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This article shows the capability of using a higher order dynamic mode decomposition (HODMD) 

algorithm both to identify flow patterns and to extrapolate a transient solution to the attractor region. 

Numerical simulations are carried out for the three-dimensional flow around a circular cylinder, and 

both standard dynamic mode decomposition (DMD) and higher order DMD are applied to the non- 

converged solution. The good performance of HODMD is proved, showing that this method guesses the 

converged flow patterns from numerical simulations in the transitional region. The solution obtained 

can be extrapolated to the attractor region. This fact sheds light on the capability of finding real flow 

patterns in complex flows and, simultaneously, reducing the computational cost of the numerical 

simulations or the required quantity of data collected in experiments. Published by AIP Publishing. 

[http://dx.doi.org/10.1063/1.4997206] 

 

 

I. INTRODUCTION 

Dynamic mode decomposition (DMD) is a technique 

introduced by Schmid23 that uses the Koopman linear oper- 

ator11 to calculate Fourier-like expansions for non-linear 

dynamics. The strength of this technique mainly lies in its capa- 

bility to reconstruct the original data set analyzed by means 

of identifying its flow dynamics, which also allows to study 

its main spatio-temporal flow patterns and physical insight. 

Therefore, with such aim, DMD is applied to a set of K time 

equispaced spatio-temporal snapshots relying in the follow- 

ing Koopman assumption, which relates each snapshot vk+1 

(calculated at the time instant tk +1) with the previous snapshot 

vk (calculated at time instant tk ) by means of the Koopman 

operator R, as 

vk+1 = R vk for k = 1, . . . , K − 1. (1) 

Based on this idea, after some calculations (detailed 

below),  it  is  possible  to  reconstruct  the  set  of  K  time- 

equispaced data in the sampled time interval t1  ≤ t ≤ t1 + T 
using the following spatio-temporal expansion of modes: 

M 

v(x, t) � vDMD(x, t) ≡ 
\"1 

amum(x) e(δm +iωm )t 

m=1 

for t1 ≤ t ≤ t1 + T , (2) 

where the spatial fields um(x) are known as DMD modes, and 

am, δm, and ωm are their corresponding associated amplitudes, 
growth rates, and frequencies. If the time interval (t1, t1 + T ) 

in which the data are first calculated, and next reconstructed, is 

substituted by any interval more advanced in time (tr , tr + T ), 

with tr » t1, the same expansion can be used to extrapolate 
the original data to the attractor region, where the dynamics 
are permanent δm = 0 (saturated flow). 
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The spatial and temporal complexity and dimension are 

also relevant parameters in the previous expansion (2). On the 

one hand, the number of expansion terms, M, can be referred 

to as the spectral or temporal complexity, while the temporal 

dimension, denoted by K, is dependent on the number of data 

collected in time; thus the length of the time interval t1  ≤ t 

≤ t1 + T , where T = K · ∆t (time-equispaced data). On the other 
hand, the length of the spatial vector x determines the spatial 

dimension J, while the spatial complexity is determined by 

the dimension of the subspace generated by the DMD modes, 

as 

N = dim (span{u1, . . . , uM }) ≤ min{M, J }. (3) 

If the spatial and temporal complexities are equal, N 

= M, conditions (1) and (2) are exact, meaning that the perfor- 

mance of the standard DMD is optimal. The good performance 

of DMD has been evidenced several times in the literature 

either to study flow dynamics in numerical and experimen- 

tal data12,13,24 or to compute the global linear modes in linear 

flows.5,7,20,22 

However, when the spatial complexity is smaller than 

the spectral complexity, N <  M, the previous assumption is 

not valid. Instead, it is necessary to introduce a higher order 

dynamic mode decomposition (HODMD) approximation or 

DMD-d algorithm. This higher order technique has been 

recently introduced by Le Clainche and Vega,16 as an exten- 

sion of the classical DMD that is capable of providing highly 

accurate results in cases in which the performance of the clas- 

sical DMD is deteriorated or even fails. HODMD mixes the 

ideas behind classical DMD with Takens’ delay embedding 

theorem,25 leading to a higher order Koopman assumption 

that uses time-lagged snapshots, as 

vk+d  = R1 vk + R2 vk+1 + · · · + Rd vk+d−1 

for k = 1, . . . , K − d, (4) 

and is used to calculate the DMD expansion proposed in 

Eq. (2). Let us note that d  ≥ 1 is tunable and, when d = 1 
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(i.e., applying DMD-1), this assumption exactly matches the 

standard Koopman assumption presented in Eq. (1). In this 

way, it is possible to relate DMD-d algorithm or HODMD 

with classical DMD,23 which in this article is defined as 

DMD-1. 

While the temporal complexity M is only dependent on 

the (spectral) complexity of the real data (flow dynamics), both 

the spatial and temporal dimensions, J and K, are dependent of 

the type of data analyzed. For example, if DMD analysis is per- 

formed to study the results of a three-dimensional numerical 

simulation, the spatial dimension J is determined by the total 

number of grid points defining the computational domain, as 

J = nx × ny × nz , while the number of K equispaced temporal 
data collected is a choice of the user, more related to the time 

step of the numerical simulation and the computer’s storage 

memory. As expected, the spatial dimension is decreased in the 

case of two-dimensional numerical simulations (J = nx × ny) 

and may be drastically decreased in the case of experiments. 
For example, particle image velocimetry (PIV) experimental 
measurements are usually performed on a small plane in which 

the spatial dimension is J = nx × ny (smaller than in a numer- 

ical simulation). Similarly, in hot wire (HW) measurements, 
the spatial dimension J is equal to the number of HW probes 
used in the experiment. Also, the temporal dimension K may 

be determined by the type of experiment performed, since in 

complex experiments, the number of data collected is restricted 

by some external factors (i.e., wall confined flow with thermal 

effects15). 

