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Synopsis

The wave function for a vector boson in a Coulomb field is obtained in a high
energy approximation. The Furry wave function for a lepton in a Coulomb field is
reconsidered and extended by taking into account a term hitherto neglected. Both
wave functions are then applied to the coherent production of vector bosons and muons
by neutrinos in the Coulomb field of a nucleus. For low-energy muons the matrix
element is improved bv taking into account all second order effects for the muon.
The effect of nuclear structure is briefly discussed.

1. Introduction. Recently, Lee, Marks t e in and Yang1) calculated the
coherent production cross section of intermediate vector bosons by neutrinos
in lowest order in the e.m. coupling constant. Their calculations indicate
a rather strong dependence of the cross section on the mass and the magnetic
moment of the vector boson and it will thus be probable that mass and mag-
netic moment are determined from experimental cross sections. Clearly any
uncertainty in the theoretical cross section will come out then as an un-
certainty in these parameters and it seems desirable to investigate higher
order corrections. The process in question is very similar to electron-positron
pair creation by a photon, which has been studied extensively. For the case
of large Z where higher order effects in Ze

2 are important, the pair production
has been calculated in a high energy approximation by Bethe and Maxi-
mon2) , and it is the purpose of the present paper to do the same type of
calculation for production of vector bosons (hereafter called W). This
problem can be split into two parts, i) the calculation of the wave function
of a vector boson in a Coulomb field, and ii) the application of this wave
function to a special problem, for instance neutrino induced production or
muon induced production. Clearly, in attacking the problem in this way,
we have the advantage of finding a wave function which is of use inde-
pendently of the way in which other particles (muon or electron) enter the
problem. For instance, such a wave function can be used also in high energy
neutrino induced processes, where the muon (or electron) comes out with
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low velocity, a situation which we shall see to be of practical interest.
. In section 2, kinematical considerations will reveal that coherent produc-

tion necessarily involves a relativistic vector boson and a momentum transfer
whose magnitude is small with respect to the energy of the W. In section 3,
we solve the equation of motion of a vector boson in a Coulomb field for high
energies and small momentum transfer. Section 4 treats the Dirac equation
in an analogous way. In section 5, the wave functions of sections 3 and 4 are
applied to the problem of neutrino induced W production, both outgoing
particles being relativistic. To improve the matrix element in the case of a
slow outgoing muon certain second order terms are added as discussed in
section 6. In section 7 the important nuclear structure effects are discussed.
Section 8, finally, summarizes the results of sections 5 to 7.

2. Kinematics. For definiteness we consider a specific process:

where = neutrino, Z = nucleus of charge = muon, W = vector
boson. Here and in what follows we will work in the laboratory system of
reference and neglect the recoil energy of the nucleus. Putting
and denoting the momentum and energy of the neutrino, and vector
boson by respectively, we have the relations:

where is the momentum absorbed by the nucleus and m and M are the
masses of muon and vector boson. For given initial energy E the minimum
amount of momentum to be absorbed is given by

This is when q, k and p are all in the same direction, while e and m are given
by

The restriction to the coherent process means which
gives for instance for lead However, larger momentum
transfers will also occur, although at a much reduced rate depending on the
details of the nuclear form factor. Taking for definiteness
we get with M = 600 MeV and m = 100 MeV that E > 2500 MeV. This
gives to relativistic values which can be considered large with
respect to Q.

Suppose now that we want to observe muons coming out in directions
orthogonal to the incident v. The region of special interest is then the low
muon energy region where Of course, this Q will
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be above the upper limit [nucl. dim.]-1, but, depending on the special form
of the nuclear form factor, the excess will not be so strong as to suppress all
processes of this form. The vector boson can never be slow, however, as its
mass is much higher so that Qm + M is always far above threshold.

3. Vector boson in Coulomb field. The equation of motion of a W particle
in the Coulomb field of a point charge Ze is (in addition to = c — 1 we
set Ze"

1 = a):

(3.1)

Latin indices will always run from 1 to 3, while Greek ones take the values
1 to 4. is the parameter for the magnetic moment defined by

Further In the following we shall often use r = The vector product
of two four vectors A and B will be given by

There is a subsidiary condition (given in (3.3) below) that can be found by
applying the operatior to eq. (3.1) and summing over v. This condition
can be used to eliminate the second term in the left-hand side of (3.1). After
some algebraic manipulations one finds:
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As far as is possible the right-hand side has been written in terms of
commutators of with differential operators in order to facilitate the
discussion below. The subsidiary condition is

(3.3)

One notes that at this goes over into the subsidiary condition for
a free particle.

