
Higher-Order Cryptanalysis of LowMC

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Graz, Austria
maria.eichlseder@iaik.tugraz.at

Abstract. LowMC is a family of block ciphers developed particularly
for use in multi-party computations and fully homomorphic encryption
schemes, where the main performance penalty comes from non-linear op-
erations. Thus, LowMC has been designed to minimize the total quantity
of logical “and” operations, as well as the “and” depth. To achieve this,
the LowMC designers opted for an incomplete S-box layer that does not
cover the complete state, and compensate for it with a very dense, ran-
domly chosen linear layer. In this work, we exploit this design strategy in
a cube-like key-recovery attack. We are able to recover the secret key of a
round-reduced variant of LowMC with 80-bit security, where the number
of rounds is reduced from 11 to 9. Our attacks are independent of the
actual instances of the used linear layers and therefore, do not exploit
possible weak choices of them. From our results, we conclude that the
resulting security margin of 2 rounds is smaller than expected.

Keywords: cryptanalysis · LowMC · higher-order cryptanalysis · key
recovery · zero-sum distinguisher

1 Introduction

The recently proposed family of block ciphers LowMC [1] addresses the need
for new block cipher structures suited for multi-party computation and fully
homomorphic encryptions schemes, where the non-linear operations of a ci-
pher contribute much more to the overall computational execution costs than
the linear operations. Therefore, LowMC combines an incomplete S-box layer
with a strong linear layer to reduce the multiplicative depth and size of the ci-
pher. However, this is a quite uncommon approach and can be risky as shown
for Zorro [3,9,14,17]. Therefore, LowMC comes with strong security arguments
(bounds) against standard cryptanalytic attacks like differential and linear crypt-
analysis. In more detail, the authors show that for the proposed instances of
LowMC, no good differential and linear characteristics exist for more than 5
rounds. However, they do not provide such strong security arguments against
other attack vectors including algebraic attacks.

In this work, we show that the security of LowMC against algebraic attacks is
lower than expected. Our attacks are based on the ideas previously used in cube
attacks [8], higher order differential cryptanalysis [13], AIDA [16], bit-pattern
based integral attacks [18], or the square [6] and intergral [12] attacks. To be

c© IACR 2015. This article is the author version of an article in the proceedings of ICISC 2015.
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-30840-1_6.

http://dx.doi.org/10.1007/978-3-319-30840-1_6

more specific, our attacks make use of the rather low algebraic degree of one
round of LowMC to construct cube testers [2]. The fact that the S-box layers
are incomplete can be exploited to efficiently construct vector spaces at the
input which allow to create cube testers of low dimension covering a rather
high number of rounds. The incomplete S-box layer also facilitates the existence
of linear relations with probability 1, which allow to attack additional rounds.
This leads to attacks on round-reduced variants of LowMC with 80-bit security,
where the number of rounds is reduced from 11 to 9. Note that these attacks do
not exploit any specific property of the linear layers and are thus applicable for
randomly chosen linear layers.

Our results show that the security margin of LowMC with 80-bit security
is smaller than expected, being only 2 rounds. Therefore, we conclude that the
design of primitives with an incomplete S-box layer has not been fully understood
yet. Therefore, it is recommendable to be more conservative when choosing the
security margin in those designs.

Related work. In very recent independent research, Dinur et al. [7] also in-
vestigate the security of LowMC against high-order differential cryptanalysis.
By developing an optimized variation of interpolation attacks for key recovery,
they are able to identify large classes of weak keys for LowMC-80, and also
demonstrate attacks on up to 10 of 11 rounds of LowMC-80 and on full-round
LowMC-128.

2 Description of LowMC

LowMC [1] is a family of block ciphers, where each instance is characterized by
several parameters: the block size n and key size k, the number m of S-boxes per
substitution layer, a (logarithmic) data complexity limit d, the number of rounds
r, the concrete instantiations of the linear layers fL, and the key derivation
function used in fK .

The encryption of LowMC starts with a key whitening layer f
(0)
K , followed

by r iterative applications of the round function

f (i) = f
(i)
K ◦ f

(i)
L ◦ fS ,

consisting of the substitution layer fS (identical for each round), the linear layer

f
(i)
L , and the round-key addition f

(i)
K , as illustrated in Fig. 1.

The substitution layer is the parallel application of the same 3-bit S-box
S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab) on the right-most (least significant)
3 ·m bits of the state. On the remaining ` = n−3m bits, the identity mapping is
applied. The used S-box has a maximum differential and linear probability of 2−2,
and algebraic degree 2 (the maximum possible degree for a 3-bit permutation).

