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Biquadratic exchange interactions in two-dimensional magnets
Alexey Kartsev 1, Mathias Augustin1, Richard F. L. Evans 2, Kostya S. Novoselov3,4 and Elton J. G. Santos 5✉

Magnetism in recently discovered van der Waals materials has opened several avenues in the study of fundamental spin
interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg
exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange
interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties
of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and
classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic
anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of
the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g., Dzyaloshinskii–Moriya interactions) to
successfully rationalize numerous observations, such as the non-Ising character of several compounds despite a strong magnetic
anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie
temperatures. Our results provide a theoretical framework for the exploration of different physical phenomena in 2D magnets
where biquadratic exchange interactions have an important contribution.
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INTRODUCTION

The finding of magnetism in atomically thin van der Waals (vdW)
materials1,2 has attracted an increasing amount of interest in the
investigation of magnetic phenomena at the nanoscale3. Impor-
tant in the understanding and applications of 2D vdW magnets in
real technologies is the elucidation of fundamental interactions
that determine their magnetic properties, such as the exchange
interactions between the spins. These interactions govern the
magnetic ordering and can be either symmetric, which determine
collinear ferromagnets and anti-ferromagnets, or antisymmetric,
which promote topological non-trivial spin textures, e.g. sky-
rmions. Higher-order exchange terms involving the hopping of
two or more electrons play a pivotal role in the spin-ordering of
low-dimensional nanostructures. For instance, biquadratic (BQ)
exchange interactions are critical in the elucidation of the
magnetic features of several systems, such as multilayer materi-
als4, perovskites5, iron-based superconductors6,7, iron tellurides8

and oxides9. Indeed, in materials where the exchange is for some
reason weak10 (e.g., low-temperature magnets) BQ exchange has a
particularly strong influence being the case of several 2D magnets
discovered so far11,12.
Here we identify that several families of 2D magnets including

metals, insulators and small band gap semiconductors, develop
substantially large BQ exchange interactions. The delicate interplay
between the superexchange process through the non-magnetic
atom and the Coulomb repulsion at neighboring spin-sites involving
more than one electron induces sizable corrections to the total
energy of the systems beyond bilinear spin models, e.g., Kitaev,
Heisenberg, Ising. We developed a generalized non-Heisenberg spin
Hamiltonian that includes both BQ and Dzyaloshinskii-Moriya
interactions (DMI), providing a universal picture of the spin
properties of 2D vdW magnets. We show that while BQ exchange
interactions give substantial contributions to the thermal properties,

such as in critical temperatures (Tc), non-collinear spin effects via
DMI are negligible. The model also offers insights via analytical
equations into the spin excitations of 2D materials as a general
formalism is developed for materials that hold honeycomb crystal
structure, ferromagnetism and out-of-plane easy axis in a universal
basis. Our results provide the conceptual framework to understand a
variety of 2D magnetic materials in a consistent way explaining
numerous experimental observations, including controversies on the
magnetic properties of CrI3 or CrBr3.

RESULTS

Biquadratic exchange interactions

In order to calculate the different exchange contributions to the
total energy at the level of first-principles methods (see
Supplementary Sections 1–4 for details), we map the angular
dependence of the spins Sj= μssj, where μs is the magnetic
moment and ∣sj∣= 1, in the unit cell of the layered material5,13,14

(Fig. 1a). We rotate the spins by θ between two known spin
configurations: from ferromagnetic (FM) at θ = 0, to anti-
ferromagnetic (AFM) at θ = 180o. Small steps in θ generate a
path of quasi-continuously configurations where both energy and
magnetization are allowed to relax self-consistently without any
fixed constraint on the direction. The resulting curve in energy
includes contributions from bilinear (BL) exchanges up to higher-
order terms, e.g., BQ exchange interactions. We used different
supercells that resulted in no variations of the results. We quantify
the contribution of each kind of interactions using the following
non-Heisenberg spin Hamiltonian:

H ¼ �
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where Jij and λij are the isotropic and anisotropic BL exchanges
between spins Si and Sj on atomic sites i and j; Di is the on-site
anisotropy with easy axis ei; and Kij is the BQ exchange
interactions which is due to electron hopping between two
adjacent sites15. We restrict the discussions to first nearest-
neighbor BQ interactions, that is, Kij= Kbq, and Kij= 0 otherwise.
This assumption has been shown to be sufficient to study a
variety of magnetic systems with higher-order exchanges5,6,8,9. We
can write Eq.(1) in a similar form separating the terms with angular
and non-angular dependence as Etotbq θð Þ ¼ A

bq
0 þ A

bq
1 �

S2 cosðθÞ þ A
bq
2 � S4cos2ðθÞ, where S is the spin moment. The

different coefficients can be interpreted as the corresponding
amount of BL (Abq

1 ) and BQ (Abq
2 ) exchanges, and the on-site energy

as the spins are perpendicular to each other (Abq
0 ). Supplementary

Section 4 gives a thorough discussion on these coefficients and
how to extract analytical equations for their interpretation using