We must now find a wave function that obeys this wave equation in the
low momentum transfer limit. This corresponds to the limit of large r in (3.2)
and, neglecting all terms of order one is left with the equation:

The monochromatic solutions of this equation are well known and can be
written in terms of a confluent hypergeometric function3). They differ from
each, other in the asymptotic behaviour for We restrict ourselves
to the particular solution needed when the W occurs in the final state of a
collision. This means that we have to take the solution with ingoing spherical
waves 4):

(3.5)

is a polarisation vector depending on and (see (3.7)). Clearly
fulfils:

(3.6)

One way of seeing that this is the solution with the correct asymptotic
behaviour, is by taking the first order term in a of its Fourier transform.
This Fourier transform can only be defined if we include a damping term
exp with very small

For only the second term in square brackets is non-zero,
and one sees that in first order in it coincides with the first Born approxi-

(3.4)
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mation for the potential and an ingoing spherical wave. The sub-
sidiary condition gives a restriction on the polarization vector

(3.7)

Clearly one can find 3 independent unit vectors that fulfil (3.7). This corre-
sponds to the 3 polarization possibilities.

The wave function (3.5) is often not accurate enough ior direct application.
Therefore, we try to improve it by calculating the next higher order con-
tribution. We do this by treating the terms in Born approximation,
where (3.4) is considered as the unperturbed equation. Dropping all terms
of order in (3.2), inserting in all terms and substituting =

we are left with:

where we have used terms of order One
notes that the right-hand side contains an r -2 term and terms which have
a commutator of and as a factor. We will treat them separately mainly
because the book-keeping becomes somewhat simpler. Consider the commu-
tator terms first. They require the solution of an equation of the form

(3.10)

where is some function that can be given in terms of a power series. A
solution of this equation is:

(3.8)

(3.9)
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as can be seen immediately by insertion in (3.10). Since the derivative of
behaves asymptotically as r-1 this has the asymptotic behaviour

required for our problem. By this method we have now the solution of (3.8)
and (3.9) as far as the commutator terms are concerned. Consider next

a being some constant. We make the ansatz5)

(3.11)

(3.12)

We insert this ansatz into the left-hand side of (3.11). In order to permit
differentiation under the integral sign we make the integration uniformly
convergent by adding a term in the exponent. By using the
equation for a confluent hypergeometric function

we get without difficulty:

To calculate this we use the well-known representation:

(3.13)

The integrand has a cut from t = 0 to t = 1 and we are in the sheet where
the arguments of t and t — 1 are zero on the real axis to the right of 1.
The integration contour encircles the points 0 and 1 anti-clockwise. Taking
the contour sufficiently close around the cut we can, for a given
exchange the t and integration. Performing the k' integration we get:
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The t integrand has now acquired two poles which approach the point t = 1
as so that the contour is pinched from two sides. Therefore, we
expand first the contour so that the poles come inside by adding the residues
of the poles. These residues are seen to go to zero if and performing
this limit we get the desired result (3.11). The solution (3.12) goes over into
the normal plane wave Born approximation if we let One establishes
without difficulty that (3.12) has the proper asymptotic behaviour.

We can now write down the complete solution of (3.8) and (3.9):

with
(3.14)

where we have added the usual normalization factor is given
by:

With the help of eq. (3.6) for 1F1 and the condition (3.7) we finally reduce
to:

(3.15)
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4. Dirac particle in Coulomb field. The Dirac equation for a particle in a
Coulomb field is:

Multiplying with

(4.1)

(4.2)

There seems to be some confusion in the literature") concerning the use of
(4.2) instead of (4.1). In appendix A we show that in second order the
diagrams of perturbation theory generated by (4.2) are the same as those
generated by (4.1). For the complete proof of the equivalence of (4.2) and
(4.1) (for asymptotically equal solutions) we refer to the work of B. Nagel 8) .

