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Abstract

We extend recent higher order concentration results in the discrete setting to include
functions of possibly dependent variables whose distribution (on the product space)
satisfies a logarithmic Sobolev inequality with respect to a difference operator that
arises from Glauber type dynamics. Examples include the Ising model on a graph with
n sites with general, but weak interactions (i.e. in the Dobrushin uniqueness regime),
for which we prove concentration results of homogeneous polynomials, as well as
random permutations, and slices of the hypercube with dynamics given by either the
Bernoulli-Laplace or the symmetric simple exclusion processes.
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1 Introduction

In this article, we study higher order versions of the concentration of measure
phenomenon for functions of random variables X1, . . . , Xn defined on some probability
space (Ω,A,P) with values in some Polish space Xi : Ω→ Si which are not necessarily
independent. The term higher order shall emphasize that we prove tail estimates for
functions with possibly non-bounded first order differences, or functions for which the
L∞ norm of its differences increases with the size of the system, even after a proper
normalization, such as quadratic forms.

To formalize this intuition we consider certain difference operators. By a difference
operator we mean an operator Γ : L∞(µ) → L∞(µ) for some probability measure µ

satisfying Γ(af + b) = |a|Γ(f) for b ∈ R and either a > 0 or a ∈ R (note that this is
usually not a linear operator in the language of functional analysis). The restriction
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Higher order concentration for functions of weakly dependent random variables

f ∈ L∞(µ) is merely a minimal requirement, and in the cases that we will consider in
the applications (i.e. finite probability spaces) L∞(µ) is the space of all functions. Here,
µ is the distribution of X := (X1, . . . , Xn) on S := ×ni=1Si.

In this work, we will mainly consider two specific difference operators, for which
we use the following notation. For a vector x = (x1, . . . , xn) and I ⊂ {1, . . . , n} we write
xI := (xi)i∈I and xIc := (xi)i/∈I . If I = {j} for some j ∈ {1, . . . , n} we abbreviate it as
xj and xjc . Now, consider some set of subsets of {1, . . . , n}, denoted by I. Given any
subset I ∈ I let µ( · | xIc) be the regular conditional probability (see Proposition 2.1 for
an existence statement), and define

dIf(x) :=

(
1

2

∫
(f(x)− f(xIc , yI))

2dµ(yI | xIc)

)1/2

hIf(x) :=
1√
2
‖f(xIc , yI)− f(xIc , zI)‖L∞(µ( ·|xIc )⊗µ( ·|xIc )(yI ,zI)).

We let df = (dIf)I∈I and hf = (hIf)I∈I to obtain a vector of “partial derivatives” indexed
by I. Now, for either d or h, we define a difference operator by setting Γ(f) = |df | or
Γ(f) = |hf | for the Euclidean norm |·| and call it the associated operator to (d, I) or (h, I)

respectively. Using h, it is possible to define higher order difference operators h(d) for
any d ≥ 2 as follows. For any I1, . . . , Id ∈ I set

hI1...Idf = hI1(hI2...Idf), (1.1)

and define the tensor of d-th order differences h(d)f(x) with coordinates hI1...Idf(x)

(here, a (d-)tensor is simply a vector indexed by Id). Again, we define |h(d)f(x)| as the
Euclidean norm. For instance, |hf(x)| is just the Euclidean norm of the “gradient” hf(x),
and |h(2)f(x)| is the Hilbert–Schmidt norm of the “Hessian” h(2)f(x). Additionally, we
will use the notation ‖f‖p for the p-norm of a function f (with respect to a measure µ
which is clear from the context) and write

‖h(d)f‖p :=
(
Eµ|h(d)f |p

)1/p
for any p ∈ (0,∞] (for p =∞ this is the essential supremum with respect to µ).

Next let us recall the notion of a Poincaré inequality and a logarithmic Sobolev
inequality in the framework of difference operators. We say that µ satisfies a Poincaré
inequality with constant σ2 > 0 with respect to some difference operator Γ (in short:
PIΓ(σ2)) if for all f ∈ L∞(µ)

Varµ(f) ≤ σ2Eµ(Γf)2, (1.2)

where Varµ(f) = Eµf
2 − (Eµf)2 is the variance functional. µ is said to satisfy a logarith-

mic Sobolev inequality with constant σ2 > 0 with respect to some difference operator Γ

(in short: LSIΓ(σ2)) if for all f ∈ L∞(µ)

Entµ(f2) ≤ 2σ2Eµ(Γf)2. (1.3)

Here, we denote by Entµ(f) := Ent(f) := Eµf log f − Eµf logEµf ∈ [0,∞] the entropy
functional defined for nonnegative functions.

It is well known that logarithmic Sobolev inequalities are stronger than Poincaré
inequalities, i.e. if µ satisfies LSIΓ(σ2), it also satisfies a PIΓ(σ2), see for example [3] in
the context of Markov semigroups, [14, Lemma 3.1] in the framework of Markov chains,
or [8, Proposition 3.6], where also modified logarithmic Sobolev inequalities have been
considered. We shall tacitly use this implication.

We formulate a general concentration result in Section 1.2 which may be applied
to functions of the spins in Ising models, of random permutations and on slices of the
hypercube. We start with an application to the Ising model with general interactions.
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Higher order concentration for functions of weakly dependent random variables

1.1 Ising model

In the special case of the Ising model qn on n sites the difference operator under
consideration can be written as

|df |(σ) =
(1

2

n∑
i=1

(f(σ)− f(Tiσ))2qn(−σi | σic)
)1/2

for σ ∈ {−1,+1}n,

where Tiσ = (σic ,−σi) is the switch operator of the i-th spin and qn(· | σic) is the
conditional probability. Additionally, we have

|hf |(σ) =
(1

2

n∑
i=1

(f(σ)− f(Tiσ))2
)1/2

.

The first result establishes a logarithmic Sobolev inequality for qn and might be of
independent interest.

Proposition 1.1. Let qn be the probability measure on {−1,+1}n defined by normal-
izing π(σ) = exp( 1

2

∑
i,j Jijσiσj +

∑n
i=1 hiσi), where maxi=1,...,n|hi| ≤ α̃ and J = (Jij) is

symmetric, satisfies Jii = 0 and

‖J‖`∞→`∞ = max
i=1,...,n

n∑
j=1

|Jij | ≤ 1− α. (1.4)

There is a constant C = C(α, α̃) such that for any f : {−1,+1}n → R

Entqn(f2) ≤ 2C Eqn |df |2. (1.5)

Moreover, for any f and p ≥ 2 it holds

‖f‖2p − ‖f‖
2
2 ≤ 2C(p− 2)‖hf‖2p. (1.6)

Equation (1.5) is a generalization of the LSI on {−1,+1}n equipped with the uniform
measure, which corresponds to the Ising model with J = 0 and h = 0. In general, the case
J = 0 yields n independent random variables σ1, . . . , σn with P(σi = 1) = 1

2 (1 + tanh(hi)).
Thus a uniform bound on ‖h‖∞ is necessary in order for the logarithmic Sobolev constant
to be stable, see e.g. [14, Theorem A.1], and there cannot be an α̃-independent constant
C. Condition (1.4) appears in various contexts, we shall call it Dobrushin uniqueness
condition (see for example [17, equations (2.1) and (2.2)]). The Dobrushin uniqueness
condition implies an approximate tensorization result, which is central for our proof.