Eq. (1). We extract Abq
0 , Abq

1 and A
bq
2 from first-principles simulations

for the variation of the total energy versus θ (Supplementary
Section 5).
We apply this procedure for a total of 50 compounds including

the most common 2D magnets studied up to date including
several families of trihalides (MX3, M= Ti, V, Cr, Mn, Fe, Ni, Cu; X=
F, Cl, Br, I), metal tribromides (MBr3, M=Mn, Cu, Fe, V), chromium
based ternary tellurides (Cr2X2Te6, X= Ge, P, Si), metal based
ternary chalcogenides (M2P2X6, M=V, Cr, Mn, Fe, Co, Ni; X= S, Se,
Te), and transition metal dichalcogenides (MX2, M= Co, Fe, V; X=
S, Se, Te) of different phases (2H, 1T). Surprisingly, as the spins are
spatially rotated away a sizable deviation from a cos θ-like
behavior characteristic of BL exchange interactions (shaded area)
is observed (Fig. 1b–e). The overall trend seems independent of
the stoichiometric formula or the atomic elements composing the
structure. The universal character of the higher-order exchange

Fig. 1 Biquadratic exchange interactions in 2D magnets. a Diagram of the rotation of spins Si and Sj in the unit cell (defined by vectors
a1 and a2) of a 2D magnet by a relative angle θ between them. Spins are rotated symmetrically in opposite directions from 0o to 180o.
b–e Relative total energy (eV) as a function of θ(o) for different monolayers of 2D magnets: trihalides (CrX3, X= F, Cl, Br, I), metal tribromides
(MBr3, M=Mn, Cu, Fe, V), chromium based ternary tellurides (Cr2X2Te6, X= Ge, P, Si), manganese based ternary chalcogenides (Mn2P2X6, X=
S, Se, Te), transition metal dichalcogenides (MnX2, X= S, Se, Te) of different phases (2H, 1T) and an iron-based dichalcogenide (2H-FeS2). The
reference energy is taken at 0o as the spins oriented at the same direction. Rotations can occur in-plane or out-of-plane with similar behavior.

Symbols are calculated energies. Dashed lines correspond to a quadratic fitting using Etotbq θð Þ ¼ A
bq
0 þ A

bq
1 � S2 cosðθÞ þ A

bq
2 � S4cos2ðθÞ, while

color filling areas indicate the deviation between the quadratic Etotbq and a linear fitting using Etotbl θð Þ ¼ Abl0 þ Abl1 � S2 cosðθÞ. Materials that show

large deviation, such as CuBr3 or 2H-FeS2, develop large BQ exchange interactions. f Logarithm of the total energies (DFT) for the dataset in
b–e, as a function of θ. Data analytics using polynomial regression (least-squares algorithm) in terms of linear (Q1), quadratic (Q2) and cubic
(Q3) approaches is evaluated over the calculated DFT energies (dots).
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process in layered materials can be appreciated clearer in Fig. 1f
where data-analytics using regression algorithms (linear, quad-
ratic, cubic) was evaluated over the computed data. The best
match between regression and DFT energies is for regressions
beyond linear. This suggested that even more complex magnetic
interactions may take place in 2D magnetic materials such as 3-, 4-
spin interactions16,17, and chiral biquadratic18,19 which are not
studied here. Materials with alike chemical environment (e.g.,
bond lengths, electron affinity, binding energy) such as CrI3, CrBr3
and CrCl3 present close variation of the energy and consequently
similar magnitudes of the BQ exchange (Table 1). Other
compounds tend to gain energy with the spin rotation and
stabilize in a different magnetic coupling, for instance, CrF3 (Fig. 1b)
becomes AFM ordered. This is also the case of Mn-based
compounds, 2H-MnS2, 2H-MnSe2, MnPS3, MnPSe3 (Fig. 1d, e),
which agreed with magnetometry measurements20–22. It is
noteworthy that CuBr3 and 2H-FeS2 have substantially larger
magnitudes of BQ exchange (Table 1) comparable to more
complex materials, i.e., ferropnictides, where spin and electronic
correlations are known to play a key role in the determination of
their superconducting and strongly-correlated properties23. Both
CuBr3 and 2H-FeS2 have relatively small BL exchange in the range
of 5.87−6.88 meV with S= 1. For materials with small BL exchange
higher-order exchange tends to be sizeable10. This result calls for
further theoretical and experimental work on these two com-
pounds whether unusual electronic interactions can be found.
Furthermore, we noticed that several other compounds could not
show a clear trend with θ apart from those where a specific
magnetic ordering is stabilized, e.g., θ= 0, 180o (Supplementary
Section 6). Materials that are unable to stabilize different spin

orientations are either due to strong magnetic anisotropy where a
preferential spin orientation is too strong to be tilted (e.g. Ising
magnets) or different spin solutions are not energetically stable
ending up in non-magnetic phases24.
We have also checked whether other models can give a sound

description of the magnetic properties of the quadratic depen-
dence of the energy as a function of θ. In particular, we considered
two models: a Kitaev model25,26, and a Heisenberg model
including biquadratic on-site magnetic anisotropy. For the latter,
the magnitudes of the biquadratic on-site anisotropies are several
orders of magnitude smaller than BQ exchange within the range
3.87–14.32μeV (see details in Supplementary Section 7). For the
former, there is no quadratic dependence on θ for the Kitaev
model. We can expand the Kitaev Hamiltonian25 assuming a
rotation by angle θ between the spins to show that a fitting
equation of the form of EtotKitaev θð Þ ¼ B0 þ B1 sinð2θÞ can be
extracted (see details in Supplementary Section 8). These results
suggest that BL models are insufficient to describe the magnetic
features of 2D vdW magnets.

