Higher-order cryptanalysis of LowMC

Christoph Dobraunig Maria Eichlseder Florian Mendel
Presentation by Daniel Slamanig
ICISC 2015

Overview

- The block cipher LowMC
- "Explores corners of design space"
- Optimized for evaluation with MPC, FHE \& ZK
- Higher-order differential cryptanalysis
- Exploit low algebraic degree of cipher
- Contribution: Key-recovery attacks on LowMC
- Exploit LowMC's special S-box layer design
- 9 / 11 rounds of LowMC-80
- 9 / 12 rounds of LowMC-128

LowMC

Motivation: Ciphers for MPC and FHE

- Multi-Party Computation (MPC):
- Jointly compute a function over private inputs
- Fully Homomorphic Encryption (FHE):
- Evaluate function over encrypted input
- Zero-Knowledge Proofs (ZK):
- Prove functional relation over undisclosed inputs
- Linear operations in function "almost free"
... at least compared to non-linear ones (multiplications)
- Suitable ciphers to evaluate with MPC, FHE \& ZK?

LowMC

- Block cipher
- Presented at Eurocrypt 2015 [Alb+15] by Albrecht, Rechberger, Schneider, Tiessen, Zohner
- Design goals:
- Low "Multiplicative Complexity" ('and'-gates, 'and'-depth)
- Optimized for MPC, FHE \& ZK
-"Explore corners of the design space"

LowMC: Round function f

- Incomplete S-box layer
- Small S-boxes (3-bit)
- Few rounds (10-12)
- Strong linear layer

LowMC: Parameters

	LowMC-80	LowMC-128
Key size k	80	128
Block size n	256	256
Log. data limit d	64	128
\# Rounds r	11	12
\# S-boxes m	49	63

Focus on LowMC-80

Higher-order differential attacks

Higher-order differential attacks

- "Higher-order": differences of differences of differences. . .
- "Algebraic cryptanalysis" based on Boolean function theory
- Exploit low algebraic degree of ciphers
- Introduced by Lai [Lai94], Knudsen [Knu94]
- Attack goals:
- Distinguishers (Zero-sums, ...)
- Key recovery (Cube attacks, ...)

Algebraic normal form of Boolean functions

Algebraic normal form (ANF)

- "xor of ands": $\bigoplus\left(\bigwedge x_{i}\right), \quad$ often written $\sum\left(\prod x_{i}\right)$
- S-box of LowMC as vectorial ANF:

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{2} x_{3}+x_{1} \\
x_{3} x_{1}+x_{1}+x_{2} \\
x_{1} x_{2}+x_{1}+x_{2}+x_{3}
\end{array}\right)
$$

Algebraic degree $(\operatorname{deg} f)$

- Polynomial degree of ANF
- S-box of LowMC: degree 2

"Deriving" a vectorial Boolean function

Derivative of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ wrt. $a \in \mathbb{F}_{2}^{n}$

- $\frac{\mathrm{d}}{\mathrm{d}} \mathrm{a}(x)=f(x)+f(x+a)$
- Compare differential cryptanalysis!
k-th order derivative of f [Lai94]
- basis a_{1}, \ldots, a_{k} of vector space $V \leq \mathbb{F}_{2}^{n}$
- $\frac{\mathrm{d}}{\mathrm{d} a_{1}} \cdots \frac{\mathrm{~d}}{\mathrm{~d} a_{k}} f(x)=\frac{\mathrm{d}}{\mathrm{d} V} f(x)=\sum_{v \in V} f(x+v)=\sum_{w \in V+x} f(w)$

Zero-sum distinguisher

Observation: if $\operatorname{deg}(f)<d$ and $\operatorname{dim} V=d$, then

$$
\sum_{w \in V+x} f(w)=\frac{\mathrm{d}}{\mathrm{~d} a_{1}} \cdots \frac{\mathrm{~d}}{\mathrm{~d} a_{d}} f=0
$$

- Degree of a block cipher:
- b-bit S-box has degree $d \leq b-1$
- r rounds of degree $d \rightarrow$ total degree $D \leq d^{r}$
- Zero-sum distinguisher:
- Chosen plaintexts: $D+1$-dimensional (affine) vector space V V is often a "cube": $D+1$ bits vary, rest constant
- Ciphertexts will sum to 0

Application to LowMC

LowMC-80: Round function

Goal: Key recovery for 9 / 11 rounds of LowMC-80

- Need to recover ≈ 80 bits of any K_{i} or, equivalent y^{\prime}, K_{i}
- Data limit: $<2^{64}$ queries

LowMC-80: Round function

Goal: Key recovery for 9 / 11 rounds of LowMC-80

- Data limit: < 2^{64} queries

LowMC-80: Round function

Goal: Key recovery for 9 / 11 rounds of LowMC-80

- Need to recover ≈ 80 bits of any K_{i} or, equivalently, K_{i}^{\prime}
- Data limit: $<2^{64}$ queries

LowMC-80: Algebraic degree (bounds)

11 rounds f of degree 2 (plus initial key-whitening):

Bounds on degree:

Rounds r	1	2	3	4	5	6	7	8	9	10	11	12
LowMC-80	2	4	8	16	32	64	113	162	209	232	244	
LowMC-128	2	4	8	16	32	64	127	190	223	239	247	251

LowMC-80: Algebraic degree (bounds)

11 rounds f of degree 2 (plus initial key-whitening):

Bounds on degree:

Rounds r	1	2	3	4	5	6	7	8	9	10	11	12
LowMC-80	2	4	8	16	32	64	113	162	209	232	244	
LowMC-128	2	4	8	16	32	64	127	190	223	239	247	251

Zero-sum distinguisher for 5 rounds

1 For 5 forward rounds: V with 2^{33} chosen messages (due to query complexity limit 2^{64})

Complexity: 2^{33} queries, 2^{33} time

Key recovery for 6 rounds

2 Add 1 final round to recover key in 3-bit-chunks Repeat for $\left\lceil\frac{80}{3}\right\rceil=27$ S-boxes:
(a) Guess 3 key bits (of K^{\prime})
(b) Compute backwards to S-box inputs
(c) Check if each S-box input bit sums to 0

Complexity: 2^{33} queries, 2^{33+0} time

Key recovery for 7 rounds

3 Add 1 free initial round (f_{S} maps V to V)

- V is constant/zero except on 109 bits of identity part
- f_{K} and $f_{S} \operatorname{map} V+c$ to some $V+c^{\prime}$

Complexity: 2^{33} queries, 2^{33+0} time

Key recovery for 8 rounds

4 Add 1 initial round (construct W to bridge f_{S} in 2 rounds)

- $1^{\text {st }} f_{S}$ easy, like 3: W is 0 except on identity part (dim 109)
- $2^{\text {nd }} f_{S}$ adds linear constraints to W to get W^{\prime} :
- Force 3 bits per S-box to 0: 3. $49=147$ constraints
- Guess 21 key bits to partially invert $1^{\text {st }} f_{S}(\rightarrow$ dim $11+21=32)$
- +1 from selecting redundant constraints

Key recovery for 8 rounds

4 Add 1 initial round (construct W to bridge f_{S} in 2 rounds)

- $1^{\text {st }} f_{S}$ easy, like 3: W is 0 except on identity part (dim 109)
- $2^{\text {nd }} f_{S}$ adds linear constraints to W to get W^{\prime} :
- Force 2 bits per S-box to 0: $2 \cdot 49=98$ constraints $(\rightarrow$ dim 11)
- Guess 21 key bits to partially invert $1^{\text {st }} f_{S}(\rightarrow$ dim $11+21=32)$
- +1 from selecting redundant constraints

Key recovery for 8 rounds

4 Add 1 initial round (construct W to bridge f_{S} in 2 rounds)

- $1^{\text {st }} f_{S}$ easy, like 3: W is 0 except on identity part (dim 109)
- $2^{\text {nd }} f_{S}$ adds linear constraints to W to get W^{\prime} :
- Force 2 bits per S-box to 0: $2 \cdot 49=98$ constraints $(\rightarrow$ dim 11)
- Guess 21 key bits to partially invert $1^{\text {st }} f_{S}(\rightarrow \operatorname{dim} 11+21=32)$
- +1 from selecting redundant constraints

Complexity: 2^{33} queries, 2^{33+21} time

Key recovery for 9 rounds

5 Add 1 final round (extend 0 -sum with linear mask a, b)

- Partial 0-sum on 109 bits after $f_{S}, f_{K^{\prime}}$
- 1-bit check: if $\forall x:\langle a, x\rangle+\left\langle b, f_{L}(x)\right\rangle=0$, then $\sum_{b}=\left\langle b, \sum\right\rangle=0$
- Repeat with 18 sets $S \times 4$ masks a, b to recover full key

Key recovery for 9 rounds

5 Add 1 final round (extend 0-sum with linear mask a, b)

- Partial 0-sum on 109 bits after $f_{S}, f_{K^{\prime}}$
- 1-bit check: if $\forall x:\langle a, x\rangle+\left\langle b, f_{L}(x)\right\rangle=0$, then $\sum_{b}=\left\langle b, \sum\right\rangle=0$
- b covers 6 S-boxes \rightarrow guess 18 key bits, win 1 bit information
- Repeat with 18 sets $S \times 4$ masks a, b to recover full key

Complexity: $2^{33+\log 18} \approx 2^{37.2}$ queries, $2^{54+\log 18} \approx 2^{58.2}$ time

Interpolation attacks by Dinur et al.

- Results by Dinur et al. [Din+15]:
- Key recovery phase can be improved significantly with optimized interpolation attacks
- LowMC-80: 10 / 11 rounds in 2^{57}
- LowMC-128: 12 / 12 rounds in 2^{118}
- Even better attacks for weak instances
- Check out their presentation at Asiacrypt 2015!

Conclusion

- LowMC explores corners of the design space
- Our results:
- LowMC-80: Key recovery for 9 / 11 rounds ($\approx 2^{58.2}$)
- LowMC-128: Key recovery for 9 / 12 rounds $\left(\approx 2^{72}\right)$
- Up to 10 rounds of other LowMC variants
- Exploited properties of LowMC:
- Partial S-box layer (the larger the identity part, the better)
- Low degree per round
- Small S-boxes

Bibliography

[Alb+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner

Ciphers for MPC and FHE
Advances in Cryptology - EUROCRYPT 2015
[Din+15] I. Dinur, Y. Liu, W. Meier, and Q. Wang
Optimized Interpolation Attacks on LowMC Advances in Cryptology - ASIACRYPT 2015
[Knu94] L. R. Knudsen
Truncated and Higher Order Differentials Fast Software Encryption - FSE 1994
[Lai94] X. Lai
Higher Order Derivatives and Differential Cryptanalysis Communications and Cryptography 1994