In a series of papers [28, 26, 25] B. Zegarlinski and D. Stroock have established the
equivalence of the logarithmic Sobolev inequality and the so-called Dobrushin–Shlosman
mixing condition on {−1,+1}Zd

. Here we prove one implication using an approximate
tensorization result by K. Marton [20] for the easier case {−1,+1}n.

From an iteration procedure we obtain the following theorem establishing tail es-
timates for functions of spins in the Ising model with bounded differences of higher
order.

Theorem 1.2. Let d ∈ N, qn as in Proposition 1.1 and f : {−1,+1}n → R. Assuming the
conditions

‖h(k)f‖2 ≤ 1 for all k = 1, . . . , d− 1 (1.7)

‖h(d)f‖∞ ≤ 1, (1.8)

there exists some constant C = C(α, α̃, d) > 0 such that

Eqn exp
(
C|f − Eqn f |2/d

)
≤ 2.
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Especially we have

qn(|f − Eqn f | ≥ t) ≤ 2 exp
(
−Ct2/d

)
.

As an application, one can show concentration results for homogeneous polynomials
of spins in the Ising model with bounded coefficients as follows. To begin with, let us
consider the case with h = 0.

Theorem 1.3. Let d ∈ N, qn be an Ising model as in Proposition 1.1 with h = 0. There is
a constant c = c(d, α) > 0 such that for any d-tensor A = (aI)|I|=d the d-homogeneous
polynomial f(σ) =

∑
|I|=d aI

∏
i∈I σi =:

∑
|I|=d aIσI satisfies for all t > 0

qn(|f − Eqn f | ≥ t) ≤ 2 exp
(
− t2/d

cn‖A‖2/d∞

)
. (1.9)

This result improves upon [15, Theorem 1] as well as on [11, Theorem 5] by removing
the logarithmic dependence in the exponential. More precisely, in [15] it is shown that
for some weakly dependent Ising models π without external field (for example, under
(1.4)), every degree d polynomial f with coefficients in [−K,K] satisfies

π
(
|f − Eπ f | ≥ t

)
≤ Cnd

2

exp
(
− t2/d

CnK2/d

)
.

Similar concentration inequalities have been proven in [11]; given a degree d multilinear
polynomial f in the spin variables of an Ising model π (in an α-high temperature regime
without external field, i.e. for models satisfying (1.4)) with coefficients in [−K,K], [11,
Theorem 5] states that there are two constants such that for any t ≥ CK(n log2 n)d/2 we
have

π
(
|f − Eπ f | ≥ t

)
≤ 2 exp

(
− αt2/d

CK2/dn log n

)
.

In contrast, (1.9) is optimal in terms of the dependence on n and with respect to
the power of t. To see this, note that the uniform measure µ = ⊗ni=1

1
2 (δ−1 + δ+1) can

also be interpreted as an Ising model. In this case, for the tensor A = (ai1,...,id) with
entries ai1,...,id = 1 if i1 6= . . . 6= id and 0, else, we have Var(f) ∼ nd, so that f needs to be
normalized by n−d/2. Regarding the power of t, the invariance principle in [22, Theorem
2.1] shows that for the same multilinear form f as above the distributions of f(X) and
f(G) for a Gaussian vector G are close in Kolmogorov distance. On the other hand, the
behavior of a Gaussian chaos is known (see e.g. [18]). Consequently, the decay t2/d is
the correct one for large values of t.

By subtracting certain lower-order polynomials from the multilinear forms, we can
moreover provide some possibly sharper estimates involving Hilbert–Schmidt norms.
Here we also consider Ising models with an external field h 6= 0. Note that the major
difference to the Ising model without external field is the loss of spin symmetry, i.e. the
map σ 7→ −σ does not preserve the measure qn (more precisely, the push-forward is an
Ising model with external field −h), and hence in general all homogeneous polynomials
of odd degree are not centered random variables anymore. To overcome this obstruction
we can recover concentration results for polynomial functions in σ̃i := σi − Eqn σi. To
this end, define the diagonal as

∆d := {(i1, . . . , id) ∈ {1, . . . , n}d : |{i1, . . . , id}| < d}.

A tensor A = (ai1,...,id)i1,...,id=1,...,n is said to have a vanishing diagonal if aI = 0 for all I ∈
∆d, and symmetric if ai1,...,id = aπ(i1),...,π(id) for any permutation π ∈ Sd. For notational
convenience, let us write for any subset I ⊆ {1, . . . , n} the product σI :=

∏
i∈I σi. We
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shall stick to the following four cases. Let d ∈ {1, . . . , 4} and define for any d-tensor
A = (ai1,...,id) with vanishing diagonal the functions

f1,A(σ) =

n∑
i=1

aiσ̃i,

f2,A(σ) =

n∑
i,j=1

aij(σ̃ij − E σ̃ij),

f3,A(σ) =

n∑
i,j,k=1

aijk (σ̃ijk − E σ̃ijk − 3σ̃iE(σ̃jk)) ,

f4,A(σ) =

n∑
i,j,k,l=1

aijkl (σ̃ijkl − E σ̃ijkl − 4σ̃iE σ̃jkl − 6σ̃ij E σ̃kl + 6E σ̃ij E σ̃kl) .

Here, the coefficients are merely of combinatorial nature, making it possible to write
the polynomial in a slightly more concise form.

Theorem 1.4. Let qn be an Ising model as in Proposition 1.1, possibly with an external
field h. Let d ∈ {1, 2, 3, 4} be fixed, A = (ai1,...,id) a symmetric tensor with vanishing
diagonal and fd,A as above. For some constant C = C(α, α̃, d) > 0 we have

qn (|fd,A − Eqn fd,A| > t) ≤ 2 exp
(
− t2/d

C‖A‖2/dHS

)
. (1.10)

Theorem 1.4 can be extended to arbitrary d ∈ N, i.e. there is a sequence of polynomi-
als of degree d with all “partial derivatives” being centered, which allows for the same
iteration of the proof as we show for d = 1, 2, 3, 4. However, as the formulation of the
fd,A is cumbersome, we refer to [24].

Lastly, note that in (1.10) the constant is given by the Hilbert–Schmidt norm of A,
whereas in (1.9) we have the bigger constant n‖A‖2/d∞ . However, (1.10) is valid for the
function fd,A, not for a general multilinear polynomial as in Theorem 1.3.

