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Higher Order Equivalent Edge Currents for 
Fringe Wave Radar Scattering by Perfectly 

Conducting Polygonal Plates 
Olav Breinbjerg, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZEEE 

Abstract--Two sets of higher order equivalent edge currents 
are introduced which, in combination, account for the first-, the 
second-, and part of the third-order edge diffraction caused by 
the fringe wave surface current induced on a perfectly conduct- 
ing polygonal plate in a radar scattering configuration. The first 
set represents the fringe wave surface current excited by the 
incident plane wave at the leading edge on a finite incremental 
strip extending from the leading edge to the trailing edge. The 
second set represents the fringe wave surface current excited at 
the trailing edge by the incident leading edge fringe wave surface 
current on a finite incremental strip extending from the trailing 
edge to the third edge. The fringe wave surface current on the 
plate is approximated by the fringe wave surface current on 
half-planes appropriately conforming to the leading and trailing 
edges of the plate. For the second set of higher order equivalent 
edge currents, this requires a new model for the trailing edge 
fringe wave surface current. The proposed model will ensure 
that the normal component a t  the trailing edge of the approxi- 
mate fringe wave surface current represented by the equivalent 
edge currents is zero. Both sets of higher order equivalent edge 
currents are defined to be placed at the leading edge, and since 
they contain very few singularities, these are numerically well 
behaved. Numerical results for the bistatic radar cross section 
of a square plate show that significant improvements over a 
first-order approach are obtained from the use of the proposed 
higher order equivalent edge currents. 

I. INTRODUCTION 

E method of equivalent edge currents (EEC's) con- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT" stitutes a versatile high-frequency technique for the 
analysis of edge diffraction. The essential feature of the 
EEC method is that contributions from all edge points are 
explicitly taken into account. The diffraction process at 
each edge point is expressed in terms of electric and 
magnetic EEC's which, when employed in a line radiation 
integral along the circumference, yield the resulting field. 
There are three different types of EEC's which can be 
related to the total, the physical optics (PO), or the fringe 
wave (FW) surface currents induced on the scattering 
structure. Depending on which type of EEC is being 
employed in the line radiation integral, the resulting field 
will furnish an asymptotic approximation to the diffracted 
field, the PO-diffracted field, or the FW field. Accordingly, 
the three types of EEC's are referred to as geometrical 
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theory of diffraction EEC's (GTDEEC's), physical optics 
EEC's (POEEC's), and physical theory of diffraction 
EEC's (PTDEEC's). Furthermore, the EEC's are termed 
first- or higher order according to whether the edge 
interaction is neglected or taken into account. Since the 
EEC method considers the contributions from all edge 
elements, its applicability does not-in contrast to the 
ray-optical diffraction techniques-rely on the existence 
of isolated stationary edge points, and consequently, the 
EEC method can be used for configurations where the 
ray-optical techniques cannot. Works on the theoretical 
aspects and applicability of the EEC method are numer- 
ous; however, fundamental ideas were developed and es- 
tablished by Millar [l], Mitzner [21, Michaeli [3], and 
Shore and Yaghjian [41. 

The purpose of this paper is to present a new approach 
for the inclusion of the higher order edge diffraction in 
the EEC method. This approach applies to monostatic as 
well as bistatic radar scattering from perfectly conducting 
polygonal plates. Two sets of higher order PTDEEC's are 
formulated. The first set accounts for the first-order edge 
diffraction and part of the second-order edge diffraction. 
This set is derived through integration of the FW surface 
current excited at the leading edge of the scatterer by the 
incident plane wave along a finite, arbitrarily oriented 
incremental strip extending from the leading edge to the 
trailing edge. This FW surface current is approximated by 
that of a half-plane conforming to the leading edge. The 
second set accounts for the remaining part of the second- 
order edge diffraction and part of the third-order edge 
diffraction. This set is derived through integration of the 
FW surface current excited at the trailing edge by the 
incident zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF W  surface current from the leading edge. The 
integration is carried out along a finite incremental strip 
oriented in the direction of the trailing edge Keller cone 
and extending from the trailing edge to the third edge. 
The essential step in the derivation of the second set of 
the higher order PTDEEC's consists in establishing an 
expression for the trailing edge FW surface current. This 
is achieved by noting that for a half-plane illuminated at 
grazing incidence, the FW surface current can be ex- 
pressed in terms of the incident PO surface current at the 
edge. The FW surface current excited at the trailing edge 
is then ascribed the same functional dependence on the 
value of the incident leading edge FW surface current at 
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the trailing edge. This new model will ensure that the 
component normal to the trailing edge of the approximate 
FW surface current represented by the PTDEEC's is zero, 
in agreement with physical considerations. Since both sets 
are based on finite incremental strips, the derived PT- 
DEEC expressions contain very few singularities, and the 
fields produced by these are thus finite for most directions 
of incidence and observation. Both sets are defined to be 
placed at the leading edge. In this paper, only the calcula- 
tion of the FW field is being considered. It is noted, 
however, that the PO field is rigorously obtained by apply- 
ing the POEEC's [5], [6]. When the two sets of higher 
order PTDEEC's are added to the POEEC's, a combined 
set of EEC's is obtained which accounts for first-, second-, 
and part of the third-order edge diffraction. The scattered 
field is subsequently obtained by evaluation of one line 
radiation integral along the circumference of the scat- 
terer. For the sake of completeness, this paper also in- 
cludes a set of first-order PTDEEC's which accounts for 
the first-order edge diffraction. It is derived through inte- 
gration of the FW surface current excited at the leading 
edge by the incident plane wave along an infinite, arbitrar- 
ily oriented incremental strip. This set is general in the 
sense that it comprises a number of previously reported 
expressions as special cases. The first- as well as the 
higher order PTDEEC's proposed in this paper pertain to 
flat plate scatterers since the derivation is based on Som- 
merfeld's half-plane solution [7]. However, the proposed 
procedure can be enhanced to also apply to polyhedral 
objects provided that the derivation of the PTDEEC's is 
based on the solution for the wedge. 

