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Abstract:  Complex grain-boundary structures, such as the 1-2 nm thick intergranular glassy films (IGF), 
play a prominent role in the failure behavior of nano-phased ceramics.  The IGF plays the role of an 
imperfection and serves as the location of strain localization and failure.  We have recently performed 
“theoretical” mechanical loading experiments on very large atomic models of IGF in silicon nitride using 
ab initio simulation to obtain their failure behavior.  The ab initio simulations yield characteristic 
post-peak softening accompanied by strain localization zone.  In this paper a micro-structural granular 
mechanics based higher-order continuum theory is applied to model the failure behavior of these types of 
material systems.  The results obtained from the ab initio simulations are compared with those predicted 
by the higher order continuum theory.  

Keywords:  Higher-order theory; granular mechanics; ab initio; atomic models; strain softening; 
element-free Galerkin. 
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Introduction 

Nano-phased ceramics are attracting wide attention in structural and electronics applications as a 
class of materials with extraordinary mechanical properties (Zhu et al. 2009; Koch et al. 2007).  By 
reducing the grain-sizes to nano-scale and manipulating materials at atomic scales, ceramics are being 
sought that can attain theoretical strengths predicted for single defect-free crystals.  However, the 
understanding of the mechanical properties of these materials at their atomic scales remains insufficient.  
A unique feature of nano-phased ceramics is the existence of thin glassy films between crystallites with a 
narrowly distributed width of about 1-2 nm (Luo 2007; Subramaniam et al. 2006).  Although these thin 
intergranular glassy films (IGF) occupy only a very small fraction of the overall composition and volume, 
they have a profound effect on the physical and mechanical properties of the bulk materials.  For example, 
small amounts of rare earth doping which usually reside at or near the IGF results in significantly higher 
strength for bulk material (Shibata et al. 2004; Ziegler et al. 2004).   

 
The role that microstructures, such as crystal defects and grain boundaries, play in determining 

the mechanical behavior of materials has been widely recognized and continue to be researched 
vigorously (Phillips 2001; Sutton and Balluffi 1995; Koch et al. 2007; Ovid‟ko 2007).  Among the 
various microstructures, IGF characterize many nano-phased ceramics irrespective of their synthesis 
process (Luo 2007; Pan 1996).  The mechanics of these larger complex microstructures, such as IGF, 
have been rarely investigated.  In addition, as these new nano-phased ceramics are developed and the 
devices based upon them miniaturized, there has been an increasing interest in understanding their 
deformation and failure behavior from the viewpoint of atomic-scale mechanisms (see Huang and Van 
Swygenhoven 2009 and papers therein).  At the fundamental-level, the deformation and failure 
mechanics of these materials can be traced to the electronic structure and the bonding between atoms.  
This is particularly true for covalently bonded solids, such as the ceramic materials.  The thin size of the 
IGF and a strong 3-dimensional nature of grain-interactions make it extremely difficult to study their 
mechanical behavior using high-resolution experimental techniques.   

 
The IGF and its interface with crystals is composed of a variety of defective structures as they are 

typically formed of under or over-coordinated atoms with bond-length and bond-angle distortions.  In 
many cases, the IGF offer a more favorable failure mechanism in real systems as opposed to crystal 
defects or crystal grain boundaries.  Since the IGF atomic structures are varied and complex, simulations 
that are based upon fundamental methods can best reveal the true nature of deformation and failure 
mechanism.  We have recently performed ab initio simulation of deformation and failure using very 
large atomic models of IGF in silicon nitride (Ching et al. 2009, 2010; Misra et al. 2007; Chen et al. 2005).  
Silicon nitride is among the class of lightweight, hard nano-phased ceramics being actively sought for 
applications as advanced structural and electronic material.  Using the results from these highly accurate 
ab initio calculations, we have explored deformation and failure of systems that have glassy materials 
interfacing crystalline structures.  These ab initio results show that failure initiates within the IGF or its 
interface with the crystal and develops into a failure band of finite thickness.  The failure is accompanied 
by strain softening similar to that observed at macro-scales for brittle materials.   
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Ab initio solutions for such complex structures cannot be obtained routinely even with the 

currently available unprecedented computational resources and such simulations are only possible for 
relatively small atomic systems.  Clearly, such ab initio simulations of macro (meso)-scale mechanical 
behavior are not feasible for nano-phased materials that are suffused with IGF type structures.  
Appropriate continuum models are needed that can greatly reduce the computational needs and provide 
accurate simulations.  However, traditional continuum approaches, including gradient theories, suffer 
from a variety of drawbacks including numerical instability, mesh sensitivity, and ambiguous material 
constants such as the length scale parameter or the higher order moduli.  The objective of this paper is to 
address the deficiencies of the current approaches by developing micro-structural granular mechanics 
based higher-order continuum theory.  In this paper, we present a micro-structural granular mechanics 
approach for obtaining the constitutive coefficients such that the internal length scale parameter reflects 
the natural granularity of the underlying microstructure.  In contrast to most conventional gradient 
approaches, the present higher order theory includes strain gradients and their conjugate higher-order 
stress.  We derive the required constitutive relationships, the governing equations and its weak form for 
this higher-order theory.  An Element-free Galerkin (EFG) formulation is then applied for the 
discretization of the system governing equations.  The derived method is applied to simulate the fracture 
process of the IGF model and the results are compared to those obtained from ab initio simulations. 