1.2 General results

The results for the Ising model are an application of our main result. For measures µ
satisfying LSI(d,I)(σ

2) we derive moment inequalities which relate the Lp(µ)-norms of
functions f with Lp(µ) norms of their differences |df |. This leads to concentration of
measure of higher order for functions with bounded differences of higher order.

Theorem 1.5. Let d ∈ N, suppose that µ satisfies LSI(d,I)(σ
2) and let f ∈ L∞(µ).

Assuming the conditions

‖h(k)f‖2 ≤ min(1, σd−k) for all k = 1, . . . , d− 1 (1.11)

‖h(d)f‖∞ ≤ 1, (1.12)

we have

Eµ exp
( 1

12σ2e
|f − Eµ f |2/d

)
≤ 2.

Since we are interested in the asymptotic for large n, the logarithmic Sobolev constant
σ2 might depend on n. However, if σ2 is independent of n, one may rewrite condition
(1.11) as

‖h(k)f‖2 ≤ 1 for all k = 1, . . . , d− 1. (1.13)

Moreover, note that here one needs to control the first d− 1 differences, but since we
require bounds for L2(µ) norms, various tools like variance decomposition or Poincaré
inequality are available to achieve this.
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1.3 Outline

In Section 2 we prove elementary properties of the difference operators, and the
main result Theorem 1.5 by estimating the growth of moments under an LSI. Section
3 contains examples of measures satisfying an LSI with respect to the Glauber type
dynamics. In Section 3.1 we prove Theorems 1.2 and 1.3 as well as Proposition 1.1 and
show by way of example that a third-order polynomial in the Ising model is concentrated
around a first order polynomial as an interpretation of Theorem 1.4. Sections 3.2 and
3.3 serve to demonstrate how to interpret the LSI with respect to difference operators
corresponding to (d, I) in the cases of random walks generated by switchings on either
the symmetric group and the Bernoulli-Laplace and symmetric simple exclusion process,
to indicate possible further applications. Finally, in Section 4 we give a proof of an
approximate tensorization result.

2 Higher order difference operators for dependent arguments

Recall that we are working on a product space of the form S = S1 × . . . Sn for some
Polish spaces Si. For any I ⊂ {1, . . . , n}, we write SI := ⊗i∈ISi and SIc := ⊗i∈IcSi and
denote by µI (and µIc) the push-forward measure under the projection onto SI (and SIc).

In order to make sense of the difference operators defined in the introduction, we
recall the disintegration theorem in a special form for product spaces (although not
endowed with product probability measures) required in our context. For the existence
we refer to [12, Chapter III] and for a modern formulation to [5, Theorem 5.3.1].

Proposition 2.1 (Disintegration theorem for product spaces). Let S1, . . . , Sn be Polish
spaces, S := S1 × . . . × Sn endowed with the Borel σ-algebra and a Borel probability
measure µ. For any I ⊂ {1, . . . , n} there exists a Markov kernel (µ( · | xIc))xIc∈SIc

such
that for any A ∈ B(S)

µ(A) =

∫
µ(A | xIc)dµIc(xIc).

Moreover, the Markov kernel can be seen as a family of probability measures on SI and
for any f ∈ L1(µ) we have the decomposition formula∫

fdµ =

∫
SIc

∫
SI

f(xIc , yI)dµ(yI | xIc)dµIc(xIc).

Remark 2.2. The quantity
∫
|df |2dµ can be interpreted as a Dirichlet form. Indeed,

defining the Markov kernel m(x, dy) = 1
|I|
∑
I∈I µ(dy | xIc), it can be shown by expanding

1
2

∫∫
(f(x)− f(y))2m(x, dy)dµ(x) that if we define L as Lf(x) =

∫
f(y)− f(x)m(x, dy) for

any integrable f , this yields

〈f,−Lf〉µ =
1

2|I|
∑
I∈I

∫∫
(f(x)− f(xIc , yI))

2dµ(yI | xIc)dµ(x) =
1

|I|

∫
|df |2dµ.

Hence there is an intimate connection to a Markov chain viewpoint in the sense that
there is a natural dynamics for which

∫
|df |2dµ is the Dirichlet form.

The special case given by I = I1 := {{i}, i = 1, . . . , n} translates into the disintegra-
tion with respect to n− 1 variables and is well known, since the dynamics corresponds
to the Glauber dynamics. Here, df and hf are vectors in Rn. In probabilistic terms the
definition of hif(x) can be interpreted as an upper bound on the difference of f if one
updates the coordinate i, conditional on xic . Moreover, h already appeared in the works
of C. McDiarmid on concentration inequalities for functions with bounded differences,
see e.g. [21]. In our situation, hif(x) can still fluctuate and does not need to be bounded,
resulting in possibly non-Gaussian concentration bounds.
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In some cases, hIf is a function which depends on xIc only, e.g. if all the measures
µ( · | xIc) have full support. However, we would like to stress that in general the supports
do not need to agree for different xIc and thus the supremum might depend on xI ,
especially in situations which incorporate some kind of exclusion. A typical example
is the disintegration of the measure on {1, . . . , n}n given by the push-forward of the
uniform random permutation under σ 7→ (σ(i))i=1,...,n, for which any disintegration is a
Dirac measure on one point, see also Section 3.2.

In the case of product measures it is unnecessary to use the disintegration theorem.
Instead, one can simply define µ( · | xIc) = ⊗i∈Iµi. The definitions then coincide with [7].

To prove Theorem 1.5 we shall need two ingredients: a pointwise estimate on
consecutive differences as well as control on the growth of moments under a logarithmic
Sobolev inequality.

Lemma 2.3. For any f ∈ L∞(µ) and any d ≥ 1 we have the pointwise estimate

|h|h(d)f || ≤ |h(d+1)f |.

Proof. Let I ∈ I and x ∈ S be fixed and write ‖·‖I,x for the norm on L∞(µ( · | xIc)⊗ µ( · |
xIc)). Using the reverse triangle inequality for |·| and the triangle inequality for ‖·‖I,x
we obtain

(hI |h(d)f |)2 =
1

2

∥∥∥∣∣∣h(d)f
∣∣∣(xIc , yI)− ∣∣∣h(d)f

∣∣∣(xIc , zI)∥∥∥2

I,x

≤ 1

2

∥∥∥∥∣∣∣h(d)f(xIc , yI)− h(d)f(xIc , zI)
∣∣∣2∥∥∥∥

I,x

=
1

2d+1

∥∥∥∥∥∥
∑

I1,...,Id

(hI1...Idf(xIc , yI)− hI1...Idf(xIc , zI))
2

∥∥∥∥∥∥
I,x

≤ 1

2d+1

∑
I1,...,Id

(hIhI1...Idf)
2
.

Summing over I ∈ I and taking the square root yields the result.

By an adaption of an argument by S. G. Bobkov [6, Theorem 2.1], which in turn is
based on arguments going back to L. Gross [16] as well as S. Aida and D. Stroock [3], we
have the following result.

