
Higher-Order Functional Languages and Intensional Logic

by
Panagiotis Rondogiannis

Ptihion, University of Patras, 1989
M.Sc., University of Victoria, 1991

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in the

Department of Computer Science

We accept this thesis as conforming
to the required standard

Dr. W. W. Wadge, Supervisor (Dept, of Computer Science)

Dr. M. Levy, DepadmentaPMember (Dept, of Computer Science)

Dr. G. Slioja, Departmental Member (Dept, of Computer Science)

Dr. J. PJiifUfis, Outside Member (Dept, of Mathematics and Statistics)

Dr. R. Kiebu/tz, External Examiner (Dept, of Comp. Sc., Oregon Graduate Institute)

® P a n a g i o t i s R o n d o g i a n n i s , 1994

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

Supervisor: Dr. W.W. Wadge

Abstract

The purpose of this dissertation is to demonstrate tl1at higher-order functional programs

can be transformed into zero-order intensional ones in a semantics preserv~ng wa.y. As

there exists a straightforward execution model for the resulting iu t:ensional programs, the

practical outcome of our research is a promising, well-defined implcmenta.tion technique

for functional languages. Ou the foundational side, the goal of our study is to bring new
-.

insights and a better understanding of the nature of functional programming.

The starting point of our research is the work of A. Yaghi [Yag84] a.nd W. Wa.dgt'

[Wad91], who were the first to define transformation algorithms from functional to in

tensional languages. More specifically, Yaghi studied the first-order subset of fund;ional

languages, while Wadge extended Yaghi's technique to apply to a. significant class ol' highcr

order functional programs. The main shortcoming of both these works is that the trnnsfor

mations they provide are semi-formal and consequently they lack a. conectness proof. In

particular, although the algorithm in [Yag84] is relatively easy to understand intuitively,

the one in [Wad91] is much more complex, making in this way imperative tlte need for a.

precise formulation.

We start by revising, formalizing and giving a correctness proof of Yaghi 's transforma

tion algorithm for first-order functional programs. The formal definition we give is hased

on the idea that if two expressions in the source program arc idcntica.J, then they <1.re as

signed identical intensional expressions during the translation. The correctn<1fls proof of the

algorithm is established by showing that a functio.t call in the extensional program has thu

same meaning as the intensional expression that results from its translation.

We then consider the translation of higher-ordt1r functional progra.ms into zero-order

intensional ones. We demonstrate that although Wadge's algorithm is in Uw right, direc

tion, it does not always preserve the semantics of the source programs. 'l'o overcome this

deficiency, we define a richer target intensional language and an extended a)goritbm which.

iii

compiles tJ1e source functional programs into zero-order programs of this new language. We

d<~velop the synchronic denotational semantics of the intensional language, based on which

we give the correctness proof of the extended transformatiort algorithm.

The transformation algorithm developed in this dissertation can be used as the basis for

new implementation strategies for functional languages. We propose two such strategies, one

hashing-based and the other stack-based, and discuss their relative merits. We conclude

by demonstrating that the transformation algorithm we propose offers a solution to the

problem of implementing higher-order functions on dataflow machines.

Examiners:

Dr. W. W. Wadge, Supervisor (Dept. of Computer Science)

Dr. M. Levy, Departmel}t'aj.,M'~r (Dept. of Computer Science)

Dr. G. Shoja, Departmental Member (Dept. of Computer Science)

Dr. J. Pl~illl~s, Outsfcle Member (Dept. of Mathematics and Statistics)

Ik R. Kieburtz, External Examiner (Dept. of Comp. Sc., Oregon Graduate Institute)

iv

Table o f Contents

Abstract ii

Table o f Contents iv

List o f Tables vii

List o f Figures viii

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Functional Languages .. 2

1.2 Intensional Logic and Intensional Languages.. 3

1.3 The Computational Model of Eduction.. fi

1.4 Intensional Logic and Functional Languages... 7

1.5 The Purpose of this D issertation ... 11

1.6 Summary of the D isserta tion .. 12

2 Background and Related Work 14

2.1 Mathematical Notation ... 14

2.2 Types .. 16

TABLE OF CONTENTS v

2.3 The Functional Language F L ... 17

2.4 The Semantics of F L ... 20

2.5 The Intensional Language NVIL ... 22

2.6 The Semantics of N V I L .. 23

2.7 Yaghi’s Transformation .. 24

2.8 Higher-Order Programs: Wadge’s Suggestion 26

2.9 Limitations of Wadge’s Algorithm .. 30

2.10 Discussion of Related W o rk .. 32

3 Intensionalizing First-Order Programs 35

3.1 A Formal Definition of Yaghi’s A lgorithm .. 35

3.2 Example Transform ations.. 39

3.3 Correctness P roof.. 42

3.4 An Illustration of the P ro o f ... 51

3.5 Discussion.. 53

4 A Higher-Order Intensional Language 55

4.1 An Example Transformation... 55

4.2 The Intensional Language IL: Syntax 59

4.3 The Intensional Language IL: Synchronic S em an tics 60

4.4 Properties of the Synchronic In te rp re ta tio n 64

5 Intensionalizing Higher-Order Programs 66

5.1 The Transformation: an O verv iew .. 66

5.2 The Target Language .. 68

5.3 Preliminary Definitions ... 69

5.4 A Formal Definition of the Transformation 71

5.5 Properties of the A lgorithm ... 73

5.6 Transformation of the apply P ro g ra m ... 76

5.7 Transformation of the twice P ro g ra m .. 77

TABLE OF CONTENTS vi

5.8 An Example Involving R ecursion... 81

6 Theoretical Foundations 83

6.1 Assumptions .. . 83

6.2 N otation... 85

6.3 An Outline of the P ro o f ... 86

6.4 Correctness Proof of the Transformation... 88

6.5 Discussion... 101

7 Im plem entation Strategies 106

7.1 A Hashing-Based Implementation... 107

7.1.1 The List S t o r e .. 107

7.1.2 The Value S t o r e ... 109

7.1.3 The Execution E n g in e .. I l l

7.2 An Activation-Record Based Im plem entation.. 112

7.2.1 Incorporating Contexts into Activation Records.................................. 113

7.2.2 Execution of Intensional Code.. 114

7.3 Preliminary Implementation R e s u lts 116

7.4 Relationship with Tagged Dataflow . .. 118

8 Conclusions and Future Work 123

8.1 C ontributions... 124

8.2 Future Work ... 125

Bibliography 128

List o f Tables

1.1 The intension of the first expression .. 4

1.2 The intension of the second expression... 4

3.1 An illustration of the first part of the p r o o f ... 52

3.2 An illustration of the second part of the p roof.. 52

6.1 Nooation for functions with order equal to m .. 85

viii

List o f Figures

1.1 Execution of intensional c o d e 6

1.2 Intensional Logic, Eduction and D ataflow .. 7

1.3 (a) Tree for the parameter n (b) Tree for the function f i b 8

2.1 Execution of intensional c o d e ... 26

2.2 Execution of the intensional code that results from a p p l y 29

2.3 Execution of the intensional code that results t w i c e 31

3.1 Execution of the intensional program ... 30

3.2 Execution of the intensional program that results from f a c t 41

3.3 An alternative proof te c h n iq u e .. 53

5.1 Processing expressions of the program... 71

5.2 Eliminating the (m - l)-order formals from definitions................................. 72

5.3 Creating a new definition for eacli (m - l)-order fo rm a l................. 73

5.4 Passing formal parameters inside a c t u a ls .. 73

5.5 Transforming an m-order S IL program into an (m - l)-ol der o n e 73

5.6 The overall translation of an M-oroer p ro g ra m ... 73

5.7 The meaning of the intensional program that results from a p p l y 78

5.8 The meaning of the intensional program that results from t w i c e 80

6.1 Demonstrating each of the C and □ relations.. 87

LIST OF FIGURES ix

7.1 Architecture of the implementation... 108

7.2 The hash-consing technique... 108

7.3 The Value Store ... 110

7.4 Activation Record with Context In fo rm ation .. 114

7.5 A pipeline dataflow network.. 119

7.6 A tagged dataflow network. . .. 120

X

Acknowledgements

There are many people that have contributed in their own way in the completion of this

dissertation. First and most importantly, my supervisor Bill Wadge, whom I came to know

when I registered as a Master’s student in his “Dataflow Computation” course. I never

expected at that point that the branching time concept that Bill was illustrating in class

would become the topic of my Ph.D. dissertation. I am grateful to Biil for all his guidance,

patience and support throughout my studies, and I will always feel proud and priviledged

to have been one of his students.

The members of my Ph.D. committee R. Kieburtz, M. Levy, J. Phillips and A. Shoja

have been very helpful and supportive. In particular I would like to thank Ali Shoja for all

die interesting discussions we occasionally had during my Ph.D. studies.

I had a great time living and studying in Victoria and this is largely due to all the

friends that I made here. I hope that we will often have the chance to meet again in the

future.

Lia Kontopidi is always for me a source of encouragement and ad vice. Her smile has

helped me cope with many of the difficulties and disappointments that are there when you

start a Ph.D.

This dissertation is dedicated to my parents as a recognition of all their tireless efforts,

their love and understanding. One of the many things that I owe to them is the. love

for knowledge, which motivated me to undertake graduate work. My brother Thanasis is

always for me the best person to share ideas with (scientific or not). I wish him good luck

in his own Ph.D. studies. My sister Marianna, although much younger than me, has been

a motivating example of erudition.

Victoria is one of the most beautiful places I have ever been. However, rny island Lefkada

and the warm Ionian See have constantly been in my mind for the last few years, making

my farewell a less difficult one.

LmybLLy m u linytpoxvidy

nod bpnoL baoj.%

IX

C hapter 1

Introduction

The purpose of this dissertation is to demonstrate that higher-order functional programs

can be transformed into zero-order intensional ones, in a semantics preserving way. As

there exists a straightforward execution model for the resulting intensional programs, the
i

practical outcome of our research is a promising implementation technique for functional

languages. On the foundational side, the goal of our study is to bring new insights and a

better understanding of the nature of functional programming.

The rest of this chapter is devoted to an intuitive introduction of the main underlying

concepts and the most important contributions of this dissertation. We first outline the basic

notions of functional programming, and give an introduction to intensional logic and the

associated paradigm of intensional programming. The computational model of eduction that

has been used for implementing intensional languages is then presented. The transformation

of functional programs into intensional ones is discussed, and the main problems in giving

such a transformation are presented. We conclude by highlighting the main contributions

of our work and by giving a chapterwise summary of the dissertation.

CHAPTER 1. INTRODUCTION 2

1.1 Functional Languages

One of the major challenges of computer science is the design of programming language

paradigms that would free the programmers from low-level, machine-related tasks. Such

paradigms are usually based on sound mathem atical foundations and they allow for a cleaner

and more declarative way of programming. The class of functional or applicative program

ming languages [Hud89, FH88, Jon87], in which computation is carried out entirely through

the evaluation of expressions, is one such approach. As an example, consider the following

recursively defined functional program, which computes the fourth Fibonacci number:

r e s u l t = f i b (4)

f ib (n) = i f (n<2) then i e lse f ib (n - l)+ f ib (n -2)

Functions like f ib above whose arguments are simple data values (integers, reals, and so

on), .are called first-order functions. One of the most important characteristics of functional

programming is the use of higher-order functions, that is function which take as parameters

other functions or return functions as results. For example:

r e s u l t = tw ice(sq ,2)

tw ic e (f .x) = f (f (x))

sq(y) = y*y

In this example, tw ice is a function of two arguments, the first one of which is another

function, and the second one is an integer. The function tw ice is second-order because

its first argument is a first-order function. Along the same lines, we can have third-order

functions, or in general m-order ones, for every natural number m. These notions will be

precisely defined in Chapter 2.

One problem with functional programming languages is that they can not easily express

iteration in a natural way. For example, the Fibonacci function we gave in this section is

a recursively defined one, although there exists a simple iterative algorithm for solving the

CHAPTER 1. INTRODUCTION 3

same problem. In the next section we describe intensional languages and how they can be

used to express iterative algorithms in a problem-oriented manner.

1.2 Intensional Logic and Intensional Languages

Intensional logic [Tho74, DWP81, vB88] is a mathematical formal system for describing

entities whose value depends on implicit contexts. The need for such a logic became apparent

when the study of natural languages was undertaken by linguists and logicians. Consider

for example the following natural language expression:

Iceland is covered with a glacier

The truth value of this expression varies according to an implicit time context: at the

present time the above expression is false; however, there existed some time in the past,

when the expression was true. Therefore, the semantic value of the expression is really a

function from time-points to truth values. One can easily think of other expressions whose

truth value depends on more than one coordinates, such as for example space, speaker,

audience, and so on. In general, the semantic value of an expression is a function from

contexts (also called possible worlds) to a set of values. This function is called the intension

of the expression. The value of the intension at a particular context, is called the extension

of the expression at that particular context. Consider now the following two expressions:

The exchange rate of the Canadian dollar per US dollar

Yesterday’s exchange rate of the Canadian dollar per US dollar

The intension of the first expression is a function which given a date returns the exchange

rate on that day. This intension can be visualized as shown in Table 1.1. On the other

hand, the intension of the second expression is a function which given a date returns the

exchange rate on the previous day. This intension is represented in Table 1.2.

CHAPTER.!. INTRODUCTION 4

Date . . . 8/2/94 8/3/94 8/4/94
Rate . . . 1.378 1.379 1.380

Table 1.1: The intension of the first expression

Date . . . 8/3/94 8/4/94 8/5/94
Rate 1.378 1.379 1.380

Table 1.2: The intension of the second expression

Obviously, there exists a relationship between the two intensions. In fact, the word

“Yesterday’s” in the second expression above, can be thought of as an operator that trans

forms the intension of the first expression into the intension of the second; the function of

this operator is to simply increase all the dates by one day.

The above examples indicate that the meaning of many natural language expressions

can be captured using intensions as well as context switching operators (like “Yesterday’s”).

In intensional logic the concept of intension is prevalent and a change of context occurs by

the use of appropriate operators and not by explicit context manipulation. This intuitively

justifies why intensional logic has been proven to be an effective tool in the study of the

semantics of natural languages.

Intensional Programming is a programming paradigm that is based on intensional logic.

The main characteristic of intensional languages is that they are equipped with context

switching operators, which allow values from different contexts to be combined without

explicit context manipulation. One such intensional language is Lucid [WA85], in which

the value of an expression depends on a hidden time parameter. Therefore, the value of a

Lticid expression is a stream of ordinary data values. Moreover, the usual operations (like

+ , if-then-else, and so on), take streams as arguments and apply to them in a pointwise

CHAPTER 1. INTRODUCTION 5

way. For example, consider the following simple Lucid program:

re s u l t = 2+3

The meanings of 2 and 3 above, are the infinite streams (2,2,...) and 3 ,...) respectively.

The meaning of the variable r e s u l t is the stream (5,5,...), which results from adding in a

pointwise way the two other streams. Lucid provides a way of creating more “interesting”

streams, using the intensional binary operator fby. Given two streams x = (a: 0, ;r i , . . .) and

V = (yo,Vi, • • •), the stream (x fby y) is defined at every time t as follows:

. (a-'o if t. = 0
(x fby y)t = I

[yf_i if t > 0

For example, the meaning of the Lucid program

r e s u l t = a

a = 1 fby a+1

is the stream (1 ,2 ,3 ,...). Using the fby operator, one can easily express the iterative

version of the Fibonacci function as follows:

r e s u l t = f ib

f ib = i fby (fib+g)

g = 0 fby f ib

Notice that the above program computes the stream of nil Fibonacci numbers, that is

the stream (1 ,1 ,2 ,3 ,5 ,...). Notice also that the Lucid f ib program does not have any

function definitions, and in this respect it is simpler than the f ib recursive function of

Section 1.1. Moreover, as the next section illustrates, there exists a very simple technique

for implementing such Lucid programs.

CHAPTER 1. INTRODUCTION 6

1.3 The Computational Model of Eduction

The traditional implementation of Lucid programs like the ones given in the last section, is

based on a computational model known as eduction [WA85]. We illustrate the main idea

of eduction using an example. Suppose we want to calculate the second Fibonacci number.

In order to do so, we demand the value of r e s u lt at time 2. This generates a demand for

f ib at time 2, which creates a demand for (1 fby (fib+g)) at time 2. But now, according

to the semantics of fby, this will generate a demand for (f ib+g) at time 1. The overall

execution by an eductive evaluator EV AL, is given in Figure 1.1. Therefore, eduction

is based on demand propagation, and the Way this is achieved is by simply following the

semantics of the program under consideration.

figure 1.1 Execution of intensional code

E FA X (resu lt,2) =
= £FA X (fib ,2)
= EVAL{{ 1 fby (fib+ g)),2)
= £F A X ((fib+ g),l)
= EVAL(ti\>, 1) + EV AL(g, 1)
= EVAL((. 1 fby (f.ib+g>), 1) + EVAL{(,0 fby f ib) , l)
= £V A X ((fib+g),0) + £V 'A I(fib ,0)
= £F A Z (fib ,0) + £FAX(g,0) + £F A X ((l fby (fib+ g)),0)
= E V A L ((1 fby (fib+ g)),0) + E V A L((0 fby f ib) ,0) - |- l
= 1 + 0 + 1
= 2

Notice that the main characteristic of eduction is that it computes the value of ex

pressions with respect to contexts. There exists a class of hardware architectures (namely

the dataflow one [JGW85, AN90]), that efficiently supports such execution with respect to

context. In other words, dataflow machines are ideal candidates on which eduction can be

implemented. This suggests the triangle given in Figure 1.2, in which:

• Intensional Logic provides the language paradigm on which programs are written or

compiled to.

