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Abstract
By using a comparison method and some difference inequalities we show that the
following higher order difference equation

xn+k =
1

f (xn+k–1, . . . , xn)
, n ∈N,

where k ∈N, f : [0, +∞)k → [0, +∞) is a homogeneous function of order strictly
bigger than one, which is nondecreasing in each variable and satisfies some
additional conditions, has unbounded solutions, presenting a large class of such
equations. The class can be used as a useful counterexample in dealing with the
boundedness character of solutions to some difference equations. Some analyses
related to such equations and a global convergence result are also given.
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1 Introduction
Let N, Z, R, C be the sets of natural, whole, real, and complex numbers respectively, N0 =
N ∪ {0} and R+ = (0, +∞). If s, t ∈ Z, then we use the notation r = s, t instead of s ≤ r ≤ t,
r ∈ Z.

Difference equations have been attracting attention of scientists for centuries. Since the
time of de Moivre, many equations have been investigated so far. For some classical results
see, e.g., [3, 5, 10–12, 14] and the related references therein.

1.1 First order difference equation, monotonicity, and some known facts
The general first order difference equation

xn+1 = f (xn), n ∈N0, (1)
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Stević et al. Journal of Inequalities and Applications         (2022) 2022:81 Page 2 of 13

has been investigated for a long time, and nowadays many results on the equation and its
special cases are known.

Here we recall some very basic facts on the behavior of solutions to equation (1) when
the function f is monotone. If the function f is a self-map of an interval I ⊆ R, then the
case when f is monotone is one of the basic ones. If f is nondecreasing and x0 ≤ x1 = f (x0),
then the sequence (xn)n∈N0 is nondecreasing, whereas if x0 ≥ x1 = f (x0) then the se-
quence (xn)n∈N0 is nonincreasing. If f is additionally bounded, then the sequence is conver-
gent (see, e.g., [1, Problem 9.34]). If the function f is nonincreasing, then the sequences
(x2n)n∈N0 and (x2n+1)n∈N0 are monotone, one of them is nondecreasing and the other is
nonincreasing. If x0 does not belong to the interval with the endpoints x1 and x2, then the
sequences (x2n)n∈N0 and (x2n+1)n∈N0 are convergent (see, e.g., [1, Problem 9.35]). These re-
sults are some of the basic ones, and along with the additional condition on the continuity
of the function f they are frequently used in determining convergence of the solutions to
equation (1). Many examples can be found, e.g., in [1] and [11].

We prove the statement related to the case when the function f is nonincreasing, for
completeness and benefit of the reader, and as a good motivation and a suggestion for
part of the arguments in the rest of the paper. If

x0 ≤ f (x0) = x1, (2)

then from (1), (2), and the monotonicity of f , we have x2 = f (x1) ≤ f (x0) = x1.
There are two cases to be considered.
Case 1. If x0 ≤ x2 = f (f (x0)), then since in this case x0 ≤ x2 ≤ x1, the monotonicity of f

implies f (x1) ≤ f (x2) ≤ f (x0), from which along with x0 ≤ x2 it follows that x0 ≤ x2 ≤ x3 ≤
x1. Assume that we have proved

x0 ≤ x2 ≤ · · · ≤ x2n–2 ≤ x2n ≤ x2n+1 ≤ x2n–1 ≤ · · · ≤ x3 ≤ x1 (3)

for some n ∈N. Then using the monotonicity of f , (1), (3), and x0 ≤ x2, we obtain

x0 ≤ x2 ≤ · · · ≤ x2n ≤ x2n+2 ≤ x2n+1 ≤ x2n–1 ≤ · · · ≤ x3 ≤ x1,

from which by another application of the same procedure it follows that

x0 ≤ x2 ≤ · · · ≤ x2n+2 ≤ x2n+3 ≤ x2n+1 ≤ · · · ≤ x3 ≤ x1.

From this and by induction we have proved that (3) holds for every n ∈ N0.
Case 2. If x2 ≤ x0, then since x2 ≤ x0 ≤ x1, the monotonicity of f implies f (x1) ≤ f (x0) ≤

f (x2), from which we have x2 ≤ x0 ≤ x1 ≤ x3. Using the monotonicity of f , (1), (2), the fact
that x2 ≤ x0, and the method of induction, we get

x2n ≤ x2n–2 ≤ · · · ≤ x2 ≤ x0 ≤ x1 ≤ x3 ≤ · · · ≤ x2n–1 ≤ x2n+1, n ∈ N0.