Proposition 2.4. Let µ be a measure on a product space of Polish spaces satisfying
LSI(d,I)(σ

2) with constant σ2 > 0. Then, for any f ∈ L∞(µ) and any p ≥ 2, we have

‖f‖2p − ‖f‖22 ≤ 2σ2(p− 2)‖df‖2p (2.1)

as well as

‖f‖2p − ‖f‖22 ≤ 2σ2(p− 2)‖hf‖2p. (2.2)

Actually, up to a constant, LSI(d,I)(σ
2) is equivalent to (2.1), which has also been

remarked in [6]. In the proof, we write x+ := max(x, 0) for the positive part of a real
number, and x2

+ := (x+)2.

Proof. Let p > 0, and let f be any measurable function on an arbitrary probability space
such that 0 < ‖f‖p+ε <∞ for some ε > 0. We have the general formula

d

dp
‖f‖p =

1

p2
‖f‖1−pp Ent(|f |p),
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which implies
d

dp
‖f‖2p =

2

p2
‖f‖2−pp Ent(|f |p). (2.3)

Moreover, note that for any I ∈ I we have by Proposition 2.1

Eµ(dIf)2 =
1

2

∫∫
(f(x)− f(xIc , yI))

2dµ(yI | xIc)dµ(x)

=

∫∫∫
(f(xIc , yI)− f(xIc , zI))

2
+dµ(yI | xIc)dµ(zI | xIc)dµIc(xIc)

=

∫∫
(f(x)− f(xIc , yI))

2
+dµ(yI | xIc)dµ(x).

Therefore, it follows that

Eµ|df |2 =
∑
I∈I

∫∫
(f(x)− f(xIc , yI))

2
+ dµ(yI | xIc)dµ(x) (2.4)

Now let p > 2 and f be non-constant. (The assumption ‖f‖p+ε <∞ is always true since

f ∈ L∞(µ).) Applying the logarithmic Sobolev inequality (1.3) to the function g := |f |p/2

and rewriting this in terms of (2.4) yields

Ent(|f |p) ≤ 2σ2
∑
I∈I

∫∫
(g(x)− g(xIc , yI))

2
+ dµ(yI | xIc)dµ(x) (2.5)

= 2σ2
∑
I∈I

∫∫∫
(g(xIc , yI)− g(xIc , zI))

2
+dµ(yI | xIc)dµ(zI | xIc)dµIc(xIc). (2.6)

Using the inequality (ap/2 − bp/2)2
+ ≤

p2

4 a
p−2(a− b)2

+ valid for all a, b ≥ 0 and p ≥ 2, we
obtain

(g(x)− g(xIc , yI))
2
+ ≤

p2

4
(|f | − |f |(xIc , yI))2

+|f |p−2 ≤ p2

4
(f − f(xIc , yI))

2|f |p−2,

from which it follows in combination with (2.5) that

Ent(|f |p) ≤ p2σ2

∫
|f |p−2

∑
I∈I

(dIf)2dµ = p2σ2Eµ|f |p−2|df |2

and in combination with (2.6) that

Ent(|f |p) ≤ p2σ2Eµ|f |p−2|hf |2.

Hölder’s inequality with exponents p
2 and p

p−2 applied to the last integral yields

Ent(|f |p) ≤ p2σ2‖df‖2p‖f‖p−2
p and Ent(|f |p) ≤ p2σ2‖hf‖2p‖f‖p−2

p .

Plugging this into (2.3), we arrive at the differential inequality d
dp‖f‖

2
p ≤ 2σ2‖df‖2p or

d
dp‖f‖

2
p ≤ 2σ2‖hf‖2p respectively, which after integration gives (2.1) and (2.2).

We prove Theorem 1.5 by estimating the growth of moments in the following way.
Recall that if a real-valued function f on some probability space (Ω,A,P) satisfies

‖f‖k ≤ γk (2.7)

for any k ∈ N and some constant γ > 0, it has sub-exponential tails, i.e.

E exp
( 1

2γe
|f |
)
≤ 2. (2.8)
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Indeed, for any c > 0, we have

E exp(c|f |) = 1 +

∞∑
k=1

ck
E|f |k

k!
≤ 1 +

∞∑
k=1

(cγ)k
kk

k!
≤
∞∑
k=0

(cγe)k,

where the last inequality follows from k! ≥ (ke )k for all k ∈ N. Inserting c = 1
2γe we arrive

at (2.8).

Proof of Theorem 1.5. We assume Eµ f = 0, as we can recenter f and use the properties
of the difference operator to show that all inequalities hold for f − Eµ f as well.

For any p ≥ 2, applying (2.2) to |h(k−1)f | for k = 1, . . . , d and Lemma 2.3 in the second
step gives

‖h(k−1)f‖2p ≤ ‖h(k−1)f‖22 + 2σ2(p− 2)‖h|h(k−1)f |‖2p
≤ ‖h(k−1)f‖22 + 2σ2(p− 2)‖h(k)f‖2p.

As pointed out in the introduction, µ in particular satisfies a PI(d,I)(σ
2), and it is easily

seen that this moreover implies a PI(h,I)(σ
2). Consequently, by an iteration and an

application of the Poincaré inequality for h we arrive at

‖f‖2p ≤ ‖f‖22 +

d−1∑
k=1

(2σ2(p− 2))k‖h(k)f‖22 + (2σ2(p− 2))d‖h(d)f‖2p

≤ σ2‖hf‖22 +

d−1∑
k=1

(2σ2(p− 2))k‖h(k)f‖22 + (2σ2(p− 2))d‖h(d)f‖2p

≤
d−1∑
k=1

(2σ2p)k‖h(k)f‖22 + (2σ2p)d‖h(d)f‖2p.

Now, since ‖h(k)f‖2 ≤ min(1, σd−k) for all k = 1, . . . , d−1 and ‖h(d)f‖∞ ≤ 1 by assumption,
we obtain

‖f‖2p ≤ σ2d
d∑
k=1

(2p)k ≤ 1

1− (2p)−1
(2σ2p)d ≤ (3σ2p)d

and therefore
‖f‖p ≤ (3σ2p)d/2.

Moreover, for all p < 2, by Hölder’s and Jensen’s inequality we have

‖f‖p ≤ ‖f‖2 ≤ (6σ2)d/2.

Considering p = 2k/d for k ∈ N yields ‖|f |2/d‖k ≤ 6σ2k. In view of (2.7), this completes
the proof.