CHAPTER 1. INTRODUCTION 7

• Eduction provides the conceptual execution model for implementing the intensional

programs.

• Dataflow architectures provide the appropriate hardware on which eduction can be

executed in an efficient way.

figure 1.2 Intensional Logic, Eduction and Dataflow__________________________
Intensional Logic

(Language)

Eduction Dataflow
______________________ (Execution Model)_______________(Hardware)_______________________

The above description suggests that in order to implement a programming language on

a dataflow architecture, we would first have to devise a way of compiling programs of this

language into (semantically equivalent) intensional ones. The next section discusses how

this can be done for the case of functional languages, or in othe. words how functional

programs can be transformed into Lucid-like programs on which eduction can be easily

performed.

1.4 Intensional Logic and Functional Languages

The first work to establish a relationship between intensional logic and functional program

ming was A. Yaghi’s Ph.D. dissertation [Yag84], In his work, Yaghi used intensional logic

to formalize an implementation technique for first-order functional languages that was in

vented by C. Ostrum at the University of Waterloo. Yaghi first defined a simple intensional

programming language that only supported nullary variable definitions. He then showed

that the main idea in Ostrum’s implementation could be understood as a translation of the

source functional program into a program of this intensional language.

CHAPTER 1. INTRODUCTION 8

The main idea behind Yaghi’s work is that functions are really intensions. In the fol

lowing, we demonstrate his ideas with an example. Consider the Fibonacci program that

was presented in Section 1.1. In order to compute f ib (4) , we need to know f ib (3) and

f ib (2) . Similarly, f ib (3) requires f ib (2) and f ib (l) , and so on. Therefore, one can

actually think of the formal parameter n as being a labeled tree of the form shown in Figure

1.3(a). Similarly, the function f ib can be thought of as a labeled tree that has been created

figure 1.3 (a) Tree for the parameter n (b) Tree for the function f ib
«

(a)

fib<4)- 5

<b)

by “consulting” the tree for n. Figure 1.3(b) illustrates the corresponding tree. The bottom

labels of the tree for fib are all equal to 1, because this is the value that fib takes when

the corresponding value of n is less than 2. As we move up the tree for fib , the label on

each node s formed by adding the values of the right and left children of the node. The

initial program can be transformed into a new one that reflects the above ideas:

result = ca ll](f ib)

fib = i f (n<2) then 1 e lse c a ll 2 (fib)+ ca ll3 (fib)

n = actuals(4 ,n-l,n-2)

CHAPTER 1. INTRODUCTION 9

Notice that the above program is a Lucid-like one, the only difference being that it is

manipulating tree intensions and not just stream ones. The definition of n in terms of

actuals expresses the fact that n is a tree with root labeled 4; the root of the left subtree

is equal to the current root minus one, and the root of the right subtree is the current root

minus two. Clearly, one can proceed in this way and create the whole tree for n as give

in Figure 1.3(a). The operators call,- are used in order to create the tree for f ib . The

definition for f ib can be read as follows:

“The value of a node of the tree for f ib , is equal to 1 if the value of the

corresponding node of the tree for n is less than 2; otherwise, it is equal to the

sum of the values found at the roots of the left and right subtrees of the node.”

In other words, call2 selects the root of the left subtree of the current node of f ib , while

call3 the root of the right subtree. The operator callj returns the root of the tree for f ib .

The above description presents at an intuitive level the relationship between first-order

functional programs and intensional ones. The algorithm for performing the transformation

in a systematic way is given in [Yag84]. Yaghi was motivated mainly by practical consider

ations, and therefore his work, although ground-breaking, is incomplete in two respects:

• The transformation algorithm from first-order programs to intensional programs is

semi-formal.

• A correctness proof of the algorithm, although attempted by Yaghi and subsequently

by others, was not obtained.

Moreover, Yaghi only considered first-order functional languages, a fact that restricted the

usefulness of his proposal. A generalization of the technique to higher-order functional

programs would be a very significant step, because until today the implementation of such

programs on dataflow architectures has always been problematic: the approach usually

followed is to adopt some hybrid non-dataflow implementation scheme. The following quotes

are relevant:

CHAPTER 1. INTRODUCTION 10

“The general apply schema [for implementing higher-order functions on dataflow

machines] is of course not inexpensive” [AN90]

"... [the language] Id has adopted much of the flavor of modern functional

languages, including higher-order functions (which, incidentally, are not easily

implemented on a dataflow machine)” [Hud91]

In 1991, W. Wadge suggested [Wad91] that it might be possible to use a variation of

Yaghi’s technique to gradually transform higher-order functional programs into intensional

programs of nullary variables. The main idea in [Wad91] is that the translation proceeds

in stages; at each stage the highest order formal parameters are eliminated from function

definitions, and a new definition is created for each such formal. Moreover, different inten

sional operators are used for each stage of the translation process. As an example, consider

the program:
result = apply(inc,8)

apply(f,x) = f(x)

inc(y) = y+1

This second-order program is initially transformed into the following first-order one (for

the moment, we do not give any further details on how the transformation is performed or

what the semantics of the intensional operators are):

result = ca ll(2,i)apply(8)

apply(x) = f(x)

inc(y) = y+1

f(z) = actualS2 (inc(z))

Then, using an identical procedure, the above first-order intensional program can be

reduced to the following zero-order intensional program, which is the output of the trans

CHAPTER 1. INTRODUCTION U

formation:
resu lt = call(x,i) (ca ll(2,i) (apply))

apply = c a l l<1)t)(f)

inc = y+1

f i a c tu a ^ fca ll^ jjC in c))

z = actualsi(x)

y = actualsx (z)

x = actualsi(8)

In general, the material in [Wad91] is presented at an informal level, and can only

be considered as a general suggestion of how higher-order programs should be treated.

Moreover, although the underlying ideas in [Wad9l] are in the right direction, the overall

technique is inadequate as we have demonstrated in [Ron92] (see also Section 2.9). Since

the work in [Yag84] and [Wad91] forms the starting point of our investigations, we will

describe it in more detail in Chapter 2.

1.5 The Purpose of this Dissertation

The purpose of this dissertation is to establish in a precise way the relationships between

functional languages and intensional logic. The main contributions of our work, can be

summarized as follows:

1. We give a formal definition and a correctness proof of Yaghi’s transformation algo

rithm. It should be emphasized at this point that both problems are non-trivial, and

remained open for almost one decade.

2. We define a higher-order intensional language and present its denotational semantics.

This language will serve as the target one for transforming higher-order functional

programs.

CHAPTER 1. INTRODUCTION 12

3. We give a precise transformation algorithm from a significant class of higher-order

functional programs to the target intensional language that we defined.

4. We demonstrate the correctness proof of the transformation algorithm we propose. In

this way, we establish for the first time, a semantics preserving transformation from

higher-order functional programs into intensional programs.

5. We show that the transformation algorithm can be used as the basis for new im

plementation strategies for higher-order functional languages, that are based on the

eduction model.

1.6 Summary of the Dissertation

In this section we present a chapterwise summary of the contents of this dissertation:

Chapter 2 introduces the basic mathematical notation that we adopt. The syntax and se

mantics of a simple higher-order functional language are presented. An intensional language

of nullary variables is introduced, and Yaghi’s algorithm for transforming first-order func

tional programs into programs of this language, is outlined. Wadge’s proposal for extending

Yaghi’s approach to apply to a class of higher-order functional programs is presented, and

its deficiencies are identified and discussed. The chapter concludes with discussion of other

related work.

In Chapter 3, we give for the first time a rigorous formal definition and a correctness

proof of a revised version of Yaghi’s transformation algorithm. The main points of the proof

are highlighted, discussed and illustrated by examples.

In Chapter 4, we introduce the higher-order intensional language IL . The purpose of

IL is to serve as the target language for transforming higher-order functional programs.

For this reason, IL is equipped with powerful intensional operators that can capture the

complexities of the source functional language. We define the synchronic denotational

semantics of I L , and prove certain of its properties.

CHAPTER 1. INTRODUCTION 13

In Chapter 5, we formally define the transformation algorithm from the class of higher-

order functional programs we consider, to intensional programs of nullary variables. The

algorithm is motivated by examples and some of its properties are identified and proved.

In Chapter 6 we present a correctness proof for the algorithm introduced in Chapter 5.

The main points of the proof are highlighted and the insights gained from it are discussed.

Chapter 7 introduces certain practical implications of our work. In particular, having

as a starting point the transformation algorithm introduced in Chapter 5, we propose two

eduction-based strategies for implementing higher-order functional languages. Moreover,

we demonstrate that the transformation technique developed in this dissertation, offers a

solution to the long-lasting problem of implementing higher-order functions on dataflow

machines.

Chapter 8 concludes the dissertation by discussing open problems as well as possible

extensions of our work.

14

Background and R elated Work

This chapter introduces the background material that is used throughout the dissertation.

We assume familiarity with the main notions of set theory and logic [Sto79, Bar77] as well as

a basic understanding of domain theory and denotational semantics [Man74, Sto77, Ten76,

EW82, Ten91, Gun92]. In the following, we initially present the mathematical notation

we adopt. Then, a simple typed functional language is introduced and its denotational

semantics are defined. An intensional language of nullary variables is presented, and Yaghi’s

algorithm [Yag84] for transforming first-order functional programs into programs of this

language, is outlined. Wadge’s suggestion [Wad91] for extending Yaghi’s approach to a

significant class of higher-order programs, is then presented. The chapter concludes with a

discussion of related research.

2.1 Mathematical Notation

The set of natural numbers is denoted by N. The domain and range of a function / are

represented by dom (f) and range(f) respectively. For simplicity, we write in certain cases

f a instead of /(a). Moreover, when convenient, we use the A-notation to represent functions

CHAPTER 2. BACKGROUND AND RELATED WORK 15

[Bar84, HS86]. The set of functions from A to B is denoted by A —* B or BA. Given two

sets I and S, an /-indexed sequence is any function s : I -* S, and is denoted by (s,'),g/.

The set I is called the index set of s. The composition \x .f(g (x)) of two functions / and g

is denoted by / o g. The following generalization of set products is adopted: if / is any set

and Ai is a set for every i 6 I then

n ieiAi = { / : / - (J Ai \ Vi € / , f(i) € A,}
«€/

The functions / can be thought of as sets of tuples with one component from A; for every

i € I. The perturbation of a function with respect to another function, is defined as follows:

Definition 2.1 Let f : A -* B and g : S -* B, where S C A. Then, the perturbation f(l)g

of / with respect to g is defined as:

, , w , , g(x) if x € S
(/© *) (*)= <

f(x) otherwise

Given a function g = { (x i ,b i) , . . , ,{ x nibn)}, we will often write f [x i / b i , . . . , x n/bn]

instead of / © g.

We write List(N) for the set of lists of natural numbers. The usual list operations head,

tail and cons are adopted. The infix notation will often be used instead of cons.

Given a domain D, the partial order and the least element of D are represented by Cp

and I p respectively. The subscript D will often be omitted when it is obvious. If A, B are

domains, [A -+ B] is the set ol all continuous functions from A to B,

Finally, we adopt certain typographic conventions which are outlined below. Elements

of the object language, such as for example the code of programs, or function names in

such programs, are represented using typewriter font (e.g., f , x , . . .). Elements of the meta

language are divided in two classes: those that are used to represent usual mathematical

objects such as functions, sets, and so on, and for which we adopt the italics and the

CHAPTER 2. BACKGROUND AND RELATED WORK 16

calligraphic fonts (e.g., f , x ,£ ,A , . . .) , and those that are used in order to talk about the

syntax of the object language, for which we adopt the boldface font (e.g., f , x , P ,E , . ..).

2.2 Types

In recent years, a significant progress has been made in enriching programming languages

with a wide range of data types. Types impose a priori syntactic constraints on what

constructs of a language can be combined, helping in this way the programmer to avoid

writing meaningless or erroneous code. In this section, we define the syntax and semantics

of the types that are adopted for the purposes of this dissertation.

D efinition 2.2 The set Typ of types is recursively defined as follows:

• /. G Typ.

• If r j j , . . . , r n 6 Typ then (tx , . . . , t „) - + i € Typ.

Notice that the result component of a member of Typ is always ground, that is, equal to

i. As it will be described shortly, the languages that are considered in this dissertation,

are subject to this restriction in the sense that all functions defined in them, should have

a type that belongs to Typ. The various objects that are used by the functional language

that we will be adopting can be classified according to their type level or order. Intuitively,

the simplest kind of objects allowed by the language are ordinary data values (such as

for example integers or reals). These are classified as being type-0 (or zero-order). The

language also allows functions whose arguments are type-0 objects and whose results are

type-0 objects; these are the type-1 objects. In general, we classify as type-(n + 1) (or

(« + l)-order) all those functions whose arguments are type-n or less, and their result is

type-0. Formally, the order and the denotation of a type are defined as follows:

CHAPTER 2. BACKGROUND AND RELATED WORK 17

D efinition 2.3 The order of a type r € Typ is defined as follows:

order(t) = 0

order((ri,. . . , r„) -* i) = 1 + max{{order(ri) | 1 < i < n})

D efinition 2.4 The denotation of r € Typ with respect to a given domain D is recursively

defined by the function J • \ D (where the subscript D will often be omitted) as follows:

• Md = D

• I (n , • • •, T„) -► l]D = [([r ilD, . . . , fTnlo) JtJjr,]

A signature S is a set of constant symbols of various types over Typ. Elements of E are

assigned types by a type assignment function 0 : E -+ Typ. Constants are denoted by c.

The set En, n G N , is the subset of E whose elements have order less than or equal to n:

S„ = {c 6 E | order(0(c)) < n}

We also assume the existence of a set Var of variable symbols, whose elements arc assigned

types by re: Var —> Typ. Variables are denoted by f ,g ,x , As before,

Varn = {f e Var | order(ir(t)) < n}

Variable (constant) symbols of type i are also called nullary or individual variables (con

stants). Non-nullary variables are also termed function variables.

2.3 The Functional Language FL

In this section, we define the syntax and denotational semantics of the typed, higher-

order functional language FL. In the following, FL will also be referred as an extensional

CHAPTER 2. BACKGROUND AND RELATED WORK 18

language, to distinguish it from intensional languages, that will be defined later on in this

dissertation.

Definition 2.5 The syntax of the functional language FL is recursively defined by the

following rules, in which E, E,- denote expressions, F, F; denote definitions and P denotes

a program:
E ::= f 6 Var

I c (E i , . . . ,E n), c € Si

| f (E i , . . . ,E „) , f € Var

F ::= (f (x i , . . . ,x „) = E), f , x i , . . . , x n € Var

P { F i , . . . ,F n}

Given a definition f (x i , . . . , x„) = E, the variables x i , . . . , x n are the formal parameters

or formats of f, and E is the defining expression or the body of f.

Definition 2.0 Let P = { F i , . . .,F„} be a program. Then the following assumptions are

adopted:

1. Exactly one of the F i, . , . ,F „ defines the individual variable result, which does not

appear in the body of any of the definitions in P.

2. Every variable symbol in P is defined or appears as a formal parameter in a function

definition, at most once in the whole program.

3. The formal parameters of a function definition in P can only appear in the body of

that definition.

4. The only variables that can appear in P are the ones defined in P and their formal

parameters.

The set of variables defined in a program P is denoted by /unc(P), while the set of

variables that are defined or appear as formal parameters in P is denoted by V ars(P). The

CHAPTER 2. BACKGROUND AND RELATED WORK 19

type-checking rules for the language are given as natural deduction rules with sequents of

the form E : r. The sequent E : r asserts that E is a well-formed expression of type r

provided that the identifiers and constants that are used in E, have the types assigned to

them by 7r and 0 respectively.

Definition 2.7 The set of well-typed expressions is recursively defined as follows:

•() = T
f : r

(g(c) = (n , . . . , r n) -+ t)A (E i : n , . . . , E w : r„)
c (E i , . . . ,E „) : t

(*(*) = (r t , . . . , r n)-» t)A(Ei : n , .. .,E« i rn)
f (E i , . . . ,E n) u

Definition 2.8 A definition f (x i , . . . ,x „) =■ E with f : (n , . . . ,rn) -+ i is well-typed if

xi : n , . . . , x n : r„ and E : i.

Definition 2.9 A program {F1?. . . , F n} is well-typed if F j , . . . , F n are well-typed defini

tions.