 

Higher-order stress/strain model 
There is a wide recognition that numerical solutions of materials that exhibit strain softening pose 

significant challenges.  For example, finite-element solutions suffer from numerical instabilities and 
severe mesh sensitivity (see among others Pietruszczak and Mroz 1981; Bažant et al. 1984; Sandler 1984; 
Frantziskonis and Desai 1987; de Borst et al. 1993; Chen et al. 2000) and lead to physically unrealistic 
results with increasing mesh refinement (Bažant 1976; Nemes and Spéciel 1996).  A number of 
approaches have been proposed to address these numerical challenges.  These include the various forms 
of micropolar, non-local, viscoplastic and gradient theories (Mindlin 1969; Chang and Ma 1990; Fleck 
and Hutchinson 1993, Steinmann 1994; Sandler 1984; Wu and Freund 1984; Needleman 1988; Sluys and 
de Borst 1992; Nemes and Spéciel 1996; Bažant et al. 1984; Belytschko et al. 1986; Bažant and 
Pijaudier-Cabot 1988; Valanis 1991; Murakami et al. 1993; de Vree et al. 1995; Chen et al. 2000).   
 

Among the various approaches proposed for modeling strain softening behavior, gradient theories 
have emerged as a viable method.  The attractions of the gradient methods are its simplicity as no 
rotational degree of freedom or time effects are required, nor is there any dependence on unknown „weak 
zones‟ within the solid, and the difficult to determine influence functions for the convolution integrals 
appearing in the classical non-local models are avoided (Triantafyllidis and Bardenhagen 1993). In 
addition, this approach follows strict locality in a mathematical sense (Peerlings et al. 1996) and 
incorporates an inherent characteristic length scale that determines the size of the localization zone.  
Gradient models have been widely used for modeling softening failure behavior (de Borst and Mühlhaus 
1992; Pamin 1994; de Borst et al. 1995; Peerlings et al. 1996; Altan and Aifantis 1997; Chang et al. 2002; 
Sluys 1992; Sluys et al. 1993; Chang and Gao 1997; Chang et al. 1998; Suiker et al. 2001a, b).   
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In contrast to most currently used gradient theories, the approach developed in this paper 

considers both the higher-order strain and the higher-order stress terms (Germain 1973).  This type of 
model appears to unconditionally maintain the stability and, therefore, offers a more robust approach 
(Chang et al. 2002).  However, this approach has been rarely employed mainly because of its numerical 
complexity and ambiguous material constants.  In this paper, we focus upon the derivation of a 
first-order theory that includes the usual Cauchy stresses and strains termed as zeroth-order tensors in 
constitutive model, and the first-order gradient of strain and its conjugated first-order stress.  We derive 
the higher-order constitutive laws on the basis of a microstructural granular mechanics approach (Chang 
and Gao 1995; Mühlhaus and Oka 1996; Suiker et al. 2001a, b).  The macroscopic material model of this 
pseudo-granular material is obtained in terms of the microscopic material properties.  As a result, 
first-order gradient damage constitutive models are derived such that a so-called internal length scale, i.e. 
the particle radius, is incorporated directly into the model to reflect the granularity of the underlying 
microstructure.  We then derive the governing equations and their weak form for this first-order gradient 
theory.   

Higher-order constitutive law using microstructural granular mechanics  

A macroscopic continuum is postulated to have a granular microstructure consisting of a set of 
interacting particles whose centroids represent material points as depicted in Fig. 1.  Under an applied 
load on a sample of such a material, the conceptual grains may undergo translation or rotation.  The 
relative displacement, δi, between two nearest neighbor particles n and p (Chang and Misra 1990, Misra and 
Yang 2010) is given by  

(ω ω )n p n n p p

i i i ijk j k j kδ u u e r r                                                                         (1) 

where ui =particle displacement; ωj =particle rotation; rk = vector joining the centroid of particle to the 
contact point; superscripts refer to the interacting particles; eijk =the permutation symbols.  Note that all 
subscripts follow the summation convention of tensor. 
 