A Hubbard-based microscopic model

To understand the microscopic mechanism of the BQ exchange in
2D materials, we will use the following 2D half-filled Hubbard
Hamiltonian applied to the honeycomb lattice (Fig. 2a, b):

H ¼ �teff
X

hiji;σ
c
y
i;σcj;σ þ U

X

i

ni"ni# þ
X

i;σ

μi;σni;σ; (2)

where indices i and j denote the lattice sites, the d-spin states on
the metal atoms (MA,B) are labeled as σ= ↑, ↓, the sum <ij> is over
the nearest neighbors and teff is the effective nearest neighbor
hoping between MA,B ions. teff is due to the hybridization between
3dn and np orbitals (n= 2, 3, 4, 5 depending on the atomic
element involved) at MA,B and X atoms, respectively (Fig. 2b). The
direct hopping between MA,B scales with tdd ~ r−5 and therefore
for relatively big distances can be neglected15. U > 0 is the non-
negative on-site Coulomb repulsion, c

y
i;σ(ci,σ) is the creation

(annihilation) operator for a fermion with spin σ at site i,
n ¼ c

y
i;σci;σ is the density operator and μi,σ is the chemical

potential which controls the filling of the bands. Second-order
perturbation theory in Eq.(2), assuming U > > teff, gives the energy
contributions of the Heisenberg exchanges27,28:

J
ð2Þ
FM ¼ t2eff=ðU � UexÞ

J
ð2Þ
AFM ¼ t2eff=ðU þ UexÞ
Jbl ¼ t2eff

2Uex

U2 �U2
ex

(3)

where J
ð2Þ
FM and J

ð2Þ
AFM are the exchange energies for FM and AFM

coupling at second-order, and the BL exchange is defined as

Jbl ¼ J
ð2Þ
FM � J

ð2Þ
AFM. Uex is an energy correction for the internal spin

exchange whether a spin flip is required during the hopping
between MA,B sites (Fig. 2b)28. Such term can be used to stabilize
or destabilize spin transfer through the MA,B − X covalent bonds
as the exchange occurs15,28. If the electron-hopping is to an
occupied orbital of the neighboring site, Uex will favor AFM
alignment of the two spins via a superexchange interaction (see
Supplementary Section 9 for details). However, if the electron-
hopping is to an unoccupied or a virtual state, a FM alignment will
be favored by Uex

29. The competition between the amount of
energy Uex to stabilize a specific coupling and the Coulomb
repulsion U between the electrons at an energy state may
compensate each other leading to a small value of Jbl. Indeed,
several 2D magnets have shown low-temperature magnetism1,2,12

which is directly related with the small magnitude of the exchange
interactions. In this case, it is necessary to extend the perturbation
in teff/U to fourth-order in Eq. (2) involving at least one electron

Table 1. Calculated biquadratic exchange (Kbq) for several 2D

magnetic materials with honeycomb (faint blue) and hexagonal (faint

red) lattices using non-collinear ab initio methods as explained in

the text.

Material μM (μB) S Kbq (meV)

CrI3 3.36 1.5 0.21

CrBr3 3.17 1.5 0.22

CrCl3 3.05 1.5 0.21

CrF3 2.94 1.5 0.09

MnBr3 3.88 2 0.04

CuBr3 0.53 1 39.16

FeBr3 3.88 2 0.06

VBr3 1.93 1 2.85

CrGeTe3 2.81 1.5 0.35

CrPTe3 2.92 1.5 0.35

CrSiTe3 3.13 1.5 0.31

MnPS3 4.24 2 0.02

MnPSe3 4.21 2 0.02

MnPTe3 3.93 2 0.11

1T-MnSe2 3.49 1.5 0.74

2H-MnSe2 3.49 2 0.15

1T-MnTe2 3.71 2 0.14

2H-MnTe2 3.78 2 0.10

1T-MnS2 3.28 1.5 1.09

2H-MnS2 3.27 1.5 1.55

2H-FeS2 2.18 1 20.11

The magnitudes of the spin angular momentum (S) used in the model

(Supplementary Section 4) and the magnetic moments at the metal atoms

(μM) are also included.
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from both MA,B sites which resulted in15:

J
ð4Þ
FM / t4eff=ðU � UexÞ3

J
ð4Þ
AFM / t4eff=ðU þ UexÞ3

Kbq ¼ t4eff
2ð3U2UexþU3

exÞ
ðU2�U2

exÞ
3

(4)

with Kbq ¼ J
ð4Þ
FM � J

ð4Þ
AFM being the BQ exchange energy. Both

Eqs. (3)–(4) show that a competition between FM and AFM
couplings takes place once the electrons are hopping between
different spin sites. The stabilization of one or another magnetic
order is determined by several factors such as the ligand-field
splitting Δ0 between t2g and eg states in the metal atom in the
honeycomb lattice. As the filling of both type of states determines
the magnitude of the 3d − sp hybridization between metals and
ligands, we can approach Δ0 ≈ U − Uex being proportional to the
bandgap of the material10. This condition is valid as long as the
magnitudes of U and Uex do not compete to each other. Since Uex

is an energy correction of spin stabilization, it should comply with
Hund’s rule where unpaired spins occupy other states of the 3d
shell (Fig. 2b). It has been shown that the role of high-order
exchange interactions increases on reduction of the bandgap
mediated by the non-magnetic atoms which is related to the ratio
of BQ and BL exchanges27,30. If we divide Eq. (4) and Eq. (3) and use
the definition of Δ0, we can write a direct relationship between the
exchange interactions and the bandgap for 2D magnets as:

Kbq=Jbl ¼ teff
4U2 þ Δ

2
0 � 2UΔ0

Δ
2
0 2U � Δ0ð Þ2

(5)

This equation can be understood as a direct interplay between the
Coulomb repulsion and the hopping of electrons between
different sites subjected to the crystal field or bandgap of the
material. We can consider two situations in Eq. (5): Δ0 → 0 and Δ0

→ 2U which correspond to small and large bandgap materials,
respectively. This resulted in:

Kbq=Jbl / teff
1

Δ0ð Þ2

�

�

�

�

�

Δ0!0

(6)

Kbq=Jbl / teff
1

2U � Δ0ð Þ2

�

�

�

�

�

Δ0!2U

(7)

Fig. 2c shows the variation of Kbq/Jbl as a function of Δ0 for the core
of materials displaying BQ exchange interactions. Strikingly, both
Eqs. (6)–(7) correctly describes the overall behavior observed in our
simulations. Materials with similar bonding environment, for
instance, either in terms of Cr (Mn) atoms follow an increase
(decrease) of Kbq/Jbl with the bandgap, respectively. It is worth
mentioning that as the compounds tend to a AFM spin
alignment10,29, i.e., CrF3, they increase the value of Kbq/Jbl being
the case within the Cr-based trihalide family (CrX3, X= F, Cl, Br, I).
There is also an abrupt change in behavior for narrow bandgap
materials and metals with no dependence on Δ0 (inset in Fig. 2c).

These results indicate that one can design the amount of BQ
exchange in a 2D magnet tuning its bandgap, for instance using an
electric bias as recently used in CrI3

31.

Thermal effects in 2D magnets

To verify whether BQ exchange interactions will have any effect on
the thermal properties of 2D vdW magnets, we have implemented
Eq. (1) within the Monte Carlo Metropolis algorithm with an
adaptive move32. In the spin model we assume a classical spin
vector Si on each atomic site i. The quantization vector for the spin
is a local quantity which intrinsically includes the effects of local
thermal spin fluctuations, magnon processes and spin excitations.
In our implementation the BQ exchange is quite general and can
be applied to any pair-wise exchange interaction of arbitrary range.
We also consider an additional term in Eq. (1) including the local
Zeeman field B on the magnetic ions with a length of the local
atomic moment μi arising from the BQ exchange interactions as:

H ¼ �
X

ij

JijðSi � SjÞ �
X

ij

λijS
z
i S

z
j �

X

i

Di Si � eið Þ2

�
X

ij

K ij Si � Sj
� �2 �

X

i

μiSi � Bi

(8)

For atomistic spin dynamics simulations, the effective field due to
the biquadratic exchange are calculated via the first-derivative of
Eq. (8) on the different spin components as:

Hl
bq;i ¼ � 1

μi

∂H
∂Sli

¼ 2KbqS
l
j Si � Sj
� �

(9)

where l= x, y, z represents the geometrical coordinates at the
atomic sites i(j), and ðSi � SjÞ ¼ Sxi S

x
j þ S

y
i S

y
j þ Szi S

z
j . The effective

field Hl
bq;i therefore contributes to the total field describing the

time evolution of each atomic spin using the stochastic Landau-
Lifshitz-Gilbert equation33. We calculate up to third nearest-
neighbors λij and Jij in Eq. (1) on a representative set of 2D
magnets, e.g., Cr-based trihalide family (Table 2). Supplementary
Section 10 gives a thorough discussion on the calculation of the
exchange parameters. Figure 3 shows the behavior of the
magnetization (M/M0, where M0 is the saturation magnetization
at 0 K) and the logarithm of the magnetic susceptibility (ln χ) as a
function of temperature T(K) for CrI3, CrBr3 and CrCl3. Intriguingly,
the inclusion of BQ exchange interactions give sizable thermal
effects on both M/M0 and ln χ for all materials (Supplementary

Section 11). By fitting the Monte Carlo simulations with MðTÞ ¼

M0 1� T
Tc

� �β

(where β is the critical exponent) we can notice that

the Curie temperatures Tc changes by several Kelvins with the
inclusion of BQ exchange interactions. The calculated magnitudes
of Tc for CrI3 and CrBr3 approach closely those measured for both
compounds with almost no difference (Fig. 3a–d). The lack of
experimentally measured Tc for monolayer CrCl3 unable us to make
a clear comparison with our simulations. The different amount of

