
Higher Order Differential Attack
of a CAST Cipher

Shiho Moriai1, Takeshi Shimoyama1, and Toshinobu Kaneko1,2

1 TAO (Telecommunications Advancement Organization of Japan)
{shiho,shimo}@yokohama.tao.or.jp

2 Science University of Tokyo
kaneko@ee.noda.sut.ac.jp

Abstract. This paper proposes a new higher order differential attack.
The higher order differential attack proposed at FSE’97 by Jakobsen
and Knudsen used exhaustive search for recovering the last round key.
Our new attack improves the complexity to the cost of solving a linear
system of equations. As an example we show the higher order differential
attack of a CAST cipher with 5 rounds. The required number of chosen
plaintexts is 217 and the required complexity is less than 225 times the
computation of the round function. Our experimental results show that
the last round key of the CAST cipher with 5 rounds can be recovered
in less than 15 seconds on an UltraSPARC station.

1 Introduction

Higher order differential attack is one of the powerful algebraic cryptanalyses. It
is useful for attacking ciphers which can be represented as Boolean polynomials
with low degrees. After Lai mentioned cryptographic significance of derivatives
of Boolean functions in [12], Knudsen used this notion to attack ciphers which
were secure against conventional differential attacks[11]. At FSE’97 Jakobsen and
Knudsen[7] gave an extension of Knudsen’s attacks and broke the cipher with
quadratic functions such as the cipher KN [14] and the scheme by Kiefer[10].
These were provably secure ciphers against differential and linear cryptanalysis.
Furthermore, at ISW’97, Shimoyama, Moriai, and Kaneko[18] essentially reduced
the complexity and the number of chosen plaintexts required for the higher order
differential attack of the cipher KN . In this paper we generalize the higher order
differential attack described in [18] and apply it to CAST ciphers.

CAST ciphers are a family of symmetric ciphers constructed using the CAST
design procedure[1] proposed by Adams and Tavares. The CAST design proce-
dure describes that they appear to have good resistance to differential cryptana-
lysis[5], linear cryptanalysis[15], and related-key cryptanalysis[4]. A known at-
tack on CAST ciphers is the attack which uses weaknesses of non-surjective
round functions and it requires 232 known texts for a CAST cipher with 6
rounds[16].

In this paper we demonstrate that some of symmetric ciphers constructed
using the CAST design procedure can be broken by our higher order differential

S. Vaudenay (Ed.): Fast Software Encryption – FSE’98, LNCS 1372, pp. 17–31, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

18 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko

attack, if the number of rounds is small. CAST-128 is a famous example CAST
cipher used in several commercial applications, but this is not our target. CAST-
128 seems resistant to our attack.

CAST ciphers use the Feistel structure used in DES. The CAST design
procedure allows a wide variety of round functions. It has substitution boxes
(S-boxes) with fewer input bits than output bits (e.g. 8× 32). There are several
proposals for S-boxes. For example, [3] suggested constructing the S-boxes from
bent functions. Later on [6] CAST ciphers with random S-boxes were proposed.
In our attack, we use the S-boxes proposed for CAST-128[1,2] based on bent
functions. As for operations used for combining input and subkey or output
results of S-boxes, the CAST design procedure describes that a simple way is
to specify that all operations are XORs. Although other operations (addition
and subtraction modulo 232, multiplication modulo (232 ± 1), etc.) may be
used instead, we assume that the CAST cipher of our target uses XORs for
all operations.

We explain the higher order differential attack of this CAST cipher with 5
rounds. We begin by finding the Boolean polynomials of all output bits of S-
boxes. The polynomials show that all degrees are 4. When all operations in the
round function are XORs, the degree of the round function is at most 4. If the
right half of plaintext is fixed at any value, the degree of the right half of the 4-th
round is at most 16, and the 16-th order differential becomes constant. Thus we
can construct the attack equations for recovering the last (i.e. 5-th) round key.

In [7], exhaustive search was used for finding the true key. If their attack
were applied to this CAST cipher with 5 rounds, the required complexity would
be 248 times the computation of the round function using 217 chosen plaintexts.
Our new attack can recover the last round key by solving the linear system of
equations. As a result, the required number of chosen plaintexts is 217 and the
required complexity is reduced to less than 225 times the computation of the
round function. Our experimental results show that all last round key bits of
the CAST cipher can be recovered in less than 15 seconds on a Sun Ultra 2
workstation (UltraSPARC, 200MHz).

2 Higher Order Differential Attack

2.1 Preliminaries

Definition 1. Let GF (2)n be the n-dimensional vector space over GF (2). We
denote addition on GF (2)n by +. We define V (l)[al, . . . , a1] as the l-dimensional
subspace of GF (2)n which is the set of all 2l possible linear combinations of
al, . . . , a1, where each ai is in GF (2)n and linearly independent. We often use
V (l) for V (l)[al, . . . , a1] when {al, . . . , a1} is understood.

Definition 2. Let GF (2)[X] be the polynomial ring of X = {xn−1, . . . , x0} over
GF (2). Let Id be the ideal of GF (2)[X] generated by x2

n−1 +xn−1, . . . , x
2
0 +x0 ∈

GF (2)[X]. We define R[X] as the quotient ring of GF (2)[X] modulo Id, i.e.