A different issue is the calculation of the spatial complex- 
ity N, in which, naturally, the spatial dimension J of the original 
data and their temporal complexity M play a highly essen- 

tial role [N ≤ min{M, J }, see Eq. (3)]. However, some other 
external factors, such as noise or transient decaying dynamics, 
may also affect this variable. Thus, it is necessary to analyze 

carefully the parameter N and the sensitive factors that may 

contribute to alter it, leading to a spatial complexity that is 

smaller than the spectral complexity. In such cases, HODMD 

must be used instead of the classical algorithm. It is possible 

to mention three natural cases with larger spectral complexity 

than spatial complexity, N <  M: 

(i) When the spectral complexity M is very large but the 

number J of collected data is limited, either due to 

(a) the number of involved differential equations (in 

numerical simulations) or due to (b) the number of mea- 

surements points coming from an experiment: Since 

the spatial dimension J is small, N is small. Case (a) is 

commonly found in non-linear dynamical systems and 

becomes determined by the definition of the problem. 

For example, in a periodic solution of the Lorenz equa- 

tion or in a quasi-periodic solution of the Ginzburg- 

Landau equation, one finds that N <  M (Le Clainche 

and Vega16). Case (b) is also usually found in sev- 

eral types of experiments used for industrial purposes 

such as the flight test18 or in the analysis of magnetic 

resonances. 

(ii) When the data are noisy: This is a case usually found in 

experimental data. Even in simple flow dynamic cases 

in which ideally N = M, the noise found in the spa- 

tial structure defining the data needs to be calculated 

first in order to be cleaned next. So, some of the spa- 

tial modes are used to calculate this noise, leading to 

the modification of the real calculations of spectral and 

spatial complexities and, consequently, producing that 

the effective value of N be smaller than M (Le Clainche 

et al.17). 

(iii) When the data analyzed come from a transitory stage: 

This case may be represented by the Stuart-Landau 

equation1 and is a case usually found in non-converged 

numerical simulations, or in the transitory stage of an 

experiment. Even though the converged dynamics may 

be represented by an equal value of the spatial and tem- 

poral complexities (N = M), when DMD analysis is 

performed in a transitory region, some of the dynam- 

ics describing the flow are decaying (δm <  0). Thus, 

as in the previous item, some of the spatial modes are 

used to calculate these decaying modes, modifying the 

actual values of the spectral and spatial complexities 

and, consequently, leading to N <  M. 

Cases (i) and (ii) are related to interpolation (reconstruc- 

tion of the original data) and are already explained in detail 

in the literature.16,17 Case (iii), which is more related to pat- 

tern identification and extrapolation, is still an open topic that 

will be addressed in this article. If it were possible to calculate 

the main dynamics describing the flow in the transient region 

and to construct the DMD expansion proposed in Eq. (2), 

it would be (in turn) possible to extrapolate the solution to 

the attractor region by only retaining the non-decaying DMD 

modes. 

In this article, the transient regime of the three- 

dimensional flow around a circular cylinder is analyzed using 

HODMD, with the aim to show the good performance of 

this technique both to calculate the real flow patterns in non- 

converged solutions and its high potential to be used as a 

reduced order model for extrapolation. The latter is useful 

either to reduce the computational cost in numerical simu- 

lations or to reduce the time and the number of data col- 

lected in experimental measurements, which sometimes, due 

to their high complexity, are subject to external, out of control 

restrictions.15
 

The article is organized as follows. The above men- 

tioned extension of standard DMD, called HODMD, is briefly 

described in Sec. II. The cylinder wake test problem will be 

considered in Sec. III, where the numerical method to simulate 

the flow around the cylinder will also be described. The main 

results of the paper are given in Sec. IV, where both classi- 

cal DMD and higher order DMD will be applied to guess the 

dynamics on the attractor from results computed in the tran- 

sient region, comparing both the relevant involved frequencies 

and the flow patterns. The paper ends with some concluding 

remarks, in Sec. V. 

 

II. HIGHER ORDER DYNAMIC MODE 
DECOMPOSITION ALGORITHM 

The algorithm presented in this section is explained more 

in detail in Ref. 16. As anticipated, we consider a data set of 

K equispaced snapshots, collected in a snapshot matrix VK 

(whose columns are the snapshots, from the first to the Kth 
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snapshot) in the following way: 

1  = [v1, . . . , vk ], (5) 

where vk is the vector representing the spatio-temporal data 

(snapshot) collected at time instant tk . The HODMD algo- 

rithm is applied to this snapshot matrix to study the main flow 

dynamics and to represent the spatio-temporal snapshot as the 

following DMD expansion [same as in Eq. (2)]: 

The remaining of this step, in turn, considers two cases, 

depending on the value of d: 

(a) If d = 1: DMD-1 algorithm. 

The standard higher order Koopman assumption 

(10) is used in the dimension reduced snapshot as 

v̂ k+1 �  R̂ 1 v̂ k , for k = 1, . . . , K − 1. (11) 

In the matrix form, 
K K −1 

M 

v(x, t) � vDMD(x, t) ≡ 
\"1 

amum(x) e(δm +iωm )t 

m=1 

for t1 ≤ t ≤ t1 + T . (6) 

HODMD, using the DMD-d algorithm, considers two 

V̂ 
2  �  R̂ V̂ 

1 , with R̂ = U
T
RU. (12) 

Let us note that this equation is similar to the classical 

Koopman assumption presented in Eq. (3), but applied 

to the dimension reduced snapshot. Thus, the DMD-1 

algorithm is similar to classical DMD.23
 

main steps: 

1. Singular value decomposition (SVD) is applied to the 

snapshot matrix VK , leading to a representation of the 

spatio-temporal data as an expansion of spatial and tem- 

poral modes, U and T, respectively, and singular values 

Σ, written in a matrix form as 

Then, SVD is applied to the snapshot matrix V̂ K −1
 

to perform its pseudo-inverse, and the linear operator 

R̂ is calculated. This operator contains the dynamics 

of the system. So, its eigenvectors and eigenvalues 

yield the modes um(x), growth rates δm, and fre- 

quencies ωm appearing in the DMD expansion (6). 