In a way completely analogous to the calculation in section 3, we find
the solution which takes into account exactly the first term in the
right-hand side of (4.2) and in first approximation the terms of order
Again specializing to the case of an outgoing particle we have:

(4.3)

is the Dirac spinor for a free muon of four impuls cf. ref. 6).

5. The matrix element for neutrino induced W production. In the foregoing
we discussed the wave functions of vector boson and lepton in a Coulomb
field of arbitrary strength in the low momentum transfer limit. We shall
use now these functions for the particular case of IF and muon production
by a neutrino in the Coulomb field of a nucleus whereby the nucleus is
assumed to remain in the same state (coherent process). The weak inter-
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action will be treated in lowest order. The matrix element for this process
corresponding to the diagram of fig. 1, will depend on the four-momenta

and of the neutrino, muon and vector boson, and on the polarisation
of these particles.

Fig. 1. Diagram for production of a W with momentum-energy by a neutrino
with momentum-energy q, E.

Taking the neutrino to be in a definite state of helicity we need two
indices t and s to indicate the polarisation of muon and vector boson re-
spectively. Denoting the matrix element by M(q, p , k, t, s) we have:

(5.1)

In here stand for muon, neutrino and vector boson field. We must
now insert the wave functions calculated above together with a plane wave
for the neutrino. The wave functions from sections 3 and 4 have the form:

where all and are as indicated in (3.14) and (4.3), i.e., and stand
for the solution of the equations of motion with the Coulomb field alone
(c.f. (3.4)), and for the corrections arising from that part of the
equation which could be written in terms of commutators of with
and and finally f or the correction arising from the term (c.f. (3.11)).

Clearly, are small compared with and arc small in comparison
to Inserting these expressions into (5.1) we havo:

is the Dirac spinor for a free neutrino of four impuls
Evaluating this expression we will neglect the term involving

and we see that the matrix element is built up from five parts:
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with

(5.2)

The integrals are of the same type as those calculated by Nord-
sieck9) and Bethe-Maximon. Essentially they can all be derived from
Nordsieck's result:

(5.3)

F is a normal hypergeometric function, see (5.10) below. We have put
Q = q — p — k. The integral can be obtained by differentiation of
with respect to while the integrals and can be reduced to derivatives
of with respect to p and k for fixed Q with the help of identities of the
type

For completeness we write down explicitly the three types of integrals
involved in (5.2) :

(5.4)
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where now

One observes that for (Remember that the angle between
p and is of the order

We consider next The integral to be calculated is:

with This integral cannot be evaluated exactly and we
must make some further approximation. Let us consider first the inte-
gration :

(5.6)

In our approximation we need only take the leading part of this for small
values of Now for small (5.6) has a leading term of the type10).
This allows us to change the factor in (5.5) so that the value of
the integrand is not changed in the point A change
that fulfils this condition is:

This change has the further advantage that the new integrand has the same
derivative with respect to k' in the point k' = Q + k as the old one. This
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ensures that this term gets the same phase factor as all other terms in the
matrix element, which simplifies our final expression. The change just
described makes the integral (5.5) of the type In the further
treatment of (5.5) one can either do the r integration and the subsequent
convolution over or one can prove that:

We chose the latter way, the proof is given in appendix B.
At this place we want to clarify a little the above procedure. Adopting

the same reasoning as given above one would expect a function for
Indeed, on performing the differentiation with respect to ot one
also gets a term of the form which is of the (see appen-
dix C, eq. (C.1)). However, we consider only cases where so that this
term does not contribute. Thus, in the case of the terms here neglected
play a major role.

We can now write down the matrix element in terms of and

(5.7)



THE COHERENT PRODUCTION OF VECTOR BOSONS 173

where we have used the following relations:

is the completely antisymmetry tensor, = 1.

(5.8)

We look now into questions of order of magnitude. (Eq. (5.2)) contains
the two leading parts and of muon and W wave functions. However,
if k, p and q point in the same direction and if we have

which, as can be seen in (5.4), gives rise to a strong cancellation in
Because of this cancellation, and because of the fact that the part from (5.4)
containing a function is of lower order in the momentum transfer the
integral becomes of the same order as . to It is this fact*) which
makes necessary the consideration of quantities of lower order, i.e., of
quantities of the order of magnitude It will further be clear from this
that the term must be manipulated without further ap-
proximations. We drop all terms containing because they are one order
of magnitude smaller in than the terms One may well ask why we
did not drop directly the terms and from The reason is that
we want to be correct also up to first order in the coupling constant and
these terms contain first order contributions, that are extracted by the
procedure (5.8). We insert now from (5.3) into (5.7) to get:

*) A further enhancement of this effect comes about through the spinor factors in all these

integrals.
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Because = 0 one may eventually write for Further :

(5.10)

In first order in a this formula agrees with the formula given in ref. 1 up
to the cut-off function in describing nuclear effects (see section 7). To
simplify the comparison we underlined the parts which contribute in tirst
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order in and are real functions of Davies, Bethe
and Maximon11) investigated the behaviour of these functions in the
neighbourhood of = 0 with the result

(5.11)

Formula (5.9) is correct up to terms ot order i.e., it contains
all terms in first order in a irrespective of their order in or and all
terms in iirst order in irrespective of their order in

6. Corrections for low energy muons. The present treatment breaks down
for low energy muons, because of the fact that the second and third terms
of the right-hand side of eq. (4.2), which we treated in Born approximation,
cannot be considered as small with respect to the Coulomb term if
For the energies of interest with the present accelerators, as one can see
from the energy distribution of the outgoing muons given in ref. 1, a
considerable fraction of muons come out with relatively low energy. It is,
therefore, highly desirable that we extend the region where our formula is
valid into the low muon-energy direction. A very lucky circumstance is that
the matrix element (5.9) deviates in structure really very little from what
one would get by treating in (3.2) and (4.2) all right-hand side terms in Born
approximation with respect to plane waves instead of Coulomb wave
functions. This makes it possible to change the matrix element so that in
the region of small it is still correct up to second order in a. We want to
stress the fact that no change has to be made in the normalization factor
N(s) given in section 4, because it is related to the asymptotic behaviour
of the Coulomb wave function which is determined by the Coulomb term
alone.

Let us now try to find the necessary second order correction. Consider
(4.2). Because of the fact that the Coulomb term is treated exactly, and
because of the fact that the term has already been treated we need to
solve (4.2) where in the right-hand side only the term is retained and

is replaced by from (4.3):

(6.1)

where we take from in the right-hand side only the lowest order part in
Using a representation of the form (3.13) for we get:
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After partial integration we get in lowest order in a2 :

We use the identity

so that (6.1) transforms into:

(6.2)

In using the solution of (6.2) in the matrix element no attempt will be made
to incorporate further Coulomb effects of either muon or vector boson and
this means that we need to calculate only the Fourier transform of the right-
hand side of (6.2) This Fourier transform is given in appendix C, where also
some other Fourier transforms pertinent to our problem are listed. The
result (eqs. (C.9) and (C.10)) is exactly the same as what one would get by
treating a diagram with two vertices of the type of the second term in the
right-hand side of (4.2). We could have taken Dalitz'12) results lor the
second order Born approximation for electron scattering were it not for
the fact that our initial muon is a virtual one, not being on the mass shell.

7. The cut-off function for high momentum transfer. The process under
consideration requires high energy incident neutrinos and with the present
accelerators most neutrinos will be at best in the threshold region for
coherent W production. This means that the structure of the nucleus plays
a very important if not decisive role. Of course, we are not able to treat
the Coulomb potential of any realistic nuclear charge distribution consis-
tently in the same way as we treated above the point charge Coulomb
potential, and the only thing we can do is to make some reasonable guess
on how to improve our formula for the higher momentum transfer where the
nuclear structure is important.

Again, as in section 6, we will try to correct our matrix element so that
in the momentum transfer region just mentioned it is still correct in first
order in and as far as possible also in second order in Let us start by
writing down the potential as used in ref. 1, together with its Fourier
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transform = constant related to the nuclear dimensions):

(7.1)

The effect of the extra terms as compared with the point Coulomb field is,
of course, to suppress the higher momentum transfer part. As a consequence,
certain asymptotic properties, i.e., normalization constants and low mo-
mentum transfer behaviour, are not affected by the change from a point
charge potential to the potential (7.1).

In order now to see how the potential appears in our matrix element we
try to understand (5.9) in terms of a calculation with Feynman diagrams.
Schematically we write:

with:

F3 stands for all other terms, i.e., all terms containing W(x) and the imaginary
part of the second order muon correction. F1 is precisely what one would
get in a lowest order plane wave calculation (see fig. 2) and we see the usual

Fig. 2. The diagrams contributing to

1 = Interaction given by right-hand side of eq. (3.2) in first order in a.