The case when, instead of (2), it is assumed that x1 ≤ x0 is treated similarly. From this
and the monotonicity of f , we have x1 = f (x0) ≤ f (x1) = x2.
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Case 3. If x1 ≤ x2 ≤ x0, then as above we obtain

x1 ≤ x3 ≤ · · · ≤ x2n–1 ≤ x2n+1 ≤ x2n ≤ x2n–2 ≤ · · · ≤ x2 ≤ x0, n ∈ N0.

Case 4. If x1 ≤ x0 ≤ x2, then as above we obtain

x2n+1 ≤ x2n–1 ≤ · · · ≤ x3 ≤ x1 ≤ x0 ≤ x2 ≤ · · · ≤ x2n–2 ≤ x2n, n ∈ N0.

This simple and well-known analysis shows that for each solution (xn)n∈N0 to equation
(1) its subsequences (x2n)n∈N0 and (x2n+1)n∈N0 are monotone, as claimed. In the first and
the third case from a well-known theorem it follows that the subsequences are conver-
gent. Recall also that in this case g = f ◦ f is a nondecreasing function, from which the
monotonicity and convergence results can be concluded from the ones in the case when
f is nondecreasing by noting that x2n+2 = g(x2n) and x2n+3 = g(x2n+1), n ∈N0.

To say more about the long-term behavior of solutions to equation (1), some additional
conditions on function f should be posed.

1.2 A previous claim
Recent literature shows frequent applications of known global convergence results. The
following statement was formulated in [13].

Theorem 1 Assume that f has nonpositive partial derivatives and is homogeneous with
degree s. Then the equation

xn+1 = f (xn–k , xn–m), n ∈N0 (4)

has a unique positive equilibrium x∗, and every solution to equation (4) converges to x∗.

To prove the statement in Theorem 1, paper [13] quotes Theorem 1.4.7 in [9] which deals
with equation (4), but only when k = 0 and m = 1, which means that the result cannot be
applied for other values of k and m. Beside this, the proof of the theorem only checks the
fact that from the associated two-dimensional algebraic system

l = f (L, L), L = f (l, l), (5)

it follows that l = L. But since under the conditions in Theorem 1 system (5) is

l = Lsf (1, 1), L = lsf (1, 1),

it is immediately obtained l = L, when f (1, 1) �= 0. It is claimed therein that this finishes the
proof of Theorem 1.

Quite recently in [28] we have shown that the claim in Theorem 1 is not correct by
presenting a counterexample in the class of difference equations with interlacing indices.
The class of equations seems quite suitable for providing some counterexamples in the
theory of difference equations (see, e.g., recent paper [4]).
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1.3 Our aim
We show that there is a related global convergence result which can be applied for all values
of k, m ∈ N0, but under some additional conditions. We also show that there is a large
class of governing functions f satisfying the conditions in the formulation of Theorem 1,
such that the corresponding difference equations have solutions which are unbounded,
showing that the statement in Theorem 1 is not correct for the large class of equations.

2 Preliminary analysis
In this section we conduct some analyses of difference equations whose governing func-
tions are homogeneous and nonincreasing in all variables.

2.1 An instructive example, a product-type difference equation
Now we give a simple, but instructive, example which contains some ideas which are useful
for the study.

Example 1 Consider the following difference equation:

xn+1 =
a
xα

n
, n ∈N0, (6)

where a,α ∈R+.

First note that in this case f (x) = a
xα , which is a continuous and decreasing function on

R+ and maps it onto itself.
Note also that by using the change of variables xn = a 1

α+1 yn, n ∈N0, equation (6) is trans-
formed to the following one:

yn+1 =
1
yα

n
, n ∈ N0.

Hence, we may assume that a = 1.
Case α = 1. Assume that α = 1. Then equation (6) becomes

xn+1 =
1
xn

, n ∈N0. (7)

Let x0 ∈R+. Then, by using (7) and a simple inductive argument, we have

x2n = x0 and x2n+1 =
1
x0

, n ∈N0.

If x0 ∈ [1,∞), then we have x1 = 1
x0

≤ x0 = x2. So, this situation corresponds to Case 3,
and also Case 4 above. Moreover, if x0 ∈ (1,∞), then the subsequences (x2n)n∈N0 and
(x2n+1)n∈N0 are convergent, but the whole sequence is not. If x0 = 1, then xn = 1 for ev-
ery n ∈N0, and then the sequence is convergent.