The linear layer fL multiplies the n-bit state with a randomly chosen and
invertible n× n matrix over F2. The matrix differs for each round.

2

· · · S S · · · SfS

Lif
(i)
L

· · · Ki
f
(i)
K

Fig. 1. The round function of LowMC: f (i) = f
(i)
K ◦ f

(i)
L ◦ fS .

In f
(i)
K , the whitening key K0 and round keys K1, . . . ,Kr are added in the

respective rounds. These round keys are generated by binary multiplications of
randomly generated, full-rank n × k matrices with the master key K, followed
by an addition with a randomly chosen n-bit round constant.

Albrecht et al. [1] propose two concrete instances, with the parameter sets
shown in Table 2. The first set provides “PRESENT-like” security using an 80-
bit key, while the second set provides “AES-like” security using a 128-bit key.
To generate the used random matrices, the recommended instantiations use the
Grain LSFR [10] as a source of random bits. Since our analysis does not depend
on concrete instantiations of matrices, only on the parameters given in Table 2,
we omit a description of the matrices.

We will denote LowMC with key size k, state size (permutation size) n and m
S-boxes per round as LowMC-kn,m. We abbreviate the recommended parameter
sets as LowMC-80 = LowMC-80256,49 (“PRESENT-like security” variant) and
LowMC-128 = LowMC-128256,63 (“AES-like security” variant).

3 Higher-order attacks in the known-key setting

In the known-key setting [11], we assume that the round keys have known values.
The attack goal is to find non-random properties of the resulting permutation.
More specifically, we will focus on (families of) zero-sum distinguishers: finding
sets of inputs to the permutation such that both the sum (over Fn

2) of the inputs,
as well as the sum of their outputs, equal zero. It should be remarked that
LowMC’s designers make no security claims for the known-key setting, and it is
hardly a practical attack scenario. Rather, it serves as an introductory setting,
and we will reuse and adapt the results for the secret-key setting in Sect. 4.

3.1 Basic zero-sum distinguisher

A well-known result from the theory of Boolean functions is that if the algebraic
degree of a vectorial Boolean function (like a permutation) is d, then the sum over
the outputs of the function applied to all elements of a vector space of dimension
≥ d+1 is zero (as is the sum of all inputs, i.e., the elements of the vector space).
The same property holds for affine vector spaces of the form {v + c | v ∈ V } for
some vector space V and constant c. Therefore, in the remaining text, we also

3

refer to affine vector spaces as vector spaces for simplicity. This property allows
to exploit a low algebraic degree of cryptographic functions to create zero-sum
distinguishers and has been applied, for example, to Keccak [4,5].

For this reason, the designers of LowMC included bounds for the algebraic
degree of multiple rounds of the permutation in their design paper [1]. Their
bounds are based on the observation (see [5]) that if the degree after r rounds

(with m S-boxes per round of the n-bit permutation) is d
(n,m)
r , then the degree

d
(n,m)
r+1 after r + 1 rounds is bounded by

dr+1 ≤ min
{

2 · dr, m + dr,
1
2 · (n + dr)

}
,

since the degree of one round is d1 = 2. The resulting bounds for up to 15 rounds
are given in Table 1.

Table 1. Upper bounds for the algebraic degree d
(n,m)
r after r rounds of the LowMC

permutation on n = 256 bits with m ∈ {49, 63} S-boxes.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d
(256,49)
r 2 4 8 16 32 64 113 162 209 232 244 250 253 254 255

d
(256,63)
r 2 4 8 16 32 64 127 190 223 239 247 251 253 254 255

Based on these numbers, the designers recommend that the number of rounds
r satisfies r ≥ rdeg + router, where rdeg is the number of rounds necessary for a
sufficiently high degree (drdeg

≥ d− 1 for the logarithmic data complexity limit
d), and router = 5 is a heuristic estimate for the number of rounds that can be
“peeled off” in the beginning and end of the cipher, based on the bounds for
linear and differential cryptanalysis. This leads to the round numbers stated in
Table 2 for the recommended parameter sets.

Table 2. Recommended number of rounds r ≥ rdeg + router [1].

Key size k Block size n S-boxes m Data complexity d rdeg router Rounds r

80 256 49 64 6 5 11
128 256 63 128 7 5 12

The degree bounds from Table 1 clearly show that 11 or 12 rounds of the
unkeyed round function cannot be considered an ideal random permutation,
although the complexity of a straightforward zero-sum distinguisher is far beyond
the claimed security level: if we choose any subspace V ≤ F256

2 with dimension
≥ 245 (resp. ≥ 252), we get ∑

v∈V
v =

∑
v∈V

f11(v) = 0

4

(resp.
∑

v∈V f12(v) = 0) for LowMC-80 (resp. LowMC-128) with m = 49
(resp. m = 63) S-boxes per round, where f is the round with some fixed, known
key. However, it is easy to obtain distinguishers with a much lower complexity.