2 = Interaction given by right-hand side of eq. (4.2) in first order in a.

effect that the higher order diagrams involving the Coulomb potential have
a relatively small effect, through the function (whose lowest order
contribution contains and is real). F2 can be seen as arising from a second



178 M. VELTMAN

order calculation (see fig. 3), leaving aside second order effects of the
Coulomb potential

Fig. 3. The diagrams contributing to F'2
3 = interaction arising from the seventh term on the right-hand side of eq. (3.2).
4 = interaction arising from the third term in round brackets on the right-hand

side of eq. (4.2).
Re = Real part of diagram whereby phase is fixed so that the first two diagrams are

real.
5 = Interaction arising from the second term in round brackets on the right-hand side

of eq. (4.2).

Clearly, in order to make the matrix element correct in first order in a we
must make in F1 the change

In second order only the first term of F2 (first and second diagrams of
fig. 3) can be calculated. For this part we need to change being the
Fourier transform of into the Fourier transform which
can be calculated:

This is a rather clumsy function and we replace it by:

(7.3)

with A = 0.244, B = 0.790 and C = 0.529. A comparison of the two
functions in the range of interest is given in table I.

We are not able to calculate the changes involved in the other second
order terms. One can only say that for higher some cut-off should appear,
and one can establish the limiting behaviour in Q for It seems
reasonable to take (7.2) as a model for the other terms, and we take therefore
as cut-off function for the second and higher order terms the same function
which multiplies in (7.2) or (7.3).

At this point we want to remark that the extra terms in the equations
of motion due to the difference between V(r) and can be treated in
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TABLE I

Born approximation in the way we treated the term, with an analogous
ansatz (the eq. (3.12) above), which is seen to be correct if
or and, of course,

However, at best one arrives at the same results as above and one is
still left with the objection that such an approach is essentially inconsistent
because one should treat the changes in the Coulomb term exactly. We



think it therefore more realistic to introduce the cut-off as suggested by
perturbation theory with respect to the coupling constant a.

8. Final result. For completeness we write down the whole matrix-
element with the corrections indicated in sections 6 and 7. We remark that

M. VELTMAN180
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All notations are as in (5.9) with the additions:

(8.1)

Finally, the relation between and nuclear dimension as given in ref. 1:

where is the mass number of the nucleus.
If we now consider (8.1) we see the following corrections to the lowest

order calculation of ref. 1:

i) the Sommerfeld factor
ii) the four terms multiplied by

iii) factor
iv) a group of terms multiplied by
v) second order terms containing logarithms,

We remark that the imaginary parts of V(y) and W(x) are mostly very
small (see limiting formulas (5.11)). However, due to the appearance of

in the this does not imply that there is no interference of the terms
multiplied by V(y) and the other terms.
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APPENDIX A

We show in this appendix that the second order diagrams belonging to
(4.1) can be reformed into second order diagrams belonging to (4.2). The

. Fig. 4. Second order diagram belonging to (4.1).

lepton part of this second order diagram (fig. 4) is :

There is one integration over a closed loop.
In this appendix are four vectors. Of course the fourth

component of the is zero. The three-vector part of a vector will be
denoted by satisfies:

(A.2)

We take the part of in (A.1), commutate it with to the left and
apply (A.2). We get:

We repeat this manipulation with embodied in :

(A.1)
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After performing the integration over the closed loop the factor
goes into , i.e. the Fourier transtorm of and we have the desired
result.

APPENDIX B

Equivalence of ansatz and derivative formula.

We will set = 0.
Consider first the

(B.1)

We neglect difficulties around = 0 as they are unreal in this case. Using
Feynman's trick we get:

Using (C.1) we get:
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There is no pole at is justified. We insert now in (B.1),
use the relation

and perform a partial integration (no "boundary" terms arise as the con-
tour never goes through a cut): ,

APPENDIX C

We list some 3 dim. Fourier transforms of interest to us. Everywhere

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)
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(C.9)

(C.10)

To evaluate the last integral we reject terms of the form and make
use of what is essentially Feynman's rule:

We also added a factor which is necessary to make the result
unambigous in the region
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