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Recent studies have presented first-order multiple time scale approaches for exploring
amplitude-dependent plane-wave dispersion in weakly nonlinear chains and lattices
characterized by cubic stiffness. These analyses have yet to assess solution stability,
which requires an analysis incorporating damping. Furthermore, due to their first-order
dependence, they make an implicit assumption that the cubic stiffness influences disper-
sion shifts to a greater degree than the quadratic stiffness, and they thus ignore quadratic
shifts. This paper addresses these limitations by carrying-out higher-order, multiple
scales perturbation analyses of linearly damped nonlinear monoatomic and diatomic
chains. The study derives higher-order dispersion corrections informed by both quadratic
and cubic stiffness and quantifies plane wave stability using evolution equations resulting
from the multiple scales analysis and numerical experiments. Additionally, by recon-
structing plane waves using both homogeneous and particular solutions at multiple
orders, the study introduces a new interpretation of multiple scales results in which pre-
dicted waveforms are seen to exist over all space and time, constituting an invariant, mul-
tiharmonic wave of infinite extent analogous to cnoidal waves in continuous systems.
Using example chains characterized by dimensionless parameters, numerical studies con-
firm that the spectral content of the predicted waveforms exhibits less growth/decay over
time as higher-order approximations are used in defining the simulations’ initial condi-
tions. Thus, the study results suggest that the higher-order multiple scales perturbation
analysis captures long-term, nonlocalized invariant plane waves, which have the poten-
tial for propagating coherent information over long distances. [DOI: 10.1115/1.4036501]

1 Introduction

Wave propagation in linear monoatomic, diatomic, and other
chains is of contemporary interest due to their nontrivial disper-
sion, filtering, and frequency bandgap behavior. These systems
may arise in the modeling of one-dimensional (1D) waveguides,
or wave propagation in three-dimensional crystals along preferred
directions, such as the directions along the unit cell edges of zinc-
blende crystals (e.g., GaAs and NaCl). Nonlinearities in these sys-
tems introduce behavior of interest to the engineering community
such as amplitude-dependent dispersion and group velocity asso-
ciated with weak nonlinearities and solitary wave propagation
(e.g., solitons) associated with strong nonlinearities. Specific engi-
neering technology that has been proposed from studying wave
propagation in periodic structures are switches [1], filters [2], and
diodes [3].

Several recent studies have analyzed amplitude-dependent dis-
persion (nontrivial temporal/spatial frequency relationships) and
other nonlinear behavior in discrete chains. Many of such studies
have applied perturbation theory to uncover amplitude-dependent
phenomena. Vakakis and King [4] employed perturbation techni-
ques to study the monocoupled nonlinear media. They identified
amplitude-dependent attenuation and propagation zones, which
were associated with synchronous motion of standing waves and
nonsynchronous motion of traveling waves, respectively. Chakra-
borty and Mallik [5] obtained first-order perturbation results for a

cubically nonlinear monoatomic chain, with a discussion on the
bounding frequencies of the propagation zone. The interaction of
oppositely traveling waves and the effect of boundary conditions
for semi-infinite and finite chains were also examined. In Ref. [6],
Dubus et al. applied higher-order multiple scales to a linear
monoatomic chain coupled (linearly) to another monoatomic
chain with quadratic nonlinearities. Tuning the linear interchain
coupling stiffness shifted the magnitude of a critical wavenumber
associated with resonant energy transfer between the chains. Nari-
setti et al. [7] and Manktelow et al. [8,9] investigated wave propa-
gation in cubically nonlinear monoatomic and diatomic chains
using Lindstedt–Poincar�e and multiple scales analyses, respec-
tively, with an emphasis on amplitude-dependent dispersion shifts.
Further, they identified wave-based devices which exploit bandgap
shifting to enable tunable filtering and wave-guiding. In Ref. [10],
dispersion shifts of a monoatomic chain governed by quadratic
and cubic interactions are obtained using a Lindstedt–Poincar�e
approach. Furthermore, particular solutions are obtained at the
first-order only and waveform invariance is not considered. For a
more comprehensive review of tunable dispersion behavior in dis-
crete periodic systems, see Ref. [11].

The study of higher harmonics arising in these discrete systems
has centered on their generation, energy exchange, and/or decay.
Cabaret et al. [12] analytically and experimentally studied second
harmonic generation in a precompressed weakly nonlinear diatomic
chain, reporting amplitude-dependent self-induced attenuation and
self-induced transparency at the band edges. S�anchez-Morcillo et al.
[13] conducted a study on the propagation of spectral content of har-
monically driven compressional waves in quadratically nonlinear
1D granular chains subject to a static preload. An interplay between
the fundamental and second harmonic, governed by dispersion, was

1Corresponding author.

Contributed by the Technical Committee on Vibration and Sound of ASME for

publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received May

24, 2016; final manuscript received April 11, 2017; published online June 12, 2017.

Assoc. Editor: Matthew S. Allen.

Journal of Vibration and Acoustics OCTOBER 2017, Vol. 139 / 051003-1CopyrightVC 2017 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/v

ib
ra

tio
n
a
c
o
u
s
tic

s
/a

rtic
le

-p
d
f/1

3
9
/5

/0
5
1
0
0
3
/6

4
1
0
9
3
9
/v

ib
_
1
3
9
_
0
5
_
0
5
1
0
0
3
.p

d
f b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4036501&domain=pdf&date_stamp=2017-06-12


observed for nonevanescent modes. Swinteck et al. [14] employed
second-order perturbation studies to examine the self-interaction
and wave–wave interactions in a monoatomic chain with quadrati-
cally interacting masses. Molecular dynamics simulations affirmed
that vibrational modes exchange energy and have lifetimes that are
inherently long. These studies discuss the generation, energy
exchange, and decay/lifetime of the spectral content in the chains,
respectively, different from the invariant spectral content studied
herein.

In the long wavelength limit, discrete media behave as if con-
tinuous, and within such an approximation, studies have identified
the presence of invariant waveforms. Invariant waveforms, or spe-
cific harmonic content that remains unaltered over the course of
propagation, are of interest to the engineering community because
of their ability to maintain information over long distances and
times. They arise due to an interplay between dispersion and non-
linearity, the former of which assigns different wave speeds for
different harmonics, and the latter of which can shift such wave
speeds to maintain the wave’s spatial waveform [15]. Higher-
order asymptotic analysis is often employed when analyzing these
waveforms. Laitone [16] extended an expansion by Friedrichs
[17] to higher-orders to capture the effect of vertical motions and
pressure variation of finite-amplitude, long water waves. At the
first-order, the solution by Friedrichs is shown to be a cnoidal
wave. Cnoidal waves appear to be less-studied by the engineering
community as compared to other nonlinear invariant solutions.
Figure 1 provides a classical example of cnoidal water waves cap-
tured in 1933 [18]. These waves are characterized by their sharp
crests formed by nontrivial spectral content that propagates with-
out changing. It is known that spatially extended, long-crested
cnoidal waves satisfy the nonlinear Kortegweg de-Vries (KdV)
equation [19] and travel unaltered, much like solitons but with
infinite, periodic extent (vis-�a-vis compact support). Kraenkel and
Manna [20] applied higher-order multiple scales perturbation
theory to the KdV equations to yield solutions for solitary waves.
Some studies have presented continuum approximations to non-
linear lattices and recovered the KdV equation as a result. Frie-
secke and Mikikits-Leitner [21] demonstrated how the nonlinear
interaction of particles in a discrete chain uncovered, in the con-
tinuum limit, continuous partial differential equations, such as the
KdV equation and thus cnoidal waves. The dynamics of discrete
particles are not considered for the duration of their proofs. Gai-
son et al. [22] applied homogenization techniques to the long
wavelength limit of a nonlinear monoatomic lattice with periodic
material properties. They uncovered solutions that approximately
satisfy a KdV equation. Friesecke and Pego [23] presented that
sonic speed wave pulses in nonlinear lattices are governed by the
continuum limit regardless of the length scale. The studies in
Refs. [21–23] provide an insight into how invariant waveforms
may arise in these lattices in the long wavelength limit. However,
no application of multiple scales to demonstrate invariance of

waves in discrete lattices, for all wavelengths, has been found in
the prior literature.