Fig. 2 Bilinear (BL) and biquadratic (BQ) exchange interactions in 2D magnets. a Schematic of the BL exchanges at first (J1), second (J2) and
third (J3) nearest neighbors (NN), and BQ exchange (Kbq) at first NN. Single and double line diagrams represent BL and BQ exchanges,
respectively. The two inequivalent magnetic sites in the honeycomb lattice are shown by faint blue (MA) and faint red (MB) dots. The blue
orbits inside of the hexagons represent the magnetic flux ϕ generated by the second-NN Dzyaloshinskii-Moriya interactions (DMI), which
breaks the inversion symmetry of the lattice. The dashed lines show the magnon hopping between second NN as the magnons gain a phase
given by ϕ (see text). The lattice vectors ui (i= 1, 2) and τj (i= 1, 2, 3) show the first and second NN on the lattice, respectively. b Zoom-in on
the BQ exchange process involving two electrons between sites MA and MB with 3dm electrons in the valence. The BQ exchange Kbq is
mediated by non-magnetic atoms X with a valence given by np electrons, where n will depend on the atomic elements involved. An on-site
Hubbard U term is at the MA,B sites with Uex representing the potential spin-splitting when the spins of the electrons involved in the BQ
exchange align ferro- or anti-ferromagnetically (Supplementary Section 4). The difference between up and down spin coupling is given by
2Uex. c Kbq/Jbl versus Δ0(eV) for all materials displaying BQ exchange interactions. Magnetic atoms with similar chemical environment in terms
of Coulomb repulsion, exchange interactions and valence follow alike behavior for Kbq/Jbl. For instance, Cr in blue and Mn in green (inset).
Orange dots show materials with dissimilar electronic configurations but with Δ0= 0.
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nearest-neighbors at BL exchanges (from 1st to 3rd) also produces
substantial effects even though not enough to reproduce the
experimental values of Tc for CrI3 and CrBr3. It is worth mentioning
that different groups have reported distinct magnitudes of Tc for
CrBr3

34–36[,37–39, which may be due to different factors such as
sample quality, defects, and doping levels. We believe that our
simulations still provide an accurate picture showing the effects of
the underlying exchange interactions for these low-dimensional
magnets at the limit of an ideal, pristine crystal (see Supplementary

Section 12). Moreover, several other materials display larger values
of BQ exchange interactions (Table 1) indicating that higher-
exchange interactions should be taken into account on the
description of their magnetic properties.

Enhancement of magnetic stability

An outstanding remark on the existence of BQ interactions in 2D
magnets is on the implications on their magnetic features. It is
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Fig. 3 Monte-Carlo simulations at different levels of theory including BL and BQ exchange interactions. a, b Magnetization (M/M0) and
logarithm of the magnetic longitudinal susceptibility lnχm (a.u.) versus temperature (K), respectively, for monolayer CrI3. Calculated and fitting

curves using M/M0 ¼ ð1� T=TcÞβ (where Tc and β are the critical temperature and coefficient, respectively) are shown by dots and solid lines,
respectively, in a. Solid lines in b show the interpolation between points. Different curves correspond to different number of NN, from one up
to third, taken into account in BL interactions: BL1st (faint red), BL1st,2nd,3rd (faint blue). Results including BQ exchange at first NN (BQ1st) with
different number of BL exchanges are shown in purple (BL1st + BQ1st) and faint green (BL1st,2nd,3rd + BQ1st). Critical temperatures (Tc) at each
level of BL and BQ exchange interactions are indicated at b with the maximum magnitude of lnχm (a.u.) highlighted. Magnetic susceptibility is
shown in logarithm scale for clarify. Experimental critical temperature (Texpc ) is included for comparison. c, d and e, f similar plots as in a, b, for
CrBr3 and CrCl3, respectively. Critical exponents β extracted from the simulations for BL1st,2nd,3rd + BQ1st are β= 0.22, 0.24 and 0.28 for CrI3,
CrBr3 and CrCl3 respectively. Magnitudes of β for BL1st,2nd,3rd are 0.25, 0.28 and 0.32 for CrI3, CrBr3 and CrCl3 respectively.

Table 2. Computed values of several magnetic quantities for CrX3 (X= I, Br, Cl, F) at different number of nearest neighbors: isotropic (J1, J2, J3) and

anisotropic (λ1, λ2, λ3) BL exchanges.