The contact force c

if between two particles may be related to the relative displacement 

c

j through the contact stiffness c

ij
K  as  

c c c

i ij jf K                                                                                             (2)

with c

ij
K  written in terms of the stiffness components in the normal direction Kn and that in the tangential 

direction Kw  as  

( )c c c

ij n i j w i j i jK K n n K s s t t                                                      (3)

where n, s, t are the unit base vectors of the local coordinate system constructed at each contact.  Vector n is 
normal to the contact plane and the other two orthogonal vectors, s and t, are on the contact plane which are 
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given by  

1 2 3

1 2 3

2 3

cos sin cos sin sin

sin cos cos cos sin

sin cos

n e e e

dn
s e e e

d

t n s e e

    

    


 

   

     

     

                                                   (4) 

The strain energy density in a representative volume V of this pseudo-granular material can be written as  

1

1
2

N
c c

i i

c

W f
V




                                                                                       (5)

where N refers to the total number of inter-particle contacts.  To develop a continuum model for the 
behavior of a particle assembly, we associate the discrete displacement, ui

n, of the nth particle to the 
displacement of the centroid, xi

n, of the nth particle, ui(xi
n
).  Following the approach by Chang and Liao 

(1990), Taylor series expansions is used for the displacement field.  Thus, the displacement at particle n 
can be estimated using the gradients at a reference point, x

0, which is defined as the center of the 
representative volume as follows:   

0 0 0
, ,

1
( ) ( ) ( ) ( )

2
n

i i i j j i jk j ku x u x u x x u x x x                                                           (6)

where the derivatives of third- and higher-order are neglected.  Ignoring the particle rotations and 
substituting Eq. (6) into Eq. (1) we get  

, ,( ) ( )c n p c c

i i i i j j i jk jku x u x u L u J                                                                    (7) 

where the geometric quantities  

c n p

j j jL x x   (8a) 

1
( )

2
c n n p p

jk j k j kJ x x x x   (8b) 

Assuming that the origin of local coordinates is located at the pth particle, and the pseudo-particle radius 
is uniform denoted by, r, Eqs. (8a)-(8b) are reduced to   

2c c

j jL rn  (9a) 

1
2

c c c

jk j kJ L L  (9b) 

Now considering the zeroth and the first-order strain measure, ε, as 

0
, ,

I

ij i j ijk i jku u    (10) 

the conjugate stress measures ζ can be defined as 

0
0

I

ij ijk I

ij ijk

W W 
 
 

 
 

 (11) 

By combining Eqs. (7), (9a)-(11), following set of constitutive equations is obtained:  
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0 o I

ij ijqm qm ijqmn qmnC B     (12a) 

0I I

ijk ijkqm qm ijkqmn qmnB D     (12b) 

which is further simplified as follows for the case of material with central symmetry such that constitutive 

tensor, Bijqmn=0 (Chang et al. 2002):  

0 0
ij ijkl klC   (13a) 

1 1
ijq ijqklm klmD   (13b) 

Using Eqs (5), (7)-(11), the constitutive tensors in Eqs. (13a) and (13b) can be expressed in terms of the 
fabric measures and the inter-granular stiffness as 

1

1
2

N
c c c

ijqm j iq m

c

C L K L
V 

   (14a) 

1

1
8

N
c c c c c

ijkqmn j k iq m n

c

D L L K L L
V 

   (14b) 

Considering the symmetry of the higher-order stress and strain tensors, the fourth-rank and sixth-rank 
constitutive tensors have to satisfy the following symmetries 

;  ijkl klij ijkl jikl ijlkC C C C C    (15) 

;  ijqklm klmijq ijqklm jiqklm ijqlkmD D D D D    (16) 

Since the representative volume consists of a large number of particles, a summation of any quantity over 

all particle contacts within the volume can be expressed in an integral form by introducing a directional 

density function, (,) (Chang and Misra 1990).  For a suitably large representative volume with a large 

number of contacts, recalling Eq. (9a), the summation in Eqs. (14a) and (14b) may be recast into integral 

forms as  

22
( , )c c c

ijkl j ik l

r N
C n K n d

V
  


   (17a) 

42
( , )c c c c c

ijqklm j q ik l m

r N
D n n K n n d

V
  


   (17b) 

where the integration
2

0 0

( ) ( )sind d d

 

  


    ; and N(,)d = the number of contacts in the 
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interval  to +d.  For isotropic micro-structure  
1

( , )
4

  


  (18) 

and closed form expressions for the constitutive coefficients can be derived in terms of the Young‟s 
modulus, Poisson‟s ratio and the particle size.  Substituting Eqs.(3), (4) and (18) into (17a) and 
integrating we arrive at the zeroth-order constitutive constants, Cijkl, as 

 1111 3 2
15 n w

a
C K K   (19a) 

 1122 15 n w

a
C K K   (19b) 

1212 1221

3
15 2n w

a
C C K K

    
 

 (19c) 

where a = 2r
2
N/V represents the density of the packing structure.  In addition, the following identities 

for zeroth-order elastic moduli hold:  

1111 2222C C  (20a) 

1122 2211C C  (20b) 

1212 2121C C  (20c) 

The constitutive constants results in the following relations between material properties and components 
of pseudo-bond stiffness (Chang and Misra 1990; Chang and Gao 1995):  

(2 3 )

3(4 )
n n w

n w

K K K
E a

K K

 
   

 (21) 

4
n w

n w

K K

K K
 



 (22) 

Eqs.(21) and (22) can be rearranged to give the pseudo-bond stiffness  

3
(1 2 )n

E
K

a 



 (23) 

3 (1 4 )
(1 2 )(1 )w

E
K

a


 



 

 (24) 