The mode amplitudes am  are calculated upon least 

V
K T K K 

1  � U Σ T , ≡ U V̂ 
1 , with V̂ 

1  = Σ T
T(≡ UT

V
K ). squares fitting. A second tolerance ε is set in order to 

(7) 

A dimension reduction of the spatial terms is carried 

out in this step, retaining N (=spatial complexity) spa- 

tial modes. The value of N is selected to ensure that the 

SVD approximation satisfies a certain root mean square 

(RMS) error (selected by the user), as 

retain the M most relevant DMD modes, exhibiting 

the largest amplitudes am. This parameter will deter- 

mine the spectral complexity of the DMD expansion 

(2), calculated for a specific accuracy ε (tunable by 

the user). 

(b) If d >  1: DMD-d algorithm. 

EE (N ) ≡ 
2 
N +1 
σ2 

+ · · · + σ2
 

2     
≤ ε1, (8) 

The higher order Koopman assumption is used as 

in Eq. (10). This equation is written as the following 

1 + · · · + σR 

where R ≤ min{J, K } is the rank of the snapshot matrix, 
σi are the singular values (contained in matrix Σ) sorted 

in decreasing order, and ε1 is a parameter tuneable by the 
user to control the error of the approximation. In the case 

modified Koopman equation: 

ṽ k+1 �  R̃ ṽ k , (13) 

where the modified snapshots ṽ k  and the modified 

Koopman matrix R̃ are 

of noisy data or unconverged solutions, this parameter 

could be compared to the uncertainty contained in the 

data.17
 

Equation (7) implies that the size of the snapshots 

  
ṽ k ≡   

v̂ k 
 

v̂ k+1    
. . .  ,  

 0 I 0  . . . 0 0   
0   0 I  . . . 0 0 
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 v̂ k+d−2    
vk is reduced to v̂ k in the following way: 

vk  = U v̂ k . (9) 

 v̂ k+d−1 
  R̂ 

1  R̂
 
2  R̂

 
3 . . . R̂

 
d−1 R̂

 
d 
 

(14) 

When the data collected are too noisy, as in the case of an 

experiment, a higher order singular value decomposition 

(HOSVD)4,10,26 is used instead of SVD at this step.17 The 

HOSVD algorithm performs a SVD in each one of the 

spatial directions. Thus, in this way, it is possible to better 

clean the data from noise or to remove non-permanent 

modes (δm <  0), which somehow could be considered as 

noise (snapshots reduction). 

2.   The DMD-d algorithm (with d ≥ 1) is applied to the tem- 

poral modes V̂ K 
(the reduced snapshot matrix) obtained 

in the previous step. Therefore, the higher order Koopman 

assumption presented in Eq. (4) is used in the reduced 

snapshots v̂ k (contained in a reduced linear manifold) 

as 

v̂ k+d � R̂ 1 v̂ k + R̂ 2 v̂ k+1 + · · · + R̂ d v̂ k+d−1 

for k = 1, · · · , K − d. (10) 

The modified Koopman operator R- is calculated as 

in the previous case, and its eigenvectors and eigen- 

values yield the modes um(x), growth rates δm, and 

frequencies ωm of the DMD expansion (6). Again, the 

mode amplitudes am are calculated upon least squares 

fitting, and a second tolerance ε is set in order to 
retain the M most relevant DMD modes, exhibiting 

the largest amplitudes am. This parameter will deter- 

mine the spectral complexity of the DMD expansion 

(2), calculated for a specific accuracy ε (tunable by 
the user). 

The benefit of this method lies in the resolution of 

the eigenvalue problem for the modified Koopman 

matrix R̃ , which enforces the dynamic contained in 

the delayed snapshot matrix to evoke the same solu- 

tion. So, either the noise or non-permanent devices are 

naturally removed from the solution. 

σ 



 

z 

 

III. THE THREE-DIMENSIONAL CYLINDER WAKE 

Let us  now consider  a  classical fluid  mechanics 

case, namely, the incompressible three-dimensional cylinder 

wake.28 For large aspect ratio cylinders, the spatio-temporal 

structure of the wake only depends on the Reynolds num- 

ber, defined as Re = U∞D/ν, where U∞ is the incoming free 

stream velocity, D is the cylinder diameter, and ν is the kine- 

matic viscosity. At small Re, the wake is two-dimensional and 

steady, but at Re �  46, it exhibits a primary Hopf bifurca- 
tion,9,21 which still produces a two-dimensional but unsteady 

(in fact, periodic) von Karman vortex street flow. This peri- 

odic flow remains orbitally stable up to Re �  190, where it 
suffers a secondary bifurcation (Floquet multiplier = 1) to 
three-dimensional periodic oblique waves, as repeatedly found 

experimentally in large aspect ratio containers.8,27 This thresh- 
old was (more precisely) calculated numerically via Floquet 

analysis by Barkley and Henderson,2  as (critical Reynolds 

and Henderson.2 In order to reduce the computational cost, the 

three-dimensional numerical simulation was initialized with 

this two-dimensional converged solution. The boundary con- 

ditions (b.c.) set in the cylinder surface was no-slip. In the inlet 

surface, it was enforced uniform flow (ux = U∞ = 1, uy = 0), 

while at the top and bottom parts of the domain and the out- 

let surface, the b.c. used were standard outflow conditions (p 

= 0, ∂xux = 0, ∂xuy = 0).14 A second test case was carried 

out setting uniform b.c. (as in the inlet surface) in the top and 

bottom surfaces, as in Barkley and Henderson2 and the results 

obtained were similar. This fact proves that the boundaries of 

the computational domain are sufficiently far from the cylinder 

studied, minimizing their effects over the solution presented. 