Comp. J1 (meV) J2 (μeV) J3 (μeV) λ1 (μeV) λ2 (μeV) λ3 (μeV) D (μeV)

CrI3 2.01 320.02 8.10 106.8 −10.24 0.91 108.82

CrBr3 1.66 164.35 −11.60 20.69 −2.06 −0.69 34.09

CrCl3 1.28 72.03 −25.18 20.07 −9.74 −0.51 12.67

CrF3 −0.23 17.27 0.20 3.33 −0.67 −0.14 122.02

The on-site magnetic anisotropy D is also included. See Supplementary Section 4 for details.
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well known that several materials developed macroscopic proper-
ties due to this higher-order exchange interactions. From
paramagnetic measurements of Mn+2 ions in MgO9, up to
different magnetic phases in oxides5,13,40, it is not clear whether
BQ exchange induces any significant role effect on basic proper-
ties, such as critical temperatures or stability. To understand the
intrinsic effect of higher-order exchange interactions in the
thermal features of 2D magnetic materials and provide a
consistent description of the underlying spin interactions, we
have developed an analytical model based on spin-wave
theory37,38. We generalized Eq. (1) to second order contributions
on the magnetic anisotropies which resulted in:

H ¼ �
P

ij

JijðSi � SjÞ �
P

ij

λijS
z
i S

z
j �

P

i

Di Si � eið Þ2

�P

ij

K ij Si � Sj
� �2 �P

i

D
bq
i Si � eið Þ4 �P

ij

λ
bq
ij Szi S

z
j

� �2

(10)

where D
bq
i and λ

bq
ij are the BQ on-site anisotropy and BQ

anisotropic exchange, respectively. We replace the spin operators
Si,j in Eq. (10) by bosonic creation (ayi , b

y
i ) and annihilation (ai, bi)

operators over the honeycomb sub-lattices A and B using
Holstein-Primakoff transformations38:
For i 2 Asublattice:

Szi ¼ ðS� a
y
i aiÞ

Sþi �
ffiffiffiffiffi

2S
p

ai

S�i � a
y
i

ffiffiffiffiffi

2S
p

Fori 2 Bsublattice:
Szi ¼ ðS� b

y
i biÞ

Sþi �
ffiffiffiffiffi

2S
p

bi

S�i � b
y
i

ffiffiffiffiffi

2S
p

where we assume that ayi ai<<S and b
y
i bi<<S for small deviations of

the spins from their ground state orientations. This gives (see
Supplementary Section 13 for details):

~H ¼
X

i

2~DSþ Z � Sð~J þ ~λÞ
� �

ðbyi bi þ a
y
i aiÞ � ~JS

X

hiji
a
y
i bj þ b

y
j ai

� �

(11)

where the sum over i and j runs over the sub-lattices and first
nearest neighbors, respectively, and Z is the number of first
nearest-neighbors. This procedure outlines a strong implication of
the inclusion of higher-order exchange interactions in the
description of the magnetic properties of 2D magnets. That is,
the enhancement of several magnetic quantities:

~J � J þ 2S2 � Kbq (12)

~λ � λþ 2S2 � λbq (13)

~D � Dþ 2S2 � Dbq (14)

where λbq and Dbq are the BQ anisotropic exchanges, and the BQ
on-site magnetic anisotropy, respectively, for first nearest neigh-
bors. Incidentally Eqs. (12)–(14) yield several implications on the
magnetic properties of the sheets, in particular, on the stabiliza-
tion of magnetism in truly 2D. It is well known that in order to
overcome thermal fluctuations that could destroy any magnetic
order39, sizable magnetic anisotropies need to be developed to
gap the low-energy modes in the magnon spectra. That is, a spin
wave gap needs to appear at the energy dispersion to act as a
barrier to excitations of long-wavelength spin waves. We can show
that the relation between the spin wave gap taken into account
BQ exchange interactions (Δbq) and that at the level BL exchange
(Δbl) for first-nearest neighbors is given by (see Supplementary

Section 13):

Δbq ¼ Δbl þ 4S3ðDbq þ 3

2
λbqÞ (15)

where Δbl ¼ 2S Dþ Zλ
2

� 	

. By using some parameters for monolayer
CrI3 from Table 2, and approaching the second term in Eq. (15) as
Dbq

+ 3λbq ≈ 10.72 μeV (see Supplementary Section 7) we can
estimate Δbl= 0.81meV and Δbq= 1.0 meV. The magnitude of Δbq

is consistent with recent measurements of the magnon dispersion
for bulk CrI3, which a spin wave gap of approximately 1.3 meV was
measured40. Furthermore, the increment of the on-site and
anisotropic magnetic anisotropies (Eqs. (13)–(14)) indicates that
not only spin-orbit mechanisms are behind the substantial
anisotropy in CrI3 but rather higher-order exchange processes.
Such BQ exchange-driven large magnetic anisotropy mechanism
has been proposed for iron-based superconductors7,23,41 which
successfully described their magnetic properties. A direct con-
sequence Eqs. (12)–(14) is the increment of Curie temperatures by
factor r given by (see Supplementary Section 13):

r ¼
~TC

TC
�

~Jln ð1þ 2πJS=ΔblÞ
Jln ð1þ 2π~JS=ΔbqÞ

: (16)

where ~TC and TC are the Curie temperatures with and without BQ
interactions, respectively. Including few values in Eq. (16), we can
roughly estimate an enhancement of r ≈ 39% for monolayer CrI3
which follows the Monte Carlo calculations (Fig. 3a, b). It is worth
noticing that the model in Eq. (11), i) takes into account only first-
nearest neighbors in the exchange interactions, and ii) we assume
a mean-field approach in the solution of the non-linear Holstein-
Primakoff transformation (e.g. magnon-magnon interactions) to
simplify the complex mathematical terms, i.e. four-operator
product. Supplementary Section 14 provides a full discussion on
the details involved.