It should be noted that the proposed approach does not 
account for the surface currents caused by the corners of 
the scatterer. Furthermore, it applies, in a strict sense, 
only to scatterers with straight edges. For curved edges, 
the approximate FW surface current represented by the 
PTDEEC's does not, in general, closely approximate the 
actual FW surface current; this was shown by Shore and 
Yaghjian [81. Nevertheless, numerical results for the circu- 
lar disk [8], 191 reveal that good agreement can be achieved 
for the scattered field even in this case. 

The outline of this paper will be as follows. In Section 
11, the coordinate systems employed to specify the scatter- 
ing configuration and the EEC's are introduced; further- 
more, some previous works on higher order EEC's are 
discussed, and the half-plane surface current is given. In 
Section 111, the set of general first-order PTDEEC's is 
presented. Section IV deals with the first set of higher 
order PTDEEC's. In Section V, the second set of higher 
order PTDEEC's is derived on the basis of the new 
expression for the trailing edge FW surface current. Sec- 
tion VI contains numerical results for a square plate 
configuration; first-order EEC results, higher order EEC 
results, and MOM results are compared. 

11. BACKGROUND 

The radar scattering configuration is specified as fol- 
lows. The scatterer is an infinitely thin, perfectly conduct- 

. .. 

ing, flat, polygonal plate residing in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxy plane of a 
rectangular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  z) coordinate system with a spherical 
(r,e, +) coordinate system associated in the usual manner. 
Superscript "i" designates parameters relating to the inci- 
dent field. The normal vector on the illuminated surface is 
denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri and it coincides with 2. The observation 
point is at infinity, and the direction of observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is 
thus independent of the position on the scatterer. The 
incident field is a time-harmonic, linearly polarized, ho- 
mogeneous plane wave. The time factor exp ( j w t )  is sup; 
pressed, and the incident electric and magnetic fields E' 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHi  are thus given by 

E'( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF) = exp ( - j kk .  F) 

Hi( F) = Pi exp ( -jkk * F) 

wherein E;I and are constant amplitute vectors, k is 
the free-space propagation constant, and k is the propa- 
gation vector: 

k =  - (  P s i n e 1 c o s + ' + 9 s i n 8 ' s i n ~ '  + i c o s e L ) .  (3) 

Based on the known behavior of the half-plane surface 
current (see later), the establishment of the high-frequency 
FW surface current on the scatterer can be regarded as 
taking place in the manner depicted in Fig. 1 wherein the 
octagon represents an arbitrary flat, polygonal plate. When 
the plane wave is incident on an edge point A ,  a FW 
surface current is excited here. This surface current prop- 
agates away from the edge in the direction defined by the 
intersection of the plate and the Keller cone pertinent to 
the edge point A.  In the following, this edge point being 
illuminated by the plane wave is referred to as the leading 
edge point, and the excited F W  surface current is referred 
to as the leading edge FW su$ace current. This leading 
edge FW surface current propagates until it is intercepted 
by another edge point B, henceforth referred to as the 
trailing edge point. The diffraction taking place here in 
turn excites a trailing edge FW su$ace current which prop- 
agates along the intersection of the plate and the Keller 
cone pertinent to the trailing edge point B until a third 
edge point C is reached. In principle, this process contin- 
ues indefinitely; however, due to the fading of the surface 
current amplitude, the successive diffractions become less 
and less significant. Obviously, all edge points are leading 
since the entire circumference is illuminated by the inci- 
dent plane wave. However, all edge points are not neces- 
sarily also trailing as they are not all illuminated by a 
surface current excited at another edge point. The leading 
edge incremental stnp and the trailing edge incremental stnp 
are defined as the strips of infinitesimal width extending 
from the edge elements at the leading and trailing edge 
points, respectively. 

A local edge coordinate system is introduced to de- 
scribe the scattering configuration with respect to an 
arbitrary edge point on the scatterer. With f l  being the 
leading edge tangent unit vector, the local edge coordi- 
nate system at the leading edge point is specified as 
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leading edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPrior to 1987, such works were reported by Millar [lo], 

ill], Burnside and Peters [12], Knott and Senior [13], Sikta 
[141, and Wang and Medgyesi-Mitschang [15]. These works 
possess some common features. First, they all concern 
GTDEEC's. Second, the incident field exciting the higher 
order GTDEEC's at a given edge point is found as the 
field caused by the first-order GTDEEC's along all other 
parts of the circumference. This incident field is calcu- 
lated either through an explicit integration [13], [15] em- 
ploying a line radiation integral or through an implicit 
integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 101-[121, [ 141 employing the stationary phase 
formula or UTD [16]. Third, being based on ray-optics, 
these GTDEEC's only consider three of the four angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a ' ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp', a ,  p )  specifying the directions of incidence and 
observation, whereas all four angles are needed at nonsta- 

incremental strip trailing edge 
incremental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstri 

- 
surface trailingedgem' current I L$- 
A leading edge point leadang edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFW E', A' 

C :  third edge point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB: trailing edge point surface current 

tionary edge points where p and p' differ. 

PTDEEC's. These complement his first-order PTDEEC's 

Fig. 1. The establishment of the high-frequency F W  surface current on 
a polygonal plate illuminated by a plane wave, and the local leading and In 1987, Li7i derived a set of second-order 
trailing edge coordinate systems. 

follows (see Fig. 1). A rectangular ( x , ,  y,, 2,)  coordinate 
system is employed so that 2, and 9, coincide with f, and 
A, respectively. Furthermore, a rectangular ( x l ,  y, ,  z,)  co- 
ordinate system is employed at the trailing edge point so 
that Zt and 9, coincide with the trailing edge tangent unit 
vector ft and A, respectively. In the leading edge coordi- 
nate system, the four angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf, p(, a,., and are 
introduced to specify the directions of incidence and 
observation: 

a/ = arctan (i . j , / L  s i , ) ,  o I a: I 7r (4) 

( 5 )  

p, = arccos(i.i,),  0 I p, I 7r. (7) 

p( = arccos (i . i , ) ,  o I pi I 7r 

a, = arctan (i?*f,/i?*i!), 0 I a/ I 27r (6) 