Higher Order Differential Attack of a CAST Cipher 19

GF (2)[X]/Id. We call R[X] the Boolean polynomial ring of X, and call each
element of it a Boolean polynomial. Since an element in R[X] is regarded as a
function: GF (2)n → GF (2), it is also called a Boolean polynomial function or a
Boolean function.

Definition 3. Let X and K be sets of variables. We define R[X,K] as a Boolean
polynomial ring of X ∪K, i.e. R[X ∪K]. For element f(X,K) ∈ R[X,K], we
define degX(f) as the total degree of f with respective to X whose coefficients
are in R[K].

Definition 4. We call a vector of n Boolean functions a vector Boolean fun-
ction. For example f = (fn−1, . . . , f0) is a vector Boolean function where fi
is a Boolean function. Each element of a vector Boolean function is called a
coordinate Boolean function.

For an iterated block cipher with block size 2n bits and key size s bits, we de-
note a plaintext by x = (x2n−1, . . . , x0) ∈ GF (2)2n, a key by k = (ks−1, . . . , k0) ∈
GF (2)s, and a ciphertext by y = (y2n−1, . . . , y0) ∈ GF (2)2n. The ciphertext
y is represented by a vector Boolean function y = G(x, k) = (g2n−1(x, k), . . . ,
g0(x, k)) ∈ R[X,K]2n, whereX andK are sets of variables:X = {x2n−1, . . . , x0},
K = {ks−1, . . . , k0}. A coordinate Boolean function of G(x, k) is a Boolean
function g[k](x) on X when k is fixed. In general g[k](x) is represented as follows,

g[k](x) =
∑
ci2n−1,...,i0(k) · x

i2n−1
2n−1 · · ·x

i0
0 ,

where i∗ is 0 or 1.

Definition 5. We define the i-th order differential of g[k](x) with respect to X,

denoted by ∆
(i)
(ai,...,a1)g[k](x), as follows,

∆
(1)
(a)g[k](x) = g[k](x) + g[k](x+ a)

∆
(i)
(ai,...,a1)g[k](x) = ∆

(1)
(ai)

(∆
(i−1)
(ai−1,...,a1)g[k](x))

where {ai, . . . , a1} ⊆ GF (2)2n are linearly independent and any a ∈ GF (2)2n.
In this paper, since we consider only the higher order differential with respect to
X, we omit “with respect to X.”

Definition 6. We define the i-th order differential of vector Boolean function
G = (g2n−1, . . . , g0) as follows,

∆
(i)
(ai,...,a1)G = (∆

(i)
(ai,...,a1)g2n−1, . . . ,∆

(i)
(ai,...,a1)g0).

20 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko

The following propositions are known on the higher order differential of
Boolean functions.

Proposition 7. [12] The following equation holds for any a ∈ GF (2)2n and
{ai, . . . , a1} ⊆ GF (2)2n.

∆
(i)
(ai,...,a1)g[k](a) =

∑
x∈V (i)[ai,...,a1]

g[k](x+ a)

Proposition 8. [18] Let {ad+1, . . . , a1} ⊆ GF (2)2n be linearly independent. If
degX(g[k](x)) = d, then we have the following equations.

∆
(d)
(ad,...,a1)g[k](x) ∈ R[K],

∆
(d+1)
(ad+1,...,a1)g[k](x) = 0

2.2 Attack Procedure

The following is the attack procedure of our higher order differential attack of
an iterated block cipher with block size 2n and R rounds. Let k(i) be the i-th

round subkey, and each subkey be m bits, i.e. k(i) = (k
(i)
m−1, . . . , k

(i)
0). Let K(i)

be a set of variables of k(i), i.e. K(i) = {k(i)
m−1, . . . , k

(i)
0 }.

Here we describe “(R − 1)-round attack”, where we find a certain constant
value which is independent of the key (e.g. the higher order differential of the
output of the (R−1)-th round), and construct the attack equations for recovering
the last round key. Of course a “(R−2)-round attack” is possible though solving
of the attack equations becomes rather difficult.

We assume that the attacker has or can compute all chosen plaintexts in
V (d)[ad, . . . , a1]+a and the corresponding ciphertexts, where d is the total degree
of the output of the (R− 1)-th round, and a is any value in GF (2)2n. For some
block ciphers, the total degree of the output of the (R − 1)-th round may be
difficult with choices of {ad, . . . , a1} and a. However we don’t consider it in this
paper.

Even if the algorithm of the cipher is not open (i.e. if it is a blackbox),
our attack is applicable when we know the total degree d of the output of the
(R− 1)-th round by some ways. In this case, we start from step 2.

1. Find the degree of round function. In attacking iterated ciphers by
higher order differential attacks, it is useful to represent the round function by
Boolean polynomials. We can get the degree over GF (2) of each output bit of
the round function from these polynomials. The information on which terms are
included in the polynomials is also helpful in step 3.

We begin by representing S-boxes by Boolean polynomial functions. When
the description of the S-boxes is not given as some algebraic expressions, we cons-
truct Boolean polynomial functions from the description tables (see Section4.1).