By combing Eqs. (3), (4), (17b), (18), (23) and (24) and using a similar algebra, the components of 
first-order constitutive constants Dijqklm can be obtained as  

2

111111

3 (7 3 )
35(1 2 )(1 )

r E
D


 



 

 (25a) 
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2

111122

(7 13 )
35(1 2 )(1 )

r E
D


 



 

 (25b) 

2

111212

3
7(1 2 )(1 )

r E
D


 


 

 (25c) 

2

122122

3 (7 23 )
35(1 2 )(1 )

r E
D


 



 

 (25d) 

where the following relations hold  

111111 222222D D  (26a) 

111122 112112 112121 121121 211222 212212 212221 221221D D D D D D D D        (26b) 

111212 111221 112211 112222 121211 121222 122212 122221D D D D D D D D        (26c) 

122122 211211D D  (26d) 

The other elements of Cijkl and Dijqklm are all zero. Note that (1) Eqs.(23) and (24) provide a useful method 
for estimating the high-order constitutive constants directly from the Young‟s modulus and Poisson‟s ratio 
without explicitly knowing the numerical values of either the number of contacts N or the representative 
volume V; and (2) the derived higher-order constitutive coefficients explicitly depend upon the particle 
radius, r , which functions as a internal length scale parameter.   
 

In a damage context we assume that all constitutive coefficients are pre-multiplied with the same 

factor (1  ) such that a nonlinear higher-order constitutive damage model can be obtained as:  

0 0(1 )iq iqkl klC     (27) 

1 1(1 )ijq ijqklm klmD     (28) 

where ω is the so-called damage scalar quantity ranging from 0 for initial undamaged material to 1 when 
all material coherence is lost.  For the calculations in this paper, the damage state is governed by a linear 
strain softening damage law through a scalar state variable, k, defined as the overall effective strain.  The 
effective strain, k, is determined by the square root of the summation of principle strains considering 
damage due to only tensile strains, which, in 2D, is given by the following equation   

2 2
1 2 1 2( ) ( )        for , 0k        (29)  

where ε1 and ε2 are the principle strain components of strain 11 12

12 22

 


 
 

  
 

.  The linear softening 

damage evolution function takes the form  
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0
0

0

( )

( )( )

1

u
u

u

u

k k k
k k k

k k kk

k k


    

 

 (30) 

where k0 is the threshold of strain at which damage is initiated and ku is the strain level at which all load 
carrying capacity is exhausted. 

Energy functional and weak form 

Following the framework for strain-gradient theory (Germain 1973, Fleck and Hutchinson 1997), 
the strain potential energy density with higher-order stress can be expressed as 

0 1

0 0 1 1
iq iq ijq ijqW d d

 
       (31) 

To proceed, we substitute the damage constitutive relations from Eqs. (27) and (28) into Eq. (31) and 
make use of integration by parts for the higher-order term while ignoring the boundary terms such that the 
final form of the energy functional can be recast as   

0 0

0

2 0
0 0 0

0 0
0

0

(1 ) (1 ) kl
iqkl kl iq ijqklr iq

r j

mn kl
ijqklr iq

mn j r

W C d D d
x x

D d
x x

 



    

  



   

 

 


  

 


 (32) 

where the substitution 0 /ijq iq jx   Ⅰ has been used.  Minimization of the potential energy results in 

the following nonlinear equilibrium equation in terms of displacement gradients:  

2 4

2 3

0

3 2 2 3

0

(1 )[ ]

[ ]

[ ] 0

k k
iqkl ijqklr

q l r j q l

m k k
iqkl ijqklr
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x x x x x x

u u u
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D

x x x x x x x x x x









 
 

     

  
 
      

   
  
          

 (33) 

Pre-multiplying Eq. (33) by a test function δui and integrating over the 2D domain Ω, the weak form 
governing equation is obtained as (see Yang and Misra 2010 for derivation details) 

2 2

1
1 0

(1 ) (1 )

( )
t t

i k i k
iqkl ijqklr

q l q j r l

ijqi
ijq j i iq q

q j

u u u u
C dxdy D dxdy

x x x x x x

u
n d u n d

x x

  

   

 

 

   
  

     


    

 

 

 
 (34) 

According to Reddy (2005), terms corresponding to the test function in the boundary integrals are 
determined as the essential boundary conditions, while their coefficients form the natural boundary 
conditions.  Thus, the boundary conditions for this higher-order equilibrium system can be stated as  
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,Essential b.c.:         specified,  specifiedi i qu u  (35a) 

1
0 1Natural b.c.:          specified,  specifiedijq

iq ijq

jx


 





 (35b) 

Note that though boundary conditions have been identified, the physical significance of the natural 
boundary conditions resulting from higher-order stresses remains an open question.  