Waveform invariance has received attention in recent years,
primarily focused on the propagation of solitary waves and soli-
tons. This is in contrast to single-frequency plane waves in nonlin-
ear media, which are known to induce higher harmonics as they
propagate. Sen et al. [24] provide an overview on the phenomenon
of solitary waves in discrete media, highlighting differences from
their characteristics in continuous media. They also discuss ways
to manipulate solitary waves in granular chains for shock mitiga-
tion. Another review of solitons in nonlinear lattices is provided
by Kartashov et al. [25] with an emphasis on theoretical implica-
tions. Their existence and stability in one, two, and three dimen-
sions are considered. Experimental studies have confirmed the
existence of solitary waves and solitons in discrete chains.
Moler�on et al. [26] investigated a 1D chain of repelling magnets
analytically and experimentally. The analysis discussed a solitary
wave whose profile and speed depends on amplitude. It was
shown that in the low energy limit these wave profiles take the
form of a KdV soliton with a sech2 shape, whereas in the high
energy limit, energy becomes further localized, and the waveform
exhibits a hat function with width on the order of the lattice spac-
ing. Daraio et al. [27] experimentally observed solitary waves
propagating down a strongly nonlinear chain of Teflon spheres,
obtaining a good agreement between theoretically estimated val-
ues (based on Hertz interaction: 3/2 force–displacement character-
istic) of the wave speed and experimental measurements.

The stability of wave propagation in nonlinear continuous and
discrete systems has also been analyzed in a number of studies.
Such studies are of practical interest because they define how sys-
tems may deviate from their expected behavior or define critical
thresholds for system parameters. Newton and Keller [28] analyti-
cally studied the stability of continuous periodic plane waves by
examining wave amplitude. They arrive at an eigenvalue problem
in which positive eigenvalues correspond to exponential growth in
amplitude (unstable), and negative eigenvalues correspond to
decay in amplitude (stable). Bickham et al. [29] studied the stabil-
ity of localized modes in a monoatomic chain with quadratic and
cubic force interactions. Numerical simulations introduced local
static distortions into chains. Instabilities of the localized vibration
modes began to arise in simulations in which the cubic anharmo-
nicity increased to the point where the lowest possible plane wave
frequency was reached. Further increases in the cubic anharmo-
nicity led to behavior reminiscent of a triatomic molecule until
further increases created instabilities yet again. Friesecke and
Pego [30] identified exponential growth in amplitude of waves in
discrete lattices by applying Floquet theory and analyzing evolu-
tion equations. In Ref. [31], Flach and Gorbach uncovered a
threshold for tangent bifurcations in discrete breathers. Huang and
Hu [32] investigated the stability of diatomic lattices using a
quasi-discreteness approach. They derived evolution equations
and fixed points for acoustic and optical modes and identified the
presence of asymmetrical gap solitons. Gorbach and Johansson
[33] presented findings on the linear stability of discrete gap
breathers in a 1D diatomic chain with harmonic intersite potential
and nonlinear external potential. Six types of instabilities were
identified, which took on either oscillatory or nonoscillatory
forms. An “inversion of stability” regime was found characterized
by practically radiationless mobility. The authors would like to
emphasize that discrete breathers studied in Refs. [31–33] are spa-
tially localized and thus in contrast to the plane waves of infinite
extent studied herein.

This paper builds upon recent studies of plane waves in nonlin-
ear monoatomic and diatomic chains and other discrete systems
by developing a higher-order multiple scales procedure to inform
dispersion, stability, and waveform invariance. Previous efforts
have focused primarily on first-order multiple scales analysis and
have not yet considered both quadratic and cubic nonlinearities,
which are of interest since they both necessarily arise in Taylor
Series expansions of nonlinear interactions. With the higher-order

Fig. 1 Cnoidal waves captured by the U.S. Army bombers over
the Panama coast in 1933
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analysis applied to these discrete systems, former assumptions
neglecting quadratic nonlinearities on their amplitude-dependent
dispersion shifts can now be rigorously justified. The reviewed lit-
erature also has not presented an analytical approach based on
multiple scales to describe the loss of plane wave stability in non-
linear monoatomic and diatomic chains. This paper formulates a
local fixed point analysis based on the multiple scales-derived
evolution equations, and thus provides stability information in
analytical form. It also numerically simulates nondimensionalized
chains to identify and characterize their amplitude-dependent sta-
bility. Waveform invariance in discrete media has generally
focused on localized waveforms such as solitary waves and soli-
tons. To the best of our knowledge, no analysis has been put forth
showing that multiple scales theory, applied to nonlinear monoa-
tomic and diatomic chains, can capture solutions which asymp-
totically approach periodic, invariant waveforms akin to cnoidal
waves. This paper provides both analytical and numerical eviden-
ces that a higher-order multiple scales approach yields such invar-
iant waveforms. This contrasts, for example, with other equally
valid interpretations [14] in which similar higher-order perturba-
tion analyses are used instead to provide information about multi-
ple wave scattering and phonon lifetimes.

2 System Descriptions

This section introduces the two systems studied herein, namely
nonlinear monoatomic and diatomic chains, defining their equa-
tions of motion to which the asymptotic analyses are applied and
presenting schematics for the ease of system visualization. For the
monoatomic chain, the smallest repeatable subsystem, or unit cell,
consists of a single mass and its connecting springs and dampers,
as presented in Fig. 2.

A force balance on the jth mass yields its equation of motion

m€xj þ k1 2xj � xjþ1 � xj�1ð Þ � ek2 xjþ1 � xjð Þ2 þ ek2 xj�1 � xjð Þ2
�ek3 xjþ1 � xjð Þ3 � ek3 xj�1 � xjð Þ3 þ ec 2 _xj � _xjþ1 � _xj�1ð Þ ¼ 0

(1)

where xj ¼ x j; tð Þ denotes the displacement from equilibrium of the
jth mass, m its mass, k1, k2, and k3 are the linear, quadratic, and cubic
stiffnesses, respectively, and c denotes the linear damping coefficient.
Time derivatives of xj — _xj and €xj —denote the velocity and acceler-
ation of the jth mass, respectively. The parameter e is assumed to be
small and introduced herein as a bookkeeping device [34].

By contrast, the unit cell of the diatomic chain, depicted in Fig. 3,
contains two masses coupled with identical springs and dampers.