The direction ii, of the leading edge incremental strip 
forms an angle y, with the leading edge tangent unit 
vector fl. It is noted that the leading edge incremental 
strip does not necessarily have to be oriented along the 
intersection of the plate and the Keller cone, in which 
case y, would equal p(. The distance along the leading 
edge incremental strip from the leading edge point is 
denoted by U,, and the length of the finite leading edge 
incremental strip, i.e., the distance between the leading 
and trailing edge points, is d,. The parameters ii,, U,, and 
d,  are defined in an analogous manner for the trailing 
edge incremental strip, as also indicated in Fig. 1. The 
angle between the trailing edge incremental strip and the 
trailing edge is equal to the angle between the leading 
edge incremental strip and the trailing edge: 

p( = arccos(ii,-i,),  O I p: I 7r. (8) 
A detailed review examining and comparing several 

works on theoretical developments and practical applica- 
tions of the EEC method is given elsewhere [9]; in the 
following, only reported works on higher order EEC's will 
be discussed. 

[181 which represent the leading edge FW surface current 
on an incremental strip extending to infinity in the direc- 
tion specified by the intersection of the scatterer and the 
Keller cone. The error of the first-order PTDEEC's, con- 
stituted by the part of the incremental strip extending 
beyond the actual scatterer, is cancelled by simultaneously 
applying the second-order PTDEEC's, representing the 
leading edge FW surface current on the extending part of 
the incremental strip, at the trailing edge of the scatterer. 
Michaeli's approach takes into account only part of the 
second-order edge diffraction since the diffraction process 
at the trailing edge is not entirely included; it is not 
ensured that the approximate FW surface current compo- 
nent perpendicular to the trailing edge is zero. 

In 1989, Shore and Yaghjian [8] derived a set of incre- 
mental length diffraction coefficients (ILDC's) relating to 
a finite incremental strip. These ILDC's are to be applied 
at the leading edge and used instead of the first-order 
ILDC's [4]. Furthermore, the inclusion of the diffraction 
at the trailing edge was addressed by considering the 
behavior of the half-plane surface current. Assuming that 
the direction of incidence is close to edge-on ( a '  = 7r) 

and that the distance from the edge is large, some terms 
of the surface current can be neglected. The total surface 
current can then be expressed as the PO surface current 
multiplied by a factor depending on the direction of 
incidence, the direction of the incremental strip, and the 
distance from the edge. The same factor is then applied to 
the ILDC's at the trailing edge of the actual scatterer. 

In 1990, Ivrissimtzis [19] introduced a set of second- 
order PTDEEC's to be placed at the trailing edge. These 
equal Michaeli's first-order PTDEEC's excited by the 
spectrum of inhomogeneous plane waves representing the 
field diffracted from the leading edge. The field diffracted 
at the trailing edge is then expressed as a double integral; 
one is the integral along the trailing edge, while the other 
is the integral over the spectral components of the sec- 
ond-order PTDEEC's. The former integral is evaluated 
analytically. The latter integral is evaluated asymptoti- 
cally, and the two leading terms are retained. The first of 
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these equals Michaeli's first-order PTDEEC's excited by 
the UTD ray-optical field from the leading edge, while the 
second accounts for slope diffraction. Since Michaeli's 
first-order PTDEEC's represent the FW surface current 
on an infinite incremental strip, Ivrissimtzis' approach 
implies that there are surface currents outside the actual 
scatterer, and these can cause errors for directions of 
observation close to the plane of the scatterer [9]. 

Recently, Ufimtsev [201 reported an approach formu- 
lated in terms of elementary edge waves (EEW's). The 
diffraction at the trailing edge is expressed as the sum of 
two terms. The first is the field generated by the first-order 
EEW's placed at the trailing edge, with the incident field 
taken as a ray-optical field diffracted at the leading edge. 
The second, a slope diffraction term, is expressed by 
EEW's employed at the trailing edge and determined as 
the derivatives of the first-order EEW's with respect to 
the direction normal to the surface of the scatterer. 
Ufimtsev's approach is also based on infinite incremental 
strips, and thus introduces surface currents outside the 
actual scatterer. 

Since the derivation of the PTDEEC's, in subsequent 
sections, is based on the solution to the half-plane scatter- 
ing problem, this configuration is considered in the follow- 
ing (see Fig. 2). The local edge coordinate system is 
applied at an arbitrary edge point (the subscripts on the 
coordinates are omitted since only one edge is involved). 
The incident plane wave is given by (1)-(2). From Som- 
merfeld's solution [7] for the total field, the PO and FW 
surface currents along the incremental strip forming an 
angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy with the half-plane edge are found to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J X ~ " ( U )  = 2(FI;.;)exp(jku(sin ysin p' cos a' 

-cosy cos p ' ) )  (9) 

* exp (jku(sin y sin p' cos a' - cos y cos p ' ) )  

(10) 

2 

e J n / 4  

J,"(u) = -(Ri.i)4-F d2kus inys inp 'cos-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J;F 

. exp (jku(sin y sin p' cos a' - cos y cos p ' ) )  

(11) 

J X u )  

c o s p ' c o s a '  1 - sin a' 

sin p' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 sin p 
- -(E;,. ;)- 

2 
J2ku sin y sin P '  cos - 

. exp (jku(sin y sin p' cos a' - cos y cos p ' ) )  

isinp' + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAic0sP' 

j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA------I I -  

2 

I 

I 

I 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
;--ti? E' n' 

Fig. 2. Perfectly conducting half-plane illuminated by a plane wave. 
The shadowed region indicates the incremental strip starting at the edge 
point z = 0 and extending in the direction 12. 

e-111/4 1 
.4- 

. exp ( - jku ( s inys inp '+cosycosp ' ) ) .  (12) 

sin P'd2ku sin y sin p' 

Herein, F denotes the Fresnel function: 

F ( x )  = LXexp ( - j t 2 )  dt (13a) 

(13b) 

with 

and 
F ( 0 )  = 6 exp ( - j ~ / 4 ) / 2  

F ( x )  - exp ( -jx2)/j2x, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 4 W. (13c) 