In the following, we will often talk about first-order programs, second-order programs,

and so on. The following definition formalizes the above notions:

Definition 2.10 Let P be an FL program. The order of P is defined as:

Order(P) = max{order(ir({)) | f € func(P)}

Definition 2.11 The language FOFL is the subset of FL in which all programs arc first-

order.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

The purpose of this dissertation is to investigate how extensional languages like FOFL

and FL, can be transformed in a sound way, into intensional languages (to be defined

shortly). For this purpose, we will start our investigations from the simpler first-order

language FOFL, and in later chapters we will extend our results to the more powerful and

expressive language FL.

2.4 The Semantics of FL

Let D be a domain. Then, the semantics of constant symbols of FL with respect to D, are

obtained by a given interpretation function C, which assigns to every constant of type r ,

a function in M d - Let ExpT be the set of all expressions E of FL such that E : r. Let

Envv be the set of 7r-compatible environments defined by Env*■ = IIfgva,.t7r(f)j£>. Then,

the semantics of FL is defined using valuation functions [• Jp : ExpT —► [Env„ —► [r]D],

(where the subscripts D and ff will be omited when they are obvious from context).

Definition 2.12 The semantics of expressions of FL with respect to u G Env, are recur

sively defined as follows:

[fj(tt) = tt(f)

fc(E j, . . . , E n)J(u) = C(c)(E£,] («) ,... , [E„K«))

[f(E ,, . . . , E„)J(u) = «(f XJEiKu),. . . , IEn]|(«))

Definition 2.13 The semantics of the program P { F i , . . . ,F „ } of FL with respect to

u € Envn, is defined as S(result), where 5 is the least environment such that:

1. For every f € Var with f £ func{P), 5(f) = u(f).

2. For every f (x i , . . . ,x „) = E in P such that f : (r i , . . . , r „) -► i, and for all d\ €

[h] p i • *‘fdn € w (f)(d j,...,dn) = [E}(u[xi/di, . . . , x n/d n]).

_

CHAPTER 2. BACKGROUND AND RELATED WORK 21

The above definition does not specify how the least environment u can be constructed.

The following theorem suggests that u is the least upper bound of a chain of environments,

which can be thought as successive approximations to u.

T heorem 2.1 [Ten91, page 96] Let P and it be as in Definition 2.13. Then, it is the least

upper bound of the environments 5*, k € N, which for every definition f (x i , .. .,x „) = E

in P , with f : (rx ,. . . , r„) -+ i, and for all <li 6 [riJD, . . . , dn 6 [rn]D, are defined as follows:

no(f)(^i? • • ■ i dn) — Lp

U k+i(f)(di,.. .,dn) = [E](tt<..[xi/dx,...,x„/r/n])

Moreover, for every k G N, 2jt(f) Q Uk+\(f).

The following lemma is a direct consequence of the above theorem:

Lem m a 2.1 Let P and u be as in Definition 2.13. Then, for every definition f (x i , . . . ,x„) =

E in P with f : (r j , . . . , t„) —► t,

U k(f)(d i, .. . ,dn) C [E](ufc[xi/t/1 , . . . , x n/t/n])

for all dx € IriJD, [rnJD.

The following theorem will also be used in subsequent chapters:

T heorem 2.2 [Ten91, page 97] For all expressions E € Expr , [E] is monotonic and con

tinuous. Moreover, when r ^ t, [EJ(u) is monotonic and continuous, for all u G Env.

Notice that the semantics of programs of FL have been defined with respect to an

initial environment u. Recall now that the programs that we are considering do not contain
. . .

occurrences of “outside” variables (Definition 2.6). For this reason, we can assume that the

initial environment assigns the bottom value (of the appropriate type) to every variable in

Var, and we can then talk directly about the least environment that satisfies the definitions

in a given program.

CHAPTER 2. BACKGROUND AND RELATED WORK 22

2.5 The Intensional Language NVIL

In this section we define (following [Yag84]) the syntax of a simple intensional language of

nullary variables. As it will be demonstrated later in this chapter, N V IL can serve as the

target language for transforming FOFL programs.

Definition 2.14 The syntax of the intensional language N V IL is recursively defined by the

following rules, in which E ,E ; denote expressions, F ,F ; denote definitions and P denotes

a program",
E ::= f € Var0

| c (E i , .. .,E„), c 6 Si

| calli(Eo), i € N

| actuals((E,)!g/), I C N

F (f = E), f € Var0

P { F i , . . . ,F n}

Similar restrictions as in FL are adopted for the syntax of N V IL programs. The typing

rules for N V IL are given along the same lines as those of FL. There exist two new rules

that have to do with the intensional operators call; and actuals:

Eo : i

call,(E0) : t

Vi 6 / (E,-: i)

actuals((E,),G/) : l

Notice that the syntax of N V IL only allows nullary variables to be defined and used in

a program. On the other hand, both nullary and first-order constants can be used. Notice

also the intensional operators that are adopted by the language; as N V IL will be the target

language for transforming FOFL programs, the two operators will play a very important

role in the elimination of function calls from the source programs.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

2.6 The Semantics of NVIL

As discussed in Chapter 1 , in intensional languages the meaning of an expression is a

function from a set of possible worlds to a set of data values. Depending on the target

application, a possible world may be a moment in time, a position in space, a. node in a tree

structure, and so on. In the language N V IL under consideration, variables denote trees of

data values (as pointed out in Section 1.4). A node in such a tree can be identified by a list

of natural numbers. Therefore:

Definition 2.15 The set W of possible worlds of N V IL is the set List(N) of lists of

natural numbers.

Let D be a given domain. Then, the semantics of constant symbols of N V IL with

respect to D, are given by an interpretation function C', which assigns to every constant

of type r , a function in A s the language N V IL will be used as the target for

transforming programs of FOFL, the function C' is defined in terms of the interpretation

function C for FOFL. More specifically:

D efinition 2 . 1 0 For every n-ary constant c € Ei, for every w £ W , and for all « (, . . . , an £

(W -* D), C'(c){a\,. . . , a„)(w) = C(c)(oi(tn),. . . , a„(w)).

Let E xp be the set of all expressions of N V IL . Let E n v be the set of ir-compatible

environments defined by E n v = IIfeyarl 7r(f)](lv_f£)). Then, the semantics of N V IL is

defined using valuation functions [• J : Exp -» [Env* -+ (W —> D% as follows:

Definition 2.17 The interpretation of expressions of N V IL with respect to u £ Env, is

recursively defined for every in € IF, as follows:

[fj(ti)(in) = «(f)(w)

[c(E i, . . . , E„)J(u)(te) = C'(c)([Ei J(n),. . . , (En](u))(u>)

[call,-(E)](u)(tn) = IEJ(«)(»: in)

[actuals((E,),e/)](u)(in) = lE,(ea(/(u))J(ii)(<ai7(in))

CHAPTER 2. BACKGROUND AND RELATED WORK 24

Definition 2.18 The semantics of the program P = { F i , .. . ,F n} of N V I L with respect

to u € E n v v , is defined as u { result), where u is the l e a s t environment such that:

1. For every f 6 V a r with f £ f u n c (P), u (f) = u (f).

2. For every definition (f = E) in P, 2(f) = |[E](m).

Notice that the semantics given above for N V I L are standard, and their only difference

from the ones given for F L is that the former is defined on the richer domain (W —*■ D) ,

while the latter is defined on the domain D . Therefore, the Theorems 2.1, 2.2, and Lemma

2.1, transfer directly to the language N V I L as well.

In the following, we let e a l l i and a c t u a l s be the functions that correspond to the object

language operators call,' and actuals.

2.7 Yaghi’s Transformation

The first work to establish a relationship between extensional and intensional functional

languages was Ali Yaghi’s Ph.D. dissertation [Yag84]. More specifically, Yaghi discovered

and described an algorithm for transforming a F O F L program into an N V I L one.

Yaghi’s work, apart from its theoretical significance, had practical implications as well:

the resulting intensional programs can be interpreted in a very simple way based on the

eduction model. In fact, the Lucid functional-dataflow language [AW76, AW77, WA85],

as well as other Lucid-related systems [DW90b, DW90a], are nowadays traditionally im

plemented based on Yaghi’s approach. However, there are two important aspects of the

technique, that were not developed in [Yag84] (and which are resolved in this dissertation.

Chapter 3):

1. The transformation algorithm from F O F L to N V I L programs given in [Yag84], is

semi-formal and not functional.

CHAPTER 2. BACKGROUND AND RELATED WORK 2 5

2 . A correctness proof of the transformation is not given in [Yag84], and has remained

an open problem since then.

In this section, we describe Yaghi’s technique and outline how it can be used as the basis

of an interpreter for first-order functional languages. The algorithm is shown below:

1. Let f be a function defined in the source extensional program. Number the textual

occurrences of calls to f in the program, starting at 1 (including calls in the body of

the definition of f).

2. Replace the ith call of f in the program by callj(f). Remove the formal parameters

from the definition of f, so that f is defined as an ordinary individual variable.

3. Introduce a new definition for each formal parameter of f. The right hand side of

the definition is the operator actuals applied to a list of the actual parameters cor

responding to the formal parameter in question, listed in the order in which the calls

are numbered.

To illustrate the algorithm, consider the following simple first-order extensional program:

result = f(4)+f(5)

f(x) i g(x+l)

g(y) = y

The following intensional program is obtained, when the algorithm is applied:

result = call)(fl+call^Cf)

f = ca lli(g)

g = y
x = actuals(4,5)

y = actuals(x+l)

CHAPTER 2. BACKGROUND AND RELATED WORK 26

Execution of tbe program is achieved by actually following the denotational semantics of

the intensional program, and using the semantic rules for call and ac tua ls presented in the

previous section. The interpreter starts evaluating the variable resu lt of the intensional

program under the empty context, i.e., the list []. Every time a variable is encountered

during evaluation, the interpreter replaces it by its defining expression. In the following, we

use E V A L to represent the function of the evaluator (interpreter). Execution proceeds as

shown in Figure 2.1. In his dissertation, Yaghi conjectured that higher-order programs can

figure 2.1 Execution of intensional code

E F A lC c a ll^ f l+ c a l^ C fM])
= E V A L (c a l l \ (f), []) + EVAL{c*XL2(f), [])
= E V A L { t , [1]) + EVAL{ f , [2])
= E V A L (c a l l \ (g) , [1]) + EVAL(c a lla (g) , [2])
= EVAL(g,[l,l]) + EVAL(g,[l,2})
= E FA X (y,[l,lj) + EFA X (y,[l,2])
= EV A £(act!ials(x+l), [1,1]) -}- jE FA £(actuals(x+l), [1,2])
= EVAL(x*t, [1]) + EVAL(x* 1, [2])
= EVAL(x, [1]) + EVAL(1 , [1]) + EVAL{x, [2)) + EVAL(1, [2])
=: EVAL(x, [1]) + 1 + EVAL(x, [2]) + 1
= I?F A £(actuals(4 ,5),[l]) + 1 + E W lX (actuals(4 ,5),[2])-)-1
= EVAL{*, []) + 1 + EVAL{S , []) + 1
= 4 + 1 + 5 + 1
= 1 1

be intensionalized in a similar way, but that probably a richer set of possible worlds would

be required.

2.8 Higher-Order Programs: Wadge’s Suggestion

The first attempt for generalizing Yaghi’s technique to apply to higher-order programs, is

described in [Wad91]. In that paper, W. Wadge outlines a technique that could potentially

extend Yaghi’s intensionaiization algorithm. The reader should be cautioned at this point

that the following discussion is given at an informal level, following the description in

CHAPTER 2. BACKGROUND AND RELATED WORK 27

[Wad91], and that certain of the notions introduced in this section will be corrected and

extended in subsequent chapters.

The main idea of Wadge’s proposal is that given an m-order program, one can appro

priately transform it into an (m - l)-order intensional program. This can be performed

by eliminating the (m — l)-order formals from function definitions, in a similar way as in

Yaghi’s technique. The same procedure can then be repeated for the new program, until

an intensional program of nullary variables is obtained.

Every stage in the transformation corresponds to a different order that is eliminated

from the program. Therefore, we use a different set of operators at each step. Let rn. be the

order of the initial program. Then, for the first step we use the operators actuals,,, and

call(miq, where i ranges as in the first-order case. r or the second step, we use actuals,,,.)

and and so on.

Consequently, contexts are now multidimensional: for the translation of an m-ordcr

program, a context is an m-tuple of lists, where each list corresponds to a different order

of the program. The code that results from the transformation can be executed following

the same basic principles as in the first-order case. The above ideas are illustrated with the

following simple second-order extensional program:

result = apply(inc,8)

apply(f.x) = f(x)

inc(y) = y+1

The function apply is second-order because of its first argument. The generalized transfor

mation, in its first stage eliminates this argument:

result = call(2,i)apply(8)

apply(x) = f(x)

inc(y) = y+1

f = actuals2(inc)

CHAPTER 2. BACKGROUND AND RELATED WORK 28

We see that the program that resulted above is first-order: all the functions have zero-order

arguments. The only exception is the definition of f which is an equation between function

expressions. In [Wad91], the suggestion is made that this can be changed by introducing a

formal parameter z for f :

r e s u l t = c a ll(2 ,i)apply(8)

applyCx) = f(x)

inc(y) = y+ 1

f (z) = ac tu a ls 2 (in c (z))

This completes the first stage of the transformation. Now, we have a first-order intensional

program, and we can apply the technique for the first-order case, which gives the final

program:
re s u l t i c a l l(i tl}(call{2 ,i)(apply))

apply ± c a l l (M)(f)

inc = y+ 1

f = a c tu a ls 2 (c a l l^ i) (in c))

z = ac tu a ls i(x)

y = ac tu a ls !(z)

x = a c tu a ls i(8)

In the execution model for a program of order m, contexts are m-tuples of lists of natural

numbers, and each list corresponds to a different order of the initial program (or equivalently,

a different stage in the transformation). We will use the notation to denote

a context. The operators call and actuals can now be thought of as operations on these

more complicated contexts.

Let s € (1,. <., m}. Consider the operator ca ll^ ,). Given a context, s is used in order to

select the corresponding list from the context. The list is then prefixed with i and returned

to the context. On the other hand, actuals, takes from the context the list corresponding

to s, uses its head i to select its t'th argument, and returns the tail of the list to the context.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

Let a ,a i , .. . ,a„ be intensions. Then, the new semantic equations, which are implicit in

[Wad91], are:

(call{s<i)(a))((wi, t um)) = (a)(<wi, ws), • • •, wTO»

((actuals3(au . . . , a n))((iu1, wm)) = (ahead(w,))({w 1 , • • •, tail(ws) , . . . , «>„,))

The new operators can therefore be viewed as a generalization of the operators for the

first-order case. The evaluation of a program starts with an m-tuple that contains m empty

lists, one for each order. Execution proceeds as in the first-order case, the only difference

being that the appropriate list within the tuple is accessed every time. The execution of

the apply program is given in Figure 2.2. The technique described above works for this

figure 2.2 Execution of the intensional code that results from apply

JSFAL(call{1)1) (c a ll{2)1) (apply)),{ [] ,[]»
EV'j4L(call^2,i)(apply), ([1],[]))

= E V /lL(apply, <[1], [1]))
5= E V AL(call(lit) (f), ([1], [1]))
= E V A L (t , ([l , l) , [l]))
= EVri4L(actuaIs2(c a ll(lil> (in c)), ([1,1], [1]))
= EFAZ(call(lil)(inc),([l,l],[]))
= EFA L(inc,([l,l,l],[]))
= E V A L (y + l,([l,l,l] ,[]»
= E V A L (y, ([1,1,1], [])) + E V A L (1 , ([1,1,1], []))
= £FAZ/(actualsi (z), ([1,1,1], [])) + 1
= E V A L (z ,([l,l],[])) + l
= E F/lL (actualsi(x),([l,l],[]))-f 1
= E V A L { x , {[!],[])) + 1
= 15F/lL(actualsi(8), ([!],[]}) +1
= E V A L (8 ,< [],[]» + l
= 8 + 1
=r 9

example, but this is not the case in general. The following section indicates why.