3.2 Initial structure, direct-sum construction, and partial zero-sums

First, since we are considering the known-key setting, we are not limited to start-
ing computation before the first round. We can also define an initial structure as
input for one of the middle rounds – say, round 7 – and compute backwards and
forwards from there to again get zero-sums at input and output, with a much
lower data complexity. Since LowMC uses 3-bit bijective S-boxes, the degree of
the inverse S-box and thus of the inverse round function f−1 is also at most 2.
Thus, for any subspace V ≤ F256

2 with dimension ≥ 65, we get∑
v∈V

f−6(v) =
∑
v∈V

f5(v) = 0

(resp.
∑

v∈V f6 = 0). The set of 265 zero-sum input values {f−6(v) | v ∈ V } is
below the data complexity limit d for LowMC-128, and only slightly above for
LowMC-80.

Second, by choosing a vector space V of a particular structure as a starting
point, we can add a free round in the middle. Assume that V is the direct sum
of any subspace of F256−3·m

2 , and m trivial subspaces of F3
2 (i.e., each is either

F3
2 or {(0, 0, 0)}). Since the bijective 3-bit S-box maps any trivial subspace of

F3
2 to itself, applying the S-box layer to this vector space produces another

vector space V ′ ≤ F256
2 (of the same form). This reduces the data complexity of

the distinguisher below the data complexity limit for LowMC-80: for any V of
dimension ≥ 33 of the above direct-sum format and the corresponding V ′,∑

v∈V
f−5(v) =

∑
v′∈V ′=fS(V)

(f5 ◦ fK ◦ fL)(v′) = 0,

so the set {f−5(v) | v ∈ V } is a zero-sum distinguisher for LowMC-80 with
known key, with a data complexity of 233. The attack is illustrated in Fig. 2.

∑
=0

f−1
K ◦ f−5

deg ≤ 32

V

fS

V ′

f5 ◦ fK ◦ fL

deg ≤ 32

∑
=0

Fig. 2. Zero-sum distinguisher for r = 11 rounds of LowMC-80 with a data complexity
of 233 message blocks.

Third, we can take advantage of the special structure of the S-box layer,
which only applies S-boxes to part of the state, while the rest is left unchanged

5

by an identity map. In the inverse round f−1, the linear layer is applied before
the S-box layer. This means that (the leftmost / most significant) ` = n− 3 ·m
bits of the output of each inverse round f−1 only depend linearly on the round
input bits (` = 109 bits for LowMC-80, ` = 67 bits for LowMC-128). If we add
such an inverse round to a function, the degree of ` output bits is bounded by the
same limit as the original function output, so the inverse round (corresponding
to a round in the beginning of the cipher) is essentially “for free” on these bits.
A similar idea can be used to also add a free forward round at the end. To
compensate for the additional linear layer after the last S-box layer, however,
we need to generalize the partial zero-sum property further: instead of a zero-
sum property on some of the output bits, we get a zero-sum property on some
(linearly independent) linear combinations of the cipher’s output bits. Note that
the final linear transformation fK ◦ fL can be swapped to fL ◦ fK′ with some
equivalent key K ′. Since the addition of K ′ does not change the partial zero-
sum property, the linear combination of output bits that sums to zero does
not depend on the key. Since ` is relatively large (` > k for LowMC-80), even
a zero-sum distinguisher only for ` bits of the input and (linearly combined)
output gives us a detectable distinguishing property. With the above approach,
we get `-bit partial zero-sums with 2 more rounds for free, so the dimension of
V can be reduced to 17 (for LowMC-80) and 33 (for LowMC-128) to cover the
recommended full round sizes, as illustrated in Fig. 3. Table 3 summarizes the
best attacks for the known-key setting.

b
∑
c`=0

f−1
K f−1

S

∑
=0

f−1
L ◦ f−4

deg ≤ 16

V

fS

V ′

f4 ◦ fK ◦ fL

deg ≤ 16

∑
=0

fS fK′

b
∑
c`=0

f−1
L

Fig. 3. Partial 109-bit zero-sum distinguisher for r = 11 rounds of LowMC-80 with a
data complexity of 217 message blocks.

Table 3. Distinguishers for LowMC in the known-key setting.