3 Applications

3.1 Ising model

The Ising model is a probability measure on its configuration space {−1,+1}n. Let
J = (Jij) be a symmetric matrix with vanishing diagonal (the interaction matrix), h ∈ Rn
(the external field ) and define π : {−1,+1}n → R via

π(σ) = exp
(1

2
〈σ, Jσ〉+ 〈h, σ〉

)
= exp

(1

2

∑
i,j

Jijσiσj +

n∑
i=1

hiσi

)
.
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Equip {−1,+1}n with the Gibbs measure qn(σ) = Z−1π(σ), with Z being the normaliza-
tion constant. For each i ∈ {1, . . . , n} denote by Ti : {−1,+1}n → {−1,+1}n the operator
which switches the sign of the i-th coordinate. Here, the factor 1

2 corresponds to the fact

that we made the matrix symmetric, i.e. J = J̃ + J̃T , where J̃ is an upper triangular
matrix. This is consistent with the Curie-Weiss model in [10, Example 2.1] or [9], but not
with [15].

We want to use an approximate tensorization of entropy result proven in [20] and the
results from the last section to obtain concentration inequalities for polynomials in the
spin variables of Ising models which are sufficiently close to being product measures. In
[20], the author proves an approximate tensorization property of the relative entropy
with respect to a fixed measure qn in the sense that

Entqn(f) ≤ C

β

n∑
i=1

∫
Entqn( · |yic )(f(yic , ·))dqn(y).

Here, β is the minimal conditional probability and C is a constant depending on qn.
However in the proof of [20, Theorem 1] there is a small oversight, hence (and for the
sake of completeness) we include a full exposition of the proof in Section 4, see Theorem
4.2. Moreover, [20, Theorem 2] replaces one of the conditions of [20, Theorem 1] by
another condition, which is easier to check, see Theorem 4.2 (iii). Indeed, this condition
holds via bounds on the operator norm of a coupling matrix A = (Aik)i 6=k defined as any
matrix such that

sup
x,z∈{−1,+1}n:xkc=zkc

dTV (qn( · | xic), qn( · | zic)) ≤ Aik.

Provided that ‖A‖`2→`2 < 1, an approximate tensorization property holds with C =

(1− ‖A‖`2→`2)−2. Our aim is to prove that these properties hold.
The conditional probabilities of the Ising model qn( · | σic) are given by

qn(σi | σic) =
1

2

(
1 + tanh

(
σi
∑
j

Jijσj + hiσi
))
. (3.1)

Lemma 3.1. Let qn be an Ising model with an interaction matrix J satisfying Jii = 0 and
‖J‖`∞→`∞ ≤ 1− α. Then |J | = (|Jij |)i,j can be used as a coupling matrix and thus

‖|J |‖`2→`2 ≤ ‖J‖`∞→`∞ ≤ 1− α. (3.2)

Moreover, if |h| ≤ α̃, then for some c(α, α̃) it holds

qn( · | σic) ∈ (c(α, α̃), 1− c(α, α̃)) .

Proof. Let i 6= k be fixed and y, z ∈ {−1,+1}n differ in the k-th coordinate only, i.e.
y = Tkz. Define σ := (zic , 1) and mi(σ) := σi

∑
j Jijσj + hiσi. We have by equation (3.1)

and the 1-Lipschitz property of the tanh

dTV (qn(· | yic), qn( · | zic)) ≤ 1

2
|mi(σ)−mi(Tkσ)| = |Jki|.

The inequality (3.2) holds since

‖|J |‖`2→`2 ≤
√
‖J‖`∞→`∞‖JT ‖`∞→`∞ ≤ 1− α,

where we used the estimate |λi(JJT )| ≤ ‖JJT ‖ ≤ ‖J‖‖JT ‖ for any operator norm, and
that J is symmetric. The second statement follows easily by using equation (3.1) and the
estimate

max
σ∈{−1,+1}n

max
i=1,...,n

‖mi‖∞ ≤ ‖J‖`∞→`∞ + ‖h‖∞.
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We are now ready to prove Proposition 1.1, i.e. the logarithmic Sobolev inequality
(1.5) and the moment inequality (1.6).

Proof of Proposition 1.1. We can apply Lemma 3.1 to see that by Theorem 4.2(iii) we
have for some β = β(α, α̃)

Entqn(f2) ≤ 1

α2β

n∑
i=1

∫
Entqn( ·|yic )(f

2(yic , ·))dqn(y), (3.3)

so that it remains to find a uniform bound for the entropy given yic . To this end, fix
i ∈ {1, . . . , n}, yic ∈ {−1,+1}n−1 and to lighten notation write q(·) := qn( · | yic). q is a
measure on {−1,+1} and the Markov chain given by K(x0, x1) = q(x1) is reversible w.r.t.
q. By [14, Theorem A.1] (see also [8, Example 3.8]) (K, q) satisfies a logarithmic Sobolev
inequality with a constant depending on q∗ = minx∈{−1,+1} q(x). However, this constant
is bounded from below by Lemma 3.1 uniformly in yic ∈ {−1,+1}n−1 and n ∈ N. Thus,
we have

Entq(f
2) ≤ C

∫∫
(f(x)− f(y))2dq(x)dq(y). (3.4)

Inserting (3.4) into (3.3) yields for some constant C = C(α, α̃)

Entqn(f2) ≤ C
n∑
i=1

∫∫∫
(f(yic , x)− f(yic , y))2dq(x)dq(y)dqn(y) = 2C Eqn |df |2,

which proves the LSI for qn. Equation (1.6) is now a consequence of Proposition 2.4.

Proof of Theorem 1.2. Theorem 1.2 is an application of Theorem 1.5, since qn satisfies a
logarithmic Sobolev inequality with respect to I = {{1}, . . . , {n}}.

One can calculate using the reverse triangle inequality and the monotonicity of the
square function as in the proof of Lemma 2.3 that for any i1 6= i2 6= . . . 6= id

(hi1...idf)2 ≤ 2−d
∣∣( d∏
j=1

(Id− Tij )
)
f
∣∣2 (3.5)

holds, which also implies

|h(d)f | ≤
(

2−d
∑
|I|=d

((∏
i∈I

(Id− Ti)
)
f
)2)1/2

. (3.6)

Here, we define for any f : {−1,+1}n → R the function Tif := f ◦ Ti, and define Ti1...id
via iteration. Note that on the right-hand side we deliberately chose summing over
|I| = d instead of i1, . . . , id, since hi1...idf = 0 if ij = ik for some j 6= k.

For the operator appearing on the right-hand side of equation (3.6), it was already
shown in [23] (see also [7, Lemma 2.2]) that the chain of pointwise inequalities from
Lemma 2.3 holds.