Higher Order Differential Attack of a CAST Cipher 21

2. Compute the higher order differential of output of the (R−1)-th
round. Our higher order differential attack is possible, for an integer 1 ≤ d ≤
2n, when the d-th order differential of the output of the (R − 1)-th round is a
certain constant value which is independent of the key. When is this condition
true? One is when the degree of the output of the (R − 1)-th round is d − 1.
Another is when the input and subkeys are combined with XORs simply, and
the degree of the output of the (R − 1)-th round is d. In this case, the total
degree of the output of the (R − 1)-th round with respect to X is equal to the
total degree with respect to X and K(i) (i = 1, · · · , R − 1) before the degree
reaches 2n (see [18, Proposition 1]).

In these cases, the d-th order differential of the output of the (R−1)-th round
can be computed by using Proposition 1 without knowing the true key.

3. Construct attack equations for recovering the last round key.
We give the details in the case of a Feistel cipher. Let x = (xL, xR) and
y = (yL(x), yR(x)), where xL denotes the left half of plaintext, xR denotes the
right half, yL denotes the Boolean polynomial function of left half of ciphertext,
and yR denotes the vector Boolean polynomial function of right half. Let ỹR(x)
be the vector Boolean polynomial function of the right half of the output of the
(R− 1)-th round. Then we have

F [k(R)](yR(x)) + yL(x) = ỹR(x).

If the d-th order differential of ỹR(x) is constant, we have the following equation
for linearly independent {ai, . . . , a1} ⊆ GF (2)2n and any a ∈ GF (2)2n.

∆
(d)
(ad,...,a1)F [k(R)](yR(a)) +∆

(d)
(ad,...,a1)yL(a) = ∆

(d)
(ad,...,a1)ỹR(a) (= const.)

If we have all plaintexts in V (d)[ad, . . . , a1] + a and corresponding ciphertexts,
we obtain the following equation by computing each term using Proposition 1.∑

x∈V (d)[ad,...,a1]+a

(
F [k(R)](yR(x)) + yL(x)

)
=

∑
x∈V (d)[ad,...,a1]+a

ỹR(x) (1)

If the total degree of F is D (≥ 1), equation (1) has degree D−1 with respect
to k(R). This is because we can rewrite the first term of equation (1) as follows.
(The first order differential of a function of degree D has degree D − 1.)∑

x∈V (d)+a

F [k(R)](yR(x))

=
∑

x∈V (d)+a\{a}

F [k(R)](yR(x)) + F [k(R)](yR(a))

=
∑

x∈V (d)+a\{a}

(
F [k(R)](yR(x)) + F [k(R)](yR(a))

)
=

∑
x∈V (d)+a\{a}

∆y′F [k(R)](yR(x)) (y′ = yR(x) + yR(a))

22 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko

Since F is a vector Boolean function composed of n coordinate Boolean functions,
equation (1) forms the system of algebraic equations of degreeD−1 with m unk-
nowns. (Note that m is the number of bits of the last round key k(R).) We have
some ways to solve the system of algebraic equations, and in this paper we take a
similar way as one described in [8]. That is, we transform it to the system of linear
equations where we regard all monomials on k(R) in equation (1) as independent
unknown variables. Hereafter M denotes the number of the unknown variables.
When D = 2, the unknown variables are {k(R)

m−1, . . . , k
(R)
0 } and M = m. When

D = 3, the unknown variables are {k(R)
m−1, . . . , k

(R)
0 , k

(R)
m−1k

(R)
m−2, . . . , k

(R)
0 k

(R)
1 }

and M = m + mC2. Similarly, when D = 4, M = m + mC2 + mC3. When the
total degree of F is D, M is at most

∑D−1
i=1 mCi. Actually, M is much smaller

than this upper bound because coefficients of some of the unknown variables
can cancel each other out, or because some of these unknown variables don’t
exist for some F . Finding a small M is important for reducing the complexity.
General theory on a tighter upper bound of M will appear in another paper.

If the number of unknown variables of the linear equations (= M) is larger
than n, we have to set up equations (1) using plaintexts in different d-dimensional
spaces V (d)[a′d, . . . , a

′
1] + a′ to determine M unknowns. However, this does not

increase the required number of chosen plaintexts by dM
n
e times because some

plaintexts can be used repeatedly. That is, for an integer δ > d, we can obtain δCd
different d-dimensional vector spaces from δ-dimensional vector space. Therefore,
if we let δmin be the smallest δ s.t. dM

n
e ≤ δCd, then the required number of the

chosen plaintexts is at most 2δmin .

2.3 Comparison with Jakobsen-Knudsen[7]

In this section we compare the complexity of our higher order different attack
with Jakobsen and Knudsen’s attack[7]. The dominant complexity is setting up
the system of linear equations, i.e. computing the coefficients (see also Section
4.3). For the second and third terms of equation (1), R × 2δmin times the com-
putation of the round function is needed. For the first term of equation (1), at
most (M + 1)× 2δmin times the computation of the round function1 is required.
Therefore, the required complexity is at most (M +R+1)×2δmin . On the other
hand, the required complexity for Jakobsen and Knudsen’s attack[7] was 2m+d[7,
Theorem 1]. Since d ≈ δmin and M +R + 1� 2m, the complexity is reduced.

3 CAST

The family of the ciphers constructed using the CAST design procedure[1] are
known as CAST ciphers, and [1] describes that they appear to have good re-
sistance to differential cryptanalysis[5], linear cryptanalysis[15], and related-key
cryptanalysis[4].