Zero-sum Partial zero-sum

Target Rounds Complexity Zero-sum bit size Rounds Complexity

LowMC-80 11/11 233 109/256 11/11 217

LowMC-128 12/12 265 67/256 12/12 233

6

4 Higher-order attacks in the secret-key setting

In this section, we investigate the applicability of higher-order attacks in the
secret-key setting. While the basic observations about the degree of the round
functions and the zero-sum property still hold in this setting, it is no longer
easily possible to define an initial structure in the middle of the cipher as in
Sect. 3.2 and compute in both directions. Attack goals in the secret-key setting
include output distinguishers and key recovery. For simplicity, we demonstrate
our attacks for the LowMC variant LowMC-80 (“PRESENT-like security”), and
only briefly discuss the applicability and complexity for LowMC-128 and more
general LowMC configurations at the end of the paper.

4.1 Basic zero-sum key recovery

Based on the basic observations from Sect. 3.1, an attacker can trivially distin-
guish the output of up to 3, 4, or 5 rounds of LowMC-80 from random values
with a data complexity of 29, 217, or 233, respectively (all below the logarith-
mic data complexity of d = 64): he requests the ciphertexts for all values of an
(affine) vector space V of the given size, and verifies the zero-sum property of
the corresponding outputs.

By choosing a vector space of the same direct-sum form as in Sect. 3.2 for
V , we can add an additional free round in the beginning: the output values after
applying the initial key whitening fK and the first S-box layer fS to all vectors
in V is another (affine) vector space V ′ of the same direct-sum form, and the
remaining added round functions fL, fK , both of degree ≤ 1, can be added to the
following 3, 4, or 5 rounds for free, without increasing the necessary dimension
of V .

Additionally, we can add another final round without increasing the data
complexity, by turning the distinguishing attack into a key recovery attack: to
recover the key from r ∈ {5, 6, 7} rounds of LowMC-80, the attacker chooses a

vector space V of the previous direct-sum form with |V | = 22r−2+1 elements as
inputs (corresponding to 29, 217, or 233 plaintexts, respectively). As previously,
the corresponding outputs after r−1 rounds will sum to zero. This property can
be used to recover the final round key Kr in 3-bit chunks, which in turn allows to

easily recover the original key K. Let S
(r−1)
i denote the state after r− 1 rounds

applied to input Pi ∈ V , and S
(r)
i = Ci the corresponding ciphertext obtained

by the attacker, so

Ci = (f
(r)
K ◦ f (r)

L ◦ fS)(S
(r−1)
i) = (f

(r)
L ◦ fS)(S

(r−1)
i) + Kr.

Since the key addition f
(r)
K and linear layer f

(r)
L can be swapped (replacing the

original Kr with a transformed K ′r), the zero-sum property translates to∑
i

S
(r−1)
i =

∑
i

f−1
S

(
K ′r + f

(r)
L

−1
(Ci)

)
= 0.

7

For the 109 bits of the identity part of fS , this property holds irrespective of
the value of the corresponding bits of K ′r. For each of the m = 49 S-boxes,
however, the property can be checked independently for each possible value of
the corresponding 3 bits of K ′r. Since we expect to require about 80 bits of K ′r
to recover Kr and consequently K, we guess the keys for 27 S-boxes, which leads
to an overall complexity of 22r−2+1 queries (plus 22r−2+1 · 8 · 27 xor operations).

The approach is illustrated in Fig. 4. The complexity is 29 encryption queries
for 5 rounds, 217 for 6 rounds, and 233 for 7 rounds. Note that this attack is
relatively generic for SPNs with degree 2, without using any particular properties
of LowMC (in particular, independent of the number m of S-boxes per layer).

V

fK fS

V ′

fr−2 ◦ fK ◦ fL

deg ≤ 22r−2

∑
=0

f−1
S f−1

K′

guess

f−1
L

Fig. 4. Key recovery attack on r = 5, 6, or 7 rounds of LowMC, with a data complexity

of 22r−2+1 = 29, 217, or 233 plaintexts, respectively.

4.2 Adding rounds: initial key-guessing

In addition to the generic attack strategy applied so far, we can take advantage
of the special structure of LowMC’s substitution layer. So far, we were able to
add one free initial round by using a direct-sum construction to obtain a vector
space again after applying one round f . We will now try to define an initial
structure that yields a vector space after 2 rounds f2.

