

Higher-order cryptanalysis of LowMC

Christoph Dobraunig Maria Eichlseder Florian Mendel Presentation by Daniel Slamanig

ICISC 2015

Overview

The block cipher LowMC

- "Explores corners of design space"
- Optimized for evaluation with MPC, FHE & ZK

Higher-order differential cryptanalysis

- Exploit low algebraic degree of cipher
- Contribution: Key-recovery attacks on LowMC
 - Exploit LowMC's special S-box layer design
 - 9 / 11 rounds of LowMC-80
 - 9 / 12 rounds of LowMC-128

www.iaik.tugraz.at 🔳

LowMC

Motivation: Ciphers for MPC and FHE

- Multi-Party Computation (MPC):
 - Jointly compute a function over private inputs
- Fully Homomorphic Encryption (FHE):
 - Evaluate function over encrypted input
- Zero-Knowledge Proofs (ZK):
 - Prove functional relation over undisclosed inputs
- Linear operations in function "almost free"
 ... at least compared to non-linear ones (multiplications)
- Suitable ciphers to evaluate with MPC, FHE & ZK?

LowMC

Block cipher

- Presented at Eurocrypt 2015 [Alb+15] by Albrecht, Rechberger, Schneider, Tiessen, Zohner
- Design goals:
 - Low "Multiplicative Complexity" ('and'-gates, 'and'-depth)
 - Optimized for MPC, FHE & ZK
 - "Explore corners of the design space"

LowMC: Round function f

S-box layer f_S (m 3-bit S-boxes)

Linear layer f_L (random matrix)

i Key addition *f_K* (linear key schedule)

- Incomplete S-box layer
- Small S-boxes (3-bit)
- Few rounds (10–12)
- Strong linear layer

LowMC: Parameters

	LowMC-80	LowMC-128
Key size <u>k</u>	80	128
Block size n	256	256
Log. data limit d	64	128
# Rounds r	11	12
# S-boxes <i>m</i>	49	63

Focus on LowMC-80

Higher-order differential attacks

Higher-order differential attacks

- "Higher-order": differences of differences of differences...
- "Algebraic cryptanalysis" based on Boolean function theory
- Exploit low algebraic degree of ciphers
- Introduced by Lai [Lai94], Knudsen [Knu94]
- Attack goals:
 - Distinguishers (Zero-sums, ...)
 - Key recovery (Cube attacks, ...)

Algebraic normal form of Boolean functions

Algebraic normal form (ANF)

• "xor of ands": $\bigoplus(\bigwedge x_i)$, often written $\sum(\prod x_i)$

S-box of LowMC as vectorial ANF:

$$f\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_2x_3 + x_1\\ x_3x_1 + x_1 + x_2\\ x_1x_2 + x_1 + x_2 + x_3 \end{pmatrix}$$

Algebraic degree (deg f)

- Polynomial degree of ANF
- S-box of LowMC: degree 2

"Deriving" a vectorial Boolean function

Derivative of $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ wrt. $a \in \mathbb{F}_2^n$

$$d_{da}f(x) = f(x) + f(x+a)$$

Compare differential cryptanalysis!

k-th order derivative of f [Lai94]

• basis
$$a_1, \ldots, a_k$$
 of vector space $V \leq \mathbb{F}_2^n$

•
$$\frac{\mathrm{d}}{\mathrm{d}a_1}\cdots\frac{\mathrm{d}}{\mathrm{d}a_k}f(x) = \frac{\mathrm{d}}{\mathrm{d}V}f(x) = \sum_{v\in V}f(x+v) = \sum_{w\in V+x}f(w)$$

Zero-sum distinguisher

Observation: if deg(f) < d and dim V = d, then

$$\sum_{w \in V+x} f(w) = \frac{d}{da_1} \cdots \frac{d}{da_d} f = 0$$

- Degree of a block cipher:
 - *b*-bit S-box has degree $d \le b 1$
 - *r* rounds of degree $d \rightarrow$ total degree $D \leq d^r$
- Zero-sum distinguisher:
 - Chosen plaintexts: D + 1-dimensional (affine) vector space V V is often a "cube": D + 1 bits vary, rest constant
 - Ciphertexts will sum to 0

Application to LowMC

LowMC-80: Round function

Goal: Key recovery for 9 / 11 rounds of LowMC-80

- Need to recover \approx 80 bits of any K_i or, equivalently, K'_i
- Data limit: < 2⁶⁴ queries

LowMC-80: Round function

Goal: Key recovery for 9 / 11 rounds of LowMC-80

- Need to recover \approx 80 bits of any K_i or, equivalently, K'_i
- Data limit: < 2⁶⁴ queries

LowMC-80: Round function

Goal: Key recovery for 9 / 11 rounds of LowMC-80

- Need to recover \approx 80 bits of any K_i or, equivalently, K'_i
- Data limit: < 2⁶⁴ queries

LowMC-80: Algebraic degree (bounds)

11 rounds *f* of degree 2 (plus initial key-whitening):

LowMC-80: Algebraic degree (bounds)

11 rounds *f* of degree 2 (plus initial key-whitening):