If x0 ∈ (0, 1], then we have x2 = x0 ≤ 1
x0

= x1. So, this situation corresponds to Case 1 and
also Case 2 above. Moreover, if x0 ∈ (0, 1), then the subsequences (x2n)n∈N0 and (x2n+1)n∈N0

are convergent, but the sequence (xn)n∈N0 is not.
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Now note that by using (6) with a = 1 twice, we obtain

x2n+2 = xα2
2n and x2n+3 = xα2

2n+1, n ∈N0. (8)

From (8) it is easily obtained

x2n = xα2n
0 and x2n+1 = xα2n

1 =
1

xα2n+1
0

, n ∈N0. (9)

There are two cases to be considered.
Case α ∈ (0, 1). In this case the sequences α2n and α2n+1 decreasingly converge to zero,

and consequently

lim
n→+∞ x2n = 1 and lim

n→+∞ x2n+1 = 1.

Moreover, if x0 ∈ (0, 1), then x2n increases to one, whereas x2n+1 decreases to one. Since in
this case x0 < x2 = xα2

0 < x1 = 1
xα

0
, it corresponds to Case 1 above. If x0 > 1, then x2n decreases

to one, whereas x2n+1 increases to one. Since in this case x1 = 1
xα

0
< x2 = xα2

0 < x0, we have
the situation as in Case 3 above.

Case α ∈ (1,∞). In this case the sequences α2n and α2n+1 increasingly tend to +∞, and
consequently, if x0 ∈ (0, 1), by letting n → +∞ in (9) we get

lim
n→+∞ x2n = 0 and lim

n→+∞ x2n+1 = +∞,

x2n is decreasing and x2n+1 is increasing. Since x2 = xα2
0 < x0 < 1

xα
0

= x1, we have the situation
in Case 2. If x0 > 1, then

lim
n→+∞ x2n = +∞ and lim

n→+∞ x2n+1 = 0,

x2n is increasing and x2n+1 is decreasing. Since x1 = 1
xα

0
< x0 < xα2

0 = x2, we have the situation
in Case 4.

Remark 1 Equation (6) is one of the simplest product-type difference equations which
is solvable in closed form. The solvability is essentially what enables the simple analysis
given in Example 1. For some more complex solvable product-type difference equations
and systems see, for example, [24, 29] and the related references therein. Some classical
results on solvability can be found, e.g., in [1, 3, 5, 8, 10–12, 14], whereas some other recent
ones can be found, e.g., in [2, 20, 23, 25] (see also the related references therein).

Remark 2 Note that the function f (x) = 1
xα in Example 1 is homogeneous with degree –α.

Recall also that it is decreasing. But, as we have seen in the analysis in the example, if α > 1,
then there are unbounded solutions to equation (6), although

l =
1

Lα
and L =

1
lα

implies l = L in this case.
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This homogeneous function of one variable strikingly suggests that similar situation
should appear also in the case of homogeneous functions of several variables. This exam-
ple along with the construction of difference equations with interlacing indices (for some
examples of the equations see, e.g. [26, 27]) was used for constructing the counterexample
in [28].

2.2 An example with a heuristic asymptotic approach
Here we consider a difference equation heuristically. The first higher order difference
equation with non-interlacing indices, such that the governing function satisfies the con-
ditions in the formulation of Theorem 1 and is related to the one-dimensional equation
(6) with a = 1 that came to our mind, is the following second order one:

xn+2 =
2

x2
n+1 + x2

n
, n ∈N, (10)

with x1, x2 ∈R+.
Consider the equation with

x1 = x2 = ε, (11)

where

ε ∈
(

0,
1

3√2

)
(12)

is very small.
From (10) and (11) we have

x3 =
2

x2
2 + x2

1
=

1
ε2 . (13)

From (10), (11), (13) and by the Taylor formula with Peano’s remainder, we have

x4 =
2

x2
3 + x2

2
=

2ε4

1 + ε6 = 2ε22(
1 + O

(
ε2+22))

. (14)

From (10), (13), (14) and by the Taylor formula with Peano’s remainder, we have

x5 =
2

x2
4 + x2

3
=

2ε4

1 + 22ε22+23 + o(ε12)
= 2ε22(1 + O

(
22ε22+23)). (15)