Proof of Theorem 1.3. Let f =
∑
|I|=d aIσI =

∑
|I|=d aI

∏
i∈I σi be a d-th order homo-

geneous polynomial and without loss of generality assume ‖A‖∞ = 1 for the tensor
A = (aI). As in the proof of Proposition 1.1 we obtain

‖f − Eqn f‖2p ≤
d−1∑
k=1

pk(2C(α))k‖h(k)f‖22 + pd(2C(α))d‖h(d)f‖2p. (3.7)
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Now for any k ∈ {1, . . . , d − 1} we have (hi1,...,ikf)2 ≤ 2k(
∑
|I|=d−k
i1,...,ik /∈I

aI∪i1,...,ikσI)
2 by

equation (3.5). It follows from [15, Lemma 3.1] that

‖h(k)f‖22 =
∑

i1,...,ik

‖hi1,...,ikf‖
2
2 ≤ ckn

d,

since for each fixed i1, . . . , ik the integrand is a polynomial of degree at most 2(d − k)

with coefficients bounded by 1. Hence ultimately we obtain for any p ≥ 2

‖f − Eqn f‖2p ≤ n
d(2C(α))d max(1, c1, . . . , cd−1)

d∑
k=1

pk,

which can be rewritten as

‖n−d/2(f − Eqn f)‖p ≤ C(α, d)pd/2

with C(α, d) = (2C(α))d/2 max(1, c1, . . . , cd−1)1/2d1/2, which is equivalent to the exponen-

tial integrability of |n−d/2(f − Eqn f)|2/d, and the result readily follows.

Remark 3.2. Actually equation (3.7) can be used to provide a more accurate estimate
of the tail properties of f − Eqn f in the spirit of [1, Theorem 7] and [2, Theorem 3.3]. It
is based on the idea that Chebyshev’s inequality yields for any p ≥ 1

qn(|f − Eqn f | ≥ e‖f − Eqn f‖p) ≤ exp(−p). (3.8)

First, observe that by taking the square root and using the subadditivity in equation (3.7)
we obtain

e‖f − Eqn f‖p ≤ e
( d−1∑
k=1

(2C(α)p‖h(k)f‖2/k2 )k/2 + (2C(α)p‖A‖2/dHS )d/2
)
.

Now consider the function

ηf (t) := min

(
t2/d

2C(α)‖A‖2/dHS

, min
k=1,...,d−1

t2/k

2C(α)‖h(k)f‖2/k2

)
,

where A = (aI) is the tensor of coefficients. If ηf (t) ≥ 2 holds, a short calculation shows
that we have e‖f − Eqn f‖ηf (t) ≤ (de)t. Applying equation (3.8) to p = ηf (t) yields

qn(|f − Eqn f | ≥ (de)t) ≤ qn(|f − Eqn f | ≥ e‖f − Eqn f‖ηf (t)) ≤ exp (−ηf (t)) ,

so that combined with the trivial estimate (for p ≤ 2) we obtain

qn(|f − Eqn f | ≥ (de)t) ≤ e2 exp(−ηf (t)).

To remove the de factor, rescale f by de and use the estimate η(de)f (t) ≥ ηf (t)
(de)2 .

Proof of Theorem 1.4. Let us prove by induction that for p ≥ 2 we have for f = fd,A

‖f − Eqn f‖2p ≤ cdp
d‖A‖2HS. (3.9)

First, for d = 1 this is clear since f := f1,A(X) =
∑
i aiX̃i and by equation (1.6) we have

for p ≥ 2

‖f − Eqn f‖2p ≤ 2Cp‖hf‖2p = 2Cp‖A‖2HS.
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For d ≥ 2 use (1.6) again to get

‖f − Eqn f‖2p ≤ 2Cp‖hf‖2p = 2Cp‖
n∑
i=1

(hif)2‖p/2 ≤ 2Cp

n∑
i=1

‖hif‖2p

≤ 2Cp

n∑
i=1

cd−1p
d−1‖A(i)‖2HS = 2Cdp

d
n∑
i=1

‖A(i)‖2HS = 2Cdp
d‖A‖2HS.

Here we have used the fact for any fd,A we have hif = cd|fd−1,A(i) − E fd−1,A(i) |, where
(A(i))i1,...,id−1

= Ai1,...,id−1,i is a symmetric (d− 1)-tensor with vanishing diagonal.
From equation (3.9) the first inequality easily follows as already shown in the proof

of Theorem 1.5.

In the absence of a magnetic field, i.e. for h = 0, the d = 2 case translates into the
concentration inequality

qn(|f − Eqn f | > t) ≤ 2 exp
(
− 1

C

t

‖A‖HS

)
for f(σ) = 1

2 〈σ,Aσ〉 =
∑
i<j aij(σiσj −Eσiσj) and some symmetric matrix A = (aij). It is

also possible to prove this using Theorem 1.2 by showing that

‖hf‖2 ≤ 4C‖A‖HS and ‖h(2)f‖∞ ≤ 4C‖A‖HS.

The d = 3 case has an interesting interpretation since it shows that a polynomial
of order three is not concentrated around its mean (which in this case would be zero),
but around a first order correction. For example, for the 3-tensor A = (aijk) given
by aijk = n−3/2 whenever the three indices are distinct, and 0 otherwise, we obtain
concentration inequalities for

f(σ) = n−3/2
∑
i 6=j 6=k

σiσjσk − 3n−3/2
n∑
i=1

σi
∑

j 6=k:j 6=i,k 6=i

Eσjσk =: f3(σ) + f1(σ).

Here, the correction term f1 is sub-Gaussian, as a short calculation shows that we
have |hf1|2 = 2n−3

∑n
i=1 c

2
i for ci := 3E

∑
j 6=k:j 6=i,k 6=i σjσk, and [15, Lemma 3.1] yields

c2i ≤ Cn2 for any i ∈ {1, . . . , n}.
More generally, we show concentration inequalities for fA(σ) =

∑
i 6=j 6=k aijkσiσjσk

by approximating it with a linear term.

Corollary 3.3. Let A = (aijk) be a symmetric 3-tensor with vanishing diagonal and
define f(σ) =

∑
i,j,k aijkσiσjσk. We have for any t ≥ 0 for some constant C = C(α)

qn(|f | ≥ t) ≤ 4 exp

(
− 1

C
min

(
t2∑n

i=1

(∑
j,k aijk Eqn σjσk

)2 , t2/3

‖A‖2/3HS

))
.

Proof. Let f̃ := f − f1 for f1(σ) := 3
∑n
i=1 σi

∑
j,k aijk Eqn σjσk. Clearly, f̃ = f3,A for the

3-tensor A, so that we have for any t ≥ 0

qn(|f̃ | ≥ t) ≤ 2 exp
(
− 1

C

t2/3

‖A‖HS

)
.

On the other hand, we have by Theorem 1.2 an estimate for f1 as

qn(|f1| ≥ t) ≤ 2 exp
(
− 1

C

t2∑n
i=1

(∑
j,k aijk Eqn σjσk

)2).
The proof now follows by standard arguments and the relation {|f | ≥ t} ⊂ {|f̃ | ≥
t/2} ∪ {|f1| ≥ t/2}.
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Similar arguments also work for d = 4, with terms of order t2 and t by an approxima-
tion with f4,A.

