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Overview

The block cipher LowMC
“Explores corners of design space”

Optimized for evaluation with MPC, FHE & ZK

Higher-order differential cryptanalysis
Exploit low algebraic degree of cipher

Contribution: Key-recovery attacks on LowMC
Exploit LowMC’s special S-box layer design

9 / 11 rounds of LowMC-80

9 / 12 rounds of LowMC-128
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LowMC
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Motivation: Ciphers for MPC and FHE

Multi-Party Computation (MPC):
Jointly compute a function over private inputs

Fully Homomorphic Encryption (FHE):
Evaluate function over encrypted input

Zero-Knowledge Proofs (ZK):
Prove functional relation over undisclosed inputs

Linear operations in function “almost free”
. . . at least compared to non-linear ones (multiplications)

Suitable ciphers to evaluate with MPC, FHE & ZK?

3 / 21



www.iaik.tugraz.at

LowMC

Block cipher

Presented at Eurocrypt 2015 [Alb+15] by
Albrecht, Rechberger, Schneider, Tiessen, Zohner

Design goals:
Low “Multiplicative Complexity” (‘and’-gates, ‘and’-depth)

Optimized for MPC, FHE & ZK

“Explore corners of the design space”
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LowMC: Round function f

· · · S S · · · S S-box layer fS (m 3-bit S-boxes)

Li
Linear layer fL (random matrix)

· · · Ki Key addition fK (linear key schedule)

Incomplete S-box layer

Small S-boxes (3-bit)

Few rounds (10–12)

Strong linear layer
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LowMC: Parameters

LowMC-80 LowMC-128

Key size k 80 128
Block size n 256 256
Log. data limit d 64 128

# Rounds r 11 12
# S-boxes m 49 63

Focus on LowMC-80
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Higher-order differential attacks
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Higher-order differential attacks

“Higher-order”: differences of differences of differences. . .

“Algebraic cryptanalysis” based on Boolean function theory

Exploit low algebraic degree of ciphers

Introduced by Lai [Lai94], Knudsen [Knu94]

Attack goals:
Distinguishers (Zero-sums, . . . )

Key recovery (Cube attacks, . . . )
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Algebraic normal form of Boolean functions

Algebraic normal form (ANF)

“xor of ands”:
⊕

(
∧

xi), often written
∑

(
∏

xi)

S-box of LowMC as vectorial ANF:

f

(
x1

x2

x3

)
=

(
x2x3 + x1

x3x1 + x1 + x2

x1x2 + x1 + x2 + x3

)

Algebraic degree (deg f )

Polynomial degree of ANF

S-box of LowMC: degree 2
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“Deriving” a vectorial Boolean function

Derivative of f : Fn
2 → Fn

2 wrt. a ∈ Fn
2

d
da

f (x) = f (x) + f (x + a)

Compare differential cryptanalysis!

k -th order derivative of f [Lai94]

basis a1, . . . ,ak of vector space V ≤ Fn
2

d
da1
· · · d

dak
f (x) =

d
dV

f (x) =
∑
v∈V

f (x + v) =
∑

w∈V+x

f (w)
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Zero-sum distinguisher

Observation: if deg(f ) < d and dim V = d , then∑
w∈V+x

f (w) =
d

da1
· · · d

dad
f = 0

Degree of a block cipher:
b-bit S-box has degree d ≤ b − 1

r rounds of degree d → total degree D ≤ d r

Zero-sum distinguisher:
Chosen plaintexts: D + 1-dimensional (affine) vector space V
V is often a “cube”: D + 1 bits vary, rest constant

Ciphertexts will sum to 0
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Application to LowMC
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LowMC-80: Round function

S

S Li

Ki

109 bits

147 bits

f

S

S Li

Ki

=

fS fL fK

S

S Li

K ′
i

=

fS fK ′ fL

Goal: Key recovery for 9 / 11 rounds of LowMC-80
Need to recover ≈ 80 bits of any Ki or, equivalently, K ′

i

Data limit: < 264 queries
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LowMC-80: Algebraic degree (bounds)

11 rounds f of degree 2 (plus initial key-whitening):

fK

1

f

fS fL fK

2 · 1 · 1

f f · · · f

2 2 2 · · · 2· · · · ·

Bounds on degree:
Rounds r 1 2 3 4 5 6 7 8 9 10 11 12

LowMC-80 2 4 8 16 32 64 113 162 209 232 244
LowMC-128 2 4 8 16 32 64 127 190 223 239 247 251
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Zero-sum distinguisher for 5 rounds

V

fK f 5

deg ≤ 32

∑
=0

1 For 5 forward rounds: V with 233 chosen messages
(due to query complexity limit 264)
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Key recovery for 6 rounds

V

fK f 5

deg ≤ 32

∑
=0

fS fK ′ fL

guess

2 Add 1 final round to recover key in 3-bit-chunks
Repeat for d80

3 e = 27 S-boxes:
(a) Guess 3 key bits (of K ′)

(b) Compute backwards to S-box inputs

(c) Check if each S-box input bit sums to 0
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Key recovery for 7 rounds

V

fL fKfSfK

V

f 5

deg ≤ 32

∑
=0

fS fK ′ fL

guess

3 Add 1 free initial round (fS maps V to V )
V is constant/zero except on 109 bits of identity part

fK and fS map V + c to some V + c′
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Key recovery for 8 rounds

f 5

deg ≤ 32

∑
=0

fL fK fS fK ′ fL

guess

W ′′

fS

W

fK fS

W

fL fK

W ′

solve

4 Add 1 initial round (construct W to bridge fS in 2 rounds)
1st fS easy, like 3 : W is 0 except on identity part (dim 109)

2nd fS adds linear constraints to W to get W ′:
Force 3 bits per S-box to 0: 3 · 49 = 147 constraints

Guess 21 key bits to partially invert 1st fS (→ dim 11 + 21 = 32)

+1 from selecting redundant constraints
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Key recovery for 9 rounds

S

fK f 7

∑
=0

fS fK ′

∑
a=0

fL

∑
b=0

find a,b

fS fK ′

guess
18 bits

fL

5 Add 1 final round (extend 0-sum with linear mask a,b)

Partial 0-sum on 109 bits after fS, fK ′

1-bit check: if ∀x : 〈a, x〉+ 〈b, fL(x)〉 = 0, then
∑

b = 〈b,
∑
〉 = 0

b covers 6 S-boxes→ guess 18 key bits, win 1 bit information

Repeat with 18 sets S × 4 masks a,b to recover full key
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Complexity: 233+log 18 ≈ 237.2 queries, 254+log 18 ≈ 258.2 time
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Interpolation attacks by Dinur et al.

Results by Dinur et al. [Din+15]:
Key recovery phase can be improved significantly with
optimized interpolation attacks

LowMC-80: 10 / 11 rounds in 257

LowMC-128: 12 / 12 rounds in 2118

Even better attacks for weak instances

Check out their presentation at Asiacrypt 2015!

20 / 21



www.iaik.tugraz.at

Conclusion

LowMC explores corners of the design space

Our results:
LowMC-80: Key recovery for 9 / 11 rounds (≈ 258.2)

LowMC-128: Key recovery for 9 / 12 rounds (≈ 272)

Up to 10 rounds of other LowMC variants

Exploited properties of LowMC:
Partial S-box layer (the larger the identity part, the better)

Low degree per round

Small S-boxes
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