Consider the first 2 rounds f2 = fK ◦fL ◦fS ◦fK ◦fL ◦fS of LowMC-80. The
final linear components fK◦fL pose no constraints. Let V = {(0, . . . , 0)}×F109

2 ≤
F256

2 be the vector space of elements that are zero except for the bits processed
by the identity part of the substitution layer fS . Thus, for any subspace W ≤ V ,
fS(W) = W . We want to find a suitable subspace W ≤ V that will yield another
vector space W ′′ even after applying the second substitution layer fS . The input
space W ′ to the second fS is an affine transformation of W , W ′ = (fK ◦fL)(W).
Ideally, this space W ′ would be of the same structure as W : zero (or constant)
in all bits except the identity part. However, this requirement would impose 147
linear constraints (one for each S-box input bit) on the 109-dimensional space
V , so we cannot expect any suitable (nontrivial) solution space W .

However, it is not actually necessary to require all S-box input bits to be
zero or constant. Consider an input set where two of the input bits to an S-box
are fixed, but one bit is toggled. The two different input values will produce two
different output values, i.e., toggling one input bit will toggle some of the output
bits. This is essentially “linear” behaviour, so the S-box is linear with respect

8

to one input bit. Thus, an input space that allows up to one bit per S-box to
be toggled (non-constant) will produce another affine space as the output of the
S-box layer. Note that due to the key addition fK just before the S-box layer, we
cannot know or control the constant values of the constant bits, and thus do not
know the linear behaviour of the S-box. However, we can be sure that if W is
such that after the linear layer fL, two of the three input bits to each S-box of fS
are constant, then the input space W will be mapped to another vector space by
2 rounds f2 of LowMC-80. This corresponds to 2 · 49 = 98 linear constraints on
the 109-dimensional V , so we will get a solution space W of dimension at least
109 − 98 = 11. W can be precomputed and depends only on the matrix of the
linear layer of the first round of LowMC-80. The dimension of 11 is sufficient for
our previous attack on 5 rounds, which required an input space of 29 elements,
and allows us to extend this attack to 6 rounds at no additional cost. The attack
is illustrated in Fig. 5.

S

f−1
K

guess
3 (or 21) bits

f−1
S

W ≤ V

fL fK

W ′

fS

W ′′

solve

fr−3 ◦ fK ◦ fL

deg ≤ 22r−3

∑
=0

f−1
S f−1

K′

guess

f−1
L

Fig. 5. Key recovery attack on r = 6 rounds of LowMC-80, with complexity 29.

Unfortunately, the dimension is too small to extend the previous attacks on 6
and 7 rounds, which required input spaces of 217 and 233 elements, respectively.
To increase the dimension of W to 17 or higher, we need to allow for more
freedom either in the first or in the second substitution layer fS . First consider
the first substitution layer. If we want to choose our inputs so as to ensure a
specific vector space structure after the first substitution layer, we can achieve
this trivially if the target vectors are non-constant only in the identity part.
If we want specific values at the output of an S-box, we need to guess the
corresponding 3 bits of the first whitening key, which is added right before the
substitution layer. By guessing these 3 bits, we can increase the dimension of W
by 3. Note that if we “activate” an S-box this way, the required message input
set S to produce W is no longer necessarily a vector space. In particular, its
elements no longer necessarily sum to zero. However, this is not required for our
key recovery attacks, so the loss of the input zero-sum property is not a problem.
To apply the technique to extend the previous 6-round attack of Sect. 4.1 and
increase W to dimension 17, we need to activate 2 S-boxes and thus guess 6 key
bits. This increases the attack complexity for the extended 7-round attack to
217 ·26 = 223. For the previous 7-round attack of Sect. 4.1, we need dimension 33
and thus need to activate 8 S-boxes with 24 guessed key bits, and the complexity
for the extended 8 rounds is 233 · 224 = 257.

9

We can, however, also consider additional freedom in the second substitution
layer in order to decrease the necessary number of activated S-boxes in the
first layer. We previously chose a fixed bit per S-box of the second fS which
was allowed to toggle, while the other two bits needed to remain constant. But
this is not actually necessary: we have the freedom to choose any of the 3 bit
positions of each S-box as the toggle-bit, so we have a total of 349 ≈ 277.7 options
to choose the 98 (out of the total 147) constraints imposed by the second layer.
The 147 available constraints are specified by the (roughly uniformly randomly
generated) rows of the linear layer matrix. In addition, we have the freedom to
select the activated S-boxes of the first layer. For each option, we have a very
small chance that the selection of 98 constraints is redundant (with respect to
the 109 + 3s-dimensional V , if we guess s S-box keys in the first substitution
layer), and the remaining solution space has a dimension larger than 11 + 3s.