Describing topological spin excitations through BQ and DMI

An intriguing question that raised by the presence of BQ
exchange interactions is whether they play an important role in
the description of magnetic quasiparticles such as magnons and
non-trivial spin textures in 2D vdw magnets. It has recently been
shown using neutron scattering40 that CrI3 magnet shows
topological spin-excitations with two distinctive magnon bands
separated by a bandgap of 4 meV at the Dirac K-point. In spite of
the clear demonstration that CrI3 can not follow an Ising model as
initially pointed out1, these results indicate that non-Heisenberg
interactions play an important role in the creation of spin-
excitations in 2D magnetic materials. Since the gap opening at K is
related with the inversion symmetry breaking and appearance of
DMI, chirality becomes crucial in the discrimination of the magnon
bound states. Moreover, it has become well established23,42–44

that isotropic spin interactions at the level of the BL Heisenberg
models do not capture all features in the energy dispersion of
spin-excitations in magnetic materials. There are additional
contributions through uniaxial anisotropies, next-nearest neighbor
interactions and the delicate balance between them, that need to
be considered. In order to account for all these quantities, we
extended the model in Eq. (1) with the addition of DMI:

Hlatt ¼ Hþ
X

hhijii
Aij � Si ´ Sj

� �

(17)

where Aij is the DMI between spins Si and Sj. For a honeycomb
ferromagnetic layer, with an easy axis perpendicular to the surface
(z-direction), there is no breaking of the inversion symmetry of the
lattice at first nearest-neighbors, e.g., A1st

ij ¼ 0. However, contribu-
tions from the second nearest-neighbors become non-negligible
as space inversion is not present. Therefore, we consider the DMI
vector as A= νijA

z
z, where Az is the magnitude of the DMI along of

the easy-axis, and νij= ±1 represents the hopping of spins at
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second nearest-neighbors from sites i to j and vice-versa,
respectively (Fig. 2a). Similarly as shown above, we can use
Holstein-Primakoff transformations for Ji > 0 to write Eq. (17) in
terms of bosonic creation and annihilation operators (see details
in Supplementary Section 15):

Hlatt ¼ HBL þHBQ þHDMI (18)

where we separate the terms due to BL exchange (HBL), from
those due to BQ (HBQ) and DMI (HDMI) which can be written as:

HBL ¼ HD þ
X

3

i¼1

H
Isotropic
i þ

X

3

i¼1

H
Anisotropic
i (19)

HBQ ¼ �12KbqS
4 � 2KbqS

3
X

hiji
b
y
j ai þ a

y
i bj

� �

� Z1

X

N=2

i2A
a
y
i ai � Z1

X

N=2

i2B
b
y
i bi

0

@

1

A

(20)

HDMI ¼ iAzS
X

N=2

hhijii2A
a
y
i aj � a

y
j ai

� �

þ
X

N=2

hhijii2B
b
y
i bj � b

y
j bi

� �

0

@

1

A (21)

where HD is the on-site anisotropy term, and H
Isotropic
i and H

Anisotropic
i

are respectively the isotropic and anisotropic parts of the BL
exchange Hamiltonian taken into account up to third nearest-
neighbors (i= 1, 2, 3). The sum in 〈ij〉 runs over the first nearest-
neighbors at both sublattices A and B while that on 〈〈ij〉〉 runs
over the second nearest-neighbors specifically on either A or B
lattice. We notice that the second nearest neighbors not only
break the inversion symmetry of the honeycomb lattice but also
generate a magnetic flux ϕ involving Az and J2 given by:

ϕ ¼ tan�1ðAz=J2Þ (22)

The magnetic flux (circular arrow) can be appreciated in Fig. 2a
when the magnons (dashed lines) hop between the second
nearest-neighbors. This process introduces a phase ϕij= μijϕ (μij=
±1) in the magnons as they hop from a site i to j, and vice-versa.
The different magnitudes of μij determine whether the hopping
follows the flux and consequently induces nontrivial topological
properties (e.g. chirality) similarly as in the Haldane model45,46 for
fermions. The topological features of the magnon bands can be
described in the k−space by using the Fourier transform of the
creation (ay

k
, by

k
) and annihilation (ak, bk) operators in Eq. (18) as:

H ¼ H0 þ
X

k

a
y
k

b
y
k

� � h0ðkÞ þ hzðkÞ hxðkÞ � ihyðkÞ
hxðkÞ þ ihyðkÞ h0ðkÞ � hzðkÞ


 �

ak

bk


 �

(23)

where the different terms can be written as (see Supplementary
Section 15 for details):

H0 ¼ �2DS� 3ðJ1 þ λ1ÞS2 � 6ðJ2 þ λ2ÞS2 � 12KS4

h0ðkÞ ¼ ε0 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ2SÞ2 þ ðAzSÞ2
q

CðkÞ
ε0 ¼ 2DSþ ðJ1 þ λ1ÞZ1Sþ 6KS3 þ 6ðJ2 þ λ2ÞSþ 3J3S

hxðkÞ ¼ �ðJ1 þ 2KS2ÞSP
3

j¼1
cosðk � τjÞ � J3S

P

3

j¼1
cosðk � ðuj þ τjÞÞ

hyðkÞ ¼ �ðJ1 þ 2KS2ÞSP
3

j¼1
sinðk � τjÞ � J3S

P

3

j¼1
sinðk � ðuj þ τjÞÞ

hzðkÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2Sð Þ2 þ AzSð Þ2
q

SðkÞ
(24)

where CðkÞ ¼ cosðϕÞ
P3

j¼1 cosðk � ujÞ and SðkÞ ¼ sinðϕÞ
P3

j¼1

sinðk � ujÞ. The vectors τj and uj are respectively between 1st and
2nd nearest neighbors (Fig. 2a).

