2r^m(7 - \2almQxxb2x)(I - \2h-clmRxX)

• (i-x2^mQ;xo2y)(i-\2hdimR;loy)if¡m

(6'2)       - *&UQ;l*l + nmQy^2y + KmR-xlK + hdlmR;Hiyuf>m,

(      k2       \ 1
where T"m = ( 1 - -rx e"m) and where symbol = -pr- • symbol.

Details on intermediate boundary conditions still must be looked into for (6.2).

In general, (2.9) represents a highly accurate stable method for the solution of second

order wave equations.  Extension of these ideas to equations with lower order terms are

now in progress.
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