From (10), (14), (15) as above, we have

x6 =
2

x2
5 + x2

4
=

1
22ε23 (1 + O(ε2+22 ))

=
1

22ε23

(
1 + O

(
ε2+22))

. (16)

From (10), (15), (16), we have

x7 =
2

x2
6 + x2

5
=

21+22
ε24

1 + O(ε2+22 )
= 21+22

ε24(
1 + O

(
ε2+22))

. (17)
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From (10), (16), (17), we have

x8 =
2

x2
7 + x2

6
=

21+22
ε24

1 + O(ε2+22 )
= 21+22

ε24(
1 + O

(
ε2+22))

. (18)

From (10), (17), (18), we have

x9 =
2

x2
8 + x2

7
=

1
22+23

ε25 (1 + O(ε2+22 ))
=

1
22+23

ε25

(
1 + O

(
ε2+22))

. (19)

Formulas (13)–(19) suggest that the following relations hold:

x3n =
1

22+23+···+22n–3
ε22n–1

(
1 + O

(
ε2+22))

=
1 + O(ε2+22 )

2 22n–1–2
3 ε22n–1

=
3√4(1 + O(ε2+22 ))

( 3√2ε)22n–1 , (20)

x3n+1 = 21+22+···+22(n–1)
ε22n(

1 + O
(
ε2+22))

= 2
22n–1

3 ε22n(
1 + O

(
ε2+22))

=
( 3√2ε)22n

3√2
(
1 + O

(
ε2+22))

, (21)

x3n+2 = 21+22+···+22(n–1)
ε22n(1 + O

(
ε2+22))

= 2
22n–1

3 ε22n(
1 + O

(
ε2+22))

=
( 3√2ε)22n

3√2
(
1 + O

(
ε2+22))

(22)

for n ≤ n0 for some large but fixed n0.
However, since the calculation errors are accumulated from one step to another, we will

not conduct further our analysis in the direction nor try to prove (20)–(22), but will simply
leave it as a heuristic asymptotic analysis.

Note that if (20)–(22) were true, then by using assumption (12), i.e., ε
3√2 ∈ (0, 1), in

(20)–(22), it would follow that

lim
n→∞ x3n = +∞, lim

n→∞ x3n+1 = lim
n→∞ x3n+2 = 0,

which would show that the solution to equation (10) satisfying (11) is unbounded.
The heuristic proof suggests that another method should be employed. Since we do not

have exact applicable formulas, one of the ideas is to compare some of the solutions to the
equation with solutions to another equation for which it is possible to find the solutions
in closed form. This idea will be used in the next section.

Remark 3 If x1 = x2 = 0, then the solution to equation (10) is not well defined. If x1 �= 0 or
x2 �= 0, then x3 > 0, and a simple inductive argument shows that xn > 0 for every n ∈ N0.
Hence, all solutions except the one obtained for x1 = x2 = 0 are well defined.

Remark 4 The only real equilibrium of equation (10) is x∗ = 1. Hence, the equation has a
bounded solution

xn ≡ 1, n ∈ N,
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which is, of course, convergent. The solution is obtained for x1 = x2 = 1.

Assume that xn0+1 = xn0+2 = 1 for some n0 ≥ 3. Then we have

1 = xn0+2 =
2

x2
n0+1 + x2

n0

=
2

1 + x2
n0

,

from which it follows that xn0 = 1 (by Remark 3, xn > 0, n ≥ 3 for each solution to equation
(10)). By a simple inductive argument, we get xn = 1 for 3 ≤ n ≤ n0 + 2. If x3 = x4 = 1,
then x2

2 = 1 is similarly obtained, that is, |x2| = 1, from which in the same way |x1| = 1 is
obtained. Hence there are four solutions which are eventually equal to one, namely those
satisfying the conditions

|x1| = |x2| = 1.

3 Main results
Here we prove the main results in this paper, which give some answers to the questions
posed in the introduction and show that the statement in Theorem 1 is not true by pre-
senting a large class of difference equations possessing unbounded solutions.

The following result on global convergence of solutions to a difference equation is folk-
lore and one of many existing in the literature (see, e.g., [6, 7, 9, 15, 16, 18, 21]). The proof
is standard and essentially given in [9, Theorem A.0.8]. We present it for the completeness
and the benefit of the reader.