The eigenvalues of Eq. (23) can be written in terms of the lower
and upper energy bands as:

E ± ¼ h0ðkÞ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx kð Þ2 þ hy kð Þ2 þ hz kð Þ2
q

(25)

Note that Eqs. (24) and (25) are general for any honeycomb
material with ferromagnetic order, easy-axis perpendicular to the
surface and develop DMI and BQ exchange interactions. For
instance, we can use them to predict the energy dispersion of the
magnon bands over the first Brillouin zone (BZ) of any 2D magnet,
e.g., CrI3. Figure 4a–e shows different levels of theory either using
a simple XXZ model or including more sophisticated terms
through the BQ exchange, DMI or simultaneously all of them. It is
clear that XXZ models without any contribution from DMI
(Fig. 4a–c) does not describe the gap opening at the Dirac points
due to the breaking of the inversion symmetry. Moreover, a model
at the level of XXZ + DMI as initially used to understand the
magnon dispersion of CrI3

40 does not capture entirely the full
profile of the bands (Fig. 4d). The upper branch E+ becomes nearly
flat with the increment of J2 at the path K − M − K while the lower
magnon branch E− turns more curved. This picture modifies
substantially when BQ exchange interactions are included in the
XXZ + BQ + DMI model (Fig. 4e) as the magnon bands follow a
similar curvature throughout the variation of J2, although the
upper branch at Γ increased to Eþ

Γ
¼27.8 meV. A sound

comparison between the XXZ + BQ + DMI model and the
experimental results for CrI3 is obtained (Fig. 4f) when J1 is varied
similarly (Fig. 4a) indicating that the first nearest-neighbors are
important on the stabilization of Eþ

Γ
. It is worth mentioning that

the value of the exchange interactions taken into account in the
fitting of the neutron scattering spectra40 do not separate BL
contributions from BQ as shown in Eqs. (12)–(14). Hence, it is not
known from the fitting procedure40 what is the contribution of Kbq
to the magnon dispersion. However, such separation can be
clearly stated in our model as indicated in Fig. 4f. Furthermore,
even though DMI is important for the gap opening at the Dirac
point, it does not contribute to the magnitudes of the
magnetization or critical temperatures for any 2D magnet with
an out-of-plane easy-axis and ferromagnetic aligned spins (see
details in Supplementary Section 15).

DISCUSSION

In summary, we have shown the importance of biquadratic
exchange interaction in the magnetic properties of 2D materials.
We have described the phenomenology of such higher-order spin
coupling, discussed its implications on several magnetic proper-
ties, and presented results at the level of non-collinear first-
principles methods, Monte Carlo approximations and analytical
models. The developed spin Hamiltonian including BQ exchange
and DMI provided an accurate picture of topological spin-
excitations on a generalized basis for any 2D magnet. Our results
are particularly timely given the increasing interest in quantum
materials, and we believe that our work will motivate the
exploration of different exchange couplings and competition
between critical phenomena47.
The effects of the BQ exchange interactions proposed here

should manifest in experimentally accessible temperature range.
One indication is already the accurate reproduction of experi-
mental Curie temperatures1,35 including higher-order exchange
which could not be obtained at the level of Ising, Heisenberg or
Kitaev models. The magnitudes of BQ exchange can be in
principle extracted from accurate hysteresis loops using phenom-
enological models48,49. Importantly in such analysis are potential
temperature variations of BL and BQ exchanges with layer
thickness which may indicate tunable interlayer exchanges still
to be explored in 2D magnets. Frustrated 2D Heisenberg models
in the presence of BQ exchange interactions are also a non-trivial

A. Kartsev et al.

8

npj Computational Materials (2020)   150 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



matter with a rich phase diagram involving incommensurate spin
spirals, canted ferromagnetic states, quadrupolar phase or
vertexes23,50–52. As our results indicate that BQ exchanges are
important for 2D magnets, possible ordered and disordered
magnetic regimes may be stabilized in appreciable temperatures.
Moreover, it is possible to enhance or suppress BQ interactions in
Mott-Hubbard systems by applying external electric fields53,54.
Indeed, the control of the magnetic properties of CrI3 using
electrical means has already been demonstrated31. Therefore, this
opens the prospect of a coherent transfer between spin and
charge degrees of freedom using short laser pulses in nanosheets.

METHODS

All methods can be found in Supplementary Materials.

DATA AVAILABILITY

The data that support the findings of this study are available within the paper and its
Supplementary Information.
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