Summing the forces on each degree-of-freedom in the jth unit
cell leads to its equation of motion

M€xj þ
X

jþ1

l¼j�1

Klxl þ
X

jþ1

l¼j�1

eCl _x � efquadratic � efcubic ¼ 0 (2)

where

xj ¼
xa j; tð Þ
xb j; tð Þ

� �

(3)

M ¼ ma 0

0 mb

� �

(4)

Kj�1 ¼ 0 �k1
0 0

� �

; Kj ¼ 2k1 �k1
�k1 2k1

� �

; Kjþ1 ¼ 0 0

�k1 0

� �

(5)

Cj�1 ¼ 0 �c

0 0

� �

; Cj ¼ 2c �c

�c 2c

� �

; Cjþ1 ¼ 0 0

�c 0

� �

(6)

fquadratic ¼
�k2 xb j� 1; tð Þ � xa j; tð Þ

� �2 þ k2 xb j; tð Þ � xa j; tð Þð Þ2

�k2 xa j; tð Þ � xb j; tð Þð Þ2 þ k2 xa jþ 1; tð Þ � xb j; tð Þ
� �2

" #

(7)

fcubic ¼
k3 xb j� 1; tð Þ � xa j; tð Þ
� �3 þ k3 xb j; tð Þ � xa j; tð Þð Þ3

k3 xa j; tð Þ � xb j; tð Þð Þ3 þ k3 xa jþ 1; tð Þ � xb j; tð Þ
� �3

" #

(8)

It is noted here that the presence of linear and small cubic and
quadratic force–displacement relationships describes many sys-
tems whose nonlinear interactions are expanded in a Taylor series.

3 Analysis Approach

3.1 Method of Multiple Scales: Monoatomic Chain. In this
section, a higher-order method of multiple scales (MMS) is devel-
oped for the monoatomic chain presented in Sec. 2, extending the
analysis through the second-order to capture harmonic content
and time evolution of amplitude and phase. It is shown in Sec.
5.3, that the inclusion of these higher-order features increases the
invariance of the cnoidal-like wave. Higher-order results also
facilitate the stability and dispersion analyses, providing insight to
behavior not evident at solely the first-order.

Multiple time scales are assumed to exist such that

T0 ¼ t; T1 ¼ et; T2 ¼ e2t; …; Tn ¼ ent (9)

where t denotes the original time scale, and Tn represents the nth
time scale. Since e � 1, each time scale advances more slowly
than its predecessor. Introducing these times scales plays an
important role in detecting amplitude-dependent dispersion shifts
since phase change at each slow time scale can be interpreted as
dispersion corrections.

In accordance with these time scales, differentiation with
respect to time contains multiple orders

_ð Þ ¼ D0ð Þ þ eD1ð Þ þ e2D2ð Þ þ � � � þ enDnð Þ (10)

where Dnð Þ denotes an operator defined to represent differentia-
tion with respect to Tn.

It follows that

Fig. 2 Schematic of the unit cell for the monoatomic chain

Fig. 3 Schematic of the unit cell for the diatomic chain
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€ð Þ ¼ D0ð Þ þ eD1ð Þ þ e2D2ð Þ þ � � � þ enDnð Þ
� 	2

¼ D2
0ð Þ þ 2eD0D1ð Þ þ e2D2

1ð Þ þ 2e2D0D2ð Þ þ O e3ð Þ
(11)

The MMS seeks a series expansion of the solution of the form

xj ¼ x
0ð Þ
j þ ex 1ð Þ

j þ e2x 2ð Þ
j þ � � � þ enx

nð Þ
j (12)

where x
nð Þ
j denotes the nth-order solution. Thus, the asymptotic

solution is expanded about a known zeroth-order solution x 0ð Þ
j .

Substituting Eqs. (10)–(12) into Eq. (1) and collecting matching
orders of e yields nþ 1 equations. The first three are presented
here

e0 : mD2
0x

0ð Þ
j þ k1 2x

0ð Þ
j � x

0ð Þ
jþ1 � x

0ð Þ
j�1

� 	

¼ 0 (13)

e1 : mD2
0x

1ð Þ
j þ k1 2x 1ð Þ

j � x 1ð Þ
jþ1 � x 1ð Þ

j�1

� 	

¼ �2mD0D1x
0ð Þ
j � cD0 2x

0ð Þ
j � x

0ð Þ
jþ1 � x

0ð Þ
j�1

� 	

þk2 x
0ð Þ
jþ1 � x

0ð Þ
j

� 	2

� k2 x
0ð Þ
j�1 � x

0ð Þ
j

� 	2

þ k3 x
0ð Þ
jþ1 � x

0ð Þ
j

� 	3

þ k3 x
0ð Þ
j�1 � x

0ð Þ
j

� 	3

(14)

e2 : mD2
0x

2ð Þ
j þ k1 2x 2ð Þ

j � x 2ð Þ
jþ1 � x 2ð Þ

j�1

� 	

¼ �2mD0D2x
0ð Þ
j

� mD2
1x

0ð Þ
j � 2mD0D1x

1ð Þ
j � cD1 2x

0ð Þ
j � x

0ð Þ
jþ1 � x

0ð Þ
j�1

� 	

� cD0 2x
1ð Þ
j � x

1ð Þ
jþ1 � x

1ð Þ
j�1

� 	

þ fquadratic xj�1; xj; xjþ1ð Þ þ fcubic xj�1; xj; xj�1ð Þ

(15)

where

fquadratic xj�1; xj; xjþ1ð Þ ¼ �2k2x
0ð Þ
j�1x

1ð Þ
j�1 þ 2k2x

0ð Þ
j�1x

1ð Þ
j

þ 2k2x
1ð Þ
j�1x

0ð Þ
j � 2k2x

1ð Þ
jþ1x

0ð Þ
j

�2k2x
0ð Þ
jþ1x

1ð Þ
j þ 2k2x

0ð Þ
jþ1x

1ð Þ
jþ1

(16)

fcubic xj�1; xj; xjþ1ð Þ ¼ 3k3x
0ð Þ
j�1

2x 1ð Þ
j�1 � 3k3x

0ð Þ
j�1

2x 1ð Þ
j

� 6k3x
0ð Þ
j�1x

1ð Þ
j�1x

0ð Þ
j þ 6k3x

0ð Þ
j�1x

0ð Þ
j x 1ð Þ

j

þ 3k3x
1ð Þ
j�1x

0ð Þ
j

2 � 6k3x
0ð Þ
j

2x 1ð Þ
j þ 3k3x

1ð Þ
jþ1x

0ð Þ
j

2

þ 6k3x
0ð Þ
jþ1x

0ð Þ
j x 1ð Þ

j � 6k3x
0ð Þ
jþ1x

1ð Þ
jþ1x

0ð Þ
j

� 3k3x
0ð Þ
jþ1

2x
1ð Þ
j þ 3k3x

0ð Þ
jþ1

2x
1ð Þ
jþ1

(17)

Note that the left-hand sides of Eq. (13) through (15) are similar,
i.e., the linear kernels of the collected equations take the same
form. Also note that each order is effectively forced by the solu-
tion obtained from the previous order.

By examination of Eq. (13), it is apparent that x
0ð Þ
j takes the

form of a Bloch wave since its governing equation is linear with
periodic coefficients

x
0ð Þ
j ¼ 1

2
Aeix0T0e�ilj þ c:c: (18)

where A denotes the wave’s amplitude, x0 and l are the wave’s
fundamental temporal and spatial frequencies, respectively, and
c:c: denotes the complex conjugate of all preceding terms.

Since A is generally a complex quantity, it is useful to express
it in polar form

A ¼ aeib (19)

where a ¼ a T1;T2;…; Tnð Þ and b ¼ b T1;T2;…;Tnð Þ are real
quantities. Wave amplitude is a critical parameter as it determines
the strength of the nonlinearities and consequently the amount of
dispersion shifting and the relevancy of the MMS results.

The zeroth-order dispersion relationship follows from the Bloch
solution form Eq. (18) and the governing equation (13)

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k1

m
1� coslð Þ

r

(20)

This relationship, which stems from the linear, undamped chain
(e ¼ 0Þ, shifts for waves at different amplitudes in the presence of
nonlinearities.