Theorem 2 Let k ∈N and f : [a, b]k → [a, b] be a continuous function which is nonincreas-
ing in each variable, and such that from

f (l, . . . , l) = L and f (L, . . . , L) = l, (23)

where l, L ∈ [a, b], it follows that l = L.
Then the following difference equation

xn+k = f (xn+k–1, . . . , xn), n ∈N, (24)

has a unique equilibrium x∗ ∈ [a, b] and every solution to (24) converges to x∗.

Proof Let g(x) = f (x, . . . , x) – x. Since g(a) ≥ a and g(b) ≤ b, the continuity of g implies that
there is x∗ ∈ [a, b] such that g(x∗) = 0. Assume that there is y∗ ∈ [a, b], x∗ �= y∗ such that
g(y∗) = 0. We may assume that x∗ > y∗, since the other case is dual. Then from the relation
f (x∗, . . . , x∗) – f (y∗, . . . , y∗) = x∗ – y∗ and monotonicity of f in each variable we have

0 < x∗ – y∗ = f
(
x∗, . . . , x∗) – f

(
y∗, . . . , y∗) ≤ 0,

which is a contradiction. Hence, it must be x∗ = y∗, proving the uniqueness.
Let l1 = a, L1 = b,

Ln+1 = f (ln, . . . , ln) and ln+1 = f (Ln, . . . , Ln), n ∈N. (25)
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Then from (25) and by using induction it is routinely obtained

l1 ≤ l2 ≤ · · · ≤ ln–1 ≤ ln ≤ Ln ≤ Ln–1 ≤ · · · ≤ L2 ≤ L1 (26)

for every n ∈N, and for each solution (xn)n∈N to (24) we have

ln ≤ xj ≤ Ln, for j ≥ k(n – 1) + 1. (27)

From (26) we have

l̂ = lim
n→+∞ ln and L̂ = lim

n→+∞ Ln

for some l̂, L̂ ∈ [a, b]. By letting n → +∞ in (25) we get (23) with l = l̂ and L = L̂, which
implies l̂ = L̂. From this and by letting n → +∞ in (27) we get

lim
n→+∞ xn = l̂ = L̂ = x∗,

finishing the proof. �

Remark 5 Theorem 2 is the result which can be applied in the case when the function f
is nonincreasing in each variable, whether or not the function f (t1, . . . , tk) depends on all
the variables. It could have been applied in the proof of Theorem 3.3 in [13], but only if all
its conditions are verified, which was not the case therein.

The following theorem is the main result in the paper. It shows that there is a large class
of functions satisfying the conditions in Theorem 1, such that the corresponding differ-
ence equations have solutions which are unbounded, showing that the claim in Theorem 1
is not correct. In the proof of the theorem we use a comparison argument. For some re-
lated comparison arguments see, e.g., [17, 19, 22].

Theorem 3 Consider the difference equation

xn+k =
1

f (xn+k–1, . . . , xn)
, n ∈N, (28)

with xj ∈ R+, j = 1, k, where the function f : [0, +∞)k → [0, +∞) is homogeneous of order
α > 1, that is, f (λt1, . . . ,λtk) = λαf (t1, . . . , tk) for every λ ∈ [0, +∞), nondecreasing in each
variable, f (1, . . . , 1) = 1, and that

q := min
{

f (1, 0, . . . , 0), f (0, 1, 0, . . . , 0), . . . , f (0, . . . , 0, 1)
}

> 0.

Then every solution to equation (28) such that

0 < max
j=1,k

xj < q
1

α2–1 (29)

is unbounded.
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Remark 6 If f (1, . . . , 1) �= 1, then by using the change of variables

xn =
yn

(f (1, . . . , 1))1/(1+α) , n ∈N,

the sequence (yn)n∈N satisfies the equation

yn+k =
f (1, . . . , 1)

f (yn+k–1, . . . , yn)
, n ∈N,

and the function

f̃ (t1, . . . , tk) :=
f (t1, . . . , tk)
f (1, . . . , 1)

satisfies the condition f̃ (1, . . . , 1) = 1. Hence, we may assume f (1, . . . , 1) = 1.

Proof of Theorem 3 Let

m0 := max
j=1,k

xj > 0.