Enforcement of essential boundary conditions using penalty method 

The natural boundary conditions (or traction boundary conditions) have been included into the 
weak form equilibrium equation via integration by parts.  However, the essential boundary conditions 
(or displacement boundary conditions) have not yet been treated in the formulation.  Moreover, the 
Moving Least Square (MLS) approximations used latter in EFG discretization do not bear the Kronecker 
delta function property.  Therefore, the essential boundary conditions have to be imposed separately via 
special techniques, such as the Lagrange multiplier method and the penalty method.  Penalty method 
offers an efficient way to impose the essential boundary conditions provided an appropriate large penalty 
coefficient is utilized.  The constrained higher-order Galerkin weak form (Eq. (34)) using penalty 
method is posed as follows (see also Liu and Gu 2005):  
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

   
  

     


    

 

    

 

 



 (36) 

where 
iu is the prescribed displacement vector; α is the penalty coefficient which is often a large positive 

number and is determined herein by 106 times the maximum diagonal element of the global stiffness 
matrix.  In Eq. (36), the higher-order essential boundary conditions are ignored for the sake of simplicity, 
though it could be included in an obvious and straightforward manner.  Considering that 

1
[( ) ( )]

2 u u u

T T T

i i i i i i i iu u u u d u u d u u d     
  

         (37) 

Eq.(36) can be recast as  
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 (38) 
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Element-free Galerkin Formulation 
Meshfree methods, such as the Element-free Galerkin (EFG) methods, have been used as an 

alternative to eliminate the mesh-subjectivity.  EFG method, which requires a much looser topological 
discretization structure compared to the finite element method, has been demonstrated to be quite 
successful in solving many challenging problems in solid mechanics, for instance, static and dynamic 
crack growth modeling (Krysl and Belytschko 1997; Belytschko and Tabbara 1996; Belytschko et al. 
1994, 1995; Belytschko et al. 1995; Belytschko et al. 1994; Lu et al. 1994).  However, there have been 
only few attempts to apply the EFG method to gradient-enhanced continua with strain softening (Askes et 
al. 2000; Chang et al. 2002) or in the context of plasticity (Pamin et al. 2001, 2003).  Jirásek (1998) has 
investigated the applicability of EFG method to strain softening problems and confirmed that for 
regularized localization problems, EFG method behaves in a manner superior to finite element (FE) 
method in the description of continuous fields.  From the viewpoint of gradient-enhanced continuum 
theory developed in this paper, the EFG method has an important advantage over classical FE method that 
the approximation functions with high order of continuity needed for proper representation of the 
higher-order derivatives can be readily incorporated into the formulation without increasing the problem 
size (Askes et al. 2000; Pamin et al. 2003).   

 
The essential idea for the EFG method is that MLS interpolants are used for the trail and test 

functions with a variational principle.  To use MLS, it is only necessary to construct a set of nodes in the 
problem domain without any elements.  The connectivity between field nodes is satisfied via the 
overlapping of the domain of influence of sampling node in which its shape function is nonzero.  The 
domain of influence of each field node is controlled by a weight function.  The weight and MLS shape 
functions used in this work are given in Appendix A.  Using the MLS approximation, the trial function 
and test function are discretized according to: 

    i ip p i ip pu u u u      (39) 

where ip  is the MLS shape function and pu is the nodal parameter of displacement field for all nodes in 

the influence domain.  Substituting Eq. (39) into the weak form Eq. (38) and canceling out pu because 

of its arbitrariness yields the following global discretized system equation   

[ ]ps ps s p pK K u F F
     (40) 

where superscript α represents the resultants from penalty terms.  Global stiffness tensors psK , ps
K and 

global force tensors pF , pF
  are given as  

2 2

(1 ) (1 )ip

T T

ipks ks
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q l q j r l

K C dxdy D dxdy
x x x x x x
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 

  
   

        (41) 
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u

T

ps isK d
  


    (42) 
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p ijq j iq q

q j

F n d n d
x x

 
  

 
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                                                  (43) 

ip
u

T

p iF u d
  


                                                                                   (44) 

In order to obtain the incremental form of system Eq. (40), we define a residual force
pR as the difference 

between internal force ( )ps ps sK K u
 and external force p pF F

 .  Taylor series expansion of the 

residual force is then utilized to perform the linearization given by  

2
( 1) ( 1) ( ) ( 1) ( ) 2

2

1
( ) ( ) ( ) ( ) 0

2
p pr r r r r

p p s s

s s

R R
R R u u u

u u

   
     

 
  (45) 

where ( )r
u is the increment and superscripts within parentheses refer to the iteration step.  Thus the 

solution of Eq. (40) at the rth iteration can be written in terms of the solution for the (r-1)th iteration as 
follows  

( ) ( 1) ( )r r r
u u u

   (46) 

When second-order derivatives and higher in Eq. (45) are neglected, we obtain  

( 1) ( ) ( 1) ( 1) ( 1)( ) ( )p r r r r r

s p p ps ps s

s

R
u F F K K u

u

    
    


 (47) 

Defining tangent stiffness as p

ps

s

R
T

u





 yields  

1

( )
( )

n
pm pm

ps m ps ps

m s

K K
T u K K

u






 
  

  (48) 

Inserting Eq. (41) and Eq. (42) into Eq. (48), the resultant tangent stiffness tensor is obtained as  
2 2
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
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

 (49) 

Finally, the incremental system equilibrium equation becomes  
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( 1) ( ) ( 1) ( 1) ( 1)( )r r r r r

ps s p p ps ps sT u F F K K u
          (50) 

 

IGF Failure – Comparison of Ab initio and Continuum Simulations 
We apply the derived theory to simulate failure of an IGF model in which a glassy film is 

embedded between two crystallites. 