With x
0ð Þ
j known, x 1ð Þ

j is found by updating Eq. (14) with Eq.
(18). Secular terms, i.e., those that contain eix0T0e�ilj, or its com-
plex conjugate, induce resonant responses and thus cause the
series solution to become nonuniform over the time scales of
interest. Consequently, they are set to zero

0 ¼ k3a
3 3

4
cos 2l� 3 cos lþ 9

4

� �

þ cix0a 1� coslð Þ

þ imx0D1a� mx0aD1b (21)

which, after separating real and imaginary parts and setting to
zero, restricts the evolution of a and b with respect to T1

D1a ¼ �ca (22)

D1b ¼ da2 (23)

where

c ¼ c

m
1� cos lð Þ (24)

d ¼ 3k3

4mx0

cos 2l� 4 cos lþ 3ð Þ (25)

Equations (22) and (23) represent evolution equations describing
the dynamics of the wave on a slower time scale. Phase evolution
governs dispersion shifts, whereas amplitude evolution affects
wave stability as will be presented in Secs. 5.1 and 5.2.1,
respectively.

With secular terms removed, Eq. (14) reduces to a linear, first-
order ordinary differential equation, with constant coefficients and
harmonic forcing at 2x0 and 3x0. The homogeneous solution is
ignored since it contains no information than that already given
by x

0ð Þ
j , so a particular solution is sought of the form

x 1ð Þ
j ¼ 1

2
B1e

2ix0T0e�2ilj þ 1

2
C1e

3ix0T0e�3ilj þ c:c: (26)

where B1 and C1 can be found using the method of undetermined
coefficients

B1 ¼
ik2A

2 sin 2l� 2 sin lð Þ
4mx2

0 þ 2k1 cos 2l� 2k1
¼ b1A

2 (27)

C1 ¼
k3A

3 3 cos 2l� cos 3l� 3 cos lþ 1ð Þ
18mx2

0 þ 4k1 cos 3l� 4k1
¼ c1A

3 (28)

The amplitudes in Eqs. (27) and (28) describe the amount of sec-
ond- and third-harmonic content that make-up the first-order plane
wave solution.
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Turning attention to the second-order problem, Eq. (15), with
known solutions for x

0ð Þ
j and x

1ð Þ
j , the same procedure is carried

out. Removal of secular terms now determines the evolution of a
and b with respect to T2

D2a ¼ cd

x0

a3 (29)

D2b ¼ Xa4 þ Ya2 þ Z (30)

where

X ¼ � 1

4mx0

k3c1 9 cos l� 9 cos 2lþ 3 cos 3l� 3ð Þ þ 2d2m
� �

(31)

Y ¼ � k2b1

imx0

2 sinl� sin 2lð Þ (32)

Z ¼ � c2

2x0

(33)

The particular solution for x 2ð Þ
j takes the form

x 2ð Þ
j ¼ 1

2
B2e

2ix0T0e�2ilj þ 1

2
C2e

3ix0T0e�3ilj þ 1

2
E2e

4ix0T0e�4ilj

þ 1

2
F2e

5ix0T0e�5ilj þ c:c: (34)

where

B2 ¼ b21a
4e2ib þ b22a

2e2ib (35)

C2 ¼ c21a
5e3ib þ c22a

3e3ib (36)

E2 ¼ e2A
4 (37)

F2 ¼ f2A
5 (38)

and

b21 ¼
1

2eil 4mx2
0e

2il þ k1e4il � 2k1e2il þ k1
� � 3k3b1e

6il � 2k2c1e
6il � 6k3b1e

5il þ 2k2c1e
5il � 16mb1x0de

3il
�

�3k3b1e
4il þ 2k2c1e

4il þ 12k3b1e
3il � 3k3b1e

2il � 2k2c1e
2il � 6k3b1e

il � 2k2c1e
il þ 3k3b1 þ 2k2c1

�

(39)

b22 ¼
4icb1x0 1� cos 2lð Þ � 8ib1cmx0

4 mx2
0 þ k1 cos2l� k1

� � (40)

c21 ¼ � 3

2 k1e6il þ 9mx2
0e

3il � 2k1e3il þ k1
� � c1

�16k3e
3il cos4lþ 2k3e

6il � k3e
5il þ 16k3e

3il cos2lþ
12e3ildmx0 þ 2k3e

4il � 6k3e
3il þ 2k3e

2il � k3e
il þ 2k3

� �

(41)

c22 ¼ � 36icc1mx0 þ icc1x0 12 cos 3l� 12ð Þ þ ib1k2 �4 sin 3lþ 4 sin 2lþ 4 sin lð Þ
2 9mx2

0 þ 2k1 cos 3l� 2k1
� � (42)

e2 ¼ � b1k3 12 cos lþ 6 cos 4l� 12 cos 3l� 6ð Þ þ ic1k2 8 sin l� 8 sin 4lþ 8 sin 3lð Þ
8 8mx2

0 þ k1 cos 4l� k1
� � (43)

f2 ¼
c1k3 3 cos 2l� 6 cos lþ 6 cos 4l� 3 cos 5l� 3 cos 3lþ 3ð Þ

50mx2
0 þ 4k1 cos 5l� 4k1

(44)

These amplitudes build upon the higher harmonic content intro-
duced at the first-order to describe more completely the multihar-
monic solutions that exist in this nonlinear media. As will be
discussed in Sec. 5.3, this higher-order solution, when added to
the first- and zeroth-order solutions, propagates more invariantly,
i.e., with less growth and decay in its spectral content.

After substituting the results from Eqs. (18), (26), and (34) into
Eq. (12), the solution for xj is now known up to O e3ð Þ.

3.2 Method of Multiple Scales: Diatomic Chain. Next, the
MMS is developed for the diatomic chain. As with the monoa-
tomic chain, higher-order results reveal the magnitudes of the spa-
tially and temporally invariant harmonics induced by the

quadratic and cubic nonlinearities as well as amplitude and phase
evolution equations utilized in the stability and dispersion shift
analyses. It is again assumed that there are multiple time scales at
which the system evolves, and a series expansion of the solution
is assumed

xj ¼ x 0ð Þ
j þ ex 1ð Þ

j þ e2x 2ð Þ
j þ � � � þ enx

nð Þ
j (45)

where x
nð Þ
j denotes the nth-order solution vector

x
nð Þ
j ¼ x

nð Þ
a j; tð Þ
x

nð Þ
b j; tð Þ

" #

(46)
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Collecting matching orders of e in Eq. (2) yields nþ 1 vector
equations. The first two are presented here

e0 : MD2
0x

0ð Þ
j þ

X

jþ1

l¼j�1

Klx
0ð Þ
l ¼ 0 (47)

e1 : MD2
0x

1ð Þ
j þ

X

jþ1

l¼j�1

Klx
1ð Þ
l ¼ �2MD0D1x

0ð Þ
j þ fdamping;1

þ fquadratic;1 þ fcubic;1 (48)

fdamping;1

¼
cD0 x

0ð Þ
b j; tð Þ� x 0ð Þ

a j; tð Þ
� 	

þ cD0 x
0ð Þ
b j� 1 ; tð Þ� x 0ð Þ

a j; tð Þ
� 	

cD0 x 0ð Þ
a jþ 1; tð Þ� x

0ð Þ
b j; tð Þ

� 	

þ cD0 x 0ð Þ
a j; tð Þ� x

0ð Þ
b j; tð Þ

� 	

2

6

4

3

7

5

(49)

fquadratic;1

¼
k2 x

0ð Þ
b j; tð Þ � x 0ð Þ

a j; tð Þ
� 	2

� k2 x
0ð Þ
b j� 1; tð Þ � x 0ð Þ

a j; tð Þ
� 	2

k2 x 0ð Þ
a jþ 1; tð Þ � x

0ð Þ
b j; tð Þ

� 	2

� k2 x 0ð Þ
a j; tð Þ � x

0ð Þ
b j; tð Þ

� 	2

2

6

6

4

3

7

7

5

(50)

fcubic;1¼
k3 x 0ð Þ

b j;tð Þ�x 0ð Þ
a j;tð Þ

� 	3

þk3 x 0ð Þ
b j�1;tð Þ�x 0ð Þ

a j;tð Þ
� 	3

k3 x 0ð Þ
a jþ1;tð Þ�x 0ð Þ

b j;tð Þ
� 	3

þk3 x 0ð Þ
a j;tð Þ�x 0ð Þ

b j;tð Þ
� 	3

2

6

4

3

7

5

(51)