Finally, in the three-dimensional expansion in the spanwise 

direction, the b.c. were set to periodic (Fourier expansion), 

with a period Lz = 4, which is consistent with the expected 

period (15) for this value of the Reynolds number. The time 
☞3 

number) Rec  
= 188.5 ± 1.0, by imposing periodicity in the step in the numerical simulations was set to 5 · 10 , in order 

span direction, with wavenumber β (associated spatial period 
Lz  = 2π/  β), whose critical value at Re = Rec  was found to 

to maintain the Courant-Friedrichs-Lewy condition (CFL) in a 

value smaller than 1. The numerical code was evolved in time 

be Lc
 = 3.96 ± 0.02. For Re ≥ Rec, Barkley and Hender- 

during 1325 time units, saving snapshots (each containing the 
1132 end-points of the 1132 elements) every ∆t = 0.5 time 

son estimated the frequency of the spanwise pattern as that 

associated with the most unstable mode, known as mode A, 

which has been studied in more detail by Blackburn et al.3 

In particular, for Re = 220 (the case that will be consid- 

ered below), the experimental spatial period (estimated by 

Barkley and Henderson2 from the experimental visualiza- 

tions of Williamson27) and temporal frequency (measured by 

Williamson27), 

 

Lz = 4.01, fexp �  0.185   (or ωexp = 2π/fexp �  1.1624), 

(15) 

can be taken as reference. For this value of Lz , the Floquet 
analysis in Barkley and Henderson2  yielded the frequency 

f �  0.20 Hz (or ω �  1.2566), which compares reason- 
ably well with its experimental counterpart [see Eq. (15)]. 

With this background in mind, we shall use the HODMD 

method to analyze the cylinder at Re = 220 using numeri- 

cally generated data via a computational fluid dynamics (CFD) 

tool. 

The numerical code used is Nek5000,19 an open source 

CFD code that uses spectral elements as spatial discretization. 

The three-dimensional incompressible Navier-Stokes equa- 

tions has been solved, in a Cartesian reference frame aligned 

with the streamwise, vertical, and spanwise directions, x, y, and 

z, respectively. The dimensions of the computational domain 

coincide with those used in Barkley and Henderson,2 namely, 

x∈ [−15, 25], y∈ [−20, 20], and z∈ [0, 4], respectively; the 
axis of the cylinder (whose nondimensional diameter is D 

= 1) is the straight line x = y = 0. The mesh contains 1132 ele- 

ments and was generated using the open source code Gmsh.6 

Finally, each element was discretized using Gauss-Lobatto- 

Legendre points of order p = 5. A grid convergence study has 

been performed first, in a two dimensional mesh, in order to 

set the polynomial order to 5. Then, FFT has been applied 

to several points in the computational domain, finding in 

all cases that the dominant frequency was f2d  �  0.20 (ω2d 

= 1.2566), similar to the frequency f calculated by Barkley 

units, meaning that we have stored a total number of 2650 

snapshots. However, discarding the transient 0 ≤ t ≤ 575, 
only the last 1500 snapshots (750 time units) will be used 
below. Because the considered value of the Reynolds num- 
ber is not too far from its threshold value for the transition to 
three-dimensional dynamics, the considered snapshots are not 

expected to be fully converged to the final periodic attractor, 

which is found after evolving the code in time during 2900 time 

units. The dominant frequency calculated in the attractor was 

ωnum = 1.1711, comparable to the spanwise velocity obtained 

in the experiment (15). Figure 1 shows the time evolution of 

the residuals in the three-dimensional numerical simulations 

in a representative point of the computational domain (cylin- 

der wake). As seen, the fact that the Navier-Stokes equations 

are initialized with the converged solution of the two dimen- 

sional case is reflected in this velocity evolution, in which it is 

possible to identify the growth of the spanwise mode. 

 

 
 

 

FIG. 1. Evolution of spanwise velocity in the three-dimensional numerical 

simulations, taken in the cylinder wake at (x, y, z) = (2, 0, 0) [the cylinder is 

located at (0, 0, z)]. 



 

 

IV. PATTERN FORMATION AND EXTRAPOLATION 
TO THE ATTRACTOR REGION 

We perform various sets of HODMD computations, 

restricting the data to the plane y = 0 and using the three veloc- 

ity components [to somewhat mimic stereo particle image 

velocimetry (PIV) data] and considering both the near-field 

and far-field in the streamwise direction, namely, 

y = 0-near-field : 0.5 ≤ x ≤ 4, y = 0, 0 ≤ z ≤ 4,  (16) 

y = 0-far-field :  4 ≤ x ≤ 25, y = 0, 0 ≤ z ≤ 4,  (17) 

and two sets of tolerances, namely, 

rough: ε1 = 10−2, ε = 2 · 10−2
 

more precise: ε1 = 10−4, ε = 3 · 10−3. 
(18)

 

Additional computations have been performed using (a) only 

the in-plane velocities in the y = 0-near field data and (b) the 

whole three-dimensional data in the near field. As expected, 

those results (omitted here for the sake of brevity) are slightly 

worse in case (a) and slightly better in case (b), compared with 

the results that will be presented in this section. 

In all applications below, the extrapolation properties of 

both DMD-1 and DMD-d will be evidenced. The analyses have 

been performed in two different sets of data, using the rough 

and more precise tolerances. In the first case, we collect a set 

of 500 snapshots, starting at time 575, sufficiently far from 

the attractor (time �  2900) to prove the benefits of extrapolat- 
ing instead of integrating Navier-Stokes equations, in terms of 
reduction of computational time. In the second case, we collect 
a set of 1000 snapshots, starting at time 875 in order to show 

that, when the distance to the attractor is reduced, DMD-d is 

capable of giving a better prediction of the flow patterns of the 

attractor. 

Let us start with the first application, in which both DMD- 

1 and DMD-250 are applied to the set of 500 snapshots. The 

value d = 250 has been selected after some calibration (looking 

for consistency and robustness in the results presented17). As in 

the remaining applications of the HODMD method described 

above, this value of d can be decreased by 50 without signif- 

icant changes in the performance of the method. In this first 

application of the method, the rough tolerances are used in the 

near field. The plots of the damping rates and mode amplitudes 

vs. the retained frequencies are given in Fig. 2. The following 

can be observed in these plots: 

• With these tolerances, DMD-250 identifies two kinds 

of modes: transient (δ <  0) and permanent (δ �  0) 

modes. Since the ω = 0 (mean flow) and ten pairs of 

complex conjugate modes (plotted with blue circles) 

exhibit a damping rate of ∼2 · 10☞  3 and thus are use- 

ful for extrapolation to estimate the periodic attractor, 
these modes will be called the permanent modes below. 