Atomic model and ab initio failure simulation 

A fully relaxed 907-atom initial periodic super-cell atomic model of nanometer sized IGF 

sandwiched between -Si3N4 crystals was generated and, subsequently subjected to uniaxial extension.  
The details of model construction and the tensile simulation are given in Ching et al. (2010).  Here we 
provide information relevant for comparison with continuum modeling and needed for completeness.  
The initial IGF model was constructed using classical molecular dynamics followed by full ab initio 
relaxation using the VASP (Vienna ab-initio Simulation Package).  VASP is a popular electronic 
structure code based on density functional theory (Kresse and Furthmuller 1996a, b, Hafner 2008) with 

plane wave expansion within the pseudopotential formulism.  We used Vanderbilt ultrasoft 
pseudopotential with LDA for exchange-correlation potential and a relatively high energy cutoff of 500 
eV (Ching et al. 2010).  A criterion of 10-5 eV for electronic convergence and 10-2 eV/A for force 
convergence were adopted. The stress level for the equilibrium structure is below 0.1GPa.  The initial 
model has a dimension of 14.533 Å x 15.225 Å x 47.420 Å and an IGF width of approximately 1.64 nm.  
From this initial model, uniaxial extension was applied in small incremental steps by stretching the 
supercell model.  The y- and z-dimensions of the model were kept constant while the x-dimension is 

increased such that the strain components were xx0, while yy=zz=0.  At each strain-level (referred to 
the entire periodic model), all atoms in the model were fully relaxed using the same criteria as in the 
initial model until the desired convergence is achieved.  During ab initio simulations under uniaxial 
loading, small changes in atomic positions can result in large unbalanced forces.  Therefore, it is 
necessary to apply stringent convergence criterion.  The convergence in the total energy and the atomic 
strain level were carefully monitored to ensure sufficient accuracy without consuming a prohibitive 
amount of computing resources.  The relaxed model at a given strain serves as the starting position for 
the next increment of strain before the model is fully relaxed again.  Depending on the stress level, 
relaxation run could take several hundred ionic steps to reach the desired convergence.  This process is 
carried on until the total energy and the stress data show that the “sample” is fully fractured or reached the 
deformation limit.  The data for the atomic structure of the IGF model are collected as a function of 
strain for further analysis.   
 

Continuum model and failure simulation with higher order theory 

For assessing the ability of the higher-order continuum approach in replicating the behavior 
predicted by ab initio simulations, we constructed a 2D IGF model cell of dimension 50Å×15 Å.  Since 
ab initio simulations were under a uniaxial extension, 2D model was considered sufficient.  The model 
was subjected to uniaxial tension via an incrementally imposed displacement du=0.2Å at the right end 
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while the left end are fixed at both x and y direction and the upper and lower boundaries are fixed at the 
y-direction as shown in Figure 2.  For simplicity, a 10Å wide imperfection zone, shown as the hatched 
area in Figure 2, is considered along the center section of the domain to represent the IGF.  The elastic 
modulus of the crystal region is taken as E=350GPa (Ching et al. 2010).  The elastic modulus of the IGF 
layer is specified to be 56GPa.  The IGF modulus is obtained from the mixture rules of compliances 
based upon the average slope of the ab initio stress-strain curve estimated as 170 GPa and the crystal 
modulus given above.  Poisson‟s ratio was taken as ν=0.22, and the damage evolution parameters are 
given as k0=0.18 and ku=0.6 for glassy film; k0=0.2 and ku=0.6 for crystal.  A 51×11 uniform nodal 
layout is used for obtaining the solutions for this problem.  In addition, 40×12 rectangular background 
cells with four-point integration rule are used to integrate the stiffness coefficient.  Since the unit cell of 

-Si3N4 has a tetrahedral structure; we chose the side length of the tetrahedra as the representative length 
scale parameter r.  Based upon a Si-N bond length of 1.7 Å, the length scale parameter r was specified 
as 2.94Å.  The incremental displacement was imposed in twenty two stages until the IGF model 
completely fractured. 

 

Results and Discussion 

Figure 3 gives the comparison of the stress-strain curves obtained from ab initio simulations and 
the continuum modeling.  The agreement between the curves obtained from the two methods is 
encouraging considering that the continuum model is based upon (1) a linear elastic law with a linear 
softening damage law, and (2) an idealized IGF geometry with homogeneous properties.   