CHAPTER 2. BACKGROUND AND RELATED WORK 30

2.9 Limitations of Wadge’s Algorithm

The following example illustrates that the algorithm described in the previous section does

not always preserve the semantics of the source functional programs. Consider the following

second-order program:
re s u l t = tw ic e (in c ,8)

tw ic e (f.x) = f (f (x))

inc(y) = y+ 1

The function tw ice is second-order because of its first argument. According to the algo

rithm, this argument must be eliminated in the first step. Moreover, a new formal z is

added to the newly created definition for f :

r e s u l t = c a ll(2 ,i)tw ice(8)

tw ice(x) = f (f (x))

inc(y) = y+ 1

f (z) = a c tu a ls 2 (in c (z))

Now we have a first-order program, and we can apply the second step of the transformation:

re s u l t = c a l l^ ^ C c a ll^ .i) (tw ice))

twice = c a l l ^ f f)

inc = y+ 1

f = a c tu a ls 2 (c a ll(lil) (in c))

z = ac tua ls] (c a l l(j i2) (f) , x)

y = ac tu a ls](z)

x = a c tu a ls] (8)

The execution of the resulting program is illustrated in Figure 2.3. It can be easily realized

that the execution fails, without producing any final result: at the last step shown in Figure

2.3, the semantic equation for the actuals operator can not be applied, because the second

CHAPTER 2. BACKGROUND AND RELATED WORK 31

component of the context is empty. In other words, the source functional program and the

resulting intensional program, are not semantically equivalent.

figure 2.3 Execution of the intensional code that results tw ice

E V AT (c a ll(1(1) (c a ll(2il) (tw ice)), ([],[]))
= E V AL(call(-2,i) (tw ice), ([1],[]))
= EVAL(twice, <[1],[1]))
= £ F A Z (c a ll(lil)(f),< [l],[l]»
= EVAL(f,([l,l],[l]))
= EVAL(ac tua ls 2 (c a l l fly (in c)) , ([1,1], [I]))
= f?FA Z (call(lil)(in c),< [l,l] ,[]»
=• E V A£r(inc, <[1,1,1], []))
= EVAL(y+l, {[1,1,1], []))
= EVAL(y, ([1,1,1], [])) + EVAL{ 1 , ([1,1,1], []))
= E V A T(actualsj (z), ([1,1,1], [])) -f 1
= EVAL(z ,< [l,l],[])) + 1
= £ F A L (a c tu a ls i(c a ll(ii2) (f) , x) ,([l ,l] ,[]))+ 1

= £FA T (call< 1 >2)(f) ,< [l] ,[]))+ l
= EVAL(f,([2 ,l] ,[])) + l

fJFA X (actuals2 (c a l l(i il) (in c)), ([2,1], [])) + !

The following remark;; are in order, concerning the transformation for higher-order pro

grams and its application on the above example:

1. After the first step in the transformation was performed, a variable z was introduced

and attached to the function variable inc. This decision ignores the effect that the

actuals operator has on contexts, and is therefore semantically incorrect. Under this

translation scheme, the evaluation of many programs is terminated abnormally.

2 . After the first step in the transformation, the defining expression for the variable

r e s u l t is c a l l (2 ,i)tw ice(8). Should this be treated as c a ll^ ,i) (tw ic e (8)) or as

(ca ll{ 2 ,i)tw ice)(8)? The parenthesization proves to be extremely important ,'hen

considering the correctness proof of the transformation.

3. The actuals operator appears to be working correctly, but this is not the case: it

CHAPTER 2. BACKGROUND AND RELATED WORK 32

forces variables to be evaluated in different contexts than they should. A stronger

operator is required in order to ensure the correctness of the transformation.

4. What are the semantics of the call and actuals operators that appear in intermediate

steps of the transformation? Notice that these operators may have as arguments

higher-order objects and not intensions, in which case a different approach to their

semantics should be adopted.

5. How can the translation be formally defined in a functional way? This problem exists

for Yaghi’s algorithm as well, but becomes much more difficult for the case of higher-

order programs.

6 . How can the correctness of the translation be established? This is possibly the most

demanding open question, since it is not apparent how one can relate the semantics

of the source extensional program to the semantics of the resulting intensional one.

The main purpose of this dissertation is to settle the above issues, establishing in this way a

semantics preserving transformation from higher-order extensional to intensional programs.

2.10 Discussion o f Related Work

In the last sections we have outlined the work described in [Yag84] and [Wad91] on trans

forming extensional programs into intensional ones. These two references are the starting

point of our research, and in this respect they are closely related to our work. To our

knowledge, there have not been any other attempts to relate functional programming and

intensional logic in the sense described in this dissertation.

Our work is connected to the recent research on firstification [Nel91], whose purpose

is to reduce a given higher-order functional program into a first-order one. The practical

outcome of firstification is that the resulting first-order programs can be executed in a more

efficient way than the source higher-order ones. Our work differs from firstification in that

CHAPTER 2. BACKGROUND AND RELATED WORK 33

the result of our transformation is an intensional program of nullary variables. Moreover,

our goal is to transform the source program into a form which can be educed, while the goal

of firstification is to serve as a form of optimization for the source higher-order programs.

Reducing the order of the source program is also the goal of a technique originally

proposed by Reynolds [Rey72]. However, in order for this to be achieved, data-structurcs

have to be introduced in the program. Moreover, the resulting program actually simulates

the runtime behavior of the source one. Therefore, although elegant, Reynolds technique

does not serve the same goals as the technique we propose in this dissertation.

Our work is also connected and contributes to the field of dataflow computation. More

specifically, the implementation of higher-order functions on taggcd-datajtow machines, has

always been a problematic issue: the solutions usually adopted are inelegant and prove

computationally expensive in practice, mainly because they do not take advantage of the

tagging capabilities of the underlying machine. The technique we develop offers a. solution

to this long-lasting problem in the implementation of dynamic dataflow. We will return to

this point and discuss it in detail, in Chapter 7.

There exists a growing body of research which examines other important applications

of intensional logic in computer science. Most of this research has been taking place in the

area of programming languages and its main trend is to examine how existing programming

language paradigms can be enriched with ideas from intensional logic.

Functional programming was possibly the first programming paradigm to receive the

influence of intensional logic. The functional-intensional language Lucid [WA85, AW76,

AW77], is the first example of this influence. Lucid is a language based on the concept of

streams, which are actually intensions over a set of timc-points. Moreover, the language

supports a rich set of operations on streams (i.e., intensional operations). At the time

that Lucid was introduced, it was widely believed that applicative languages are inherently

incapable of describing dynamic activity. This assumption was challenged by Lucid, as it

soon became obvious that the language could describe dynamic computations in a natural

and problem-oriented way. Since its inception, Lucid has been extended in several ways. Its

CHAPTER 2. BACKGROUND AND RELATED WORK 34

variants have been used to specify 3D spreadsheets [DW90b, DW90a], parallel computation

models such as systolic arrays [Du91], attribute grammars [Tao94, Tao93], real-time systems

[FL89, .TPL93], database systems [PP94], and so on.

Logic programming [SE8 6 , Llo87, Apt90, vK76] is another programming paradigm which

has benefited from its interaction with intensional logic. Many intensional logic program

ming languages have been proposed [Org94, Wad85, Wad8 8], and significant results have

been obtained regarding their semantics [Org91, OW92]. A work in this area that is related

to our research, is D. Rolston’s Ph.D. dissertation [Rol92], which examines the relationship

between logic programming and intensional logic programming. The philosophy of Rol

ston’s approach was also motivated by Yaghi’s work. However, the techniques adopted in

[Rol92] have significant differences from the methods used in [Yag84], possibly reflecting in

this way the differences between logic and functional programming.

Another area in which intensional logic seems to be playing an increasingly important

role, is that of concurrency. In this context, intensional logic is used to specify properties

which a concurrent program should satisfy, such as for example deadlock freedom. For an

introduction to such application, the reader is referred to [vB8 8 , Chapter 5].

35

C hapter 3

Intensionalizing First-Order

Program s

In this chapter we present a formal definition and a correctness proof of the transforma

tion algorithm from first-order extensional programs (FOFL) to intensional programs of

nullary variables (N V IL). The formal definition of the algorithm is a functional one, and

its main difference from the one given in Yaghi [Yag84] is that if two expressions in the

source program are identical, then they are assigned identical intensional expressions dur

ing the translation. The correctness proof of the algorithm is established by showing that

a function call in the extensional program has - informally speaking - the same meaning as

the intensional expression that results from its translation.

3.1 A Formal Definition of Yaghi’s Algorithm

In Chapter 2, we outlined the algorithm proposed by Yaghi for translating first-order ex

tensional programs into intensional programs of nullary variables. There are two main

problems with Yaghi’s approach:

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 36

1. The definition of the algorithm given in [Yag84] is semi-formal.

2. A correctness proof of the algorithm is not provided.

In this section we give a solution to the first of the above problems. The second problem is

settled in Section 3.3.

The main idea behind Yaghi’s approach is that every function call in the source program

is translated into a unique intensional expression. This means that even if two function

calls in a program are syntactically identical, they will be given different translations, as

the following example illustrates:

Exam ple 3.1 Consider the following first-order extensional program:

result = f(10)+f(10)

f(x) = x+1

The algorithm described in [Yag84] would translate the above program as follows:

result = ca lli(f)+ c a ll2(f)

f = x+1

x = actuals(10,10)

However, such a translation is not natural and proves quite difficult to formalize. There

fore, we revise Yaghi’s algorithm so as to operate in a “referentially transparent” way: iden

tical function calls should be assigned identical intensional expressions. For this purpose,

we will use in the following a Godel numbering function:

T heorem 3.1 [LP81, pages 242-243] There exists a one-to-one map [•] : Exp —► N. For

every E € Exp, [E] is called the Godel number of E.

The Godel numbering captures the situation described above: it assigns different num

bers to syntactically different function calls, but assigns the same number to indistinguish

able calls.

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 37

Example 3.2 Consider again the extensional program given in example 3.1. Let [f (10)] =

/ € N. Then, the translation of the expression f(10)+f(10) under the Godel numbering

scheme, will be c a l l / (f)+ c a l l / (f).

Before presenting the formal definition of the algorithm, we state the following .assump

tion, which simplifies the subsequent discussion without affecting the expressive power of

the FOFL language:

Assumption: Let P be a FOFL program. Then, the only nullary variable denned in P

is the distinguished variable result.

We are now in a position to formally describe the revised algorithm. The formal def

inition consists of three components. The first one describes how to translate extensional

expressions into appropriate intensional ones. The second component processes the defini

tions of the source program and also creates a set of new definitions, one for every formal

parameter that existed in the source program. Finally, the third component combines and

coordinates the actions of the first two.

The following conventions are adopted. Let P be a first-order extensional program and

let Sub(P) be the set of subexpressions of P. Let f be a function defined in P. Then:

• The set of labels of calls to f in P is defined as:

labels({,P) = {rf(E i,.. . ,E„)l | f (E j , . . . ,E „) € Snb(P)}

• The selector function © on labels is defined as:

f f (E i , . . , ,E n)] 0 j = Ej , j € { ! , . . . , 71}

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 38

The transformation from extensional expressions to intensional ones is performed by the

following recursively defined function €:

E - x
£(E) = x

E = c (E i , . . . ,E n)
£(E) = c (£ (E ! £ (E „))

E = f (E i , . . . ,E w)
£(E) = callfE1 (f)

Given a program P and a function definition f (x i , . . . , x n) = B f in P , the function A f is

used to create a set of new definitions, one for every formal parameter of f:

 I = labelsj f ,P)_______
*4f(P) = U?=i{x; = actuals«£(i© j)>,€/)}

The last step of the transformation, removes the formal parameters from the function defi

nitions and appropriately uses € and A to create the target intensional program:

F = (f (x i , . . . ,x n) = Bf)
2>(F) = (f = £(Bf))

Trans(P) = ([j A f (P)) U (| J W) })
fe /u n c (P) F e P

This completes the presentation of the transformation algorithm. In the following sec

tion, example transformations that illustrate the above definitions, are given.

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 39

3.2 Example Transformations

In this section we give two examples of the transformation algorithm. The first one is a

simple non-recursive function, while the second one is a recursively defined factorial function.

Example 3.3 Consider the following simple first-order extensional program P:

result = f (f (10))

f(x) = x+1

Assume that [f (f (1 0))] = /j and [f (1 0)] = /2. Therefore, labels(f ,P) = { / | , /2}. In order

to compute Trans{P) it suffices to compute the sets (UFepf^KE)}) and Af (P). The first

set can be computed using the definition of S , and contains the following two definitions:

result = call/, (f)

f = x+1

The set A t (P) contains only one definition, corresponding to the formal parameter x of f .

.4f (P) = { x ia c t u a ls ({ (/ i , f (/ ,0 l)) ,(/2,5(/a01))})}

= {x = actuals({(/i,£(f (10))), (/2,£(10))})}

= (x = actuals ({(/j, call/2 (f)),(/2, 10)})}

Therefore, the resulting intensional program of nullary variable definitions, is the following:

result = call/, (f)

t = x+1

x = actu a ls({(/i,ca ll/j(f)),(/2, 10)})

Let u be the least environment that satisfies the definitions of the above N V IL program.

Then, following the denotational semantics, we can compute the semantic value of the

program, as shown in Figure 3.1.

CHAPTER 3. INTENSI0NAL1ZING FIRST-ORDER PROGRAMS 40

figure 3.1 Execution of the intensional program

[resultj(2)([]) =
= [call,, (« [(»)([])
= [*K«XPi])
= [x+ij(8)([/,])
= [*K«)(P»])+ 1
= [actuals({(/i,call/a(f)) ,(/3,10)})](u)([fi]) +1
= [call,, <f)[(«)([]) + l
= [* K W d) + i
= Ix*ll(«)([/a]) + 1
- W (S)([/2]) + 1 + 1
= [actuals ({(/i, ca ll,2 (f)), (l2, 10)})](u)([/3]) + 1 + 1
= [10](2)([]) + 1 + 1
= 12

Exam ple 3.4 Consider the following recursive first-order extensional program P:

result = fa c t(2)

fact(n) = i f (n<»l) then 1 else n*fact(ri-l)

Assume the Tfact(2)1 = l\ and that f fa c t(n - l)] = l2. The two definitions of the initial

first-order extensional program become after they are processed by V:

result = call;, (fact)

fact = i f (n<»l) then 1 else n*call,2(fact)

The set . 4 f a c t (P) contains only one definition for the formal parameter n:

*4fact(P) = {n = actuals({(/i,2),(/2,n -l)})}

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 41

Therefore, the final intensional program consists of the following set of definitions:

result = call/, (fact)

fact = i f (n<*l) then 1 else n*call/2(fact)

n = actuals({(/i,2),(/2,n-l)})

The above program can be executed following the same principles as in example 3.3 (see

Figure 3.2). Notice that during the calculations the value of u(n) under the context [/1]

is demanded three times. This means that if the value together with the context were

appropriately saved when first encountered, then they coidd be reused when demanded

again.

figure 3.2 Execution of the intensional program that results from fact

[result](2)([]) =
= {call/, (f act)](u)([])
= [factj(2)([/i])
= [if (n<*l) then 1 e lse n*call/2(fact)J(w)([/i])
— i f ([n<»l](2)([/j])) then 1 else ([n*call/2(fact)](2)([/|]))
= i f («(n)([/x]) <= 1) then 1 else ([n*call/2(fact)](w)([/i]))
= i f ([actuals({(/i,2),(/2,n-l)})l(w)([/i]) <= 1) then I

else ([n*call/2(fact)jj(u)([/i]))
— i f (2 <= 1) then 1 else ([n*call/2(fact)](u)([/i]))
= [n*call;2 (f act)](2)([/i])
= 2(n.)([/i]) * [call/2 (f act)](u)([/i])
= 2 * [call/2 (fact)](2)([/i])
= 2 * |[factJ(2)([/2,/i])
= 2 . [i f (n<*l) then 1 e lse n*call/2(fact)]](2)([/2,/]])
= 2* (i f ([n<«l](«)([/2,/t])) then 1 else ([n*call/2(fact)]](M)([f2,/|])))
= 2* (i f ([actuals({(/i,2),(/2,n-l)})J(M)([/2,/1]) <= 1) then 1

else ([n*call/2 (fact)j|(2)([/2, /j]))
= 2 * (i f ([n-lj(«)([/i]) <= 1) then 1 else ([n*call/2(fact)](M)([/2,f|]))
= 2* (i f (1 < = 1) then 1 else ([n*call/2(fact)](M)([/2,(|]))
s 2*1

=
2

CHAPTER 3. IN TENSION A LIZIN G FIRST-ORDER PROGRAMS 42

3.3 Correctness Proof

The correctness proof of the transformation algorithm is established by Theorems 3.2, 3.3

and 3.4 to follow. The main idea of the proof is to relate semantically a function call in the

source first-order extensional program with the corresponding intensional expression that

results from its translation. For example, given a first-order extensional program P , we

would like to give a semantic statement concerning a call E = f (E i , . . .,E „) in P , and its

translation callfE |(f) *n T r a n s (P). Let u and u be the least environments satisfying the

definitions in P and T r a n s (P) respectively, and let w € W. The idea is to first prove the

following statement:

(ca//rE1(fi(f)))(«0 = U(f)(|[f (E O P X in),. . . , P (E B)](2)(ti>))

This Ionics like a weaker result than what we are actually looking for, because the right

hand side does not correspond exactly to the expression f (E i, .. . ,E „) of the extensional

program. However, a stronger result can be shown afterwards using an inductive argument,

as we are going to see. It turns out that the above statement can not itself be shown in

one step. Instead, we need to show that the right hand side approximates the left, and

vice-versa. The details of the proof are given below:

Theorem 3.2 Let P be a first-order extensional program and let u be the least environment

satisfying the definitions in P . Let u be the least environment satisfying the definitions in

the translated program Trans(P). Then, for every function definition (f (x i , . . . , x n) = Bf)

in F , for every function call E = f (E i, . . . , E„) of f in P and for every w e W

(caUfE](u (())) (w) C ntfXMEOKttXtit),. . . , [£(En)J(u)(«0)

Proof: The theorem is established by induction on the approximations •«*., k € N , of u.