There is a small gap that separates permanent modes 

from the remaining 19 pairs of modes to be called 

transient modes below (candidates to be eliminated in 

extrapolation), plotted with blue crosses. 

Besides, the permanent modes include the experimen- 

tally measured fundamental frequency with a relative 

error ∼10−3, and their second, third, and fourth harmon- 
ics. In addition, somehow unexpectedly, DMD-250 

also identifies a 1/3-subharmonic of the experimen- 

tal frequency. Moreover, the exact commensurability 

relations for these harmonics and subharmonics hold 

within a maximum relative error of ∼7 · 10☞   3. 

• The performance of DMD-1 could be seen as qualita- 

tively similar, since it produces a similar gap between 

permanent and transient modes. However, DMD-1 only 

identifies the mean flow and four pairs of complex con- 

jugate modes (of 240 modes calculated in total) includ- 

ing the experimental frequency (with a relative error of 

∼5 · 10☞3), its harmonic, and the 1/3-subharmonic mode 
previously presented. 

The results above raise the question on whether the 1/3- 

subharmonic identified above by DMD-250 is the relevant 

fundamental frequency (though with a much smaller mode 

amplitude than the experimentally detected frequency), and 

thus, strictly speaking, the period of the attractor is three times 

larger than assumed. This issue is first analyzed considering 

the precise tolerances in Eq. (18), which gives the results plot- 

ted in Fig. 3 (a second analysis will be done below by using 

data from the fully converged attractor). As can be seen in the 

following: 

• Though the gap between permanent and transient 

modes is similar than in Fig. 2, the amount (namely, 

15) of permanent  modes  identified  by  DMD-250 

is larger, their growth rate is smaller (∼10☞3), and 
the amount of transient modes is larger. DMD-250 
identifies as permanent modes the mean flow and 
7 pairs of complex conjugate modes, which include 
the “fundamental frequency” (with a relative error of 

∼1.9 · 10☞3) plus two harmonics of the fundamental 

 

FIG. 2. The y = 0-near field defined in 

Eq. (16) with the rough tolerances in 

Eq. (18), considering the three veloc- 

ity components: damping rates (left) 

and mode amplitudes (right) vs. the 

retained frequencies obtained via DMD- 

250 (blue symbols) and DMD-1 (red 

symbols) applied in a set of 500 snap- 

shots starting at time 575. Those modes 

exhibiting the  smaller damping  rates 

(δ �  0) are plotted with circles, while 
the remaining modes are plotted with 

crosses. The experimental frequencies 

±ωexp [see Eq. (15)] are indicated with 
vertical lines. 



 

 

 

 

 

 

 

FIG. 3. Counterpart of Fig. 2, but con- 

sidering the more precise tolerances 

defined in Eq. (18). 

 

 

 

 

 

 

frequency and some harmonics of the 1/3-subharmonic 

(excluding this mode), with the exact commensurabil- 

ity relations holding within a maximum relative error of 

∼6 · 10☞3. 
• Concerning DMD-1, it is possible to identify two gaps 

related to the permanent-transient mode division. The 

first gap includes the mean flow and a pair of conju- 

gate modes that correspond to the second harmonic 

of the experimental frequency. The second gap also 

includes 14 pairs of conjugate modes corresponding to 

both sub-harmonics and harmonics of such experimen- 

tal frequency. The fact that the experimental frequency 

is not identified in the first gap makes it necessary to 

consider the second gap as the identifier of the perma- 

nent modes, which is somewhat confusing in practice 

since, in contrast to HODMD, it requires knowledge of 

the right involved modes. 

Let us now compare the extrapolation results computed 

above with their counterparts computed in the attractor itself. 

Figure 4 shows the attractor frequencies and amplitudes cal- 

culated at time 2900. As expected, similar results are obtained 

in a three-dimensional domain and in the near and far field 

planes defined in Eqs. (16) and (17), using DMD-1, DMD-d 

(various d), several tolerances, and different numbers of snap- 

shots. As seen, the 1/3-subharmonic mode is also found in 

this region, but with a small amplitude. Table I shows the 

frequencies presented in Fig. 2 (extrapolation), Fig. 3 (extrap- 

olation), and Fig. 4 (attractor). The results in this table show 

that, on the one hand, DMD-250 captures a larger number of 

relevant frequencies than DMD-1, especially in the case cal- 

culated with the rough tolerances in Eq. (18). However, the 

method also doubles a couple of frequencies. On the other 

hand, the presence of the 1/3-subharmonic mode is found in all 

cases, which fully confirm that this unexpected subharmonic 

is not an artifact. Regarding these results, it is possible to say 

that the performance of DMD-250 is slightly better than the 

performance of classical DMD, making HODMD a suitable 

choice to be used for extrapolation, since it calculates a larger 

number of frequencies, with higher accuracy. Additionally, the 

issue of doubling certain frequencies may not affect the final 

results if the purpose of applying this method is either the 

reconstruction of the original data (free from transient modes, 

data cleaned from noise) or the extrapolation to the attractor, 

since these modes are multiplied by their amplitudes, which 

makes up for this division. Yet, if the method is only used 

for studying structural patterns, this fact may lead to some 

misunderstandings. 

With the aim of showing the robustness of HODMD 

and the calibration process carried out, the same calculations 

 
 

TABLE I. Summary of the permanent frequencies ω identified in Figs. 2 

and 3 and in the attractor (Fig. 4). Reference frequency (experiment): ωexp 

= 1.1624. 
 

 

Rough tolerance (18) More precise tolerance (18) Attractor 
 

 
 

FIG. 4.  Attractor amplitudes vs. retained frequencies (time 2900).    