Consider again the 8-round attack, with its required input space of 233 =
211 · 222 elements. To increase the dimension by 22, we had to activate s = 8
S-boxes. We only needed 1 bit of freedom from the last of the 8 S-boxes, but still
had to guess all the corresponding 3 key bits. There is a reasonable chance that if
we activate only s = 7 S-boxes (and start with V of dimension 109 + 7 · 3 = 130)
and add the 98 constraints of the second layer, the remaining solution space
has the required dimension 33 instead of the expected 130 − 98 = 32. This
is equivalent to the event that 98 randomly selected vectors from F130

2 span a
subspace of dimension 97, or that a randomly selected 130× 98 matrix over F2

has rank 97. The probability of picking a rank-r matrix uniformly random from
Fn×m

2 , n ≥ m [15] is given by

P (n,m, r) =

∏r−1
i=0 (2m − 2i) ·

∏r−1
i=0 (2n − 2i)∏r−1

i=0 (2r − 2i) · 2n·m
,

so our success chance for one selection of constraints is P (130, 98, 97) ≈ 2−32.0.

Even though the available selections of constraints are not independent, we
verified experimentally that the measured distribution of the rank of random
selections closely matches the theoretic expectations. Thus, it is reasonable to
expect that a suitable selection exists among the available choices, and that it
can be efficiently found (e.g., after trying about 232 random selections). Since
the selection depends only on the corresponding matrix of the linear layer, it can
be precomputed in advance.

The same strategy can also be applied to the 7-round attack, although at a
higher precomputation cost: we activate s = 1 instead of s = 2 S-boxes in the
first layer, and compensate by reducing the rank of the 98 selected constraint
vectors by 3 to 95. The success chance for one selection is P (112, 98, 95) ≈ 2−49.4.
The modified attack for 7 and 8 rounds is illustrated in Fig. 6. The final attack
complexities are 29 for 6 rounds, 220 (with 249.4 precomputation) or 223 (without
precomputation) for 7 rounds, and 254 for 8 rounds.

10

W ≤ V

fK fS

W

fL fK

W ′

fS

W ′′

solve

fr−3 ◦ fK ◦ fL

deg ≤ 22r−3

∑
=0

f−1
S f−1

K′

guess

f−1
L

Fig. 6. Key recovery attack on r = 7 (or 8) rounds of LowMC-80, with complexities
220 and 254, respectively.

4.3 Adding rounds: final key-guessing

We can not only guess the round keys of the first round to increase the number
of attacked rounds, but also the last round keys. We want to combine a linear
mask for the linear layer of the second-to-last round with key guesses for some
S-boxes of the last round. This combination will allow us to derive 1 bit of key
information per input set, and can be repeated to learn more.

For an attack on r rounds, assume we have constructed a zero-sum attack for
r−2 rounds, that is, we can generate sets of inputs such that their corresponding
outputs after r− 2 rounds sum to zero. If we denote the intermediate states and
rearrange the key addition layer as in Sect. 4.1, we get

Ci = S
(r)
i =

(
f

(r)
L ◦ f (r)

K′ ◦ fS ◦ f
(r−1)
L ◦ f (r−1)

K′ ◦ fS
)(
S

(r−2)
i

)
.

Since
∑

i S
(r−2)
i = 0, we also get the partial zero-sum⌊∑

i

(
f

(r−1)
K′ ◦ fS

)(
S

(r−2)
i

)⌋
109

= 0,

where bxc` is the value x truncated to the most significant ` bits, i.e., the identity
part of the S-box layer. Now let

xi =
(
f

(r−1)
K′ ◦ fS

)(
S

(r−2)
i

)
, yi =

(
f−1
S ◦ f (r)

K′

−1
◦ f (r)

L

−1)(
Ci

)
,

so xi and yi are the states right before and after the linear layer of the second-

to-last round, yi = f
(r−1)
L (xi).

Now assume (a, b) is a pair of consistent linear input- and output masks for

f
(r−1)
L , that is, for all x ∈ F256

2 ,

〈a, x〉 = 〈b, f (r−1)
L (x)〉.

We will call the mask pair (a, b) suitable if a is zero on its 147 least significant
bits (i.e., all bits except the identity part of fS), and b is zero on most of its 147
least significant bits. We refer to the S-boxes where b is non-zero on one of the
corresponding 3 input bits as active.

11

We target mask pairs (a, b) with at most 6 active S-boxes. For a random
matrix, the probability that an input mask a is mapped to an output mask b in
which only 6 of 49 S-boxes are active is, by the inclusion-exclusion principle,

P [≤ 6 S-boxes active] =

6∑
i=0

(−1)i ·
(

6

i

)
·
(

49

i

)
· 2−3·(49−i) ≈ 2−105.4.

Since we have a total of 2109 possible input masks a available, we can expect
a suitable mask pair to exist. In practical experiments, we were able to find
suitable masks with 6 or even fewer active S-boxes in reasonable time.