In other words, we show that for every k > 0, for every function f defined in P, for every

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 43

function call E = f(E x ,. . . , E n) of f in P , and for every w t- W:

(ca//fE1 (n,(f)))(tn) C «(f)([£(£!)](«*)(«»), • • •, P(E„)K «*)(i»))

Notice that we only use the approximations of u but not the approximations of u. Intuitively,

this gives to the right hand side of the above statement an “advantage”, which allows the

C relation to be established. The basis case is for k = 0 and it holds trivially because the

left hand side of the above statement is equal to the bottom value. We assume that the

above statement holds for k and we show that it holds for k + 1 , i.e.,

(ca//fB|(u*+1 (f)))(ti>) C u(f)([f(E i)](a*+i)(w),. . . , [£(E„)](8 fc+i)(«;))

Using the semantics of call, the above statement can be rewritten as follows:

« * + i (f) (r ® i : « o e (E i) K 2 h i) (« ') . • • • > mvn)m+i)M)
Recalling that f (x i, . . .,x „) = Bf in P and f = £(Bf) in Trans(P), and using Definition

2.13 and Theorem 2.1, the above is equivalent to the following:

[£(Bf)!(«*)(TE1 : w) c lBfl(w© pfc+1)

where pk+\(x.j) = [£(Ej)]](2/;+i)(u;), j = 1 , . . . , n. The above can be established by showing

that for every subexpression S of B f , we have:

IW K fffc X rE l : w) C [S](« © Pk+1)

We therefore perform a structural induction on S.

CHAPTER 3. INTENSIONAL1ZING FIRST-ORDER PROGRAMS 44

Structural Induction Basis.

Case S = X j G { x j , . . Then, in the intensional program Trans{P), a definition of

the form Xj = actuals((£(i © j))iei) has been created, where I = labels(f,P). We have:

p (S)](o *)O T :« 0 =

= P (xj)K“*)(TE1 :»)
(Because S = x j)

= [xj](tt*)(fEl : i i>)

(Definition of S)

= «Jfc(xj)O T : w)

(Semantics)

C [actuals((£(i 0 j)),-€/)](u*)([E] : w)

(Definition of x j and Lemma 2.1)

= P O T ©i)](«*)(«0
(Semantics of actuals)

= P(Ei)](«fc)(™)
(Definition of 0)

C P(E j)J(u*+i)(u>)

(Theorem 2.1 and monotonicity of [£(E_/)])

= Ixi l (« ® m i)

(Because f t+ if o) = |[f(Ej)l(ufc+1)(w))

= fSJ(u © pk+1)

(Because S = X j)

Case S = c. Then the proof is straightforward because for all w G W, C'(c)(w) = C(c), or

in other words, C'(c) is a constant intension.

CHAPTER 3. INTENSI0NAL1ZING FIRST-ORDER PROGRAMS 45

Structural Induction Step.

Case S = c(S i,. . . ,S r). Recall that the semantics of constants in the intensional program

are defined in a pointwise way in terms of the semantics of the constants in the extensional

program. We have:

[£(S)l(ttfc)(rE l : w) =

= P (c (S „ . . . ,S r))KSfc)(rEl : « 0

(Assumption for S)

= !c(£ (S ,),.. .,£(S..))](«*)([E] : w)

(Definition of S)

= C/(c)(P (S i)](S *).- .P (S r)I(« *))(rE l : to)

(Semantics of constant symbols)

- C(c)([£(S,)](tt*)(rEl : ®) , - , P (S r)](«fc)(rEl ;w))
(Definition of C' in terms of C)

C C(c)(|[SiJ(ti © pjt+i),. . . , [Sr](u © pk+1))

(Structural induction hypothesis and

monotonicity of C(c))

= [c(S i,. . . , Sr)](u © Pk+i)

(Semantics of constant symbols)

= [S](tt © pk+i)

(Assumption for S)

CHAPTER 3. INTENSIONALIZ1NG FIRST-ORDER PROGRAMS 46

Case S = g (S i, .. . ,S r), where g € func(P). Then, the left hand side of the statement we

want to establish, can be written as follows:

[£(S)KS*)(fEl: «;) =
= [£ (g (S ,,. . . ,S r))J(«jt)(fEl :w)

(Assumption about S)

= ffcallrsi (g)K w*)(rEl : w)
(Definition of £)

= (ca l l \ S] (M &))) (\E \ : « 0

(Semantics)

C u(g)(l£(Si)l(uk) m : w) , . . . , [£ (S r)K Z k)m • «0)
(Outer induction hypothesis on k)

£ «(g)([Si](u © Pk+1), . . •, [s r](« © pk+i))

(Structural induction hypothesis and

monotonicity of «(g) from Theorem 2.2)

= k (S i , . . . ,S r)](«®lfc+i)
(Semantics of application)

= [S l(i»© p*+1)

(Because S = g (S i S r))

This completes the proof of the theorem. ■

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 47

Theorem 3.3 Let P be a first-order extensional program and let u be the least environment

satisfying the definitions in P . Let u be the least environment satisfying the definitions in

the translated program Trans(P). Then, for every function definition (f (x i , . . . ,x n) = Bf)

in P , for every function call E = f (E i , . . . , E„) of f in P , and for every w € W

u(f)(|[£(Ei)](w)(u>),. . . , [£(E,(l)]|(«)(w)) E ical1 rE l(« (f)))0)

Proof: The theorem is established by induction on the approximations «*, k € N, of u.

In other words, we show that for every k > 0, for every function f defined in P, for every

function call E = f (E j , . . . , En) of f in P, and for every w e W :

Notice that now we only use the approximations of u but not the approximations of u.

Again, this gives to the right hand side of the above statement an “advantage”, which

allows the C relation to be established. The basis case is for k = 0 and it holds trivially

because the left hand side of the above statement is equal to the bottom value. We assume

that the above statement holds for k and we show that it holds for k -f 1 , i.e.,

«fc+i(f)(II^(Ei)!(«)(w),...,[f(E„)5(«)(w))E (ca//rEi(2(f)))(u;)

Using the semantics of call, the above statement can be written as follows:

tt*+1(f)(P(E,)l(8)(ti>),.. ., t£(E„)](2)(«>)) E S(f)([El : in)

Recalling that f (x i , . . . , x n) = Bf in P and that f = £(Bf) in Tr«ns(P), and using Defini

tion 2.13 and Theorem 2.1, the above is equivalent to the following:

lBf |(«*r ® p) Q [£(Bf)J(2)([El : w)

CHAPTER 3. 1NTENS10NALIZING FIRST-ORDER PROGRAMS 48

where p(xj) = [£(Ej)J(2)(u;), j = 1 The above can be established by showing that

for every subexpression S of B f , it is:

[S lK ® p) C ^ (S) l (2)([El :w)

We therefore perform a structural induction on S.

Structural Induction Basis.

Case S = xj € { x i , . . . , x n}. In the transformed program T rans(P), a definition of the

form x j = actuals((£(i © j))iel) has been created, where I = labels(t,P). Consider the

right hand side of the statement we would like to establish:

|[£(S)J(2)(rEl:«,) =

= r^(xj)!(“)(r® i:w)
(Because S = xj)

= lxil(«)(rEl : u>)

(Definition of S)

= “(xi) (rE l:w)

(Semantics)

= [actuals((£(i 0 j))ie/)K a)([El : w)

(Definition of x j and Definition 2.18)

= [£ (rE i 0 j) p) o »)
(Semantics of actuals)

= m) j (2) H

(Definition of 0)

= [xj](u*©/>)

(Because p(xj) = [£(Ej)’ '~',' “

= [S|(ufc © p)

(Because S = X j)

7402

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 49

Notice that in this case we have established the equality of the right and left hand sides of

the statement under consideration.

Case S = c. Then the proof is straightforward because for all w € W, C'(c)(w) = C(c), or

in other words, C'(c) is a constant intension.

Structural Induction Step

Case S = c (S i,. . . , Sr). Recall that the semantics of constants in the intensional program

are defined in a pointwise way in terms of the semantics of the constants in the extensional

program. We have:

[S](«fc © p) =

= [c (S i,. . . , Sr)](tifc © p)

(Assumption for S)

= C(c)(lSiJ(ufc © p) , [Sr](uit © p))

(Semantics of constant symbols)

C £(c)([£(Si)J(u)(fEl : u>),...,[£(Sr)]|(2)(|"E] : to))

(Structural induction hypothesis and

monotonicity of C(c))

= C/(c)(l£(S 1)] (e) ,... ,[£ (S r)I(e))(rEl :«,)

(Definition of C' in terms of C)

= [c (£ (S i),...,£ (S r))Ktt)(rE] :i»)
(Semantics of constants)

= [£(c(S1, . . . ,S r))K2)(rEl : w)

(Definition of €)

= I£(S)](2)(rEl : w)

(Assumption for S)

CHAPTER 3. INTENSIONAL1ZING FIRST-ORDER PROGRAMS 50

Case S = g (S j, . . . , S r), where g € func(P). Then, the left hand side of the statement we

want to establish can be written as follows:

[Sj(u/b 0 p) =

= J g (S l ,. . . ,S r)J(Mjfc®/>)

(Because S = g (S i,. . . , Sr))

= M*(g)([Sl]|(wJfc ® /»)>•••> ISr](«Jfc 0 P))
(Semantics of application)

Q tt*(g)(P(Si)K«)(rBl :«»)...M P(Sr)](S)(fE l :«>))

(Structural induction hypothesis and

monotonicity of «fe(g) from Theorem 2.2)

C (cfl//rs i(2 (g)))(rEl :t»)

(Induction hypothesis on k)

= ffcallfSI (g)l(«)(TE 1 - w)
(Semantics of call)

= {£(g(Si,. . . , Sr))](«)(fE) : w)

(Definition of £)

= [£(S)](«)(rEl : w)

(Definition of S)

This completes the proof of the theorem. ■

CHAPTER 3. INTENSIONALIZING FIRST-ORDER PROGRAMS 51

Lem m a 3.1 Let P be a first-order extensional program and let u be the least environment

satisfying the definitions in P . Let u be the least environment satisfying the definitions in

the translated program TVans(P). Then, for every function definition f (x j , .. . ,x n) = B f

in P , for every function call E = f (E j , . . . , E n) of f in P , and for every w € W

(ca//pEi(u(f)))(u;) = u(f)([£(Et)]|(2)(u>),. . [f (E n)](2)(w))

T heorem 3.4 Let P be a first-order extensional program and let u be the least environment

satisfying the definitions in P . Let u be the least environment satisfying the definitions in

the translated program Trans(P). Then, for every w € W

u(result) = w(result)(u>)

Proof: By a straightforward structural induction on the defining expression of the variable

resu lt in P and using Lemma 3.1. ■

3.4 An Illustration of the Proof

To illustrate the technique used for the proof, consider the program that was given in

Example 3.3. We show how the theorem can be applied to the outer call to function f in

that example. Similar arguments apply for the inner call to f . It suffices to show that for

every k > 0 and w € W, we have:

callh (uk(t))(w) C u (f)([ca ll/2 (f) l(u fc)(w))

u*(f)([call/2 (f)](«)(«?)) C callh (u(t)){w)

Using the technique for computing the least environment, that was presented in Definition

2.13, one can compute the values of uk and uk for various values of k € N. For example,

the validity of the first of the above statements for k = 0 , can be shown by first evaluating

CHAPTER 3. INTENSIONAL1ZING FIRST-ORDER PROGRAMS 52

k calli,(uji(f))(w) u(f)([callj2 (f)](2 fc)(w))
0 1 1

1 1 1

2 1 ±
3 1 1 2

4 1 2 1 2

Table 3.1: An illustration of the first part of the proof

k Uk(t)(|[call / 2 (f)](«)(«;)) calliJ(u(f))(w)
0 1 12
1 12 12

Table 3.2: An illustration of the second part of the proof

the left hand side of the statement:

calli^uoityiw) =

= (2 o (f)) (/ 1 : w)

= 1

and then evaluating the right hand side, which also yields the J. value:

ti(f)(|[call/2 (f)]|(tio)(u>)) =

= u(f)(u0(f)(/2 : «0)
= « (f) (±)

= 1

Tables 3.1 .and 3.2 have been constructed in this way, and they illustrate Theorems 3.2

and 3.3 respectively. Notice that every entry in the second column of the two tables,

approximates the corresponding entry in the third column.

CHAPTER 3. INTENSIONAL1ZING FIRST-ORDER PROGRAMS 53

3.5 Discussion

The main difficulty in giving a correctness proof for the transformation algorithm lies in the

fact that it is not straightforward to relate the source functional program (and its semantics)

to the resulting intensional program (and its semantics). Some of the complications are

outlined below:

1. The intensional program that results from the transformation has significant syntactic

differences from the source extensional one. Note in particular that formal parameters

in the latter have become individual variables in the former. Therefore, a syntax-

based correctness proof may face considerable difficulties. The author has undertaken

one such approach (see Figure 3.3), attempting to identify a sequence of intensional

transformations that correspond to the notion of beta-reduction. Although some

interesting results were obtained, this approach proved to be much harder than the

one presented in this chapter.

2. The precise formal definition of Yaghi’s transformation algorithm given in Section 3.1

helped us formulate the exact result that we had to demonstrate. It should be noted

here that the author tried at first to formalize Yaghi’s non-referentially transparent

scheme, using the notion of an occurrence of a function call in the program. However,

such an approach proved to be quite inflexible and did not easily lead to the right

intuitions.

3. The proof requires a double induction: an outer computational one and an inner struc

tural one. Moreover, notice that the statement in Lemma 3.1, is not symmetric: the

intensional environment appears in both sides of the statement, while the extensional

one appears in only one of them.

4. It might be expected that Lemma 3.1 can be demonstrated directly, i.e., without

first showing that the right hand side of the statement approximates the left, and

vice-versa. However, such a proof does not seem to be possible.

CHAPTER 3. INTENS10NALIZING FIRST-ORDER PROGRAMS 54

figure 3.3 An alternative proof technique

F3 beta-reduction (3

, Intensional Rules ,

Trans(P) Trans(Q)

Finally, we should mention that the transformation algorithm and the proof can readily

be extended for a language that allows “outside” variables as well as nullary variable defini

tions. However, as these extensions would not add to the expressive power of the language

under consideration, we refrain from such an attempt. Instead, in the following chapters

we illustrate how the above ideas can be extended and enhanced in order to apply to the

higher-order language FL.

C hapter 4

A Higher-Order Intensional

Language

This chapter initiates the study of the relationship between higher-order functional lan

guages and intensional logic. To motivate the subsequent discussion, we first present an

example of the algorithm that we propose for transforming higher-order extensional pro

grams into intensional programs of nullary variables (the precise definition of the algorithm

is deferred until Chapter 5). We then give a formal definition of the syntax of the target

intensional language that is used in the transformation, and present its synchronic dcno-

tational semantics. The chapter concludes with an investigation of the properties of the

synchronic interpretation with respect to the standard denotational ones.

4.1 An Example Transformation

In this section, we describe at an intuitive level the algorithm we propose for transforming

higher-order functional programs into intensional programs of nullary variables. Consider

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 56

the following second-order functional program:

re s u l t = ap p ly (in c ,8)

app ly (f,x) = f(x)

inc(y) = y+ 1

As in [Wad91], we start by eliminating the highest-order formal parameters first. In this

case, the parameter f of apply is eliminated, and a new definition is introduced for it. Notice

that the intensional operators that are used below, are different from the ones adopted in

[Wad91]: we are now using operators of the form call/, where L C jV X N, and ac tu a lsm,K

where m £ N and R C N x (JV x N). Intuitively, we now have a single call which has a

set as a subscript. This notation will prove more convenient in the following, as it helps

us avoid the long chains of different call operators. The change in the ac tua ls operator is

of a more fundamental nature, and will be further explained later on in the dissertation.

We should mention at this point that the actuals operator used in [Wad91] is insufficient

for the purposes of the transformation, and therefore may lead to programs that are not

semantically equivalent to the source functional ones.

re s u l t = (call{(2 I/1»C apply))(8)

apply(x) = f(x)

f = a c tu a ls2i{(/j ,{(2 , fl>})} {(/i, inc)}

inc(y) = y+ 1

In the above program, the number 2 appearing in the subscripts of the intensional op

erators indicates the fact that these operators are used in order to transform a second-order

program into a first-order one. Moreover, / 1 is a natural number that uniquely characterizes

the function call ap p ly (in cf8) (i.e., the Godel number of this call). We can now add a

new variable z in both sides of the definition of f , getting:

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 5 7

r e s u l t = (call{{2,/,)} (apply)) (8)

apply(x) = f(x)

f (z) = (a c tu a ls 2 t{</Ii{(2 t/l)J)}{(/l l inc)})(z)

inc(y) = y+ 1

The program that results is a first-order intensional one. Notice the parcnthesization of

the expression (call^^,/,)}(apply)) (8), which is different than the one given in [Wad9l],

and which ensures that the resulting program is semantically equivalent to the source one.