DMD-1 DMD-d  DMD-1 DMD-d  . . . 

0.3852 0.3869  0.3852   0.3904 

0.7819   0.7819   0.7807 

1.1648 1.1696  1.1648 1.1688  1.1711 

 1.5520     1.5614 

 1.9504   1.9503  1.9518 

2.3288 2.3384, 2.3681  2.3288 2.3369  2.3421 

      2.7325 

      3.1228 

 3.5068, 3.5392   3.5072  3.5132 

      3.9035 

      4.2939 

 4.6755     4.6842 

      5.0746 

    5.4567, 5.5913  5.4649 

 5.8479   5.8080  5.8553 

 



 

 

TABLE II.  Counterpart of Table I with the rough tolerance but using values 

of d out of its optimal interval. 
 

 

Rough tolerance (18) Attractor 

frequency and its first and second harmonics are doubled. 

Finally, the most extreme case, DMD-475, only calculates the 

fundamental frequency, but with larger accuracy than DMD- 

   1. It is remarkable that the number of snapshots used for this 

calculation is 500, so using DMD-475 means that only 25 

snapshots are left free for the construction of the modified 

Koopman equation (13). The proved robustness of HODMD 

makes this tool as suitable to any type of calculations, even 

though when the calibration of d carried out by the user is not 

optimal. 

Figure 5 shows the time evolution of the velocity field 

in a single representative point of the domain, on a period 

of the 1/3-subharmonic frequency, and compares the region 

in which the analysis is performed (time ∼ 575), the attrac- 

tor (time ∼ 2900), and the extrapolation to the attractor using 
DMD-250 and the more precise tolerance defined in Eq. (18). 

 

 

 

 

 

have been performed using DMD-50, DMD-450, and DMD- 

475 with the rough tolerance. These values are out of the 

range of the optimal value for d, defined for this problem as 

d ∈ [200, 300]. The optimal d is set as the value in which 
the error of reconstruction of the original data is minimum.15

 

Table II shows the results obtained. As seen the performance 

of HODMD is worse when the value of d is not optimal, but 

the method still captures frequencies similar to the ones pre- 

viously obtained (attractor frequencies). In the three cases, 

HODMD calculates the fundamental frequency obtained in the 

experimental measurements. However, the 1/3-subharmonic 

frequency is only obtained in the case at DMD-450. The fun- 

damental frequency and its first harmonic are calculated with 

larger accuracy in the case at DMD-50 than at DMD-1, in 

good agreement with the better performance of HODMD than 

the standard DMD, but the solution is still incomplete com- 

pared to the results obtained with larger d. At DMD-450, 

the method calculates more frequencies, but the fundamental 

 
 

 

FIG. 5. Time evolution of the normal velocity in the cylinder wake in a single 

representative point. The figure compares the signal in the time interval (575, 

591) (red line), and the signal (black line), and its extrapolation using DMD- 

250 (blue crosses) in the attractor in the time interval (2900, 2916). 

 

 

 
 

FIG. 6. Reconstruction (time �  575). From top to bottom: a representative 
snapshot showing the velocity vector reconstructed using DMD-1, DMD-250 

with the rough tolerances defined in Eq. (18), DMD-1, DMD-250 with the 

precise tolerances defined in Eq. (18), and the original data. From left to 

right: streamwise, normal, and spanwise velocity. Data normalized with the 

maximum velocity value of the real signal. 

DMD-50 DMD-450 DMD-475 . . . 

 0.3869  0.3904 

   0.7807 

1.1654 1.1696, 1.21, 1.30, 1.13 1.1680 1.1711 

 1.5520  1.5614 

 1.9504  1.9518 

2.3253 2.3384, 2.3681  2.3421 

   2.7325 

   3.1228 

 3.5068, 3.5392  3.5132 

   3.9035 

   4.2939 

4.6740 4.6755  4.6842 

   5.0746 

   5.4649 

 5.8479  5.8553 

 



 

 
 

 
 

FIG. 7.  Counterpart of Fig. 6 but for extrapolation to the attractor (time 

� 2900). 

 

As seen, the difference among the transient solution and 

the converged solution in the attractor is around 12%, but 

the extrapolation solution matches quite well the attractor 

signal (maximum error smaller than 5%). This fact makes 

worthy the use of this technique for extrapolation instead 

of continuing the integration of the Navier-Stokes equa- 

tions, whose computational cost would be 2900/575 �  5 times 
larger. 

However, when the computational domain is larger, it is 

necessary to calculate global RMS errors, since the dynamics 

calculated in transient flows may not be highly accurate (some 

modes are missing or the frequencies calculated are not exact), 

and the results could affect some spatial areas more than oth- 

ers. Figures 6 and 7 show the outcome of the HODMD method 

(using data from the transient stage) for a representative snap- 

shot taken at times close to 575 and 2900 of the original data 

(these times have been adapted to take the same phase of the 

signal in both cases), respectively. Let us note that both per- 

manent and transient modes are used for reconstruction (high 

amplitude modes), but only permanent modes are used for 

extrapolation. Figure 6 gives the reconstruction of the data 

using DMD-1 and DMD-250, using both the rough and more 

precise tolerances defined in Eq. (18). The results in this figure 

indicate that the reconstruction of the original data (in the tran- 

sient stage) fails using both DMD-1 and DMD-250, although 

the performance of DMD-250 is much better, since the method 

at least is capable of reproducing the largest scales and their 

intensities. In addition, the results obtained using the rough 

tolerance are better. The reason is that, when the analysis is 

performed in transient flow, a large quantity of modes are spuri- 

ous and, the lower the tolerance, the larger quantity of spurious 

modes retained (all the modes shown in Figs. 2 and 3, crosses 

and circles, are used for this reconstruction). Figure 7 gives 

the extrapolation to the attractor using the same techniques. 