1 There is another way of computing the coefficients of the terms of degree D−1 with
less complexity. See Appendix B.

Higher Order Differential Attack of a CAST Cipher 23

32
?
hd

ZZ~ ��=
32 S4
?
hc

ZZ~ ��=
32 S3
?
hb

ZZ~ ��=

S1 S2

8 8 8 8

�
�	

C
CW
B
B
B
B
B
BN

C
C
C
C
C
C
C
C
C
CW

?

ha � k(i)
?

32

Fig. 1. CAST round function

CAST ciphers are based on the framework of the Feistel cipher. The round
function is specified as follows (see also Fig.1.). A 32-bit data half is input to
the function along with a subkey k(i). These two quantities are combined using
operation “a” and the 32-bit result is split into four 8-bit pieces. Each piece is
input to a different 8 × 32 S-box (S1, S2, S3, and S4). S-boxes S1 and S2 are
combined using operation “b”; the result is combined with S3 using operation
“c”; this second result is combined with S4 using operation “d”. The final 32-bit
result is the output of the round function.

The CAST design procedure allows a wide variety of possible round func-
tions: 4 S-boxes and 4 operations (a,b,c, and d). As for S-boxes, [3] suggested
constructing the S-boxes from bent functions. Later on [6] CAST with random S-
boxes was proposed. In our attack, we use the S-boxes based on bent functions
proposed for CAST-128. As for operations, a simple way to define the round
function is to specify that all operations are XORs, which is addition on GF (2),
although other operations may be used instead. Actually, according to [1], some
care in the choice of operation “a” can conceivably give intrinsic immunity to
differential and linear cryptanalysis. The immunity to higher order differential
for choices of operations (a,b,c, and d) will be discussed in Section 5.

As for the number of rounds, it seems that the CAST design procedure
doesn’t specify a concrete number. However, in [1] it is described that CAST
ciphers possess a number of improvements compared to DES in both the round
function and the key schedule which provide good cryptographic properties in

24 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko

fewer rounds2 than DES. There are also several key schedules for CAST ciphers,
but for the purpose of our attack the key schedule makes no difference.

4 Higher Order Differential Attack of a CAST Cipher

4.1 Boolean Polynomials of S-boxes

We begin by representing S-boxes by Boolean polynomial functions. We use
the S-boxes proposed for CAST-128. The description of the S-boxes is given by
tables. One way to construct them can be seen in [19]. Another more efficient
method using a matrix transformation is also known. The obtained Boolean
polynomials of S-boxes occupy a lot of space, and we show those of only some
bits of S1 in Appendix A.

From the obtained Boolean polynomials, it is confirmed that all the degrees
of all output bits of all S-boxes are 4, which doesn’t contradict the property of
bent functions: the degree of a bent function: GF (2)2n → GF (2) is at most n.
When the operations a,b,c, and d are XORs, all the degrees of all output bits of
the round function are at most 4. We discuss the higher order differential attack
of this CAST cipher with 5 rounds.

4.2 Linear Equations for Recovering the Last Round Key

If the right half of plaintext is fixed at any value, the degree of the right half of
the 4-th round, ỹR(xL), is at most 16, and the 16-th order differential of ỹR(xL)
becomes constant. Therefore, we can compute it without knowing the true key,
and we have the following attack equations for recovering the last round key,
k(5). ∑

xL∈V
(16)+a

F [k(5)](yR(xL)) +
∑

xL∈V
(16)+a

yL(xL) =
∑

xL∈V
(16)+a

ỹR(xL), (2)

where yR, yL, ỹR : GF (2)32 → GF (2)32 and a ∈ GF (2)32.

As we described in Section 2.2, since the total degree of F is 4, equation (2)

has degree 3 with respect to {k(5)
31 , k

(5)
30 , . . . , k

(5)
0 }. It follows that equation (2)

forms a system of equations of degree 3 with 32 unknowns. Hereafter, we write

{k31, k30, . . . , k0} for {k(5)
31 , k

(5)
30 , . . . , k

(5)
0 } for simplicity.

Here we transform the system of equations of degree 3 to a system of linear
equations with M unknowns. For decreasing the complexity, it is important to
find as small M as possible. In this paper we find a small M by considering the
structure of the round function of CAST ciphers. The output of round function
F is the sum (XOR) of the outputs of S1, S2, S3, and S4, whose sets of input
variables are disjoint: i.e. the set of input variables of S1 is {k31, k30, . . . , k24},
that of S2 is {k23, k22, . . . , k16}, that of S3 is {k15, k14, . . . , k8}, and that of S4 is

2 For example, CAST-128 is a 12 or 16 round Feistel cipher[RFC2144].

Higher Order Differential Attack of a CAST Cipher 25

{k7, k6, . . . , k0}. Consequently, all the terms included in equation (2) are products
of variables from one of the sets above. Therefore, equation (2) is transformed to
the system of linear equations below with the following M unknown variables,
where M = 32 + (4× 8C2) + (4× 8C3) = 368.

{k0, k1, . . . , k31︸ ︷︷ ︸
degree-1 (32)

, k0k1, k0k2, . . . , k30k31︸ ︷︷ ︸
degree-2 (4×8C2)

, k0k1k2, k0k1k3, . . . , k29k30k31︸ ︷︷ ︸
degree-3 (4×8C3)

}


a0,0 a0,1 . . . a0,M−1

a1,0 a1,1 . . . a1,M−1

...
...