When the argument of the Fresnel function becomes 
large, use of the asymptotic representation (13~)  shows 
that the FW surface current (11)-(12) is oriented in and 
propagating in the direction of the Keller cone: i? sin p' 
+ 2 cos p'. In the derivation of the second set of the 
higher order PTDEEC's, use will be made of the expres- 
sions for the half-plane FW surface current in the special 
case of grazing incidence ( a '  = 0). In this case, the in- 
duced FW surface current along the Keller cone ( y  = p ' )  
can be expressed in terms of the PO surface current at 
the edge (U = 0): 

.exp[jku(sin' p' - cos' p ' ) ]  (14) 
-2eJ"/4 

J,f"(u) = J,P"(O)- 
J;F 

(15) 

1 e - ~ 2 k u  sin' p' 

. F(J2kU sin P ' )  - ;J2kU sin i 

. exp [jku(sin' p' - cos2 P I ) ] .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111. FIRST-ORDER PTDEEC's 

In the EEC method, the asymptotic approximation to 
the FW field is found by evaluating a line radiation 
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integral over PTDEEC's along the circumference of the 
scatterer, i.e., 

(16) 

Herein I p t d  and Mptd are the electric and magnetic 
PTDEEC's, respectively, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 is the free-space impedance, 1 
denotes the arc length along the circumference of total 
length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is the distance from the element of 
integration to the observation point. By identifying the 
expression (16) with an expression for the FW field ob- 
tained by an asymptotic reduction of the surface radiation 
integral over the induced FW surface current, Michaeli 
[31, [18] established the relations which express the PT- 
DEEC's in terms of the induced FW surface current on 
the scatterer. The FW surface current on the scatterer 
was then approximated by the FW surface current on a 
canonical structure (the wedge) conforming to the actual 
scatterer at the edge point in question; for the flat plate, 
the canonical structure is the half-plane. Based on 
Michaeli's work, the half-plane first-order PTDEEC's 
(Iftd, Mftd) can thus be expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X~m~,hV(u , )exp ( j k r ^ .9 ,u , )  du, (17) 

(18) 

Hence, the first-order PTDEEC's are found through an 
integration of the half-plane FW surface current along an 
incremental strip starting at the edge and extending to 
infinity in the direction 9,. The expressions (171-418) 
differ from those of Michaeli [18] in two aspects. First, 
Michaeli fixed the orientation of the incremental strip in 
the direction of the Keller cone, i.e,. 9, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=i ,  sin p( + 
2, cos p;. In the expressions above, the direction is not 
fixed, and upon evaluation of the integrals, this direction 
will thus appear parametrically in the explicit expressions 
for the PTDEEC's. Second, in Michaeli's expressions, the 
upper limit for the integral is absent, thus implying that 
only the lower end point contribution of the integral 
should be considered. However, for the half-plane FW 
surface current, the final expressions are the same whether 
the lower end point contribution is extracted using stan- 
dard asymptotic techniques or the integration is carried 
out explicitly to infinity. Since the singularities of the 
PTDEEC's can be explained by realizing that the PT- 
DEEC's represent the FW surface current on an infinite 
incremental strip, it seems appropriate to indicate this in 
the integral expressions (17)-(18). It is noted that Michaeli 
in his 1986 work on POEEC's [21] did employ an arbitrary 

strip direction, and consequently derived POEEC expres- 
sions containing the strip direction as a parameter. 

Upon insertion of the half-plane FW surface current 
(1 1)-(12) in the integral expressions for the first-order 
PTDEEC's (17)-(18), the following explicit expressions 
are found: 

a; 
2fi sin - 

1) j k l  (sin p/)3/2 

,f'd = ( E ' . ?  - 2 

1 

a; 4- + J2sinp;cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
r 

with 

U ,  = sin p, cos a, + cot y,(cos p, - cos p i )  (21) 

and 

= - j J m  

for (sin p( - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvr )  < 0. (22) 

These PTDEEC's comprise previously reported expres- 
sions as special cases: by orienting the incremental strip 
perpendicular to the edge (y ,  = 90"), the EEC analogs of 
the ILDC's introduced by Mitzner [2] are recovered. If the 
incremental strip is oriented along the Keller cone (7, = 

pi) ,  the Michaeli PTDEEC's [18] are found. If the incre- 
mental strip is oriented along the projection onto the 
half-plane of the difference between the directions of 
observation and the Keller cone, the PTDEEC's reported 
recently by Ando et al. [22] are retrieved. It is emphasized 
that for numerical calculations, the incremental strip must 
be oriented in accordance with Michaeli's proposal since 
the FW surface current propagates in the direction of the 
Keller cone. The advantage of the generality of the ex- 
pressions (19)-(20) is thus more conceptual than practical. 
It is observed from (21) that for edge stationary points 
where the polar angles of incidence and observation are 
equal ( = pi) ,  the PTDEEC's (19)-(20) are indepen- 
dent of the orientation of the infinite incremental strip 
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specified by the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy,. Finally, it is noted that expres- 
sions for ILDC's based on an arbitrary direction of the 
infinite incremental strip were reported by Shore and 
Yaghjian [4]; thus, the expressions (191420) constitute the 
EEC analogs of their ILDC expressions. 

wherein zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"*" denotes the complex conjugate. It is observed 
that the first set of the higher order PTDEEC's (23426) 
depends on the tangential components of the incident 
field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E' ?,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH i  . ?/I, the direction of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a;,  @(I, 
the direction of observation (a,, PI) ,  the direction of the 

IV. FIRST SET OF HIGHER ORDER PTDEEC's 

The first set of the higher order PTDEEC's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I$d, Mfid) 
represents the half-plane FW surface current on a finite 
leading edge incremental strip of length d,. This incre- 
mental strip can be oriented arbitrarily. The relations 
expressing these PTDEEC's in terms of the FW surface 
current are readily obtained from the corresponding rela- 
tions for the first-order PTDEEC's (17)-(18) by introduc- 
ing a finite upper limit of integration: 

X ~ ~ ' ~ ~ ( u , ) e x p ( j k r ^ . C , u , )  du,. (24) 

incremental strip y,, and its length d,. Consequently, 
when the PTDEEC's are employed in the line radiation 
integral (161, these parameters must be determined at 
each element of integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An asymptotic expansion of the first set of the higher 
order PTDEEC's (251426) in the limit kd, + is ob- 
tained [9] by employing the asymptotic representation of 
the Fresnel function (13c). The first term in this expan- 
sion, of order k p l ,  equals the first-order PTDEEC's, and 
thus is associated with the first-order edge diffraction. The 
second term, of order k - 3 / 2 ,  depends only on the tangen- 
tial component of the incident magnetic field at the lead- 
ing edge and accounts for part of the second-order edge 
diffraction. 