 
Figure 4 gives the ball-stick view at selected strain-levels of how the atomic positions and 

bonding evolve under the uniaxial extension-loading.  We define the atomic bonds between Si-N and 
Si-O upon the basis of atomic distances for the purposes of depicting the evolution of bonding in the 

ball-stick view.  In crystals, the Si-O and Si-N bond lengths are 1.61 Å in -SiO2 and 1.66-1.70 Å in 
various oxynitride crystals, respectively (Ching 2004, Ching et al. 2004).  In our ball-stick diagrams, the 
bond is deemed broken when the atomic distances exceed the sum of the covalent radii.  In Figure 4, the 
strain-level of 0.069 represents a point in the pre-peak on-linear portion of the stress-strain curve, the 
strain-level of 0.088 is the peak stress point and the strain-level of 0.108 is a point past peak stress in the 
softening regime of the stress-strain curve.  At the strain-level of 0.069, the ball-stick diagram shows 
minimal change in the structure.  Upon further extension, at the strain-level of 0.088, a considerable 
number of bonds at the IGF/crystal interface are broken, although the atomic structure shows a seemingly 
small change both in the crystal layers and within the IGF.  At the strain-level of 0.108, the IGF 
experiences large stretch while the adjoining crystal layers rebound or unload.  At this stage, void spaces 
and „nano-fractures” appear within the IGF.  In comparison, laboratory tests on silicon nitride under 
uniaxial stress loading show a failure strain of ~2.5% (Edwards et al. 2004).  We note here that the 
supercell considered in this study is not a representative of the lab sample.  In addition, the failure of a 
laboratory sample is through a more complex process under multi-axial local strains and highly defective 
structures, including larger scale defects. 
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To compare the local deformation behavior obtained from the two methods, we computed the 
local strain field of the atomic system by fitting the atomic displacements obtained from the ab initio 
simulations.  The super-cell was divided into a 51x11x11 grid.  A linear fit was defined for local groups 
of atoms contained within a sphere of radius Ro centered at the nth grid point, such that the displacement 
of pth atom within this group, is given as:  

np n n p

i i ij ju  = a  + d   X  (51) 

where, ui
np is the fitted displacement for the pth atom, Xj

p is the position of the pth atom in the unstressed 
configuration, the coefficients ai

n denote the rigid body displacement, and the coefficients dij
n represent 

the local displacement gradient.  Local strain associated with the nth grid point was taken as the 
symmetric part of the displacement gradient.  In our analysis, Ro is chosen to be 5.0 Å based upon two 
considerations: (1) to ensure a minimal local volume that guarantees the existence of solutions to the 
fitting process used to obtain the local displacement gradient; and (2) to obtain a maximum resolution for 
the strain field in the IGF region as a too large a Ro will average out the local variations of the strain field.  
The strain components were averaged over the z-direction for comparing with the 2D continuum 
simulations.    
 

Figures 5 through 7 show the computed contours of strain ε11 in the horizontal direction (x 
direction), strain ε22 in the vertical direction (y direction) and shear strain ε12  at three stages, namely, 
pre-peak, peak and post-peak failure stages from the continuum and ab initio simulations, respectively.  
The three stages for the continuum simulation correspond to the overall strains of (a) 0.067, (b) 0.071 and 
(c) 0.086, while that for atomistic simulation correspond to the values in Figure 4.  The agreements 
between the continuum and ab initio simulation results are encouraging.  We see from Figure 5 that the 
continuum result replicates the horizontal direction strain, ε11, localization in the IGF and the post-peak 
rebound of the crystal region.  We further see from Figure 6 that vertical strain, ε22, also concentrate in 
the IGF and form a pattern of alternate compressive and tensile strain band.  Similarly, from Figure 7 we 
observe that shear strains form a cross pattern in the vicinity of the IGF.  The strain localization zone in 
the continuum model is observed to be narrower than the ab initio simulation, since the lower estimate of 
imperfection width was chosen.  Wider localization zone would be obtained if the initial imperfection 
width was assumed to be larger.  We also note that the continuum model directly provides the 
predictions of the local strain while for the ab initio results the local strain has to be interpreted through a 
fitting process. 

 
Figure 8 further illustrates the evolution of damage and strain localization predicted by the 

continuum model by plotting the damage function, ω, and axial strain, ε11, along the horizontal central 
axis for all the loading steps.  We observe that as the damage initiates, a localized strain zone begins to 
emerge within the IGF.  This localized zone grows till we reach the peak stress.  Beyond peak stress the 
localization zone is confined to an unchanging narrow band and the crystal region experiences unloading 
as shown in Fig. 8(b). 

 
Figure 9 plots the contours of the higher-order strains ε111 and ε222 corresponding to the gradients 



16 
 

of the horizontal strain ε11 and vertical strain ε22 at the peak and post-peak failure stages.  As the strains 
localize within the IGF, strain gradients develop in their proximity.  At peak axial stress stage, two strain 
gradient bands with mirror symmetry form on the either side of the imperfection as shown in Figure 9(a).  
At failure, shown in Figure 9(b), bands of large strain gradients are present in the immediate 
neighborhood of the rupture while the rest of the material experiences zero strain gradients which are 
consistent with the strain profiles shown in Figures 5-6.  