By inspection of Eq. (47), the zeroth-order solution takes the
Bloch form

x 0ð Þ
j ¼ 1

2
A /eix0T0e�ilj þ c:c: (52)

where A denotes the complex amplitude and / a wave mode shape.
Substituting Eq. (52) into Eq. (47) leads to an eigenvalue prob-

lem for two wave modes and their dispersion relationship, x0 lð Þ.
There are two independent solutions, corresponding to the acous-
tic and optical branches

/ac ¼
1þ eilð Þmb

mb � ma þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a þ m2

b þ 2mamb cos l

q

1

2

6

6

4

3

7

7

5

(53)

/opt ¼
1

ma � mb þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a þ m2

b þ 2mamb cos l

q

� 1þ eilð Þmb

2

6

4

3

7

5
(54)

x0;ac ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 mb þ mað Þ
mamb

� k1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
b þ 4m2

a þ 8mamb cos l

m2
am

2
b

s

v

u

u

t

(55)

x0;opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 mb þ mað Þ
mamb

þ k1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
b þ 4m2

a þ 8mamb cos l

m2
am

2
b

s

v

u

u

t

(56)

As with the monoatomic chain, these zeroth-order dispersion rela-
tionships completely characterize the linear, undamped chain

(e ¼ 0). Higher-order results add amplitude-dependent corrections
to these relationships due to the nonlinearities.

It is worth noting that at l ¼ p, when mb > ma, the optical

mode shape simplifies from an indeterminate form to

�

1

0

�

through application of L’Hopital’s rule. Also, the mode shapes
presented here are the complex conjugates of those in Ref. [8] due
to a difference in sign convention for the zeroth-order solution in
Eq. (52).

The known form of x 0ð Þ
j is then substituted into Eq. (48). Projec-

ting the secular terms against the Hermitian conjugate of the cor-
responding mode shape leads to evolution expressions for D1a
and D1b

D1a ¼ �cda (57)

D1b ¼ dda
2 (58)

where

cd ¼ cd l; c;/a ;ma;mb

� �

(59)

dd ¼ dd l; k3; /a ; /b ; ma;mb; x0

� 	

(60)

The functional dependence only is provided although complete
expressions can be found in a straight-forward manner using a
symbolic manipulator. Such dependence is significant because of
arguments made about the influence of different chain parameters
on dispersion shifts and invariance in Secs. 5.1 and 5.3, respectively.

A particular solution for x 1ð Þ
j can be found using the form

x 1ð Þ
j ¼ 1

2
B1e

2ix0T0e�2ilj þ 1

2
C1e

3ix0T0e�3ilj þ c:c: (61)

where the vectors B1 and C1 are found using the method of unde-
termined coefficients

B1 ¼ b1;aA
2

b1;bA
2

� �

(62)

C1 ¼ c1;a A3

c1;bA
3

� �

(63)

where

b1;a ¼ b1;a l; ma; mb; k1; k2;/a ; /b ; x0

� 	

(64)

b1;b ¼ b1;b l; ma; mb; k1; k2;/a ; /b ; x0

� 	

(65)

c1;a ¼ c1;a l;ma; mb; k1; k3; /a ;/b ; x0

� 	

(66)

c1;b ¼ c1;b l;ma; mb; k1; k3; /a ; /b ; x0

� 	

(67)

These amplitudes detail how much second and third harmonics
arise due to the quadratic and cubic nonlinearities, respectively,
and will be shown to make up an invariant waveform.

Note that this solution may not exist very close to l values
associated with internal resonance—i.e., where 2x0; 2lð Þ or
3x0; 3lð Þ satisfy the zeroth-order dispersion relationship in Eq.
(55) or (56), inducing a resonant response. For these cases, the
particular solution becomes unbounded and must be removed
using an additional (e.g., detuning) parameter. Chains exhibiting
this behavior are omitted in this work, but this phenomenon can
be explored in greater detail in future studies.

Reapplying the procedure on the second-order yields evolution
equations for a and b of the following form:
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D2a ¼ D2a a;l;ma;mb; k2; k3; c; cd; dd;/a ;
�

b1;a; b1;b; c1;a; c1;b;x0

�
(68)

D2b ¼ D2b a;l;ma;mb; k2; k3; c; cd; dd;/a ;
�

b1;a; b1;b; c1;a; c1;b;x0

�
(69)

The second-order particular solution then takes the form

x 2ð Þ
j ¼ 1

2
B2e

2ix0T0e�2ilj þ 1

2
C2e

3ix0T0e�3ilj

þ 1

2
E2e

4ix0T0e�4iljþ 1

2
F2e

5ix0T0e�5ilj þ c:c (70)

where the vectors B2 , C2 , E2 , and F2 can be found using the
method of undetermined coefficients.

As with the monoatomic chain, second-order analysis adds to
the spectral content at the second and third harmonics and introdu-
ces new spectral content at the fourth and fifth harmonics further
defining the multiharmonic invariant wave. It is also noted here
that the diatomic results can recover the monoatomic results by
setting ma ¼ mb ¼ m and replacing l with l=2.

4 Numerical Simulation

This section briefly presents the procedure for numerically
injecting perturbation-based waveforms into numerical simula-
tions of Eqs. (1) and (2), forming the foundation to the numerical
results presented in the remaining sections. They rely on initial
conditions associated with the multiple scales solutions, assigning
the order of terms at which to truncate the multiharmonic wave
solution. In doing so, this procedure exhibits more control over
the ensuing wave propagation than the approach used in Refs. [7]
and [9], whereby the chain is excited with an arbitrary forcing
until a measurable response is generated. It also allows for mea-
surement of the validity of the MMS solutions since waveforms
existing in the medium should persist after they are initially set, as
detailed in Sec. 5.3. This section also introduces dimensionless
parameters that combine the effects of nonlinear stiffness and
wave amplitude into convenient expressions useful for simulating
chains and interpreting results.

Displacement and velocity initial conditions required to
numerically integrate Eqs. (1) and (2) are found using the series
solutions in Eqs. (12) and (45), respectively. Thus, x j; 0ð Þ ¼ xjjt¼0

and _x j; 0ð Þ ¼ d=dtð Þ xjð Þjt¼0, where xjjt¼0 is truncated to a desired

order n, and d=dtð Þð Þ must correspond to the total time derivative

defined in Eq. (10), truncated at the same order n.
By carrying the expansions out and truncating, first- and

second-order initial conditions can be determined. To emulate an
infinite domain, the number of unit cells N should be sufficiently
large—generally on the order of 1800–2000—such that lN � 1.
Within this domain, analysis of a chain’s behavior remains at a
central region—usually the middle 800–1000 unit cells—such
that reflection from the boundaries does not propagate to the
region within the time scale of the simulation. In these studies,
either fixed–fixed or free–free boundary conditions are used.