3.2 Random permutations

Next we consider random permutations which we shall describe as a probability
measure on {1, . . . , n}n, more precisely as the uniform measure σn on Sn := {(x1, . . . , xn) :

xi 6= xj for all i 6= j}. With this definition it fits into our framework.
Since conditioning on n− 1 variables is useless (as the disintegrated measure will

be a Dirac measure on the remaining element xi and thus an LSI cannot hold for either
difference operator), we shall work with I2 := {I ⊂ {1, . . . , n}, |I| = 2}. In this case,
it is easy to see that for any I = {i, j} ∈ I2 the conditional probability is given by
µ( · | xIc) = 1

2 (δ(xi,xj) + δ(xj ,xi)), with xi, xj being the two elements distinct from any
element in xIc . So denoting by τI := τij : Sn → Sn the function which switches the i-th
and j-th entry, we can rewrite the difference operator as

dIf(x)2 =
1

2

∫
(f(x)− f(xIc , yI))

2dσn(yI | xIc) =
1

4
(f(x)− f(τIx))2,

hIf(x)2 =
1

2
|f(x)− f(τIx)|2.

We can rephrase [19, Theorem 1] in the following way.

Lemma 3.4. Consider (Sn, σn) and I = I2. Then there exists a constant c > 0 indepen-
dent of n such that

Entσn
(f2) ≤ 2c

log n

n

∫
|df |2dσn,

i.e. (Sn, σn) satisfies LSI(d,I)(
c logn
n ).

Proof. The proof is rewriting the statement of [19, Theorem 1] in our notation, using the
fact that the conditional measures are two-point Dirac measures. More precisely, we
have

Entσn
(f2) ≤ c log n

1

2n
Eσn

∑
I

(f(τIx)− f(x))2

= 2c
log n

n

∑
I

∫∫∫
(f(xIc , yI)− f(xIc , zI))

2dσn(yI | xIc)dσn(zI | xIc)dσn(x)

= 2c
log n

n

∫
|df |2dσn,

where the summation is over all I = (i, j).

3.3 Bernoulli-Laplace and symmetric simple exclusion process

There are two other Markov chains, whose Dirichlet form can be described in terms
of a subset I and difference operators dI , which are the Bernoulli-Laplace model and
the symmetric simple exclusion process.

More specifically, let Sn := {0, 1}n and define Cn,r = {x ∈ {0, 1}n :
∑
i xi = r} (a slice

of the hypercube), equipped with the uniform measure µn,r on Cn,r. Furthermore, define
the two generators acting on f : Cn,r → R as

Kn,rf(η) =
∑
i,j

ηi(1− ηj)(f(τijη)− f(η)),

which is the generator of the so-called Bernoulli-Laplace model, and

Ln,rf(η) =

n∑
i=1

(f(τi,i+1η)− f(η)),
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called the symmetric simple exclusion process, where τij : Sn → Sn switches the i-
th and the j-th coordinate and τn,n+1 := τn,1. In [19, Theorem 4, Theorem 5] sharp
logarithmic Sobolev constants are derived with respect to the Dirichlet form DK

n,r(f) =

−Eµn,r
fKn,rf and DL

n,r(f) = −Eµn,r
fn,rf (although with different normalizations), and

these correspond to LSIs with respect to d in the following way.

Lemma 3.5. For I = I2,< = {(i, j) : i < j} we have
∫
|df |2dµn,r = DK

n,r(f) and for

I = I1 = {(i, i+ 1) : i ∈ {1, . . . , n}} we obtain
∫
|df |2dµn,r = DL

n,r(f).
As a consequence, µn,r satisfies a logarithmic Sobolev inequality with respect to

(d, I2,<) with constant c
log n2

r(n−r)

n and a logarithmic Sobolev inequality with constant cn2

with respect to (d, I1), where c is a constant independent of n and r.

Proof. For brevity’s sake, fix n, r and drop the subscripts n, r, i.e. write DL for DL
n,r, D

K

for DK
n,r and µ for µn,r. For I = I2,< let I = (i, j) be given and observe that

µ( · | xIc) =


δ(1,1)

∑
k(xIc)k = r − 2

1
2 (δ(0,1) + δ(1,0))

∑
k(xIc)k = r − 1

δ(0,0)

∑
k(xIc)k = r,

and thus∫
|df |2dµ =

∑
I∈I2,<

∫
(dIf)2dµ(η) =

1

2

∑
I

∫
(f(η)− f(τIη))2ηi(1− ηj)dµ(η) = DK(f).

The second case is just a special case of the above one, which yields∫
|df |2dµ =

n∑
i=1

∫
(dif)2dµ =

1

2

n∑
i=1

∫
(f(η)− f(τi,i+1η))2dµ = DL(f).

Note that we omit ηi(1− ηi+1) since otherwise we obtain τi,i+1η = η.
The LSI follows from [19, Theorem 4, Theorem 5], taking into account the missing

normalization.

4 Approximate tensorization of the relative entropy in finite prod-
uct spaces

In this section we reformulate and provide a complete proof of a result by K. Marton
[20] and moreover rewrite it in the terms of entropy (of functions) instead of relative
entropy of measures. To this end, let X be a finite set, Xn its n-fold product and fix a
probability measure qn on Xn, which need not be a product measure. Define the total
variation distance

dTV (µ, ν) := sup
A⊂Xn

|µ(A)− ν(A)| = 1

2

∑
x∈Xn

|µ({x})− ν({x})|,

the relative entropy

H(µ || ν) =

∫
dµ

dν
log

dµ

dν
dν for µ� ν,

and the Wasserstein-2-type distance

W2(µ, ν) := inf
π∈C(µ,ν)

( n∑
i=1

π(xi 6= yi)
2
)1/2

.
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Here C(µ, ν) is the set of all couplings of µ and ν, i.e. probability measures π on Xn×Xn
with marginals µ and ν. Note that the infimum in the definition is always attained,
since C(µ, ν) is a compact subset of P(Xn ×Xn) equipped with the weak topology and

the map π 7→
(∑n

i=1 π(xi 6= yi)
2
)1/2

is lower semicontinuous. This fact and the gluing
lemma for measures with a common marginal can be used to prove that W2 is a distance
function on P(Xn), see for example [27, Chapter 6] for a similar line of reasoning and [4,
Theorem 2.1] for the gluing lemma. Denote by µi, νi the pushforward measure under
the projection onto the i-th coordinate of µ and ν respectively. By the subadditivity of
the square root (for the upper bound for W2) as well as the fact that every coupling π on
Xn × Xn of µ, ν induces (by the projection onto the coordinates xi, yi) a coupling πi of
µi, νi, we obtain ( n∑

i=1

d2
TV (µi, νi)

)1/2

≤W2(µ, ν) ≤
√
ndTV (µ, ν). (4.1)

We will need the following lemma, which is also found in [20, Lemma 2] with a slightly
worse constant.

Lemma 4.1. Let q be a measure on a finite space X and let βq := infx∈X+
q(x), where

X+ := {x ∈ X : q(x) > 0}. For any measure p� q we have

H(p || q) ≤ 2β−1
q d2

TV (p, q).