Observe that if (a, b) is a suitable mask pair, then∑
i

〈b, yi〉 =
∑
i

〈
b, f

(r−1)
L (xi)

〉
=
∑
i

〈a, xi〉 =
〈
a,
∑
i

xi

〉
= 0,

since a only selects from the 109 most significant bits, and the xi have the partial
zero-sum property b

∑
i xic109

= 0. This modified zero-sum property of the yi
depends only on the last-round key bits (of the equivalent key K ′) added to
the active S-boxes, i.e., for 6 active S-boxes, on 18 key bits. The other key bits
are either not selected by b (inactive S-boxes), or cancel out during summation
(identity part). The probability of the 1-bit property to hold for a random key
guess is 1

2 , so applying the attack to one zero-sum input set will eliminate half of
the key guesses for the 18 key bits, or win 1 bit of key information. By repeating
the attack for 18 input sets S (e.g., by adding 18 different constants to the
original input set), we expect to recover all 18 round key bits. The attack is
illustrated in Fig. 7.

S

fr−2 ◦ fK

∑
=0

fS fK′

∑
a=0

fL

∑
b=0

find a, b

f−1
S f−1

K′

guess
18 bits

f−1
L

Fig. 7. Key recovery attack on r = 7, 8, or 9 rounds of LowMC-80, with 1-bit sums∑
a =

∑
i 〈a, xi〉 and

∑
b =

∑
i 〈b, yi〉 (details of fr−2 ◦ fK as in Fig. 6).

To learn more key bits, we need to find more linear mask pairs (a, b), with
different active S-boxes. Since the previously active S-boxes with previously re-
covered key bits can now be active for free, finding such masks becomes easier.
In addition, we can re-use the same ciphertexts for different masks, so the data
complexity does not increase. In summary, after precomputing suitable mask
pairs, this attack described so far allows to recover the complete key for r in-
stead of r − 1 rounds at an additional cost factor of 18 ≈ 24.2 data complexity
and about 218 · 80 ≈ 224.3 computational complexity.

12

However, the computational complexity can be further reduced by optimizing
the repeated evaluation of the modified zero-sum check. Instead of summing all
inputs for each of the 218 key guesses, we can precompute partial bit sums, and
only combine those to compute the final sum for each of the 218 key candidates.
The idea is to decompose the target sum into its S-box-wise components as

∑
i

〈b, yi〉 =
∑
i

〈 49∑
s=0

bs, yi

〉
=

49∑
s=0

∑
i

〈bs, yi〉 ,

where bs equals b on the 3 bit positions corresponding to S-box s, 1 ≤ s ≤ 49 (or
the 109 bits of the identity part for s = 0), and is zero otherwise. Then

∑
i 〈bs, yi〉

depends only on the 3 round key bits corresponding to S-box s (and 3 bits of
f−1
L (Ci), see the definition of yi), and can be precomputed in a first phase for all

23 possible values of these key bits, for each active S-box s. Then, in the second
phase, to determine the test bit for each of the 218 key candidates, it suffices to
sum the 6 corresponding partial sums (of the active S-boxes). Considering that
each linear layer alone needs about 216 xor operations, the complexity of both
phases is significantly smaller compared to the computational effort of generating
all the required ciphertexts Ci. This step can be repeated 4 times with different
mask pairs (a, b) to recover about 4 · 18 = 72 key bits; the remaining bits can
easily be determined by brute force testing.

With this improvement, the computational complexity overhead factor in-
curred by this approach over the attack on r − 1 rounds is dominated by the
data complexity increase by a factor of about 24.2. Based on the attacks of
Sect. 4.2, we get full key recovery for 7 rounds with 214 complexity, for 8 rounds
with 228, and for 9 rounds with 259. We summarize all attacks in Table 4.

Table 4. Key-recovery attacks for LowMC-80: number of rounds with computational
and data complexity (all below logarithmic data complexity limit d = 64).

Basic (4.1) Initial key guess (4.2) Final key guess (4.3)

Cube degree Rounds Compl. Rounds Compl. Rounds Compl.