A given simulation is characterized by the following dimen-
sionless parameters introduced here:

s¼x0t;P1¼
ecx0

k1
; P2¼

ek2a0

k1
; P3¼

ek3a
2
0

k1
; P4¼

mb

ma

(71)

where P1; P2; and P3 can be interpreted as relative strengths of
the damping, quadratic nonlinearity, and cubic nonlinearity,
respectively, and P4, a mass ratio, applies only to the diatomic
chain. The parameters P2 and P3 are particularly useful since
they combine the effects of the nonlinear stiffness and wave
amplitude into single parameters, both of which affect the magni-
tude of dispersion shifts. Note, however, that P2 and P3 are

proportional to—not exact measurements of—the strength of the
quadratic and cubic nonlinearities, respectively. That is to say,
these parameters are not an exact ratio of spring forces because a0
is the zeroth-order wave amplitude and not necessarily the spring
stretch, xjþ1 � xj. Thus, P2;P3 < 0:1 are conservative bounds on
the MMS applicability (weak nonlinearity assumption). In gen-
eral, the parameters in Eq. (71) facilitate parameter definition as
outlined in the following procedure outline.

These steps were carried out for each simulation:

� Specify P1; P2; and P3 values. Set m and k1 equal to 1,
without loss of generality. For diatomic simulations, pre-
scribe ma; mb values (based on a desired P4 value) as well
as a branch of excitation (acoustic or optical).

� Specify a propagation constant l restricted to the first irre-
ducible Brillouin zone. A corresponding x0 value can then
be assigned to it according to Eqs. (20), (55), or (56). Note
that this is not guaranteed to be the ensuing temporal fre-
quency of the chain but merely a parameter used to evaluate
initial conditions. For diatomic simulations, /ac or /opt can

now be evaluated, depending on the branch of excitation that
was selected.

� Set k3 equal to 1 (hardening) or �1 (softening) and then
solve for c; k2; and a0 values which satisfy the desired
P1;P2; and P3 values, respectively.

� Define the number of unit cells to emulate an infinite system
(Usually N ¼ 1800 or 2000 such that lN � 1)

� Assign an initial displacement and velocity distribution to
the chain according to Eqs. (12) or (45) evaluated at time t ¼
0 and truncated at a specified order n (n ¼ 0; 1; or 2). The e
parameter is chosen to be small (e.g., e ¼ 0:1).

� Set two boundary conditions. For each end, use either
fixed—zero displacement—or free—zero force.

� Simulate the equations of motion by numerically integrating
Eq. (1) or (2) using MATLAB’s ODE45 routine.

� For analyzing the results, study only a fixed middle portion
of the chain (e.g., the middle 800–1000 unit cells) such that
boundary effects can be ignored. Visually inspect the results
to make sure that the boundary effects have not propagated
into this central region during the time range of interest.

5 Results

5.1 Dispersion Shifts. This section details amplitude-
dependent dispersion shifts arising from both cubic and quadratic
nonlinearities, a finding useful for device design [7]. It will be
shown that the MMS analysis uncovers dispersion shifts to the
zeroth-order (e ¼ 0, linear undamped) relationship. The measure-
ment of these predicted shifts in numerical simulations affirms the
validity of the MMS results at the first and second-orders and
demonstrates that quadratic nonlinearities govern shifts at higher-
orders only, i.e., an effect not captured by a first-order analysis.

At the zeroth-order, the temporal frequency x0 relates to the
spatial frequency l through dispersion relationships represented
by Eqs. (20), (55), and (56). Figure 4 displays these zeroth-order
expressions for the monoatomic and diatomic chains. Note that

Fig. 4 Zeroth-order dispersion relationships for the monoa-
tomic and diatomic chains
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the monoatomic chain has a cutoff for x0 > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1=mð Þ
p

, and the
diatomic chain exhibits a bandgap.

Closed-form, amplitude-dependent dispersion shifts will now
be derived from the MMS results. For undamped chains,
D1a ¼ D2a ¼ 0. Thus, the wave amplitude is constant (a ¼ a0).
For the monoatomic chain, the evolution equations for phase, Eqs.
(23) and (30), reduce to

D1b ¼ da20; c ¼ 0 (72)

D2b ¼ Xa40 þ Ya20 þ Z; c ¼ 0 (73)

Similar expressions result for the diatomic chain by replacing d in
Eq. (72) with dd from Eq. (60), and replacing the left side of Eq.
(73) with the expression in Eq. (69) evaluated at a ¼ a0.

Reconstituting the phase expression using D1b and D2b in Eq.
(10) and returning to the original time scale, leads to the wave’s
temporal phase behavior

_b ¼ eD1bþ e2D2b ¼ eda20 þ e2 Xa40 þ Ya20 þ Z
� �

(74)

for the monoatomic chain; a similar expression occurs for the dia-
tomic chain.

Since D1b and D2b do not explicitly depend on time, they can
be interpreted as corrections to the frequency at their respective
order, yielding first- and second-order-accurate corrections

xO e1ð Þ ¼ x0 þ eD1b (75)

xO e2ð Þ ¼ x0 þ eD1bþ e2D2b (76)

Inspection of Eqs. (72), (73), (75), and (76) shows that the quad-
ratic nonlinearity does not shift the frequency until the second-
order correction is included, implying a small influence as
compared to the cubic nonlinearity, which appears at both the
first- and second-orders. For positive coefficients k2 and k3, the
shifts further increase the frequency (for a given l) with increas-
ing wave amplitude a0. Such effects can inform the design of

tunable devices (filters, waveguides, acoustic logic devices, etc.)
which selectively include or exclude waves based on wave gain
and subsequent bandgap shifting [7,8].

For both monoatomic and diatomic chains, numerical studies of
undamped systems confirm the theoretical shifts as documented in
Fig. 5. For different l values prescribed in simulation initial con-
ditions, the first- and second-order MMS-predicted temporal fre-
quencies are compared to the measured dominant temporal
frequency of a central unit cell in the chain. Recall that assigning
a l value does not guarantee the ensuing temporal frequency but
rather is used to define all initial parameters. Thus, the simulations
given first- and second-order initial conditions (n ¼ 1; 2) were
measured to have dominant temporal frequencies close to the first-
and second-order perturbation corrections (xO e1ð Þ, xO e2ð Þ), respec-
tively. Theoretical expressions for the zeroth-order, unshifted tem-
poral frequency, x0 (Eq. (20)—monoatomic and Eqs. (55) and
(56)—diatomic) are also plotted as references to visualize the
shifts that occur. For each simulation, the dominant temporal fre-
quency is computed by taking an fast Fourier transform (FFT) of
the time history of a central mass in the chain. To collect accurate
data, temporal sampling frequencies are many integer multiple

times higher than the expected shifted frequency, e.g., fsampling ¼

600 xO e1ð Þð Þ=2p
� 	

or fsampling ¼ 600 xO e2ð Þð Þ=2p
� 	

.

Inspection of the bottom two subplots in Fig. 5 reveals that k2
bears little to no effect on the first-order dispersion correction. As
P2 changes from 0.04 to 0, which corresponds to the no quadratic
nonlinearity present, the first-order perturbation and simulation
results change by an average amount of 0.043%. For lightly
damped chains D1a; D2a 6¼ 0, corrections can be interpreted as
instantaneous dispersion shifts since the amplitude decays slowly.
The nonconstant reconstituted expressions for _b are then inter-
preted similar to Eqs. (75) and (76) at each instance of time.

5.2 Stability Considerations. The stability of wave propaga-
tion is of primary concern for designing devices informed by these
discrete systems. Herein, instability is defined as any qualitative

Fig. 5 First- and second-order dispersion shifts in the monoatomic (left) and diatomic
(right) chains. Monoatomic: P1 5 0;P2 50:04 (top), P2 5 0 (bottom), P3 50:04, Diatomic:
P1 5 0;P2 5 0:04 (top),P2 5 0 (bottom), P3 50:04; P4 5 1:5.
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shift from the multiharmonic plane wave solution predicted by the
MMS. Thus, it is important to characterize the types of instabil-
ities that take place in these systems and the conditions at which
they occur. An analytical stability analysis is first presented to see
if the evolution equations for the amplitude reveal any informa-
tion on stability loss. Informed by this analysis, numerical studies
are carried out to determine the onset of instabilities.