We must now enter z inside the scope of the intensional operator actuals. This is done

by prefixing it with c a l l ^ 2 ,/i)}i tl'at is, with the same intensional operator that appears

in the corresponding call to apply. In this way, we (intuitively speaking) cancel the effect

that the intensional operator actuals has on z. This step is not performed and is the main

limitation of the algorithm given in [Wad91].

r e s u l t = (call{(2 i/,)}(apply))(8)

apply(x) = f(x)

f (z) = a c tu a ls 2 t{(/li{<2 i/1>})}{(/1 , in c (c a l l{<2 i/l)}(z)))}

inc(y) = y+ 1

This completes the first step of the transformation. We can now perform the second

(and last for this case) step of the algorithm, which will result in an intensional program

of nullary variables. The algorithm eliminates the (zero-order) variables x, z , y, adding

at the same time a new definition for each one of them in the program. The final program

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 58

that results from the transformation is the following:

result = eall{(2,Zi),<i1/a)}(aPP130
apply = c a ll{<1)(3>}(f)

f = actuals2l{(/,,{(2,/,)})}{<*!) c a ll{(1)/4)} (inc))}

inc ± y+l

X = actualsii{{;2i{(2,/i)1(i1;2>})}̂ {{̂ 2? 8)})

z = actualsx ,^ ,^ ({</3, x)})

y = actualslt{(/4){<li/4)})} ({{/4, call{(2,/i» (Z>)P

Now the number 1 that appears in the subscripts of certain intensional operators, sig

nifies the fact that a translation of a first-order program into a program of nullary variable

definitions has taken place. Notice also that above we have used the natural numbers

/2 ,/a and / 4 to uniquely represent the function calls (call{ (2 ,/i)}(apply))(8), f (x) , and

inc (ca ll{ (2 ,/i)}(z)) respectively.

The execution of the resulting zero-order intensional program is performed in an analo

gous way as in the first-order case. The difference is that now the contexts and the operators

are richer. Given an m-order program, contexts are m-tuples of lists of natural numbers.

The operators c_ll and actuals perform context changes in the following way: call^ per

forms a multiple consing operation on the current context, as dictated by the list L. On the

other hand, the operator actuals*,,n performs a multiple tail operation on contexts. The

precise definition of the semantics of the two operators will be given later in this chapter.

The main objective of the rest of this chapter is to precisely define the semantics of the

programs that result at the various stages of the transformation algorithm.

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 59

4,2 The Intensional Language IL: Syntax

In this section we define the syntax of the intensional language I L which serves as the target

language for transforming higher-order extensional programs.

D efinition 4.1 The syntax of the intensional language IL is recursively defined by the

following rules, in which E, E t- denote expressions, F, F ; denote definitions and P denotes

a program:

E ::= f G Var

1 c(E i , . . . ,E n), c G E x

| call^(Eo), L C N x N

| ac tualsTO)fl((E,•),'€/), m € N, I C N, R C N x (N x N)

| E0(E ! , . . . ,E n)

F ::= (f (x x , . . . ,x n) = E), f , x i , . . . , x n 6 Var

P ::= { F i,.. . ,F n}

D efinition 4.2 The set of well-typed expressions of the language IL is recursively defined

as follows:

t-1!

f : t

(9(c) = (7-1,..., r n) i) A (El : r i , . . . ,E „ : r„)
c (E i , . . . ,E n) : t

E0 : t

calljrfEo): r

Vi € I (E { : t)

actua lsm,n({E,•),£/) : r

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 60

(E0 : (rx, . . . , r n) - » i) A (Vi € : r,)
Eo(Ei,.. .,E n) : i

The notions of well-typed definitions and well-typed programs are identical to the ones

introduced in Definitions 2 8 and 2.9. Moreover, the same assumptions as in Definition 2.6

are adopted for IL programs.

4.3 The Intensional Language IL: Synchronic Semantics

In this section we define the denotational semantics of the intensional language IL . The

set of possible worlds of IL is the set of infinite sequences of lists of natural numbers, that

is N —* List(N). Notice that as we discussed in Section 4.1, for the transformation of an

7/i-order extensional program contexts need only be m-tuples of lists of natural numbers.

However, we would like the semantics to be defined in the most general way, and be ap

plicable to all programs no matter what their order is. Moreover, there is nothing to be

lost by assuming that contexts are infinite sequences, because in any particular translation,

only a finite number of them will be used. Therefore:

D efinition 4.3 The set W of possible worlds of IL is the set N -* List(N).

Given the above set W of possible worlds, we can define the set of possible denotations

of a type r , as follows:

D efinition 4.4 Let D be a domain. The set of possible denotations of r € Typ with

respect to W and D is defined as

[t Yd = W ^ [t \ d

In defining the semantics of I L , we follow the approach that has been used by Montague

for giving semantics to higher-order intensional logic [DWP81, Gal75], As this approach

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 61

differs from the standard techniques used for assigning denotational semantics to functional

languages, we will refer to it as the synchronic interpretation for reasons that will soon

become obvious.

We first define the following two context manipulation operations: a multiple consing

operation on infinite sequences of lists of natural numbers, and a multiple tail operation on

such sequences. These two operations will be used in order to define the semantics of the

call and actuals operators.

D efinition 4.5 Let L = { { h , j i) , . . . , (ik,jk)} where *j, . . . , ik, j i, . . . , j k € N and t| ^ t2 4-

• • • / i k. Let w G (TV —► List(N)). The multiple consiny on w with respect to L is the

function ft defined as follows:

w ft L = w[h/{jx : u;;,) , . . . , ik/ (j k : wik)]

D efinition 4.6 Let L = {<*i, Ji>,. (ik,jk)} where i j , . . . , i k, j u . . . , jk € N and i'i ^ t2 ^

• • • ^ ik. Let w 6 (N -* List(N)). The multiple tail operation on w with respect to L is

the function ft defined as follows:

{ w[ii/tail(wi}) , . . . , i k/tail(wik)] if (head(w{x) = j \) A • • • A (head(wik) = j k)

undefined otherwise

Let D be a given domain. Then, the semantics of constant symbols of IL with respect

to D, are given by an interpretation function C*, which assigns to every constant of type r ,

a function in As the language IL will be used as the target for transforming programs

of FL, the function C' is defined in terms of the interpretation function C for FL. More

specifically:

D efinition 4.7 For every c € S and for every w € W , C*(c)(w) = C{c).

Let ExpT be the set of all expressions E of IL such that E : r . Let Fnv’ bn the set

of ^-compatible synchronic environments defined by L’m;* = IIfev<irl7r(f) lo > Then, the

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 62

synchronic semantics of the language I L is defined using valuation functions [•]* : Expr —*■

[Env* -* [rjp], as follows:

D efinition 4.8 The synchronic interpretation of expressions of I L with respect to u €

Env*, is recursively defined for every w € W, as follows:

[fj*(u)(u>) = u(f)(«>)

[c(Ex, . . . , E„)]*(»)(ii>) = C*(c)(in)(lE1r (n)(w),. . . , lE „ f («)(«,))

[ca llt(E)l’ («)(ti;) = (Er(tt)(«» 4 L)

Iactualsm,/l((E1)l6/)J*(u)(w) = lEhead(wms™{ ' /w ft R head(Wm))

|[Eo(Ei, . . . , E„)J*(ii)(in) = [E o F ^ H d E , ! * ^) ^) lE nf («)(«;))

It can be seen from the above definition that the semantic equation for application,

is non-standard; it involves an individual “sampling” of the meanings of the subexpres

sions under the current context w. This justifies the name “synchronic” adopted for this

interpretation.

Before we introduce the semantics of programs, the following definition is necessary:

D efinition 4.9 Let d 6 IrJD. Then, d°° is that function on W whose value at every w € W

is equal to d.

D efinition 4.10 The synchronic semantics of a program P = { F i,. . . ,F „ } of IL with

respect to u € Env*, is defined as 2(result),. where u is the least environment such that:

1. For every f € Var with f £ f unc(P), 2(f) = u(t).

2. For every definition f (x i , . . . , x n) = E in P with f : (r i , . . . , r „) -► i, for all d\ €

e [ThId, and all w € w ,

;; = iE n 2 [x 1/ d F , . . . Ix n/c]) (« o .

65

2949

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 63

The above definition does not specify how the least environment u can be constructed.

The following theorem suggests that u is the least upper bound of a chain of environments,

which can be thought as successive approximations to u.

T heorem 4.1 Let P and u be as in Definition 4.10. Then, u is the least upper bound

of the environments uk, k € N, which for every definition f (x j , . . . ,x„) = E in P , with

f : (r i , . . . , r n) —> i, for all d-i € . . ,dn € |[rn]]D, and all w € W, are defined as

follows:

u0({)(w)(di , . . . ,dn) = 1 D

uk+1(f)(w)(dl t . . . , d n) = lE n S fc[x , / d f , . . . Ix „ /C])(w)

Moreover, for every k 6 N, itjt(f) Q Uk+i(t)-

Proof: Analogous to the proof of Theorem 2.1. ■

The following lemma is a direct consequence of the above theorem:

Lem m a 4.1 Let P and u be as in Definition 4.10. Then, for every definition f (x i , .. .,x „) =

E in P with f : (r i , . . . , r„) -> t, for all dj € t r i jp , . . . , dn € [r„J0 and for all w 6 W,

uk(t) (w)(d i , . . . ,dn) C IE r(tt*[x1/ d f , . . . , x n/C])(w)

The following theorem will also be used in subsequent chapters:

T heorem 4.2 For all expressions E € ExpT, |E]* is monotonic and continuous. Moreover,

when r ^ t, [E]*(u)(te) is monotonic and continuous, for all u G E n v * and w € W.

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 64

4.4 Properties of the Synchronic Interpretation

In this section we investigate certain of the properties of the synchronic interpretation that

we have defined in this chapter. More specifically, we consider two subsets of the language

IL, and we examine the connections between the synchronic semantics and the standard

denotational semantics that can be defined for these subsets. The two subsets are:

• Those programs of IL that do not contain any intensional operators call and actuals.

Notice that programs of this subset are actually FL programs, for which we have

already defined a standard denotational interpretation (see Definition 2.13).

• Those programs of I L that only contain nullary variable definitions. In other words,

this is the restriction of IL on Varo, ana we denote it by I L q. For these programs, a

standard denotational interpretation [•] (w-+D) can be defined, as this was done for

the language N V I L (see Definition 2.18).

The following two theorems establish the relationship between the standard and the syn

chronic semantics for programs of the two subsets of IL we have just defined:

T heorem 4.3 Let P be an IL program that does not contain any intensional operators, and

let u and u* be the least environments that satisfy the definitions in P under the standard

and the synchronic interpretations respectively. Then, for every w € W, |[P]*(u*)(u;) =

I P] («) .

Proof: It suffices to show that for every definition f (x j , . . . , x n) = Bf in P , with Xi :

r i , . . . , x „ :r„ , it is:

u*{f)(w)(di, . . . , dn) = u(f)(du . . . , dn)

for all d\ e p i lo , • • •, dn € [tViJb, ant ̂ w € W* This can be shown by a double induction:

an outer computational induction on the approximations of u* and u, and an inner structural

one on the body of f. ■

CHAPTER 4. A HIGHER-ORDER INTENSIONAL LANGUAGE 65

T heorem 4.4 Let P be an IL q program and let u and u* be the least environments

that satisfy the definitions in P under the standard and the synchronic interpretations

respectively. Then, [P]*(«*) = lPj(iv_p)(«)-

Proof: It suffices to show that for every function f that has a definition in P , u ' (l) = u(f).

This follows directly with a proof similar to the one given for Theorem 4.3. ■

66

C hapter 5

Intensionalizing Higher-Order

Program s

In this chapter, we describe and formally define the intensionalization procedure for higher-

order extensional programs. Our presentation proceeds as follows: we first describe the

transformation at an intuitive level. We then present a formal definition of the algorithm,

and show that it is well-defined. The chapter concludes with examples of translation of

higher-order programs under the proposed scheme.

5.1 The Transformation: an Overview

The purpose of this section is to define at an intuitive level the transformation algorithm

from higher-order extensional programs to intensional programs of nullary variables. The

algorithm consists of a number of steps; at each step, the order of the input program

is reduced by one. The transformation ends when a zero-order intensional program is

obtained. More specifically, the input to the algorithm is an M-order FL program, where

M > 0. After the first step of the algorithm, an (M - l)-order IL program is obtained.

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 67

After M steps of the algorithm have taken place, a zero-order IL program has resulted.

This is the output of the transformation.

Therefore, it suffices to just describe a single step of the algorithm, that is, the procedure

required to transform an m-order intensional program (1 < m < M), into an (m — l)-order

one. Notice that this procedure also applies for the first step in the transformation, because

we can assume that the source FL program is an IL program that does not contain any

intensional operators.

A step of the algorithm can be described as follows: given an m-order input program,

we start by considering the m-order functions that are defined in it. The goal is to lower the

order of these functions by eliminating their (m - l)-order formal parameters. Let f be such

a function. A typical call to fin the program will be of the form call f,(f)(E i, . . . , E„), where

callx, is an intensional operator that has been introduced in the program during the previous

stages of the transformation. The subscript L is a set that reflects the processing that has

been performed on this particular call to f until now. We adopt the convention that “usual”

calls to f of the form f (E i , . . . , E„) can equivalently be written as callf,(f)(E j , . . . , E„), with

L = 0. In this case, L = 0 signifies that no formal parameters of f have been removed so

far in the previous steps of the algorithm, because the order of f has been lower than the

order of other functions in the program.

Recall now that f is m-order and lets assume for simplicity that only its first argument

is (m — l)-order. Lets denote by E the expression call£,(f)(Ei,.. , ,E n), Then, the al

gorithm will transform this call of f into call£U{(mifEl>}(f)(I3 2 ,...,E { ,) , where [E] is the

Godel number of E and E£,...,E(, are the expressions Ei,. , . ,E n after they have been

appropriately processed (the details will be given in Section 5.4). Notice how the set L is

being built: every pair that is added to the set, reflects the order that is being currently

eliminated, as well as the specific function call under consideration. In other words, the

subscript of the call operator indicates the history of the orders of the actual parameters

that have been removed from a call to f, as well as the different forms that this call lias

taken during different steps of the transformation.

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 68

At the same time that the calls to f in the program are processed, the definition of f has

to be altered as well. The main idea is to remove the (m — l)-order formals from the formal

list of f, creating for each one of them a new definition and adding it to the program. Let x

be an (m - l)-order formal of f. Then, the new definition created for x, will gather together

all the actual parameters that correspond to x and that appear in calls to f in the program.

This “gathering” is performed with the use of the intensional operator a c tu a lsOT)/j. The

purpose of m and R is to guide in the selection of the appropriate argument of the operator.

In this way, the input m-order program has been transformed into an (m - l)-order

one. The procedure that we described above can be used repeatedly, until all formals have

been eliminated from all functions in the program. The final result will be a program that

consists of a set of intensional nullary-variable definitions.

5.2 The Target Language

The programs that result at each step of the transformation algorithm, are programs of the

language IL. However, as we would like to precisely define the algorithm and later reason

about its correctness, we have to identify the exact subset of I L to which these target

programs belong. This subset is characterized by the following definition:

D efinition 5.1 The syntax of the intensional language SIL is recursively defined by the

following rules, in which S ,S , denote simple expressions, E ,E ; denote expressions, F ,F ,'

denote definitions and P denotes a program:

S ::= calU (f)

I c (S „ . . .,S „)

| c a ll/;(f) (S |,.. .,S n)

E ::= S

| actuals*,,/}«S,*)<€/)

CHAPTER 5. INTENSION ALIZING HIGHER-ORDER PROGRAMS 69

F ::= (f (x i , . . . , x n) = E)

P ::= {F i , . . . ,F „ }

The typing rules and the semantics of IL transfer directly to SIL. Notice that the syntax

of S IL imposes certain restrictions on the use of intensional operators. In particular:

• The argument of a call operator can only be a variable and not an arbitrary expression.

• The argument of the actuals operator can only be a sequence of simple expressions.

5.3 Preliminary Definitions

In this section, we describe the transformation of m-order SIL programs into (rn — I)-

order ones. Let P be an m-order SIL program, and let f (x i , .. . ,x 7l) = Bf be an m-order

function defined in P . As before, we assume the existence of a Godel function [•] which

assigns unique natural numbers to expressions. Let Sub(P) be the set of subexpressions of

P . We adopt the following conventions:

• The set of calls to the function f in P is defined as:

calls{f , P) = {call£(f)(E ,, . . . , E„) € 5ti6(P)}

• The set of labels of calls to f in P is defined as:

labels(f ,P) = {[C] | C € c«//s(f,P)}

• Given a member of the set of labels, the function s e t extracts the subscript of the call

operator of the expression that corresponds to this label:

s e t ([call|,(f)(Ei, . . , , E,,)]) = I

CHAPTER 5. IN TEH SION ALIZING HIGHER-ORDER PROGRAMS 70

• The selector function 0 on labels is defined as:

fcalIi(f)(Ex,. . . , E n)] 0 k = Ek, k G { 1 ,..., n)

• The function options is defined as follows:

options(t,P,m) = (set(i) U {(m,*)}),-6/o6e/, (fiP)

Intuitively, options^f, P , to) is a sequence of the subscripts that calls to f will have

after this step of the transformation is complete.