As can be seen, the outcomes of the method are much bet- 

ter now. On the one hand, the qualitative results obtained with 

DMD-1 and DMD-250 are both acceptable, though DMD-250 

shows a slightly better performance in all these cases. On the 

other hand, the results obtained with the more precise tolerance 

are also slightly better in all these cases. So, it is possible to 

conclude that DMD-1 and DMD-250 (based on data from the 

transient stage) better reproduce the attractor than their own 

reconstruction. The reason is that the transient modes used 

for reconstruction (but eliminated for extrapolation) are high 

amplitude modes, but spurious. A similar behaviour is found 

in the case of complex experimental data in which, at most, 

only the two modes with higher amplitudes can be used for 

reconstruction,15 unless special treatment for noise is used.17 

Thus, transient modes can be compared with noise and need 

to be treated in a similar way. 

Finally, the temporal root mean square (RMS) errors, cal- 

culated in a period of the smaller frequency (ω = 0.3904), give 

a quantitative estimation of the performance of the method. 

As in Fig. 5, the calculation of these errors uses 34 snap- 

shots. Figures 8 and 9 show the RMS errors calculated in 

the complete domain showing the regions of maximum and 

minimum errors. As expected, this error is smaller in the 

 

 

FIG. 8. Distribution of mean RMS errors in a period, calculated with the 

lower frequency, in the reconstruction of the original data using DMD-1 (left) 

and DMD-250 (right). 



 

 
 

 
 

FIG. 9.  Counterpart of Fig. 8 but for extrapolation results. 

 

 

cases of extrapolation than reconstruction, which is consis- 

tent with the plots in Figs. 7 and 8. This maximum value is 

∼1.5 × 10☞  2 for extrapolation using both DMD-1 and DMD- 

250 and the rough tolerances, while it is ∼2 × 10☞ 2 with the 
more precise tolerance, again using both DMD-1 and DMD- 

250. For reconstruction, using DMD-1, the maximum error 

is ∼35 × 10☞ 1 and ∼4 × 10☞ 1 for the rough and more pre- 

cise tolerances, respectively, while using DMD-250 it is ∼6 

× 10☞2 for both tolerances. Thus, DMD-250 is more robust than 
DMD-1. Even though the velocity contours used in extrapola- 

tion are quite similar when DMD-1 and DMD-250 are used, 

the global errors are maintained slightly smaller using DMD- 

250. However, DMD-1 also seems a suitable tool used for 

these purposes. Finally, let us mention that although the solu- 

tion is not exact, the time reduction makes it worthy to use 

HODMD for extrapolation. If one wants to reduce this extrap- 

olation error, we suggest using this method as a reduced order 

model with the following three steps: (i) run the code for a 

short period of time, (ii) extrapolate to the attractor (very large 

time), and (iii) fix the aforementioned errors running the code 

for a very short period of time, starting from the predicted 

attractor solution. This idea is beyond the scope of the present 

article but it remains as an open topic to be developed in future 

studies. 

Obviously, the outcomes of the method improve as the 

time at which the snapshots are collected is more advanced 

and/or the number of snapshots used is larger. This issue is 

considered in Figs. 10 and 11. In particular, Fig. 10 shows the 

frequencies, amplitudes, and growth rates calculated by DMD- 

1 and DMD700 in a more advanced time region. The new value 

d = 700 to apply the DMD-d algorithm has been selected after 

some calibration. As in the remaining applications, HODMD 

above, this value of d can be increased or decreased by 

50 without significant changes in the performance of the 

method. 

On the other hand, Fig. 11 shows analogous DMD com- 

putations performed in the far field plane described in Eq. (17). 

As in the previously presented application, circles and crosses 

correspond to the permanent and transient modes, respectively. 

As expected, the gap dividing transient and permanent modes 

is now slightly larger (as time passes by, the transient dynam- 

ics decays and the permanent dynamics is more converged, 

increasing the distance between both solutions). In addition, 

the number of transient modes calculated in the far field is 

 

 

 

 

 

 

 

 

 

 

 
 

FIG. 10. Counterpart of Fig. 2, but 

using DMD-700 and DMD-1 in a set 

of 1000 snapshots starting at time 825 

and considering the rough tolerances 

(top) and the more precise tolerances 

(bottom) defined in Eq. (18). 



 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 11. Counterpart of Fig. 10, but 

considering the y = 0-far-field defined 

in Eq. (17). 

 

 

 

 

 

 

 

 

 

 

 

 

 
also larger, since the number of snapshots now collected has 

increased. Table III gives the calculated permanent mode fre- 

quencies, shown in Figs. 10 and 11, and the results obtained 

in the attractor. These results show the robustness and good 

performance of DMD-700 when the conditions change. As 

expected, the performance of DMD-700 improves with the 

more precise tolerance as far as the data collected are closer to 

the attractor, since the method is capable of identifying and 

removing spatial redundancies and make profit of the real 

 
spatial modes. For this reason, DMD-700 identifies a larger 

number of the attractor patterns in both the near field and 

the far field, specially in the far field, since the computa- 

tional domain is larger (the more spatial information, the better 

performance of HODMD). On the contrary, the performance 

of DMD-1 is neither as robust or accurate in any of these 

cases since (i) using the rough tolerance, DMD-1 only identi- 

fies the experimental frequency and their harmonics (only the 

high amplitude frequencies) and (ii) using the more precise 

 

 
TABLE III.  Summary of the permanent frequencies ω identified in Figs. 2 and 3 and the attractor frequencies. 

Reference frequency (experiment): ωexp = 1.1624. 
 

 

Near field Far field Attractor 
 

   

Rough tolerance More precise Rough tolerance More precise Attractor 
 

DMD-1 DMD-d  DMD-1 DMD-d  DMD-1 DMD-d  DMD-1 DMD-d  . . . 