5.2.1 Local Stability Analysis. Because it is a critical parame-
ter that determines the strength of the nonlinearities in the system,
amplitude is chosen to be analyzed to assess the stability of the
wave. It will be shown that the first-order results reveal only a
damping-induced decay of amplitude (stable solution), whereas
the inclusion of second-order results reveals a possible growth in
amplitude (unstable solution). Though it is outside the conserva-
tive bounds of the MMS solution, the unstable solution provides a
foundation to the numerical stability studies presented in
Sec. 5.2.2.

Applying Eq. (10) to wave amplitude a and recalling that
D0a ¼ 0 leads to its reconstituted evolution equation

_a ¼ eD1aþ e2D2a (77)

which suggests the existence of fixed points, or a� such that
_a ¼ 0. These fixed points are found from

_aja� ¼ 0 (78)

A local stability analysis can then be performed near each fixed
point by introducing small perturbations from a�. The result of
doing so is that the stability of each fixed point depends on the
sign of k arising from

d

da
_a
�

�

a�
� k (79)

where k > 0 yields an unstable fixed point, k < 0 a stable fixed
point, and k ¼ 0 is neutrally stable. Thus, the fixed points for the
monoatomic chain can be readily found by substituting in the val-
ues from Eqs. (22) and (29) into Eqs. (77) and (78)

a� ¼ 0;6

ffiffiffiffiffiffi

x0

ed

r

(80)

The fixed point a� ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0=edð Þ
p

exists only when d > 0 (cubic
hardening) since a is assumed to be strictly real. Application of
Eq. (79) yields

kja�¼0 ¼ �ec (81)

kj
a�¼6

ffiffiffiffiffiffi

x0

ed

r ¼ 2ec (82)

The fixed point a� ¼ 0 is of the highest relevancy since (1) ampli-
tudes near it are small-enough to satisfy the conservative weakly
nonlinear ansatz, P2;P3 < 0:1; (2) this is the fixed point to which
asymptotically predicted plane waves will be attracted to in the
presence of damping, therefore, its stability establishes plane wave
stability of interest herein. Since, kja�¼0 < 0 for damped chains

(c > 0), the fixed point a� ¼ 0 is stable. Note that a� ¼ 0 is the

only fixed point informed by a first-order analysis as a� ¼
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0=edð Þ
p

originates from second-order terms. Also note that the

presence of damping enables the stability of the fixed points to be
classified: undamped chains yield kja�¼0 ¼ kj

a�¼6
ffiffiffiffiffiffiffiffiffiffiffiffi

x0=edð Þ
p ¼ 0,

which is neutrally stable.
By similar arguments, since Eq. (82) is positive for damped

chains (c > 0), the fixed point a� ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0=edð Þ
p

is unstable.
However, closer inspection of this fixed point reveals that it is at a

large-enough amplitude that its accuracy cannot be expected.
After substituting Eqs. (20) and (25) into the expression for a�, a
critical P3 value results dependent on only l

P3;crit ¼
ek3a

�2

k1
¼ 8 1� cos lð Þ

3 cos 2l� 4 cos lþ 3ð Þ (83)

Examining Eq. (83), the lowest value of P3;crit in the first Bril-
louin zone, 0 	 l 	 p, is approximately 0.66, which is beyond
the conservative weak nonlinearity ansatz used for MMS analysis.
However, as evident in the results presented in Sec. 5.2.2, the
existence of such a fixed point is likely since large-amplitude
plane waves are observed to grow unboundedly in numerical
simulations.

The stability of the monoatomic chain is summarized in Fig. 6.
As indicated, only initial wave amplitude, and not initial phase,
determines the basins of attraction.

Stability of the diatomic chain can also be studied analytically.
Its reconstituted evolution equation for a can be written as

_a ¼ P1a
5 þ P2a

3 þ P3a (84)

where P1;P2; andP3 denote constants known from Eqs. (57) and
(68). Fixed-points can be solved for by setting _a ¼ 0. Thus, a
given system admits at most five fixed points; however, because a
is assumed to be real, imaginary fixed points are ignored. Inspec-
tion of Eq. (84) indicates that

a� ¼ 0;6 � P2

2P1

6
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
2

P2
1

� 4P3

P1

s

2

4

3

5

1
2

(85)

where it is again emphasized that a� must be strictly real. The sta-
bility of a given fixed point can be studied by examining the sign
of each value of k

k ¼ 5P1a
�4 þ 3P2a

�2 þ P3 (86)

Results are similar to the monoatomic chain. For a� 6¼ 0, many
values of k can be computed using the P1; P2; and P3 values
associated with a prescribed set of P1; P2;P3; and P4 values
and branch. The fixed point a� ¼ 0 is always stable for c > 0.
Other fixed points are unstable but have corresponding P2 and P3

values never simultaneously less than 0.1. Therefore, they are of
large-enough amplitude to not be of interest to plane waves pre-
dicted herein.

5.2.2 Numerical Stability Studies. This section details numer-
ical studies that investigate stability beyond the applicable range
of the MMS. It also confirms the general trends predicted by the
local stability analysis, which is that at low amplitudes, multihar-
monic plane waves are stable, and at high amplitudes (or, equiva-
lently, large nonlinearities) the plane wave solutions predicted
may lose stability. Note that such a conclusion cannot be drawn

Fig. 6 Fixed points and basins of attraction for the monoa-
tomic chain
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from only first-order information. These studies quantify the stabil-
ity of the predicted waveforms over a wide range of P2 and P3

values for a given value of P1 and, if diatomic, P4. Simulations
begin with the initial conditions corresponding to the series solu-
tions in Eqs. (12) and (45) for the monoatomic and diatomic chain,
respectively. An unstable response is defined to be any deviation
from the nature of the plane wave propagation predicted by the per-
turbation analysis. Thus, such studies aim to identify the stability
limits of the MMS-predicted multiharmonic solutions. Although
different types of instability are observed, it is not the primary con-
cern of this work to explore further the ensuing solutions.

One such type of instability that occurred in numerical simula-
tions is characterized by a spreading of the wave’s spectral con-
tent. Chains with large P3 values exhibit this behavior. The
spectral content of these waves initially contains integer multiples
of x0 and l, but following longer simulation times, the plane
wave nature of the response breaks down into an assortment of
incommensurate frequencies. Figure 7 depicts this phenomenon.

The other type of instability observed in simulations is charac-
terized by an unbounded growth in the wave’s amplitude. Chains
with large positive or large negative P2 values, as well as chains
with large negative P3 values, exhibit this behavior. The initial
amplitude is unstable such that, as time progresses, the wave prop-
agates with increasingly larger amplitudes. Note that this is simi-
lar to the exponential growth in amplitude instability presented in
Ref. [28]. Figure 8 depicts this phenomenon. It is noted that all
oscillations cease when the amplitude starts to grow.

For automating instability detection in the simulated results,
criteria are developed which determine when one of the two types
occur, thus signifying a loss of stability, or deviation from the
multiharmonic plane wave solution. When either one of the two
instability types occur, the parameter set is considered “unstable,”
without distinguishing exactly which type of instability

developed. Thus, an instability occurs when a set number of peaks
in a spatial FFT exceeds a certain fraction of the maximum peak
at that instant or when the instantaneous amplitude grows to a cer-
tain multiple of the simulation’s original amplitude. A time limit
is prescribed for simulations: if an instability does not arise within
the prescribed time, or s ¼ 12 2pð Þ for these simulations, the
parameter set is considered stable. For the diatomic chain, insta-
bility criteria are applied to xa and xb separately.