 

Summary and Conclusion 
This paper has presented a micro-structural granular mechanics based higher order stress-strain 

theory for fracture simulation of strain softening materials.  In this approach, the constitutive coefficients 
are derived by considering the underlying physical configuration such that the internal length scale 
parameter reflects the natural granularity of the underlying microstructure.  The resultant higher order 
theory includes both strain gradients and their conjugate higher-order stress, which is different from other 
gradient theories.  The constitutive relationships, the governing equations and its weak form have been 
derived for this higher-order theory in this paper.  An Element-free Galerkin (EFG) formulation in 
combination with the penalty method for the enforcement of essential boundary conditions is then applied 
for the discretization of the system governing equations followed by the linearization using Talyor series 
expansions.  The derived formulation is used to simulate the fracture process of glassy inter-granular 
films (IGF) sandwiched between crystal layers.  The results predicted by the higher order continuum 
model are compared to those obtained from ab initio atomistic simulations.  The similarity between the 
continuum and ab initio simulation results are encouraging considering that the continuum model (1) is 
based upon a linear elastic law with a linear softening damage law, (2) uses an idealized IGF geometry 
with homogeneous properties, and (3) directly provides the predictions of the local strain while for the ab 

initio results the local strain has to be interpreted through a fitting process.  In addition, the internal 
length parameter utilized in this approach not only serves as a localization limiter but also rationally 
reflects the micro-structural characteristics of the IGF model which enables this higher-order continuum 
theory to simulate the fracture process of nano-scale complex materials accurately from numerical 
viewpoint without losing their physical significance.  We also note that even with the currently available 
unprecedented computational resources ab initio solutions cannot be obtained routinely for such complex 
structures with ~1000 atoms let alone for macro-scale mechanical behavior of nano-phased materials that 
are suffused with IGF type structures.  The micro-structural granular mechanics based higher order 
continuum approach developed in this paper offers a viable method that can greatly reduce the 
computational needs and provide realistic simulations.  In our future studies, we will extend the 2D 
continuum simulations to 3D, and apply anisotropic micro-structure to further refine this higher-order 
continuum theory.   
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Appendix A. MLS approximation 

For a 2D case considered in this work, the weight function wi(x) is obtained as the product of standard 1D 

weight functions in x and y directions given as  

( ) ( ) ( )i ix iyw x w x w x   (A.1) 

In this study, a cubic spline is used as the weight function and the domain of influence is set to be 
rectangular with dimension dsx and dsy which are determined by a dimensionless parameter β and the nodal 
spacing dcx and dcy in each direction respectively.  For instance, the weight function in x direction takes 
the following form 

2 3

2 3

2 / 3 4 4                         0.5

( ) 4 / 3 4 4 4 / 3      0.5 1

0                                                   1 

ix ix ix

ix ix ix ix ix
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r r r
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 (A.2) 

where i

ix

sx

x x
r

d


 , sx cxd d (with 3  )and ix x is the distance from node xi to the sampling 

point x. 

The MLS approximation ( )h
u x for displacement field function ( )u x  at x is defined as   

( ) ( )h T

su x x U  (A.3) 

where sU is the vector collecting the nodal parameters of displacement field for all the nodes within the 

influence domain; ( )T
x is the vector of MLS shape functions corresponding to n nodes in the influence 

domain of the sampling point x , written as  

  1
1 2 1

( ) ( )  ( )  ( ) ( ) ( ) ( )T T

n n
x x x x p x A x B x   


    (A.4) 

where the polynomial base vector p takes the quadratic form as   

2 2( ) [1 ]T
p x x y x xy y  (A.5) 

and the matrix A(x) and vector B(x) are given as  

1

( ) ( ) ( ) ( )
n

T

i i i

i

A x w x p x p x


  (A.6) 

1 1 2 2( ) [ ( ) ( ) ( ) ( ) ( ) ( )]n nB x w x p x w x p x w x p x   (A.7) 
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Figure 2: Prismatic IGF model and loading conditions 
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Figure 3: Comparison of stress-strain curves with ab initio calculation results 
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Figure 4: Ball-stick diagram of prismatic IGF model deformation obtained from ab initio calculations 
under x-direction uniaxial extension at three different loading-levels: (a) pre-peak, under strain of 0.069 

(b) peak stage, under strain of 0.088 (c) post-peak failure stage, under strain of 0.108, respectively 
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Figure 5: Evolution of axial strain ε11contours at three stages: (a) pre-peak, (b) peak, and (c) post-peak 
failure stages 
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Figure 6: Evolution of lateral strain ε22 contours at three stages: (a) pre-peak, (b) peak, and (c) post-peak 
failure stages 
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Figure 7: Evolution of shear strain ε12 contours at three stages: (a) pre-peak, (b) peak, and (c) post-peak 
failure stages 
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Figure 8: Evolution of (a) damage ω and (b) axial strain ε11 along the horizontal central axis over all the 
loading steps (51×11 nodes, ν=0.22, r=2.94Å) 
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Figure 9: Contours of strain gradients ε111 and ε222 at: (a) peak, and (b) post-peak failure stages 
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