The singular problems associated with the first-order 
PTDEEC's (19)-(20), in particular the so-called Ufimtsev 
singularity [18], have been eliminated from the first set of 
the higher order PTDEEC's (25)-(26). When these are 
employed in the line radiation integral (16) and the incre- 
mental strip is oriented in the direction of the Keller 
cone, the calculated field will be finite for all directions of 

The explicit expressions for these PTDEEC's are found 
through an evaluation of the integrals (23)-(24) employ- 
ing the half-plane FW surface current (1 1)412): 

incidence and Observation. 
The first set of the higher order PTDEEC's (25)-(26) 

are based on incremental strips of finite length. By using 
the finite strips rather than the infinite strips underlying 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai the first-order PTDEEC's, the source of error constituted 
by that part of the infinite strip extending beyond the 
actual scatterer is eliminated. Michaeli's approach [17] 
and this approach should thus lead to identical results. 
However, there are some differences between the two 
approaches to be noted. First, Michaeli orientates the 
incremental strip in the direction of the Keller cone prior 

4e-1m/4 sin - 

k [ 6  sin p; 2 (  

- 
Igd = (EL;,)-- 

cot p; cos ff; 

4e-1"/4 
+(".?,)- 

k 6  

4 
+Cot @I 'Os ai)v l  - 'Os - 

2 

to the derivation of the PTDEEC expressions, while the 

PTDEEC expressions (25)-(26) hold for any direction Of p;v2) (25) 

the incremental strip. However, as in the first-order case, 
the incremental strip must be oriented in the direction of 
the Keller cone in numerical calculations. Second, whereas 
the approach suggested above leads to a set Of higher 

(26) 

The term v, was defined above (21), and the terms VI and 
V, are given by 

- 4e-j"/4< sin a, 

k 6  sin PI 
M,p:d = (" . f,)-...- - 

/(sin cos a: + v,) 
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order PTDEEC's to be applied at the leading edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstead 
of the first-order PTDEEC's, Michaeli's approach intro- 
duces a set of second-order PTDEEC's to be applied at 
the trailing edge, and used together with his first-order 
PTDEEC's [ 181. Consequently, the elimination of the 
Ufimtsev singularity in Michaeli's approach depends on 
the cancellation of two opposite singularities present in 
his first and second-order PTDEEC's. In contrast, the 
Ufimtsev singularity has been removed from the PT- 
DEEC's expressions (2514261, and these are thus numeri- 
cally well behaved. Another consequence is that the de- 
termination of the limits of the radiation integral along 
the trailing edge required by Michaeli's approach is 
avoided by the approach suggested above. 

The approach presented here for the finite leading edge 
strip, yielding the first set of higher order PTDEEC's 
(2514261, corresponds to the approach by Shore and 
Yaghjian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8] for ILDC's. In both approaches, the derived 
expressions represent the half-plane FW surface current 
on an arbitrarily oriented, finite incremental strip. In both 
approaches, the Ufimtsev singularity is thus removed from 
the analytical expressions which are to be integrated along 
the leading edge. The differences are that the approach 
herein is formulated in terms of PTDEEC's, while the 
approach by Shore and Yaghjian is formulated in terms of 
ILDC's, and that the derivations employed in the two 
approaches are quite different. 

The field produced by the first set of the higher order 
PTDEEC's will, in most cases, provide a better approxi- 
mation to the FW field than the field of the first-order 
PTDEEC's. Nevertheless, it does not account properly for 
the diffraction at the trailing edge. This is manifest in the 
approximate surface current represented by the first set of 
the higher order PTDEEC's: since the half-plane surface 
current on the leading edge incremental strip is oriented 
in the direction of the Keller cone, it will have a compo- 
nent normal to the trailing edge, in disagreement with 
physical considerations. The inclusion of the second set of 
the higher order PTDEEC's in the next section will elimi- 
nate this problem. 

V. SECOND SET OF HIGHER ORDER PTDEEC's 

In order to define the second set of the higher order 
PTDEEC's, the trailing edge FW surface current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj: 
excited at the trailing edge due to the incident leading 
edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFW surface current .flh must first be determined. In 
Section 11, it was pointed out that for the case of a 
half-plane illuminated at grazing incidence ( a i  = 01, the 
FW surface current excited at the edge can be expressed 
in terms of the incident PO surface current (1414151. 
This half-plane problem is analogous to the plate problem 
where the trailing edge F W  surface current is excited at 
the trailing edge due to the incident leading edge FW 
surface current; see Fig. 3. Consequently, an expression 
for the trailing edge FW surface current can be obtained 
by assuming it possesses the same functional dependence 
on the value of the incident leading edge FW surface 
current at the trailing edge as the half-plane FW surface 

r - - - - - -  -9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

21 

(b) 

Fig. 3. Analogy between (a) the FW surface current excited at the 
half-plane edge due to the incident PO surface current associated with a 
plane wave at grazing incidence, and (b) the trailing edge F W  surface 
current excited at the trailing edge of the actual scatterer due to the 
incident leading edge FW surface current. 

current has on the value of the incident PO surface 
current at the half-plane edge. The expression for the 
trailing edge FW surface current along the trailing edge 
Keller cone is thus obtained from the expressiocs (141-(151 
by substituting j P O  and jfw with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjlfw and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJtfw, respec- 
tively: 

* exp [ jkut(sin2 /3( - cos2 p i ) ] .  (30) 