. . .
...

a31,0 a31,1 . . . a31,M−1





k0

k1

...
k31

k0k1

k0k2

...
k30k31

k0k1k2

k0k1k3

...
k29k30k31



=


b0
b1
...
b31



We need M equations to determine the M unknown variables. However, since F ,
yL, and ỹR are vector functions composed of n (= 32) functions, only n equations
are obtained from equation (2). Therefore, we have to compute equation (2) for
dM/ne (= d368/32e = 12) different V (16)[a′16, . . . , a

′
1]. This does not increase the

required number of chosen plaintexts by as many as dM/ne (= 12). Because we
can take 17C16 (= 17) different V (16) from V (17)[a17, . . . , a1], it only doubles the
required number of chosen plaintexts.

In order to set up the system of linear equations above, we compute M ′ ×
M coefficient matrix described below, where M ′ > M . We prepare M ′ ×M
coefficient matrix because M×M matrix is not always normal. Our experimental
results show that M ′ = 32× 12 is enough to determine the key.

How to compute coefficients ai,j and bi ∈ GF (2) in the matrices is as follows.
Here we describe the computation of only the coefficients of upper 32 rows. The
remaining coefficients can be computed using 11 different V (16)[a′16, . . . , a

′
1] in

the same way.

26 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko



a0,0 a0,1 a0,M−1

a1,0 a1,1 a1,M−1

...
...

. . .
...

a31,0 a31,1 a31,M−1

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

aM−1,0 aM−1,1 aM−1,M−1

...
...

. . .
...

aM′−1,0 aM′−1,1 aM′−1,M−1





k0

k1

...
k31

k0k1

k0k2

...
k30k31

k0k1k2

k0k1k3

...
k29k30k31



=



b0
b1
...
b31

...

...

...

...

...
bM−1

...
bM′−1


All coefficients ai,j and bi can be computed by using

Fj =
∑

xL∈V
(16)+a

F [ej](yR(xL)) (3)

where ej (0 ≤ j ≤M) is as follows:

ej = ēi1 (0 ≤ j < 32)

ej = ēi1 + ēi2 (32 ≤ j < 144)

ej = ēi1 + ēi2 + ēi3 (144 ≤ j < M)

ej = (0, . . . , 0) ∈ GF (2)32 (j = M),

where ēi = (0, . . . ,
i

1̌, . . . , 0) ∈ GF (2)32, and 0 ≤ i1 < i2 < i3 ≤ 31.
Let B = t(b0, b1, . . . , b31). B is computed as follows:

B = FM +
∑

xL∈V
(16)+a

yL(xL) +
∑

xL∈V
(16)+a

ỹR(xL). (4)

Let Aj = t(a0,j , a1,j, . . . , a31,j) (0 ≤ j < M). Elements of Aj are coefficients
of the unknown variable located at the j-th row. When 0 ≤ j < 32, Aj is a
column vector of coefficients of kj . Therefore, Aj is computed as follows:

Aj = Fj + FM .

When Aj is a column vector of coefficients of ki1 ·ki2 , i.e. when 32 ≤ j < 144,
Aj is computed as follows:

Aj = Fj + Fi1 + Fi2 + FM .

When Aj is a column vector of coefficients of ki1 ·ki2 ·ki3 , i.e. when 144 ≤ j <
M , Aj can be computed similarly. We have another method with less complexity
in Appendix B.

Higher Order Differential Attack of a CAST Cipher 27

4.3 Complexity

This section discusses the required complexity for our higher order differential
attack. Most of the execution time is spend in the following procedures.

– computing ciphertexts & higher order differentials
– computing all coefficients in the system of linear equations
– solving the linear equations

Computing ciphertexts & higher order differential
In order to compute equation (4), we have to prepare 12 sums of 216 ciphertexts
(=output of 5-th round) and output of the 4-th round. This can be done with 217

ciphertexts and output of the 4-th round as explained in the previous section.
Therefore, the required complexity is 5×217 times the computation of the round
function. Note that we assume that working out the sum (i.e. XOR) is negligible
compared with the computation of the round function.

Computing all coefficients in the system of linear equations
All coefficients in the system of linear equations can be computed by computing
equation (3) for ej (0 ≤ j ≤ 368). Therefore, the required complexity is (368 +
1) × 217 times the computation of the round function. This is the dominant
part of the higher order differential attack. Since in [7] Jakobsen and Knudsen
described that the average complexity was 231 × 217, our attack has achieved
speedup by 223 times.

Solving the linear equations
We used Gauss-Jordan’s elimination method for solving the linear equations.
The size of matrix is M ′ ×M , where M ′ = 384 and M = 368. The required
complexity is negligible compared with the computations above.

Consequently, the total complexity is (5 + 368 + 1) × 217 < 226 times the
computation of the round function. The way to reduce the complexity by half is
in Appendix B.

4.4 Experimental Results

Our experimental results showed that the all last round key bits of the CAST
cipher with 5 rounds could be recovered in 13.79 seconds (average time of 100
trials) on a SunUltra2 workstation (UltraSPARC, 200MHz). Table 1 shows an
execution profile of the program produced by gprof, which is a GNU command
to display call-graph profile data.