Proof. The shifted logarithm f(x) := log(1 + x) is a concave function on (−1,∞), so that
for any x ≥ 0 we have f(x) ≤ f ′(0)x = x. Rewrite p

q = 1 + p−q
q to obtain

H(p || q) =
∑
X+

q(x)

(
1 +

p(x)− q(x)

q(x)

)
f

(
p(x)− q(x)

q(x)

)

≤
∑
X+

q(x)

(
1 +

p(x)− q(x)

q(x)

)
p(x)− q(x)

q(x)
=
∑
X+

(p(x)− q(x))2

q(x)

≤ β−1
q

∑
X+

(p(x)− q(x))2 ≤ β−1
q dTV (p, q)

∑
X
|p(x)− q(x)| = 2β−1

q d2
TV (p, q).

Unfortunately, the factor 2β−1
q cannot be removed. To see this, consider X = {0, 1}

and let q(0) = 1 − q(1) = α1 with α1 ∈ (0, 1/2) (so that β = α1) and consider the family
of measures pε given by pε(0) = α1 + ε; an easy calculation yields d2

TV (pε, q) = ε2 and
H(pε || q) ∼ 2β−1ε2 and thus the constant is optimal.

As a consequence of Lemma 4.1, for any measure q on a finite space X and any p
satisfying p�< q we have

d2
TV (p, q) ≤ 1

2
H(p || q) ≤ β−1

q d2
TV (p, q).

The following theorem is the main result of this section. We use the same notations
as before, i.e. for any measure pn on Xn and any subset I ⊂ {1, . . . , n} we denote by
pn( · | yIc) the conditional probability measure on XI given by conditioning on yIc . For
I = {1, . . . , n} we set pn( · | yIc) = pn, and for any i = 1, . . . , n pni denotes the induced
measure on the i-th coordinate.

Theorem 4.2. Let qn be a measure with full support on Xn and define the lower bound
β := mini=1,...,n minx∈Xn qn(xi | xic)

(i) Let pn a probability measure and assume that for all subsets I ⊆ {1, . . . , n} and all
yIc ∈ XIc we have

W 2
2 (pn( · | yIc), qn( · | yIc)) ≤ C

∑
i∈I
Epn( · |yIc ) d

2
TV (pn( · | yic), qn( · | yic)), (4.2)
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then

H(pn || qn) ≤ C

β

n∑
i=1

Epn H(pn( · | yic) || qn( · | yic)) (4.3)

(ii) If f denotes the density of pn with respect to qn, this can be rewritten as

Entqn(f) ≤ C

β

n∑
i=1

∫
Entqn( · |yic )(f(yic , ·))dqn(y). (4.4)

(iii) Assume that the coupling matrix A = (aij)i 6=j (see Section 3.1) of qn satisfies the
condition ‖A‖`2→`2 < 1. Then (4.2) holds with C = (1− ‖A‖`2→`2)−2, so that also
(4.3) and (4.4) hold with the same constant.

Proof. First note that β > 0 due to the assumption of qn having full support.
(i): We will prove the theorem by induction. In the case n = 1 there is nothing to

prove if one interprets q1( · | y1c) = q. For n ≥ 2, using the decomposition theorem for
the relative entropy (see for example [13, Theorem D.13]) gives

H(pn || qn) =
1

n

n∑
i=1

H(pni || qni ) +
1

n

n∑
i=1

∫
H(pn( · | yi) || qn( · | yi))dpn(y). (4.5)

We will treat the two terms separately. For the first term, using the estimate H(pni || qni ) ≤
2β−1d2

TV (pni , q
n
i ) from Lemma 4.1, the inequalities (4.1) and (4.2) as well as Pinsker’s

inequality gives

1

n

n∑
i=1

H(pni || qni ) ≤ 2

βn

n∑
i=1

d2
TV (pni , q

n
i ) ≤ 2

βn
W 2

2 (pn, qn)

≤ 2C

βn

n∑
i=1

∫
d2
TV (pn( · | yic), qn( · | yic))dpn(y)

≤ C

βn

n∑
i=1

∫
H(pn( · | yic) || qn( · | yic))dpn(y).

For the second term we use the induction hypothesis. For each fixed i ∈ {1, . . . , n} and
yi ∈ X we interpret qn( · | yi) as a measure on Xic , for which

β(qn( · | yi)) = min
j 6=i

min
x∈Xic

qn(x | yi)
qn(z ∈ Xic : zjc = xjc | yi)

= min
j 6=i

min
x∈∈Xic

qn(x, yi)

qn(z ∈ Xn : z(ij)c = xjc , zi = yi)

≥ min
j=1,...,n

min
z∈Xn

qn(zj , zjc)

qn(zjc)
= β(qn)

and (4.2) hold with the same constant C. To rewrite (4.3) let us denote by z ∈ Xic a
generic vector. A short calculation shows that the conditional probability of pn( · | yi)
with respect to the projection prjc : Xic → X(ij)c for some j 6= i is given by pn( · | zjc , yi),
and the same holds for qn( · | yi). Thus we obtain∫

H(pn( · | yi) || qn( · | yi))dpn(y)

≤ C

β

∑
j 6=i

∫∫
H(pn( · | zjc , yi) || qn( · | zjc , yi))dpn(z | yi)dpn(y)

=
C

β

∑
j 6=i

∫
H(pn( · | yjc) || qn( · | yjc))dpn(y).
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Summation over i gives

1

n

n∑
i=1

Epn H(pn( · | yi) || qn( · | yi)) ≤
C(n− 1)

βn

n∑
i=1

Epn H(pn( · | yic) || qn( · | yic)),

which combined with the first term yields the claim.
(ii): (4.4) is a simple rewriting of (4.3), noting that as a consequence of the disinte-

gration theorem (or in this case Bayes’ theorem) we have

dpn( · | yic)

dqn( · | yic)
(yi) =

f(yic , yi)∫
f(yic , xi)dqn(xi | yic)

and
dpnic

dqnic
(xic) =

∫
f(xic , xi)dq

n(xi | xic).

(iii): See [20, Theorem 2].

As mentioned, in [20, Theorem 1] it is stated that using the quantity

β := inf
i=1,...,n

inf
x∈Xn:qn(x)>0

qn(xi | xic)

one can deduce qn(z : zi = xi) ≥ β for all xi such that the left-hand side is nonzero. This
is possible only if qn has full support. A counterexample is given by the push-forward of
a random permutation under the map σ 7→ (σ1, . . . , σn), which satisfies β = 1.

Another possibility is to modify the quantity as

β̃(qn) := inf
i=1,...,n

inf
x∈Xn:qn(x)>0

qn(z : zi = xi),

but this definition does not behave well under conditional probabilities. It is not true
that in general that for a fixed yi ∈ X we have β̃(qn( · | yi)) ≥ β̃(qn), which can be seen
in examples.
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