Zero-sum distinguisher for 5 rounds

For 5 forward rounds: V with 2³³ chosen messages (due to query complexity limit 2⁶⁴)

Complexity: 233 queries, 233 time

Key recovery for 6 rounds

- 2 Add 1 final round to recover key in 3-bit-chunks Repeat for $\begin{bmatrix} 80\\3 \end{bmatrix} = 27$ S-boxes:
 - (a) Guess 3 key bits (of K')
 - (b) Compute backwards to S-box inputs
 - (c) Check if each S-box input bit sums to 0

Complexity: 233 queries, 233+0 time

Key recovery for 7 rounds

3 Add 1 free initial round (f_S maps V to V)

- V is constant/zero except on 109 bits of identity part
- f_K and f_S map V + c to some V + c'

Key recovery for 8 rounds

4 Add 1 initial round (construct W to bridge f_S in 2 rounds)

- 1st f_S easy, like 3: W is 0 except on identity part (dim 109)
- 2nd f_S adds linear constraints to W to get W':
 - Force 3 bits per S-box to 0: 3 · 49 = 147 constraints
 - Guess 21 key bits to partially invert 1st f_S (\rightarrow dim 11 + 21 = 32)
 - +1 from selecting redundant constraints

Complexity: 2³³ queries, 2³³⁺²¹ time

Key recovery for 8 rounds

4 Add 1 initial round (construct W to bridge f_S in 2 rounds)

- 1st f_S easy, like 3: W is 0 except on identity part (dim 109)
- 2nd f_S adds linear constraints to W to get W':
 - Force 2 bits per S-box to 0: $2 \cdot 49 = 98$ constraints ($\rightarrow \text{dim 11}$)
 - Guess 21 key bits to partially invert 1st f_S (\rightarrow dim 11 + 21 = 32)
 - +1 from selecting redundant constraints

Complexity: 2³³ queries, 2³³⁺²¹ time

Key recovery for 8 rounds

4 Add 1 initial round (construct W to bridge f_S in 2 rounds)

- 1st f_S easy, like 3: W is 0 except on identity part (dim 109)
- 2nd f_S adds linear constraints to W to get W':
 - Force 2 bits per S-box to 0: $2 \cdot 49 = 98$ constraints ($\rightarrow \text{dim 11}$)
 - Guess 21 key bits to partially invert $1^{st} f_S (\rightarrow \dim 11 + 21 = 32)$
 - +1 from selecting redundant constraints

Complexity: 2³³ queries, 2³³⁺²¹ time

Key recovery for 9 rounds

5 Add 1 final round (extend 0-sum with linear mask *a*, *b*)

- Partial 0-sum on 109 bits after f_S, f_{K'}
- 1-bit check: if $\forall x : \langle a, x \rangle + \langle b, f_L(x) \rangle = 0$, then $\sum_{b} = \langle b, \sum \rangle = 0$
- b covers 6 S-boxes → guess 18 key bits, win 1 bit information
- Repeat with 18 sets S × 4 masks a, b to recover full key

Complexity: $2^{33+\log 18} \approx 2^{37.2}$ queries, $2^{54+\log 18} \approx 2^{58.2}$ time

Key recovery for 9 rounds

5 Add 1 final round (extend 0-sum with linear mask *a*, *b*)

- Partial 0-sum on 109 bits after f_S , $f_{K'}$
- 1-bit check: if $\forall x : \langle a, x \rangle + \langle b, f_L(x) \rangle = 0$, then $\sum_{b} = \langle b, \sum \rangle = 0$
- *b* covers 6 S-boxes → guess 18 key bits, win 1 bit information
- Repeat with 18 sets S × 4 masks a, b to recover full key

Complexity: $2^{33+\log 18} \approx 2^{37.2}$ queries, $2^{54+\log 18} \approx 2^{58.2}$ time

Interpolation attacks by Dinur et al.

• Results by Dinur et al. [Din+15]:

- Key recovery phase can be improved significantly with optimized interpolation attacks
- LowMC-80: 10 / 11 rounds in 257
- LowMC-128: 12 / 12 rounds in 2¹¹⁸
- Even better attacks for weak instances
- Check out their presentation at Asiacrypt 2015!

Conclusion

- LowMC explores corners of the design space
- Our results:
 - LowMC-80: Key recovery for 9 / 11 rounds ($\approx 2^{58.2}$)
 - LowMC-128: Key recovery for 9 / 12 rounds ($\approx 2^{72}$)
 - Up to 10 rounds of other LowMC variants
- Exploited properties of LowMC:
 - Partial S-box layer (the larger the identity part, the better)
 - Low degree per round
 - Small S-boxes

Bibliography

[Alb+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner Ciphers for MPC and FHE Advances in Cryptology – EUROCRYPT 2015

[Din+15] I. Dinur, Y. Liu, W. Meier, and Q. Wang Optimized Interpolation Attacks on LowMC Advances in Cryptology – ASIACRYPT 2015

[Knu94] L. R. Knudsen Truncated and Higher Order Differentials Fast Software Encryption – FSE 1994

[Lai94] X. Lai Higher Order Derivatives and Differential Cryptanalysis Communications and Cryptography 1994