5 Discussion

In this Section, the immunity to higher order differential attack for choices of
S-boxes and operations (a,b,c, and d) is discussed.

Section 4 showed that a CAST cipher with 5 rounds which uses S-boxes
proposed for CAST-128 and XORs for all operations (a,b,c, and d) can be broken

28 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko

procedures CPU time ratio

computing ciphertexts & higher order differentials 0.83 sec. 6.0 %
computing all coefficients in the linear equations 12.92 sec. 93.7 %
solving the linear equations 0.04 sec. 0.3 %

total 13.79 sec. 100%

Table 1. Execution profile of the program

by our higher order differential attack. Since the degrees of S-boxes for CAST-
128 are 4, the CAST cipher can be broken up to only 5-round. However, if the
degree of the round function is lower, the CAST cipher could be broken up to
more number of rounds. On [6] CAST ciphers with random S-boxes are proposed,
and we must be careful of the degrees of the S-boxes in such cases. Note that it
is shown that when randomly generated S-boxes are used, the resulting cipher
is resistant to both differential and linear attack in [13].

Let’s discuss for other choices of operations (a,b,c, and d). Some modifications
of operation “a” are proposed in [1]. One example is the insert of key-dependent
rotation, which is used in CAST-128, i.e. a(x, k) = a(x, k1, k2) = ((x + k1) <<<
k2), where k1 is a 32-bit key, k2 is a 5-bit key, and <<< is the rotation specified
by k2. If only operation “a” is extended to XOR and rotation and “b”,“c”, and
“d” are still XOR, the CAST cipher with 5 rounds of our target can be broken
by our higher order differential attack, though the complexity increases (rough
estimate is 240).

There are some ways to strengthen CAST-like ciphers against the higher
order differential attack. One is the increase of the number of rounds. Another
is the mixture of using operations on different groups (e.g. XOR, and addition,
(or subtraction) modulo 232) for “b”,“c”, and “d”. This makes the degree higher
so sharply that it seems difficult to cryptanalyze by the higher order differential
attack at this stage. Actually this idea is used in CAST-128 and Blowfish[17].
Moreover, Blowfish uses key-dependent S-boxes. However, note that these ways
are not sufficient conditions to immune to the higher order differential attacks.
How to prove the security against higher order differential attacks is open.

Acknowledgments

We would like to thank the referees for many comments. We also thank Serge
Vaudenay for essential advice which can improve our attack, Bruce Schneier and
Kazumaro Aoki for helpful suggestions for improving the paper.

References

1. C.M.Adams, “Constructing Symmetric Ciphers Using the CAST Design Proce-
dure,” Designs, Codes and Cryptography, Vol.12, No.3, Nov., pp.283–316, Kluwer
Academic Publishers, 1997.

Higher Order Differential Attack of a CAST Cipher 29

2. C.M.Adams, “The CAST-128 Encryption Algorithm,” Request for Comments
(RFC) 2144, Network Working Group, Internet Engineering Task Force, May, 1997.

3. C.M.Adams and S.E.Tavares, “Designing S-boxes for ciphers resistant to differen-
tial cryptanalysis,” In Proceedings of the 3rd symposium on State and Progress of
Research in Cryptography, pp.181–190, 1993.

4. E.Biham, “New Types of Cryptanalytic Attacks Using Related Keys,” Advances
in Cryptology–EUROCRYPT’93, Lecture Notes in Computer Science 765, pp.398–
409, Springer-Verlag, 1994.

5. E.Biham and A.Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,”
Journal of Cryptology, Vol.4, No.1, pp.3–72, Springer-Verlag, 1991.

6. H.M.Heys and S.E.Tavares, “On the security of the CAST encryption algorithm,”
Canadian Conference on Electrical and Computer Engineering, pp.332–335, 1994.

7. T.Jakobsen and L.R.Knudsen, “The Interpolation Attack on Block Ciphers,” In
Preproceedings of Fast Software Encryption Workshop’97, pp.28–40, 1997.

8. T.Kaneko, “A known-plaintext attack of FEAL-4 based on the system of li-
near equations on difference (Extended Abstract) ,” Advances in Cryptology–
ASIACRYPT’91, Lecture Notes in Computer Science 739, pp.485–488, Springer-
Verlag, 1993.

9. T.Kaneko, “A Known Plaintext Cryptanalytic Attack of FEAL-4,” (in Japanese),
IEICE Trans. Vol.76-A, No.5, May, pp.781–786, 1993.

10. K.Kiefer, “A New Design Concept for Building Secure Block Ciphers,” In Procee-
dings of PRAGOCRYPT’96, pp.30–41, CTU Publishing House, 1996.

11. L.R.Knudsen, “Truncated and Higher Order Differentials,” Fast Software
Encryption–Second International Workshop, Lecture Note in Computer Science
1008, pp.196–211, Springer-Verlag, 1995.

12. X.Lai, “Higher Order Derivatives and Differential Cryptanalysis,” Communications
and Cryptography, pp.227–233, Kluwer Academic Publishers, 1994.

13. J.Lee, H.M.Heys, S.E.Tavares, “Resistance of a CAST-Like Encryption Algorithm
to Linear and Differential Cryptanalysis,” Designs, Codes and Cryptography,
Vol.12, No.3, Nov., pp.267–282, Kluwer Academic Publishers, 1997.