 0.3886  0.3853 0.3869     0.3603 0.3883  0.3904 

 0.7800   0.7816     0.7834 0.7808  0.7807 

1.1700 1.1689   1.1695  1.1699   0.0726 1.1698  1.1711 

 1.5547   1.5562     1.3457 1.5561  1.5614 

    1.9508     1.0158 1.9493  1.9518 

2.3401 2.3373  2.4180 2.3392  2.3400 2.3407  2.3250 2.3398  2.3421 

    2.7245     2.3372 2.7250  2.7325 

    3.1193     3.1658 3.1180  3.1228 

3.5109      3.5098    3.5094  3.5132 

    3.8934     3.8835 3.8936  3.9035 

          4.2861  4.2939 

4.6802 4.6811  4.6812    4.6808   4.6790  4.6842 

    5.0623      5.0617  5.0746 

            5.4649 

 5.8517      5.8513   5.7753  5.8553 



 

 

TABLE IV.  Counterpart of Table III with the rough tolerance in the near field 

but using values of d out of its optimal interval. 

 
 

 
 

FIG. 12. The mode associated with the mean flow [top, plotting, from left 

to right, � (ux ), � (uy ), and � (uz )] and the mode associated with the experi- 

mental frequency [bottom, plotting, from left to right, � (ux ), 5(ux ), � (uy ), 

5(uy ),� (uz ), 5(uz )]. 

 

experiments, and its first and second harmonics. The third 

harmonic is also obtained at DMD-900. The frequencies are 

calculated with high accuracy in all these cases, but in any of 

   them is neither possible to identify the frequency related to the 

1/3-subharmonic nor its harmonics. Once more, the robustness 

tolerance, DMD-1 is not even capable of capturing the exper- 

imental frequency, but divides this mode into three distinct 

modes. This fact makes DMD-d a suitable tool to be used for 

pattern identifications when the dynamics are not converged 

(numerical simulations or complex experiments), when the 

data collected are limited in space (experiments) or when the 

data are noisy, since noise can be somehow equated to transient 

dynamics (experiments). 

Again, in order to show the robustness of HODMD, 

the same calculations have been performed using DMD-500, 

DMD-900, and DMD-975 with the rough tolerance in the 

near field. These values are out of the range of the optimal 

value for d, defined for this problem as d ∈ [650, 750]. As in 
the previous case, the optimal d is set as the value in which 

the error of reconstruction of the original data is minimum. 

Table IV shows the results obtained. As seen, in the three cases, 

HODMD captures the fundamental frequency obtained in the 

of HODMD methodology has been put in evidence; neverthe- 

less, the calibration process carried out to obtain the optimal 

value of d is necessary. 

Let us now consider some of the DMD modes, as calcu- 

lated using DMD-700 with the more precise tolerances. The 

dominant modes are the mean flow (only real part) and the 

experimental frequency, which are considered in Fig. 12. As 

can be seen, the streamwise component of the mean flow pre- 

serves very well the up-down reflection symmetry, but the 

normal and spanwise components preserve this symmetry only 

approximately. This is due to the combination of numerical 

errors and DMD errors, which manifest themselves in the 

cross-flow velocity components, which for the mean flow are 

much smaller than the streamwise component. Concerning the 

mode associated with the experimental frequency, the lower 

plots in Fig. 12 give not only the real and imaginary parts 

of the three velocity components but also the intensity of the 

 

 

 

 

 

 

 

 

 

 

 
FIG. 13.  Counterpart of Fig. 12, considering the indi- 

cated modes. 

 Near field, rough tolerance (18)   Attractor 

DMD-500 DMD-900 DMD-975  . . . 

    0.3904 

    0.7807 

1.1715 1.1701 1.1703  1.1711 

    1.5614 

    1.9518 

2.3538 2.3406 2.3410  2.3421 

    2.7325 

    3.1228 

3.5117 3.5107 3.5139  3.5132 

    3.9035 

    4.2939 

 4.6803   4.6842 

    5.0746 

    5.4649 

    
5.8553 

 



 

 

mode, defined as  

 
 

I =  |ux |2 + |uy |2 + |uz |2. (19) 
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As can be seen, the up-down symmetry is preserved in those 

regions where the intensity is larger, as expected. Obvi- 

ously, the real and imaginary parts are not proportional to 

each other, which is consistent with the traveling charac- 

ter of the pattern, which is slightly curved in the spanwise 

direction. 

Some of the remaining modes are considered in Fig. 13, 

where it can be seen that (i) again the real and imaginary 

parts are far from being proportional to each other and (ii) 

the up-down symmetry is generally not well-preserved, which 

invoking Fig. 4 is a consequence of the fact that these modes 

exhibit much lower amplitudes than those in Fig. 12. On 

the other hand, it is interesting to note that the new fexp/ 3- 

mode exhibits a chevron-like pattern, suggesting a relation 

between these results and the experimental results obtained by 

Williamson.27 As predicted by Williamson, who performed 

experiments in a water tunnel to study a cylinder which is 

infinitely long, the chevron-like patterns were found when 

the flow over the span was matching the end conditions of 

such a cylinder. In the numerical simulations, a periodicity 

condition is imposed on the two sides of the computational 

domain. Thus, the three-dimensional flow is enforced to appear 

with a specific wave length. This suggests that the mode rep- 

resented by the chevron-like pattern, which is a low ampli- 

tude mode, is necessary to adjust the solution to the specific 

length Lz . 

 

V. CONCLUDING REMARKS 

The extrapolation from the transient behavior approach- 

ing an attractor to the attractor itself  has  been  consid- 

ered using DMD-like methods, namely, standard DMD, and 

its recently introduced higher order extension,16 HODMD. 

This new method has been briefly described and its per- 

formance is compared with classical DMD in the analysis 

of numerical simulations on the three-dimensional cylinder 

wake. 

The conclusion is that the intended extrapolation is fea- 

sible using DMD-like methods, especially using HODMD. 

In particular, the relevant frequencies involved in the attrac- 

tor are fairly well anticipated, as are the involved patterns. 

This conclusion makes these methods potentially useful to 

both save computational time in numerical simulations and 

reduce the storage needs in PIV measurements, especially near 

bifurcation points, where the approach to the attractor can be 

extremely slow. 
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