Figure 9 presents the stability results for the monoatomic chain
as a function of P2 and P3. The parameters P2;crit and P3;crit are
the values of P2 and P3, accurate to the nearest tenth, at which an
unstable response is first observed when the other nonlinear P-
value is set to zero (i.e., P2;crit occurs when P3 ¼ 0 and P3;crit

occurs when P2 ¼ 0). Each plot verifies the local stability analy-
sis; namely, that plane waves characterized by small values of

Fig. 7 An example chain exhibiting a breakdown in spectral content: P1 5 0:01;
P2 5 0; P3 53:7, second-order initial conditions (ICs)

Fig. 8 An example chain exhibiting a growth in amplitude: P1 5 0:01; P2 5 1; P3 5 0,
second-order ICs

Fig. 9 Monoatomic chain stability study: second-order ICs,
P1 50:01; l5 ðp=4Þ
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P2=P2;crit and P3=P3;crit are stable. Figure 10 presents similar
stability results for the diatomic chain applied to xa. Plots for the
stability study of xb depict similar trends and are shown in Figs.
13–15 in the Appendix.

For some chains simulated using free–free boundary conditions, a
rigid body (DC) harmonic appears that causes the two masses in each
unit cell to separate by a constant amount, in addition to their
expected oscillation. The location of the center of mass remains
unchanged, as expected to satisfy the conservation of momentum.
However, since the magnitude of this separation is generally small for
the parameters being studied, such responses are considered stable.

Although the amplitudes at which point stability is lost in the
numerical simulations do not align with the nonzero fixed points
predicted by multiple scales approach, the results of these numerical
studies qualitatively confirm the findings. Wave amplitudes below a
critical value decay over time toward zero due to the presence of
damping. Above this critical amplitude value, the wave will become
unstable by either growing unboundedly or decomposing its original
multiharmonic content into incommensurate frequencies.

5.3 Invariance. This section describes how higher-order
MMS results converge to an invariant waveform, a finding that

Fig. 10 Diatomic chain stability study: xa, second-order ICs, P1 5 0:01; P4 51:5; l5 ðp=4Þ,
acoustic (a), and optical (b)

Fig. 11 Reduction of variance of the (a) second and (b) third
harmonics, monoatomic chain, l5 ðp=4Þ; P1 50

Fig. 12 Reduction of variance in xa, second (a, c) and third (b,d) harmonics, diatomic
chain. P4 5 2; l5 ðp=4Þ;P1 5 0 acoustic (a and b), and optical (c and d).
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offers new insight for predicting and modeling the wave propaga-
tion in these weakly nonlinear discrete systems and further valida-
tion of the MMS approach. In the absence of damping, the
presented perturbation approach does not distinguish between any
two points in space, nor any two points in time. Thus, in the limit
as the asymptotic expansions are taken to higher orders, and
assuming convergent vis-�a-vis divergent behavior, it can be
hypothesized that the waveforms should propagate for all space
and time without change—i.e., they should be an invariant form
akin to cnoidal waves studied in other contexts. It is worth noting
that such an argument does not rely on a continuum approxima-
tion as in other studies [21–23]. Note that this is a very different
perspective taken from other works carrying-out perturbation
approaches in wave propagation problems [14,35], which more
conventionally analyze higher harmonic generation and/or the
closely related concept of phonon generation and lifetimes.

To test the invariant hypothesis, numerical integration of Eqs.
(1) and (2) is carried out using the procedure presented in Sec. 4.
Thus, plane waves corresponding to the asymptotic expansions in
Eqs. (12) and (45) truncated at different orders are injected into
the simulated chains. During simulation, the spatial harmonic con-
tent of the waves, is quantified using FFTs at different instances in
time to track the generation (or loss) of the initially prescribed
harmonic content. As mentioned in Sec. 4, to emulate an infinite
chain, the analysis was restricted to a central region of the chain
so that boundary effects could be ignored. According to the
hypothesis, waves incorporating higher-order terms should exhibit
measurably less variation, and hence propagate more invariantly.
Only P3 > 0 chains were sampled since it was found while con-
ducting the numerical stability studies in Sec. 5.2.2, that the nega-
tive P3 values become unstable at much lower magnitudes than
positive ones.

For monoatomic chains, a parameter that measures the spatial
variance of a simulated waveform is proposed as

r nð Þ
p � 1

L

X

L

l¼1

j1� al;pj (87)

where al;p denotes the amplitude of the pth harmonic at the lth
instant in time normalized by its initially prescribed value, L is the
number of time instances that make up the numerical solution,
and n denotes the order of perturbation terms retained in Eq. (12).
Since r

nð Þ
p measures variance, lower values of r

nð Þ
p indicate more

invariant waveforms, and thus, it is expected (if the hypothesis
holds) that r

nð Þ
p decreases as n increases. Figure 11 verifies the

expected reduction in variance for monoatomic chains given
second versus first-order initial conditions—all values of (P2, P3)
simulated experience decreases in variance. Because Fig. 11
plots the normalized reduction in variance— r 1ð Þ

p �
r 2ð Þ
p =r 1ð Þ

p;max p ¼ 2; 3ð Þ —a value of 1.0 indicates elimination of all

variance using second-order initial conditions, while a value of
0.0 indicates no variance reduction.

For diatomic chains, the variance parameter specializes to each

degree-of-freedom: r
nð Þ
p;a and r

nð Þ
p;b for xa and xb, respectively. Simi-

lar numerical simulations are carried out and the second and third
spatial harmonics are tracked over time for waves on the acoustic
and optical branches. Figure 12 presents the variance results for
xa; the Appendix provides the results for xb. The trend in variance
reduction is again present.

Figures 11 and 12 also show that an increase in the magnitude
of P2 leads to a large variance reduction in the third harmonic,
and conversely, an increase in P3 leads to a large variance reduc-
tion of the second harmonic. This counter-intuitive crossing effect
can be understood by close examination of the second-order
results in Eqs. (39)–(42) for the monoatomic chain (the same argu-
ment can be made for the diatomic chain). There, k2 influences the
particular solution governing the third harmonic, and k3 influences
the particular solution governing the second harmonic. Note that,
the first-order solution does not contain such a crossing effect and
thus injected waveforms based solely on it will not be sufficient
for preventing an exchange of energy between different harmon-
ics. In contrast, because the presence of the crossing terms in
second-order injected waves keeps spectral energy, where it is ini-
tially assigned, the crossing effect becomes necessary for increas-
ing invariance. This is yet another example of the richness in
system behavior uncovered by higher-order perturbation analysis.

6 Conclusions

Higher-order multiple scales solutions have been detailed for
predicting multiharmonic plane wave propagation in cubically
and quadratically nonlinear monoatomic and diatomic chains. The
method yields higher-order amplitude-dependent dispersion rela-
tionships, the result of which clearly show the importance of cubic
terms vis-�a-vis quadratic terms in frequency/wavenumber shifts.
Wave stability has also been assessed through introduction of lin-
ear damping and a local stability analysis, and the notion of wave
invariance has been explored and demonstrated for waveforms
composed using higher-order terms in the asymptotic expansions.
Finally, trends in dispersion shifts, wave stability, and wave invar-
iance have been verified using dimensionless parameters and
direct numerical integration.
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Appendix

Fig. 13 Diatomic chain stability study: xb, second-order ICs, P1 50:01; P4 5 1:5; l5 ðp=4Þ;
acoustic (a), and optical (b)
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