14. K.Nyberg and L.R.Knudsen, “Provable Security Against a Differential Attack,”
Journal of Cryptology, Vol.8, No.1, pp.27–37, Springer-Verlag, 1995.

15. M.Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in
Cryptology–EUROCRYPT’93, Lecture Notes in Computer Science 765, pp.386–
397, Springer-Verlag, 1994.

16. V.Rijmen, B.Preneel, and E.De Win “On Weaknesses of Non-surjective Round
Functions,” Designs, Codes and Cryptography, Vol.12, No.3, Nov., pp.253–266,
Kluwer Academic Publishers, 1997.

17. B.Schneier, “Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish),” Fast Software Encryption–Cambridge Security Workshop, Lecture
Note in Computer Science 809, pp.191–204, Springer-Verlag, 1994.

18. T.Shimoyama, S.Moriai, and T.Kaneko, “Improving the Higher Order Differential
Attack and Cryptanalysis of the KN Cipher,” In Pre-Proceedings of 1997 Infor-
mation Security Workshop, pp.1–8, 1997. (to appear in Lecture Notes in Computer
Science, Springer-Verlag)

19. T.Shimoyama, S.Amada, and S.Moriai, “Improved Fast Software Implementation
of Block Ciphers (Extended Abstract),” ICICS’97, Beijing, Nov. 1997, Lecture
Notes in Computer Science 1334, pp.269–273, Springer-Verlag, 1997.

30 Shiho Moriai, Takeshi Shimoyama, Toshinobu Kaneko

A Boolean Polynomials of S1 for CAST-128

Due to limitations of space, we show the Boolean polynomials of only 4 bits
from the least significant bit of S-box S1 of CAST-128. Those of all S-boxes of
CAST-128 can be downloaded from http://www.yokohama.tao.or.jp/shiho/.
We used a computer algebra system Risa/Asir to find them.

y0 = x4x3x2x1 + x5x4x2x1 + x5x4x3x1 + x6x3x2x0 + x6x4x3x0 + x6x4x3x1

+ x6x5x2x1 + x6x5x3x0 + x6x5x3x1 + x7x3x2x0 + x7x3x2x1 + x7x4x2x1

+ x7x4x3x1 + x7x4x3x2 + x7x5x2x0 + x7x5x3x2 + x7x5x4x3 + x7x6x2x1

+ x7x6x4x1 + x7x6x4x2 + x7x6x5x2 + x7x6x5x3 + x7x6x5x4 + x4x2x0 + x4x2x1

+ x5x2x1 + x5x4x0 + x5x4x2 + x5x4x3 + x6x2x1 + x6x3x1 + x6x4x0 + x6x4x2

+ x6x5x0 + x7x2x0 + x7x2x1 + x7x3x1 + x7x3x2 + x7x5x0 + x7x5x1 + x7x5x4

+ x7x6x0 + x7x6x1 + x7x6x4 + x7x6x5 + x1x0 + x4x1 + x5x2 + x5x3 + x7x0

+ x7x1 + x7x3 + x7x4 + x7x5 + x3 + x4 + x5 + x6 + x7.

y1 = x5x3x2x0 + x5x4x2x0 + x5x4x3x0 + x5x4x3x2 + x6x4x2x0 + x6x4x3x0

+ x6x4x3x2 + x6x5x2x0 + x6x5x3x0 + x6x5x3x1 + x6x5x4x0 + x6x5x4x1

+ x6x5x4x3 + x7x3x2x0 + x7x3x2x1 + x7x4x3x0 + x7x4x3x2 + x7x5x3x1

+ x7x5x4x0 + x7x5x4x1 + x7x6x3x1 + x7x6x4x2 + x7x6x4x3 + x4x2x0 + x4x2x1

+ x4x3x2 + x5x2x0 + x5x2x1 + x5x4x1 + x5x4x2 + x5x4x3 + x6x2x0 + x6x2x1

+ x6x3x0 + x6x4x0 + x6x4x1 + x6x4x3 + x6x5x1 + x6x5x3 + x6x5x4 + x7x2x1

+ x7x3x2 + x7x5x1 + x7x5x4 + x7x6x0 + x7x6x3 + x7x6x5 + x1x0 + x2x1

+ x3x1 + x4x1 + x4x3 + x5x1 + x5x2 + x5x3 + x6x1 + x7x0 + x7x5 + x7x6 + x1

+ x3 + x4 + x5 + x6 + x7.