It is noted that the components of the FW surface cur- 
rents appearing in these expressions are the components 
in the local trailing edge coordinate system. The relations 
between the components of the leading edge FW surface 
current in the local trailing and leading edge coordinate 
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systems are polarization of this, the suggested model will ensure that 
the component of the leading edge FW surface current 
normal to the trailing edge is cancelled by a similar but 
oppositely directed component of the trailing edge FW 
surface current. This is verified by setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, equal to zero 
in the expression for the trailing edge FW surface current 

(29). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJlf"x,(Ut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) = cos ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP/ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP;')Jlf",,(ur = 4 )  

- sin ( + p t ) J l f " , , ( U l  = d , )  (31) 

J,;,(U, = 0) = sin( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( + p;)~,f"x,,(u, = d , )  

and the value of the leading edge FW surface current at 
the trailing edge expressed in the leading edge coordinate 
system is subsequently obtained from the expressions for 
the half-plane FW surface current (1 1)-(12). It is noted 
that the leading edge incremental strip has been oriented 
along the intersection of the scatterer and the leading 
edge Keller cone, i.e., y, = p; or ii, = i ,  sin p; + 

The analogy applied here is approximate since the 
leading edge FW surface current does not, in general, 
possess the characteristics of the PO surface current at 
grazing incidence on the half-plane. If the argument of 
the Fresnel function appearing in the expressions for the 
FW surface current (11)-(12) is large, the FW surface 
current locally takes the form of the PO surface current: 
the constant phase contours are parallel straight lines, 
and the orientation of the current is perpendicular to 
these, i.e., in the direction of propagation, which also 
coincides with the intersection of the scatterer and the 
Keller cone. This is seen by employing the asymptotic 
representation of the Fresnel function (13c) in the FW 
surface current expressions (11)-( 12). In this case, the 
analogy is accurate. If the argument of the Fresnel func- 
tion is small, the FW surface current may not possess the 
characteristics of the PO surface current, and the analogy 
may become less accurate. Two important cases leading to 
a small argument are those in which either the separation 
between the leading and trailing edges is small, kd, < 1, 
or the direction of propagation of the incident plane wave 
is close to edge-on at the leading edge, a; = T. The first 
case occurs when the leading and trailing edge points are 
close to a comer of the polygonal plate. Hence, the 
half-plane modeling of the actual surface current is inher- 
ently inaccurate since the comer-excited surface current 
is not taken into account. Even a more accurate expres- 
sion for the trailing edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFW surface current would not 
overcome this problem. In the case of edge-on incidence, 
the leading edge FW surface current still possesses the 
characteristics of the PO surface current provided that 
the incident electric field is perpendicular to the leading 
edge. If not, the constant phase contours will still be 
parallel straight lines, but the leading edge FW surface 
current will possess a component parallel to these, i.e., 
normal to the direction of propagation. This discrepancy 
between the leading edge FW surface current and the PO 
surface current agrees with the nonray-optical behavior of 
the leading edge diffracted field along the scatterer for 
edge-on incidence [23]. It is noted that for any separation, 
for any direction of the incident plane wave, and for any 

2, cos p;. 

The second set of the higher order PTDEEC's 
(I&d, M f i d )  represents the trailing edge FW surface cur- 
rent on a finite trailing edge incremental strip of length d ,  
oriented in the direction of the trailing edge Keller cone 
and extending from the trailing edge to the third edge 
(Fig. 1). This second set of the higher order PTDEEC's is 
defined to be placed at the leading edge. Through identi- 
fication of the expressions for the far fields produced by 
the trailing edge FW surface current along the trailing 
edge incremental strip and the PTDEEC's at the leading 
edge, it is found [9] that the latter can be related to the 
former as 

IL x ;,I 

li x !,I2 
I f i d  = - exp(jkd,i.li ,)i.  (t; x i )  

x idrjfh exp ( j ku , i .  ii,) du, (33) 

112 x ill 

li x !,I2 
Mgtd = J- exp(jkd,i-ii,)!, .i 

x idfjlh exp (jku,i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 C l )  du, . (34) 

Introducing the trailing edge FW surface current expres- 
sions (29)-(30) into the integral expressions (33)-(34), it is 
found that 

2e-i57/4 1 
I&td = v - ~ 

6 ksin f?: 

-1 [cos ( P( + p:> - cos PI cos P , ] J , s " , p ) ( v ,  - v,) 

+ [sin ( p/ + p,) + cos pI  sin p, cos a,] ~,f"x,(o) K,) 
(35) 

2e-J57/4 sin a, sin p, 

6 k sin p( MEd = -JV3- 

*[sin( P; + P:)J,?r(O>(v, - K,) 

-cos ( P/ + P:)J,f"x,(o)v,) 
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wherein the terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,, V,, V,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, are given by 

sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( 

sin2 p, 
v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - exp ( j kd ,  [ sin p, cos a, sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( + cos p, cos p( ]  ) (37) 

~ ; ; ~ - j r / 4 - 2 ~ (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkd, sin p((sin p( - v,) ) 
J ,  sin p/ > v, 

24- sin p/ = vt 

(39) 

(40) 

1 

V5 = 

vt = sin p, cos a, + cot @((cos p, - cos p / ) .  

The second set of the higher order PTDEEC‘s depends 
on the tangential components of the incident field at the 
leading edge (E’ * i,, Hi * ?,I, the direction of incidence at 
the leading edge (a:, pi), the direction of observation at 
the leading edge (a,, PI) ,  the length of the leading edge 
incremental strip d,, the angle between the leading edge 
incremental strip and the trailing edge p/, and the length 
of the trailing edge incremental strip d,. The angles 
(a,, pi) specifying the direction of observation with re- 
spect to the trailing edge point are defined from expres- 
sions (6)-(7) with the subscript “1” replaced by “ t ” ;  they 
can also be expressed in terms of the angles already 
introduced: 

cos pi = sin ( p( + p / )  sin p, cos a, 

+ cos ( pi + p / )  cos (41) 
1 

sin pi 
cos a, = - (cos ( p/ + p i )  sin p, cos a, 

1 

sin p, 
sin at = - sin p, sin al. (43) 

It is noted that the term V, (39) has two branches, 
whereas the corresponding term V, (28) of the first set of 
the higher order PTDEEC‘s has three. The reason is that 
while the leading edge incremental strip can be oriented 
arbitrarily-and thus the term (sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi - vi) can be posi- 
tive, zero, or negative-the trailing edge incremental strip 
is fixed in the direction of the trailing edge Keller cone, 
and thus the term (sin p/ - vi) cannot take on negative 
values. 