Then, from (28) and the conditions of the theorem, we have

xk+1 =
1

f (xk , . . . , x1)
≥ 1

f (m0, . . . , m0)
=

1
mα

0 f (1, . . . , 1)
=

1
mα

0
. (30)

Let

M1 :=
1

mα
0

. (31)

Then, from (28), (30), and the conditions of the theorem, we have

xk+2 =
1

f (xk+1, . . . , x2)
≤ 1

f (M1, 0, . . . , 0)
=

1
Mα

1 f (1, 0, . . . , 0)
≤ 1

qMα
1

,

xk+3 =
1

f (xk+2, xk+1, . . . , x3)
≤ 1

f (0, M1, 0, . . . , 0)
=

1
Mα

1 f (0, 1, 0, . . . , 0)
≤ 1

qMα
1

,

... (32)

x2k+1 =
1

f (x2k , . . . , xk+1)
≤ 1

f (0, . . . , 0, M1)
=

1
Mα

1 f (0, . . . , 0, 1)
≤ 1

qMα
1

.

Let

m1 :=
1

qMα
1

.

Then, from (28), (32), and the conditions of the theorem, we have

x2k+2 =
1

f (x2k+1, . . . , xk+2)
≥ 1

f (m1, . . . , m1)
=

1
mα

1 f (1, . . . , 1)
=

1
mα

1
.
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Let (Mn)n∈N and (mn)n∈N0 be sequences defined as follows:

Mn+1 =
1

mα
n

, mn+1 =
1

qMα
n+1

, n ∈N0. (33)

Assume that for some l ∈ N we have proved that

x(k+1)l+j ≤ ml, j = 1, k, (34)

x(k+1)(l+1) ≥ Ml+1. (35)

Then from (28), (35), and the conditions of the theorem we have

x(k+1)(l+1)+1 =
1

f (x(k+1)(l+1), . . . , x(k+1)l+2)
≤ 1

f (Ml+1, 0, . . . , 0)

=
1

Mα
l+1f (1, 0, . . . , 0)

≤ 1
qMα

l+1
= ml+1,

... (36)

x(k+1)(l+1)+k =
1

f (x(k+1)(l+1)+k–1, . . . , x(k+1)(l+1))
≤ 1

f (0, . . . , 0, Ml+1)

=
1

Mα
l+1f (0, . . . , 0, 1)

≤ 1
qMα

l+1
= ml+1.

Then from (28), (36), and the conditions of the theorem we have

x(k+1)(l+2) =
1

f (x(k+1)(l+1)+k , . . . , x(k+1)(l+1)+1)
≥ 1

f (ml+1, . . . , ml+1)

=
1

mα
l+1f (1, . . . , 1)

=
1

mα
l+1

= Ml+2. (37)

From this and by induction, we see that the inequalities in (34) and (35) hold for every
l ∈ N0.

From the equations in (33) we have

Mn =
1

mα
n–1

=
(
qMα

n–1
)α = qαMα2

n–1, n ≥ 2. (38)

Iterating equation (38) yields

Mn = qαMα2
n–1 = qα

(
qαMα2

n–2
)α2

= qα(1+α2)M(α2)2

n–2 , n ≥ 3.

By a simple inductive argument we have

Mn = qα(1+α2+···+α2n–4)Mα2n–2
1 , n ∈N,

from which it follows that

Mn = qα α2n–2–1
α2–1 Mα2n–2

1 , n ∈N. (39)
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From (39) together with (31) we have

Mn = q
α2n–1–α

α2–1 m–α2n–1
0 =

(
q

1
α2–1

m0

)α2n–1

q
α

1–α2 , n ∈N. (40)

Employing (40) in the second equation in (33) we get

mn =
1

qMα
n

=
(

q
1

α2–1

m0

)–α2n

q
1

α2–1 . (41)

Let m0 ∈ (0, q
1

α2–1 ). Letting n → +∞ in (40) and (41) and using the fact q
1

α2–1 /m0 > 1 and
the assumption α > 1, we obtain

lim
n→+∞ mn = 0 (42)

and

lim
n→+∞ Mn = +∞. (43)

From (34), (35), (42), and (43), we see that for each solution to equation (28) satisfying
condition (29) we have

lim
l→+∞

x(k+1)l+j = 0, j = 1, k,

and

lim
l→+∞

x(k+1)l = +∞. (44)

The relation in (44) shows that each solution with such chosen initial values is unbounded,
finishing the proof of the theorem. �
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