• Let g be a function in P . Then, low(g,m) is the list of positions in the formal pa

rameter list of g, of those formals of g that have order less than (to — 1). For ex

ample, if only the second and third argument of g are less than (to — l)-order, then,

low(g,m) = [2,3].

• Let F be a definition for the function g in P . The set of positions in the formal

parameter list of g of those formals that have order equal to (m -1) , is represented by

high(F, to). For example, if only the first and fourth arguments of g are (to — l)-order,

then high(F,m) = {1,4}.

• Let x € Vars(P) with x : (r i , . . . , r*) -* l. Then, a function Form can be eas

ily defined such that Form(x, P) is a list of k variable symbols, which satisfies the

following:

- No variable in the list appears in the program P .

- Given y $ x, Form(x , P) and Form(y, P) do not have any elements in common.

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 71

5.4 A Formal Definition of the Transformation

We are now in a position to give the formal definition of the transformation algorithm.

The elimination of the (m - l)-order arguments from function calls, is accomplished by the

Sm function defined in Figure 5.1. The first rule is for the case of (possibly higher-order)

figure 5.1 Processing expressions of the program._____________

E = call£(f)
£m(E) = call/,(f)

 E = c (E i , . ■ . ,E n)______
£m(E) = c(£m(E i) , .. . ,£ m(E„))

E = call//(f)(E t,. ■., E n), order(I) = to, low(f, ffl) — [i ■/<,]
£ m (E) = (calljr(U^ m |CE'])}('f))(^m (Eii)>•••> ^m C^i/t))

E = callL(f)(Ei,.. . ,E n), order{i) < m

£m(E) = call£(f)(5m(Ei) , . . . , £W(E„))

E = actuals;.,a(E,•),•€/
£m(E) = actuals*,/i(£m(E;))i6/

variables that are encountered during the transformation, and which are prefixed by a call/,

operator (notice that if L — 0, then the expression corresponds to just a variable). In this

case, the expression is not affected by the transformation algorithm. The second rule applies

in the case of constant symbols; then, the transformation proceeds with the arguments of

the constant. The third rule is for the case where a function call is encountered, and the

corresponding function is m-order. The arguments that cause the function to be m-order

(that is the (m - l)-order ones) are removed, and the call is prefixed by the appropriate

intensional operator. Notice, that if two function calls in the program are the same, then

their translations according to Sm are identical. The fourth rule applies when the function

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 72

under consideration is not m-order. In this case, the translation proceeds with the actual

parameters of the function call, without eliminating ;< ay of them. Finally, the last rule says

that in order to translate an actuals expression, it Euffices to translate every expression in

the argument sequence of the operator.

The function V m is used to process the definitions in P , removing their (m — l)-order

formal parameters. Notice that at the same time, the body of each definition is processed

using the function £m. The definition of V m is given in Figure 5.2.

The function A m creates a new definition for each (m - l)-order formal parameter in

the program P . Let F be the definition for function f in P . If the j 'th argument of f is

(m - l)-order, then the function Ap,j,m returns a set that contains a new definition for

this formal. The body of this definition consists of the operator actuals applied to a set

of arguments; intuitively, these arguments are the processed actual parameters that appear

in calls to f in the program, and that correspond to the j ’th formal parameter of f. The

formal definition of A m is given in Figure 5.3.

figure 5.2 Eliminating the (m - l)-order formals from definitions

2>m(P)= U
FeP

F = (f (x i , . . . ,x n) = Bf), /cm?(f,m) = . , i k]
P(„(F) = {f(x,• „ . . . , x ,J= /:m(Bf)}

Notice that the definitions that result from the function A m, are valid definitions of the

language IL but not of the language SIL. In order to transform them to SIL definitions,

we iH'sd to pass the formal parameters inside the scope of the actuals operator. In order

for this to be done in a semantics-preserving way, we first need to prefix the formals with

appropriate call operators that cancel the effect that actuals has on them. The way this

is performed is described in Figure 5.4, by tiie function In.

The translation of an m-order S IL program into an [m - l)-order one, is performed by

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 73

figure 5.3 Creating a new definition for each (m — l)-order formal

An(P)= U U ^Pu>(P)
FgP jehigh(F,m)

F = (f (x i , . . .,x„) = Bf), R = options(f,P,m), Form(xj ,P) = [zi,...,z*,]
^ F , j , = (xi(zi »• • • ,**) = (actualsm,/;(<fm(i 0 j)).£A.m(«))(z< > • • • >z*)}

figure 5.4 Passing formal parameters inside actuals

Jn(P) = 1J In'(F)
FeP

F = (x (z i , . . . ,z*) = (actualsmiR(E,),e(/om(fl))(z1,...,ZA..))
Jn'(F) = { x (z ! , . . . , z fc) = actualsmi/i(Ei(callfii(z i) , . . . ,ca ll/j1(z)t)))Ie<<0„1(n)}

the function Stepm shown in Figure 5.5.

figure 5.5 Transforming an m-order S IL program into an (m - l)-order one

Stepm(P) = I>m(P) U In(Am(P))

Finally, given an M-order FL program P , the overall transformation of P into an

intensional program of nullary variables, is described by the function Transm , given in

Figure 5.6.

5.5 Properties of the Algorithm

The well-definedness of the algorithm is ensured by the following theorem:

Theorem 5.1 Let P be an m-order S I L program. Then, Stcpm(P) is a SIL program,

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 74

figure 5.6 The overall translation of an M-order program___________________________

TransM(P) = Stepi(• • • {Step^i P)) • • •)

Proof: It suffices to show that T>m and In o A m return S IL definitions. First, notice that

the function £m when applied to SIL expressions it returns S IL expressions, and when it

is applied to simple S IL expressions it returns simple SIL expressions.

Consider now the function V m. Obviously, V m simply removes certain formals from

a definition while processing the definition’s body with the function Sm. Therefore, every

definition that it produces is a S IL one.

Consider on the other hand the function In o A m. The function A m produces definitions

of the form:

Xj(zi, . . . , z*) = (a c t u a l s ™ , © j))iedom(R))(zl , - -.,**)

The expressions that appear in the argument of the actuals are of the form £m(i 0 j) ,

where i is the Godel number of a simple S IL expression of the form call//(g)(Sj,. . . , S r).

By the definition of £m, £m(iQ j) is equal to £ m (S j) , which is a simple SIL expression. We

distinguish two cases:

1. Xj : i. Then, k = 0 (i.e., no new formals are introduced for x j) and the definition for

x j that will be returned from In o .4rn is a SIL one.

2. xj : r and r ^ i. Then, k > 0 (i.e., new formal parameters are introduced for

X j) , Also, as £m(Sj) has higher-order type and at the same time it is a simple SIL

expression, it can only be of the form call/.(h), for some L C N x N and h 6 F ars(P).

When the formals z \ , . . . , z* are pushed inside the scope of actuals by the function In,

the expression that we are considering becomes call^(h)(call/{.(zi),. . .,callH,(z/i)).

But this is a simple S IL expression. Therefore, the definition for X j that will be

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 75

returned by In o A m is a SIL one.

Therefore, all definitions returned by In o A m are definitions of the language SIL. This

concludes the proof of the theorem. ■

Lemma 5.1 Let P be an m-order SIL program, where m > L Then, / n(*4,„(P)) is a set

of definitions of the form

x(zi, .. .,zjt) = actualsm,n((Si)jedonl(/l))

where for every i € iom(R), there exists L C N x N and h G Vara(P) such that S,- =

call£,(h)(callH,(zi),. . . , callji.(z/.)).

Proof: The fact that m > 1 implies that x is a variable of order greater than 1. Then,

the lemma follows directly from the proof of Theorem 5.1. ■

Finally, the following theorem guarantees the correctness of the In function. In other

words, it shows that the placement of the new formal parameters inside the scope of actuals

by prefixing them with appropriate call operators, is a semantics preserving transformation.

Theorem 5.2 Let P be an m-order SIL program. Then, the synchronic semantics of

V m{P) U A m{P) and V m(P) U In (A m(P)) coincide.

Proof: (Outline) It suffices to show that the least environment that satisfies the definitions

in program X>,„(P)U.4m(P) under the synchronic interpretation, also satisfies the definitions

in V m(P) U I n (A m(P)), and vice-versa, This follows in a straightforward way using the

semantics of the call and actuals operators. ■

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 76

5.6 Transformation of the apply Program

In this section, we give an example use of the transformation algorithm.. The program we

consider is second-order due to the function apply, vdiose first argument is a first-order

function.
r e s u l t = app ly(inc,8)

app ly (f,x) = f(x)

inc(y) = y+1

In the first step of the transformation the formal parameter f of apply is eliminated.

Let l\ = fapp ly (inc ,8)]. Then, according to the definition of the function £m, the call

app ly (inc ,8) will become (c a l l^ 2 (apply)) (8) (notice that to = 2, because the pro

gram is second-order). The argument f is eliminated from apply, and a new definition is

created for it using the A m function. One can easily verify that the set options(f , P , to) is

equal to {(/lr {(2,/i)})}. Let z be the variable returned by the function Form. Then, the

program that results after the first step of the transformation is complete, is the following:

re s u l t = (ca ll|{ 2,/])} (app ly)) (8)

apply(x) = f (x)

f (z) = (actualS 2){(/1){<2 ,/,)})}{(^i,inc)})(z)

inc(y) = y+1

Now we must advance z before we enter it inside the scope of the intensional operation.

This is done by prefixing it with call^ ,/])}? be., with the same intensional operator that

appears in the corresponding call to apply:

r e s u l t = (call{(2,/,)}(apply))(8)

apply(x) = f(x)

f (z) = a c tu a ls a .^ .^ .^ j j i i / i . in c C c a l l^ .^ C z))) }

inc(y) = y+1

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 77

The next step in the transformation can now be performed. This consists of eliminating

the (zero-order) variables x , z , y, and adding a new definition for each one of them in the

program. L et/2 = [(c a l l^ j ^ (apply)) (8)], /3 = ff (x)], and U = finc(call{{2</1)}(z))’].

The final program that results from the transformation is the following:

resu lt = c a l l{(2,/,>,(it2)}(aPP1y)
apply - c a l l{<i,/3>}<f >
f = actuals2){</j){<2i,l)}>}{ (/i,c a ll{(li,4)}(inc))}

inc = y+1

X = actuals1|{</at{(2i,1>1<1|/3)})}({(/2,8)})

z = actuals!){(,3t{(1 ,<,)}»({ (/3, »)})

y - actu a lsli{(/4i{(it/4)})}({(/4,c a ll((2,/1)}(z))})

Let u be the least environment that satisfies the definitions of the resulting zero-order

intensional program under the synchronic interpretation. Then, the meaning of the program

can be computed as shown in Figure 5.7.

5.7 Transformation of the twice Program

In this section we present the correct transformation of the twice program introduced in

Section 2.9. Recall that the source program is the following:

re s u l t = tw ice(inc ,8)

tw ic e (f .x) = f (f (x))

inc(y) =i y+1

Let It = [tw ice (in c ,8)l. As before, we eliminate the highest-order formal, which in

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 78

figure 5.7 The meaning of the intensional program that results from apply

[call{(2,li>,(1 ,/a» <®pply)]*(«)(([]>[]>•• •)) =
= [apply]*(u)(<[/2], [h], ■ . •))
= Ic a ll{(li/3)}(f)f(«)« [/2],[/i],...))
= i m m t M u - -))
= |[actuals2t{(,lt{(21/1>})}{(^, c a ll{<1)/4)} (inc))}]*(u)(([/3, h], [/i], • • •))
= [call{(i,/4>}(inc)l*(a)(([/3,/2],[],...))
= iincr(S)(([l4,/3,/2], [], . . .))

= h T (u) (([U , h , /2], [],...)) + I l f (S)«[f4, h , h] , [],.. •))
= tr [] , ■ • • » + i
= |actu a lsli{(,4t{<ji/4)})}({(/,,, c a ll{<2i/l)} (z))})l*(a)(([/4, /3, h], [] , . . .)) + 1
= Icall^^.ij)} <z)F(a)(([l3, l2], [], . . .)) + 1
= N*(S)C([/3,/2],[/i],...)) + i
= [a c t u a l s l){(/3){(i),3)})}({{ /3,x) }) F (a) (([/ 3, / 2], [/ J , . . .)) + 1
- i x r (s x ([/ 2] , [/ i] , . . .)) + i
= |actu a lsii{(/2i{<2,/,),<!,;j>})}C{(/2,8)})F(m)(([/2],[/i],...)) + 1

= M M] , . . . » + i
= 8 + 1
= 9

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 79

this case is the variable f , creating at the same time a new definition for f :

r e s u l t = (call{(2,/1)}('twice)) (8)

tw ice(x) ± f (f (x))

f (z) = (a c tu a ls2){(/li{(2 ,/i)})}{(/i, inc)}) (z)

inc(y) = y+1

As usual, we must advance z before we enter it inside actuals. This is done by prefixing it

with ca ll{ (2,fi>}? with the same intensional operator that appears in the corresponding

call to twice:

resu lt = (call{<2,/1)}('twice))(8)

tw ice(x) = f (f (x))

f (z) i a c tu a ls 2 i{(/1,{(2 t/1>}>}{(/i,inc(call{(2l/1>}<z)))}

inc(y) = y+1

We are now in the position to perform the last step of the transformation. Let / 2 =

[(call{{ 2 ,li)}(tw ice))(8)], /3 = f f (f (x))] , L\ = (T ncC call^^^C z))] and ls = ff (x)].

The final step of the transformation gives the following program:

resu lt = ca l l {{2,/i),(lt/2)} (twice)

twice =

f = actuals2i{(,ll{(2,,,)})}{{/!, c a l l {(I|/4>) (inc))}

inc = y+1

X = actuals,t{<<ai{<3li1)i<li/a)})}({(/3,8)})

z = actuals,){p3i{<j i ./,)})}({{h, c a l l {(, (f)), </r„ x)})

y = actualsti{<,4){{i i,4)})}({(/,i,ca ll{(2)/l)j (z))})

The meaning of the intensional program that results from the translation of the twice

extensional program, is computed in Figure 5.8.

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 80

figure 5.8 The meaning of the intensional program that results from tw ice

[call{(2,j,),(i,;2)} (twice)J*(2)(([.)) =
= [twicer(S)({[/2], [/,],...))
= lcaii{(1),3)}(f)ne)«[/2],[/1],...))
= [fr(c)(([/3,/2],[/i],...))
= Iactual8 2 i{</li{(2 ,/1)})}{(/i,call{(1),4)}(inc))}l*(2)(([/3 ,/ 2],[/i],...))
= Icall{(1,/4)}(inc)r(u)«[/3,/2], [],...))
= l in e r («) « M 3,/2], [], . . .))
= w m M M , [] ,. ..))
= ly f (S)(([/4, /3, h) , [] , . . . » + Ill*(*)«[/4, h , h) , [] ,. ..))
= Iyl*(2)(([/4,/3,/2],[],...)) + i
= Iactual8li^,4t{(1)/4)})} ({(/4, call{(2,/j)} (z))})]]*(2)«[/4, h , h] , [],...}) +1
= Icall{(2,Ji)} (z)]*(u)(([/3, l2), [],...)) + 1
= W * (S) (([/ 3 , / 2] , [/ x] , . . .)) + 1

= Ia c tua l s l,{</3,{(1,/3>}),<J5,{<1,«5)})} ({^3* c a l l{(l,i5)} Cf >), </5, X»)]*(u)(([/3, l2], [/|], . . •))
+1

= Ic a ll{<li,5)} (f)r(u)«[/2], [h], •••))+!
= Ifr(S)((M 2],['i], •••))+!
= ttactuals2,{(/ll{(2,/,)}>}{(/!, c a l l{(i i/4)} (inc))}]*(«)(([/5, h], [/i],...)) + 1
= Icall{{t,/4>}(inc)r(u)({[/5,i23, [],..•))+ 1
= liner (8)(([/4,/5,/2],[],...)) + l
= ffy+i f («)((M5,/2], [],...» + 1= I y r (S) « [# 4 , h, h], [] , . . . » + l a l - (a) « [i 4 , h, h), [] , . . . » + 1
- [y r(«)« [/4 ,/3^2] ,[] , .. .)) i + i
= lactuals!^^. {<i,/4»)}({(/4, call{(2,/,)} (z))})1*(2)({[/4, h , h] , [],...)) +1 +1
- [call^a,/,)} Cs>r(fiQC<P» *a], []»•**)) + 1 + 1
= l2]*(«)«[/5,/2], [/»],...» 4 1+1
= Iactualsli{(/3t{(lt,3)})(<,5i{(i t,5>})} (« /3, c a l l{<ti,5)} (f)), (/5, x)})r(u)({[/5, /2], [/i],...))