An asymptotic expansion of the second set of the higher 
order PTDEEC‘s (35)-(36) in the limit kd, + M and kd, 
+ M is obtained [9] by employing the asymptotic repre- 
sentation of the Fresnel function (13~) .  The first term in 
this expansion is of order k- , I2 .  It accounts for the 
remaining part of the second-order edge diffraction, not 
included in the first set of the higher order PTDEEC’s, in 
the sense that it ensures a zero component of the approxi- 
mate FW surface current perpendicular to the trailing 
edge. The second term is of order k-2 .  This term is due to 

the finite length of the trailing edge incremental strip, and 
it accounts for part of the third-order edge diffraction. 
The sum of the terms of order kP3I2 in the asymptotic 
expansions of the first and second sets of the higher order 
PTDEEC‘s should be identical to the asymptotic repre- 
sentation of the second-order PTDEEC‘s reported by 
Ivrissimtzis [191. 

The only singularity problem associated with the second 
set of the higher order PTDEEC‘s occurs when the trail- 
ing edge becomes parallel to the leading edge incremental 
strip, i.e., sin p( goes to zero, and the z,  component of the 
trailing edge F W  surface current (30) become singular. 
This singularity will also be present in the PTDEEC’s 
(351436) since these then represent an integration of a 
singular term over a finite region. This is different from 
the first set of the higher order PTDEEC‘s which do not 
become singular as the leading edge becomes parallel to 
the direction of propagation of the incident plane wave. 
The difference is caused by the fact that the width of the 
trailing edge incremental strip is independent of the angle 
of incidence p( of the incident leading edge FW surface 
current, whereas the width of the leading edge incremen- 
tal strip (when this is oriented in the direction of the 
leading edge Keller cone) is proportional to the sine of 
the angle of incidence p(. Consequently, whereas the 
width of the leading edge incremental strip goes to zero at 
the same rate as the leading edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFW surface current 
goes to infinity, and the result thus is bounded, the same 
cancellation will not occur for the trailing edge. 

The outlined approach for the inclusion of the second- 
order edge diffraction differs in several aspects from the 
four previously reported approaches [8], [171, [191, [20l 
discussed in Section 11. First, Michaeli [171 claimed that 
the first set of the higher order PTDEEC‘s will account 
for the dominant part of the second-order edge diffrac- 
tion, and consequently ignored the trailing edge F W  sur- 
face current; i.e., the contribution from the second set of 
the higher order PTDEEC‘s (35)-(36) is not included in 
Michaeli’s approach. Second, the EEC’s introduced in the 
three other works [8], [19], [20] were all specified to be 
placed at the trailing edge. These approaches thus require 
a determination of those parts of the circumference which 
are illuminated by other edge elements. By specifying the 
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EEC's to be placed at the leading edge, such a determina- 
tion is avoided. Third, the approaches of Ivrissimtzis [19] 
and Ufimtsev [20] both employ PTDEEC's based on infi- 
nite incremental strips at the trailing edge. Consequently, 
the approximate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF W  surface current represented by these 
PTDEEC's exists not only inside, but also outside the area 
of the actual scatterer; this can cause errors for observa- 
tion points close to the plane of the scatterer [9]. The 
approaches of Shore and Yaghjian [8] and this work 
employ PTDEEC's based on finite incremental strips 
which limit the extension of the approximate FW surface 
current to the actual scatterer, and thus avoid this prob- 
lem. Fourth, the bistatic radar cross section (RCS) of a 
circular plate has been calculated [9] using the approaches 
by Shore and Yaghjian, and the present work and compar- 
ison were made with an exact solution [24]. It was not 
possible to conclude whether one of the two approaches 
in general will provide the most accurate result. However, 
the differences observed between the two approaches 
serve to emphasize the importance of an accurate model- 
ing of the second-order edge diffraction. 

VI. NUMERICAL RESULTS 

Comparisons between the RCS's predicted by the 
first-order PTDEEC's (19)-(20) and a combined set of 
higher order PTDEEC's, obtained by adding the first 
(251426) and second (35)-(36) sets of the higher order 
PTDEEC's, have been performed for various configura- 
tions [9]. Here, a representative bistatic case is consid- 
ered. The scatterer is a square plate with corners posi- 
tioned at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (0, O), ( 6 4  O), (6A, 6A), and (0,6A); see 
Fig. 4. The pkane wave, which is linearly polarized along 
either 8' or @, is incident from the direction (O i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ' )  = 

(45",45"). The plane of observation is given by z 2 0 and 
4 = 90" or 4 = 270", and the direction of observation is 
specified by the angle 6 = arccos(;-E). In this plane of 
observation, the PO field is zero for all directions of 
observation. 

A radar configuration involving a polygonal scatterer 
cannot be analyzed by conventional ray-optical techniques 
since the reflected and edge-diffracted rays form caustics 
at a few discrete directions of observation and do not exist 
elsewhere. That is, for any direction of observation, the 
surface and each of the straight edges possesses either 
infinitely many or no stationary points. The caustic direc- 
tions for the first-, second-, and third-order edge-dif- 
fracted rays for the present configuration are listed in Fig. 
4. The rigorous results included here were calculated by 
Hansen [25] using a code based on a method of moments 
(MOM) technique to solve the electric field integral equa- 
tion. The 8 and 4 components of the RCS, U,, and U+,, 
for a 8'-polarized incident field are shown in Fig. 5(a) and 
(b), respectively, while the 8 and C#I comonents, U,+ and 
U++, for a 4'-polarized incicent field are shown in Figs. 
5(c) and (d), respectively. The MOM result is designated 
MOM, while the first- and higher order PTDEEC results 
are designated EEC' and EEC2, respectively. 