8 (f3) 5/11 29 6/11 29 7/11 214

16 (f4) 6/11 217 7/11 223 8/11 228

32 (f5) 7/11 233 8/11 254 9/11 259

A Application to other parameter sets

Besides the recommended versions LowMC-80 and LowMC-128, the designers
also propose several alternative parameter sets for the 80-bit and 128-bit security
level. For 128-bit security, the design document discusses the performance of
LowMC-128256,63 (r = 12 rounds, main variant) and LowMC-128512,86 (r =

13

11 or 12 rounds), all with data complexity limit d = 128; for 80-bit security,
LowMC-80256,49 (r = 11 rounds, main variant, or r = 10) and LowMC-80128,34

(r = 11 rounds), all with data complexity limit d = 64.
For LowMC-128256,63, the attacks of Sect. 4.1 apply for the same number of

rounds, with the same complexity. Furthermore, due to the increased logarithmic
data complexity limit, an additional round can be added here (for a total of 8
rounds), and the data complexity increased accordingly. However, the size of the
identity part, ` = 67, is too small to append rounds with initial-key-guessing as
in Sect. 4.2: the necessary number of about 3 ·40 guessed S-box key bits becomes
prohibitive. Final-key-guessing as in Sect. 4.3, on the other hand, is applicable in
a similar way. Again, the smaller identity part increases the complexity: instead
of masks b with 6 active S-boxes, about 24 active S-boxes are necessary for
a reasonably high probability. If the correct 3 · 24-bit subkey is recovered as
described in Sect. 4.3, the computational complexity is about 272 (for up to 9
rounds). However, it is possible to optimize this step at the cost of a slightly
higher data complexity.

For LowMC-128512,86, on the other hand, the size of the identity part ` = 254
is almost as large as the S-box part of 3·m = 258 bits. This allows the application
of initial-key-guessing for free, and 1 active S-box is expected to be sufficient for
final-key-guessing. Additionally, due to the higher logarithmic data complexity
limit of d = 128, the core cube degree can be increased to 64 (f6) to add another
round, for a total of 10 attacked rounds (out of 11 or 12).

For LowMC-80128,34, ` = 26, so the same problems as for LowMC-128256,63

apply. For the final-key-guessing, about 14 active S-boxes would be required to
find suitable a, b, to attack a total of 8 rounds.

We want to stress that all described attacks are generic for the design of
LowMC, without requiring specific instances of the linear layer fL or the key
schedule matrices. For specific “weak” choices of the random matrices, it is likely
that attacks on more rounds are feasible.

Acknowledgments. The work has been supported in part by the Austrian
Science Fund (project P26494-N15) and by the Austrian Research Promotion
Agency (FFG) and the Styrian Business Promotion Agency (SFG) under grant
number 836628 (SeCoS).

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer (2015)

2. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) Fast Software
Encryption – FSE 2009. LNCS, vol. 5665, pp. 1–22. Springer (2009)

3. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fis-

14

chlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part I. LNCS, vol.
9056, pp. 315–342. Springer (2015)

4. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) Selected Areas in Cryptography – SAC 2010. LNCS, vol. 6544, pp. 1–17.
Springer (2010)

5. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) Fast Software Encryption – FSE 2011. LNCS,
vol. 6733, pp. 252–269. Springer (2011)

6. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) Fast Software Encryption – FSE ’97. LNCS, vol. 1267, pp. 149–165. Springer
(1997)

7. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Advances in Cryptology – ASIACRYPT 2015. LNCS, Springer (2015),
to appear.

8. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) Advances in Cryptology – EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–
299. Springer (2009)

9. Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro. IACR Cryptology
ePrint Archive 2013, 713 (2013), http://eprint.iacr.org/2013/713

10. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream
ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs – The
eSTREAM Finalists, LNCS, vol. 4986, pp. 179–190. Springer (2008)

11. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) Advances in Cryptology – ASIACRYPT 2007. LNCS, vol. 4833,
pp. 315–324. Springer (2007)

12. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) Fast Software Encryption – FSE 2002. LNCS, vol. 2365, pp. 112–127.
Springer (2002)

13. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography: Two Sides of One Tapestry. pp. 227–233. Kluwer Academic Publishers
(1994)

14. Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total break of Zorro
using linear and differential attacks. IACR Cryptology ePrint Archive 2014, 220
(2014), http://eprint.iacr.org/2014/220

15. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University
Press (2001)

16. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV differential at-
tack. IACR Cryptology ePrint Archive 2007, 413 (2007), http://eprint.iacr.

org/2007/413

17. Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential cryptanalysis and linear distin-
guisher of full-round Zorro. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
Applied Cryptography and Network Security – ACNS 2014. LNCS, vol. 8479, pp.
308–323. Springer (2014)

18. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) Fast Software Encryption – FSE 2008. LNCS, vol.
5086, pp. 363–381. Springer (2008)

15

http://eprint.iacr.org/2013/713
http://eprint.iacr.org/2014/220
http://eprint.iacr.org/2007/413
http://eprint.iacr.org/2007/413

	Higher-Order Cryptanalysis of LowMC