y2 = x5x3x2x1 + x5x4x2x1 + x5x4x3x0 + x5x4x3x2 + x6x3x2x0 + x6x3x2x1

+ x6x4x2x1 + x6x4x3x1 + x6x4x3x2 + x6x5x2x0 + x6x5x3x0 + x6x5x3x1

+ x6x5x4x2 + x7x3x2x0 + x7x4x2x0 + x7x4x2x1 + x7x4x3x0 + x7x4x3x2

+ x7x5x4x0 + x7x5x4x1 + x7x5x4x3 + x7x6x3x1 + x7x6x4x1 + x7x6x4x2

+ x7x6x4x3 + x7x6x5x1 + x7x6x5x2 + x3x2x1 + x4x2x1 + x4x3x1 + x5x2x1

+ x5x3x2 + x5x4x1 + x5x4x2 + x5x4x3 + x6x2x0 + x6x2x1 + x6x3x0 + x6x3x2

+ x6x4x0 + x6x4x1 + x6x5x0 + x6x5x4 + x7x2x1 + x7x4x0 + x7x4x2 + x7x4x3

+ x7x5x0 + x7x5x1 + x7x6x0 + x7x6x1 + x7x6x2 + x7x6x3 + x7x6x4 + x7x6x5

+ x1x0 + x2x0 + x2x1 + x3x0 + x3x1 + x3x2 + x4x2 + x5x1 + x5x2 + x5x3

+ x5x4 + x6x0 + x6x1 + x6x2 + x6x3 + x6x4 + x6x5 + x7x1 + x7x4 + x0 + x1

+ x2 + x7 + 1.
y3 = x4x3x2x0 + x4x3x2x1 + x5x3x2x1 + x5x4x2x1 + x5x4x3x1 + x5x4x3x2

+ x6x4x2x0 + x6x4x2x1 + x6x4x3x1 + x6x4x3x2 + x6x5x3x1 + x6x5x3x2

+ x6x5x4x1 + x6x5x4x3 + x7x4x3x0 + x7x4x3x1 + x7x5x2x0 + x7x5x2x1

+ x7x5x4x0 + x7x5x4x1 + x7x5x4x2 + x7x6x2x0 + x7x6x3x0 + x7x6x4x0

+ x7x6x4x1 + x7x6x4x2 + x7x6x5x0 + x7x6x5x1 + x7x6x5x2 + x7x6x5x4

+ x4x3x1 + x5x2x1 + x5x3x2 + x5x4x0 + x5x4x1 + x6x2x1 + x6x3x0 + x6x3x1

+ x6x4x0 + x6x4x2 + x6x4x3 + x6x5x1 + x6x5x2 + x6x5x3 + x6x5x4 + x7x2x0

+ x7x2x1 + x7x3x0 + x7x3x1 + x7x4x0 + x7x4x2 + x7x5x1 + x7x6x2 + x7x6x4

+ x7x6x5 + x1x0 + x2x0 + x2x1 + x3x2 + x4x0 + x4x1 + x4x3 + x5x2 + x5x4

+ x6x1 + x6x2 + x6x3 + x6x4 + x7x2 + x7x3 + x7x4 + x7x6 + x2 + x3 + x5 + x6

+ x7.

Higher Order Differential Attack of a CAST Cipher 31

B Fast Method for Computing Coefficients of ki1ki2ki3

In Section 4.2, it is described that in order to compute all coefficients, the
computation of

∀xL ∈ V
(17) + a, F [ej](yR(xL)) (5)

for (M + 1) ej is required. However, there is another method of computing the
coefficients of the terms of degree 3, ki1ki2ki3 with less complexity. The point is
the coefficients of the terms of degree 3, ki1ki2ki3 is linear to the input of F . Let∑

xL∈V
(16)+a

Ci1i2i3(yR(xL))ki1ki2ki3 (6)

be a term of degree 3 in equation (2). The degree of Ci1i2i3 is 1 with respect to
the input of F , since the degree of F is 4. Therefore, we have

Ci1i2i3(x) = Ai1i2i3x+ Bi1i2i3 . (7)

The coefficient of (6), which is what we want, is rewritten as follows.∑
xL∈V

(16)+a

Ci1i2i3(yR(xL)) =
∑

xL∈V
(16)+a

(Ai1i2i3yR(xL) + Bi1i2i3)

= Ai1i2i3
∑

xL∈V
(16)+a

yR(xL)
(

...
∑
Bi1i2i3 = 0

)
(8)

Here we define xs as xs =
∑

xL∈V
(16)+a

yR(xL). From equation (5) we have:

(8) = Ai1i2i3xs

= Ci1i2i3(xs) + Bi1i2i3

The first and second terms are computed as follows:

Ci1i2i3(xs) = F [ei1i2i3](xs) + F [ei1i2](xs) + F [ei1i3](xs) + F [ei2i3](xs)

+ F [ei1](xs) + F [ei2](xs) + F [ei3](xs) + F [0](xs),

Bi1i2i3 = F [ei1i2i3](0) + F [ei1i2](0) + F [ei1i3](0) + F [ei2i3](0)

+ F [ei1](0) + F [ei2](0) + F [ei3](0) + F 0,

where ei1i2i3 = (0, . . . ,
i1

1̌ , . . . ,
i2

1̌ , . . . ,
i3

1̌ , . . . , 0) ∈ GF (2)32,

ei1i2 = (0, . . . ,
i1

1̌ , . . . ,
i2

1̌ , . . . , 0) ∈ GF (2)32,

ei1 = (0, . . . ,
i1

1̌ , . . . , 0) ∈ GF (2)32,

0 = (0, . . . , 0) ∈ GF (2)32.

The complexity required for this method is (12 + 1)× (M + 1) times the compu-
tation of the round function F . When we use this method, the total complexity
is (5 + 144 + 1)× 217 + 13× (368 + 1) < 225 times the computation of the round
function F .

	Introduction
	Higher Order Differential Attack
	CAST
	Higher Order Differential Attack of a CAST Cipher
	Discussion
	Boolean Polynomials of S1 for CAST-128
	Fast Method for Computing Coefficients of $k_{i_1}k_{i_2}k_{i_3}$