For the first-order result EEC', a very good agreement 

t 

First-order: <= 120" 
Second-order: < = 30", 120", 150" 
Ed-order: 6 = 30", 60", 150" 

Fig. 4. Square plate configuration: area = 36h2, direction of incidence 
(e', 9') = (45", 459, plane of observation 9 = 90" or 270". Directions of 
observation where caustics of the first-, second-, and third-order edge 
diffracted rays are present. 

is found for the RCS's U,, and U,+ in the main lobe in 
concordance with the presence of first-order diffraction in 
the direction 6 equal to 120". Away from this direction, 
the level predicted by EEC' becomes much smaller than 
that of MOM, while the positions of the side lobes and 
nulls agree, even at wide angles. Good agreement is also 
found for the RCS U+, around the main lobe. However, 
away from this region, the complicated side lobe structure 
of the MOM solution is not well approximated by the 
EEC' approach. For the RCS U++, it is observed that the 
first-order result does not furnish as good an approxima- 
tion in the main lobe region as was the case for the other 
polarizations. 

Next, the higher order PTDEEC results are considered. 
For the RCS U,,, the use of the higher order PTDEEC's 
has the effect of raising the level in a large region. At the 
leftmost maximum, 6 close to 30" where second-order 
diffraction is present, the change amounts to 12 dB. The 
higher order result has minima which are in better agree- 
ment with the MOM solution than the nulls of the first- 
order results are. For the RCS U+,, the improvements are 
even more pronounced. In the wide angle regions which 
contain the two directions, 6 equal to 30" and 150", at 
which second-order diffraction effects are present, the 
level is raised by almost 20 dB, and the pattern is drasti- 
cally changed from that of the first-order solution. For 
instance, the zero of the MOM solution at 6 equal to 53" 
is recovered by the higher order PTDEEC's, whereas the 
first-order PTDEEC's predict a maximum at this position. 
Furthermore, the first-order zero at 6 close to 70" is 

changed by the higher order approach into a local maxi- 
mum, in accordance with the rigorous solution. For the 
&-polarized incident plane wave, the results parallel qual- 
itatively those observed above for the @'-polarized inci- 
dent field. For the RCS U++, it is interesting to note that 
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Fig. 5. Normalized RCS for square plate configuration of Fig. 4. MOM: method of moments, EEC': first-order PTDEEC's, 
EEC2: higher order PTDEEC's. (a) (b) u+~. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c )  q,+. (d) U++. 

the discrepancy between the first-order PTDEEC and 
MOM results in the main lobe is eliminated when the 

expressions for these for the quarter plane and a wide 
range of directions of incidence. 

higher order PTDEEC's are employed. 
In summary, for the square plate configuration, the 

approximation is significantly improved when the higher 
order edge diffraction is taken into account. The major 
improvements are found in those directions at which it 
was previously recognized that second-order diffraction 
effects are present. The remaining discrepancies are 
caused by effects which are not included in the proposed 
approach. The most important of these are the edge 
interaction of higher order than accounted for by the 
finite trailing edge incremental strip, the slope diffraction 
at the trailing edge caused by the spatial variation of the 
field associated with the leading edge FW surface current, 
and the corner currents, e.g., the edge waves excited at 
the corners and propagating along the edges. The higher 
order edge interactions can be incorporated by straight- 
forwardly repeating the approach, leading to the second 
set of the higher order PTDEEC's. The slope diffraction 
can be incorporated by deriving the second set of the 
higher order PTDEEC's on the basis of an expression for 
the trailing edge FW surface current which accounts for 
the spatial variation, i.e., the slope, of the field associated 
with the incident leading edge FW surface current. An 
inclusion of the edge waves could be accomplished through 
an extension of the work by Hansen [26], who established 

VII. CONCLUSION 

An approach for including higher order edge diffraction 
in the EEC method has been proposed. This approach, 
which applies to mono- and well as bisatic radar configu- 
rations with perfectly conducting polygonal plates,involves 
three distinct sets of EEC's. The first set comprises the 
POEEC's which yields the same result as obtained from a 
surface integration over the PO surface current; these 
POEEC's are not dealt with explicitly herein as an ac- 
count of these can be found elsewhere [9]. The second set 
is termed the first set of the higher order PTDEEC's. 
These PTDEEC's were derived from an integration over 
the leading edge FW surface current along a finite incre- 
mental strip, and these account for the first- and part of 
the second-order edge diffraction. The third set, referred 
to as the second set of the higher order PTDEEC's, were 
derived from an integration over the trailing edge FW 
surface current along a finite incremental strip. An ex- 
pression for this surface current was obtained by letting it 
have the same dependence on the incident leading edge 
FW surface current as the FW surface current has on the 
incident PO surface current in the half-plane case with 
grazing incidence. The second set of the higher order 
PTDEEC's accounts for the remaining part of the 
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second-order edge diffraction in the sense that it ensures 
a zero component of the approximate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFW surface current 
normal to the trailing edge; furthermore, part of the 
third-order edge diffraction is also accounted for. All of 
these sets of EEC‘s contain very few singularity problems. 
In order to obtain an approximation to the scattered field, 
the three sets of EEC‘s are added and integrated along 
the circumference of the scatterer. This procedure is 
straightfonvard, and since most singularity problems have 
been eliminated from the EEC expressions, it is numeri- 
cally well behaved. The proposed approach was applied to 
a configuration involving a square plate. Substantial im- 
provements were achieved by using the higher order PT- 
DEEC‘s instead of the first-order PTDEEC’s. These cal- 
culations also illustrated that the edge interaction can be 
significant, although the direction of incidence is far from 
the plane of the scatterer. The discrepancies which still 
remain between the approximate and rigorous results 
were attributed to higher order edge diffraction than 
accounted for by the present approach, slope diffraction 
at the trailing edge and corner diffraction. The possibili- 
ties for including these effects in the EEC method were 
pointed out. Finally, it is noted that the approach can be 
extended to also apply to polyhedral objects by employing 
the wedge rather than the half-plane solution in the 
derivation of the higher order PTDEEC’s. 
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