+1 + 1
= W * (« K W PiJ. •••)) + l + i
« Sactual81|̂ E2|{t2,(j)({t(/2)}>}<{(i2,8)})r(2)((M*^i]»---)) + 1+ 1
= |8TO(([Ml,...)) + i + i

8 + 1 + 1
* 10

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 81

5.8 An Example Involving Recursion

Consider the following recursive higher-order program which calculates a function factorial:

r e s u l t = ffa c (sq ,4)

ffa c (h ,n) = i f (n<l) then 1 e lse h (n)* ffa c (h ,n - l)

sq (a) = a * a

Let l\ = fffac (sq ,4)] and /2 = fffa c (h .n - l)] . The first step of the transformation

gives the following output (before introducing the new form , parameters for h):

r e s u l t = (c a l l ^ / ^ j f f ac) (4)

ffa c (n) = i f (n<l) then 1 e lse h (n)* (c a ll^ 2 ,/2)} f f a c) (n - l)

h = a c tu a ls2i{<,li{(2i/l>}>)</2){<2i/2)})} ({(/!, sq),(/2,h)})

sq(a) = a t a

We now introduce a new variable z and pass it inside the ac tu a ls operator.For simplic

ity, we write R\ instead of {(/j, {(2,/i)}), (/2, {(2,/2)})}.

r e s u l t = (c a l l^ 2,/1)}ffac) (4)

ffa c (n) = i f (n<i) then 1 e lse h (n)* (c a l l^ 2i(2̂ f f a c) (n - i)

h (z) = a c tu a ls2,H1({ (/i ,sq (c a ll{(2)/])}(z))),{ /2,h (c a ll{ <2i,2)}(z)))})

sq (a) =? a * a

Let l3 = |"(call{(2|f,)jffac) (4)], = [h(n)l, k = f(call{(2i,2)} ffac)(n -i) '|, /<i -

f s q (c a ll^ 2 ,/i)}(z))l, and ly == fh (call((2 ti2)} (z))]• In the last step of the transformation,

all first-order functions are processed, and a new definition is created for every zero-order

formal parameter in the program. It can be easily verified that the last step of the trans*

CHAPTER 5. INTENSIONALIZING HIGHER-ORDER PROGRAMS 82

formation gives the following output:

re s u l t = C a ll«2,/l)},{<M3>}f f a c

f fa c = i f (n<l) then 1 e lse (call{ (lt/4)} h)* (c a l l^ 2,/2)},{(i,/5 >} ffa c)

h = ac tu a ls 2 .fi, ({(/i, c a l l{(1),6)} (sq)), (l2, c a ll^ ,^)} (h))})

sq = a * a

n == actualsi.fi, ({(/3,4)})

z = actualsi,fi3 n), (l7, c a l l{(2,/2)} (*))})

a = actualsi,fi4({ (/6 ,ca ll{<1,/6)}(sq))})

The meaning of the program can be computed using the same ideas as in the previous

examples.

83

C hapter 6

Theoretical Foundations

In this chapter we present in a rigorous way the correctness proof of the intonsionalization

technique for higher-order programs. In the following, we first make some assumptions

that help us simplify the subsequent presentation. We then introduce certain notational

conventions, and give an informal outline of the proof. Finally, the correctness proof of

the transformation algorithm is presented in detail, and its main points are identified and

discussed.

6.1 Assumptions

To simplify the presentation of the correctness proof, certain assumptions are adopted,

which we outline below. As before, let P m , M > 0, be the M-order source extensional

program on which the transformation algorithm is to be applied, bet P m, 0 < m < M be

the S I L programs that result at each step of the transformation. Then:

1. We can view Pa/ as an intensional program (that is, a S IL program) that does not

contain any intensional operators. In this way we achieve a homogeneous view of the

transformation algorithm: each step takes as input a S I L program and produces as

CHAPTER 6. THEORETICAL FOUNDATIONS 8-t

output a SIL program of lower order. Moreover, in this way we avoid having to give

a separate proof for the first step in the transformation.

2. We assume that all the functions defined in P m , have their highest-order arguments

first, i.e., if f (x i , . . . , x n) = Bf is a function defined in Pm , then order{xi) >

order(x2) > • • • > order(xn). This helps us avoid notational complexities that would

arise if we assumed that the placement of the formals is arbitrary. Notice that this

property is preserved by the transformation, that is if it holds for P m it will also hold

for all P m, 0 < m < M.

It can easily be realized that the above assumptions do not impose any loss of generality,

and that they help reduce the heavy notation that is required for the proof that will follow.

We now introduce a theorem that will be used in certain parts of the proof. We first

define the notion of the restriction of a function:

D efinition 0.1 Let / : A-+ B and K C A. The restriction f \ K of / 011 K is the function

g : K —► B such that for all k € K , g(k) = f(k) .

The following theorem suggests that the semantics of a program P ,(l that results in an

intermediate step of the transformation, only depends on those dimensions of the context

that are greater than m.

T heorem 6.1 Let P a /, M > 0 be an M-order extensional program and let P m, 0 <

m < M be a program that results during the transformation of Pm- Let u be the least

environment that satisfies the definitions of P m and let /f = {M, M — I , . . . , m -f- 1}. Then,

for every f € func(P m), and for all w \ , w2 € W with w\\I(= w$\K,

Proofs (Outline) By the definition of the transformation algorithm it i , easy to conclude

that the operators call and actuals that appear in P m manipulate at most the dimensions

M, M — 1 , . . . , m -h 1 of the contexts. Therefore the semantics of function variables in the

program are independent of the rest of the dimensions. ■

19 ^

CHAPTER 6. THEORETICAL FOUNDATIONS 85

Program P m P m—1
Function f (x i , . . . ,x „) = Bf f(x /+ i,...,x „) = £m(Bf)
Full Call ca lU (f)(E i,...,E ») caHLU{<m.,rEP)(f)(£ra(E/+l), • • • i £m(En))

Tabic 0 1: Notation for functions with order equal to m.

6.2 Notation

The basic idea of the correctness proof is to show that the transformation from the program

P m to P m- i , is performed in a semantics preserving way. Let f be a function defined in

P m as f (x i , .. .,x„) = Bf. In the proof that will follow, there exist two cases that have to

be considered separately, depending on the order of f in P m:

Case 1: The order of f is equal to m. Then, every call to f in P m is of the form

Assume that x i , . . . ,x / , 1 < / < n are the (m — l)-order argu

ments of f. Consider now the effect that the transformation algorithm has on P m and

f. The transformed program will be P m_i, and the new definition for f in P m_i will be

f(x/+i , . . . , x n) = £m(Bf). Lets denote by E the expression call/J(f)(E x,. . . ,E n). Then,

according to the definition of the transformation algorithm, in P TO_i this call will have the

form calliU{(mifED}(f)(£m(E/+i),•••,^m(En)). The above facts are summarized in Table

6.1

Case 2: The order of f is less than m. Consider the transformed program P TO_i. Then, ac

cording to the transformation algorithm, the definition for f in P m_i will be f (x j, . . . , x n) =

£m(Bf). We do not need to introduce any notation regarding the calls of f in the program,

because as we are going to see, the theorem for this case is going to be much easier to state

than in Case 1 .

Moreover, for every one of the above cases, two subcases have to be considered, as the

following definition suggests:

D efinition 6.2 Let f (x i , . . . ,x „) = B f be a function definition in P m. The definition of

CHAPTER 6. THEORETICAL FOUNDATIONS 86

f is an ordinary one if the operator actuals does not appear in B f . Otherwise, it is an

actuals definition.

Notice tha t the main difference between actuals and ordinary definitions, lies in their struc

ture. As demonstrated by Lemma 5.1, an actuals definition has a known structure, while an

ordinary one lias a structure which is not known in advance. As a result, when an ordinary

definition is considered, a structural induction proof will often be required, while a direct

proof will often be possible for an actuals definition.

6.3 An Outline of the Proof

Let u and 2 be the least environments that satisfy the definitions in the programs P m

and P m_irespectively. The basic idea of the proof is to establish a relationship between

the values of f in P m and in P OT_i, i.e., between u(f) and 2(f). Intuitively, we expect

these two to be the same for functions that have order less than m in P,„. However, if f

is an m-order function in P m, then its (m — l)-order arguments will be eliminated by the

transformation algorithm, and therefore «(f) and 2(f) will be different (they will denote

functions of different arities). However, if we expect the programs P m and P m_i to be

semantically equivalent, it is reasonable to believe that there exists a strong relationship

between 2(f) and u(f). More specifically, we expect to establish that 2(f) and «(f) are

two functions that produce identical results under certain conditions. These conditions are

present in the programs P m and P TO_i, or in other words the function f is used in the two

programs in such a way that semantic equivalence is ensured.

It turns out that in order to establish such a result, we must proceed in two steps: first

we need to show a C relation and then a □ one, regarding the values of 2(f) and «(f). In

order to demonstrate the first relation, we perform an induction on the approximations 2*

of u (computational induction), while we keep u unchanged. To demonstrate the second

relation, we perform an induction on the approximations u* of u, while we keep 2 unchanged.

CHAPTER 0. THEORETICAL FOUNDATIONS 87

Moreover, each one of the above steps requires two cases to be considered, depending

on the kind of definition that f has in program P ?n. The first case is when f has an ordinary

definition in P m, and the second is when f has an actuals definition in P TO. In the former

case, a structural induction is performed on the body of f, while on the later a direct proof

is obtained.

The structure of the proof is illustrated in Figure 6.1. In the following section we present

the overall proof in detail.

f ig u re 6 .1 Demonstrating each of the C and □ relations.

Computational Induction

Ordinary / \ Actuals
Definitions / \D efinitions/ \

Structural Induction Direct Proof

CHAPTER 6. THEORETICAL FOUNDATIONS 88

6.4 Correctness Proof of the Transformation

As discussed in the previous sections, let Pm , M > 0, be the M-order source extensnnal

program on which the transformation algorithm is applied. The programs that result at,

successive stages of the algorithm are P ^ P jv m , .. .,Po- Consider P m, 0 < m < M. The

following theorem establishes a relationship between the meaning of functions defined in

P TO and the meaning of functions in P m_ i.

T heorem 6.2 Let u and u be the least environments that satisfy under the synchronic

interpretation the definitions in P m and P m_i respectively. Then:

• For every definition (f (x i, .. . ,x n) = Bf) in P m, if x j : r i , . . .,x „ : rn and there exists

1 < I < n such that order{r\) — (m - 1) ,. .. , order(ri) = (m - 1) and order(n+1) <

(m — 1) , . . . ,order(rn) < (m - 1), then for every call E = calljr,(f)(Ei,. . . , E„) to f

in P TO, for all di+i € . . . , d n € frn] and for all w G W,

callLu{(mifEi)}(u(f))(w)(di+i, . . . , d n)C

C«//i (W(f))(u ,)(pm(E1)F (2)(^), • • •, I f m(Ei)F («)(«), d , + d n)

• For every definition (f (x i, .. . ,x n) = Bf) in P m, if xj : T\ , .. . ,x n : rn and order(ri) <

(m - 1) , , order(rn) < (m - 1), then for all d\ G [r i] , . . . , dn G Ir„J and for all

w G W ,

u(t)(w)(d1, . , . , d n)Q . . . , d n)

Proof: It suffices to show that the above statements hold for all approximations k G N,

of the environment u. In other words, it suffices to show the following two statements:

• For every k G JV, for every definition (f (x i , . . . , x„) = B f) in Pm, if Xj : T\, . . . , x„ : r„

and there exists 1 < / < n such that order{r\) = (m — 1),... ,order(n) = (m -

1) and order(ri+i) < (m - 1 order{rn) < (m - 1), then for every call E =

^571

CHAPTER 6. THEORETICAL FOUNDATIONS 89

calljr,(f)(Ei,. . . , E„) to f in P m, for all di+ 1 € [r/+ij, . . . , d n £ [r„] and for all w £ W,

^Lu[{m,\E-])}(uk(^))(w)(di+i , d n) C

ca///;(u(f))(w)([£m(E i) f (uk)(w), • • •, [£m(E/)r(2fc)(w), • • • ,dn)

• For every k £ N , for every definition (f (x i , . ,.,x „) = Bf) in P m, if x i : t\, .. .,x „ : rn

and orderfa) < (m - 1) ,. . . , order(rn) < (m - 1), then for all d\ £ J r i] ,. . . , dn 6

and for all w € W,

uk(i)(w)(di, . . . , d n) C u(i)(w)(di, . . , , d n)

We demonstrate the above using induction on k. For k = 0, that is for uo, the above

trivially hold because the left hand side of each statement is equal to the bottom value.

Assume that the claim holds for k > 0. We show the claim for k +1. That is, we show that:

• For every definition (f (x j , . . . , x„) = Bf) in P m, if x i : T\ , . . . , x n : rn and there exists

1 < / < n such that order(r\) = (m — 1),... ,order(ri) = (m — 1) and order(r/+i) <

(m — 1) , order(rn) < (m - 1), then for every call E = c a ll i(f) (E i ,. . . , E n) to f

in P m, for all d/+i 6 . . . , d n e |[t„]] and for all w e W,

caMiAj{<m,rEl)}(6*+i(f))(«0(‘*/+i.• • - »rfn) E
ca//£,(u(f))(u;)([fm(Ei)l*(iiA:+i)(w),. . . , [£ m(E /)f(u fc+i)(w), rf/+1, . . . , dn)

• For every definition (f (x i , . . . , x„) = B f) in P m, if x i : t\ , . . . , x n : rn and order(ri) <

(m — l) , . . . , order(rn) < (m - 1), then for all di € [r i j , ,dn € [rn] and for all

w £ W,

Uk+i(t)(w)(di, . . . , d n) E u(t)(w)(dh . . . , d n)

Using the semantics of call, the above two statements can be written as follows:

• Let L = L U {{m, [E])}. For every definition (f (x j , . . . ,x „) = Bf) in P m, if Xi :

T\ , . . . , x n : r„ and there exists 1 < I < n such that order{r\) = (to -1), . . . , order(n) =

CHAPTER 6. THEORETICAL FOUNDATIONS 90

(m — 1) and order(ri+i) < (m — 1) ,. .. , order(rn) < (??/. - 1), then for every call

E = c a llL (f)(E i,... ,E n) to f in P m, for all d,+1 G [r(+1l , . . . ,dn G [rn] and for all

w 6 W,

Uk+i(f)(w !]• L)(dt+1,. . . ,dn) C

n(f)(w (J. £) (p m(Ex) r («*+!)(«;), • ••, I^u(E ,)F(% m)(w), d , + d n)

• For every definition (f (x i , . .. ,x n) = Bf) in P m, ifx i : n , . . . , x„ : r„ and ordrr(T\) <

(to — 1 order(Tn) < (to - 1), then for all d\ 6 [r j , . . . , dn G fr„ | and for all

w € I'F,

S*+i(f)(w)(c/1, . . . , </„) C «(f)(u»)((/i,. . . , dn)

Recall now that f (x i , .. .,x „) = Bf in P m and also f(x/+j , .. . ,x n) = £,n(Bf) in P*rt- | .

The idea is to use Definition 4.10 and Theorem 4.1 in order to get equivalent statements

that involve the body of the function f. Therefore, it suffices to show that:

• For every definition (f (x i, . . . ,x„) = Bf) in P m, if xi : . . . , x„ : rn and there exists

1 < / < n such that order(ri) = (to — 1) , . . . ,order(ri) = (m — 1) and order(ri+i) <

(to — 1) , . . .,order(Tn) < (to - 1), then for every call E = call/v(f) (E i,.. . ,E „) to f

in P m, for all d;+i G flrz+i],. . . ,dn G [rn]j and for all w G W,

[^m(Bf)F(2A; ® a){w ((L) C [Bf J*(-u ffi a ® f>k+i)(w -U- T)

where <r(x?) = d f , I + 1 < j < n, and pk+i(x i) = ([£,a(Ej)l*(MA..4.|)(i/;))00, 1 < j < I.

o For every definition (f (x i, . , .,x „) = Bf) in P m, if x t : r t , .. .,x „ : r n and ordcr(ri) <

(to - 1) , . . . ,order(rn) < (to - 1), then for all d\ G [r i j , . . . , d n G [r„] and for all

w G W,

[£m(Bf)F(fifc ® «t)(w) C [B fF(u ® r/)(w)

where <r(xj) = d f , 1 < j < n.

CHAPTER 6. THEORETICAL FOUNDATIONS 91

In the following, we give a full proof for the first of the above statements. The proof for

the second statement is simpler, and can be given in a similar way. To prove the first of

the statements, we consider any function f in the program that satisfies the requirements

set by the statement. We proceed by distinguishing the following two cases:

1. The function f has an ordinary definition in program P m.

2. The function f has an actuals definition in program P m.

We prove each case separately, for the reasons we described in the introductory sections of

this chapter.

Proof for Ordinary Definitions

The proof for ordinary definitions can be established by structural induction on the body

of the function, that is by showing that for every subexpression S of Bf:

[£m(S)]P(2fc ® o){w -il 2) c © <7 © Pk+l)(w L)

Structural Induction Basis:

C ase l: S is equal to a variable Xj € { x i,. . . ,x n}, and xj is (m—l)-order. Then, a definition

of the form Xj(z t , . . . , z t) = (actualsmift(£m(;© j))<6dom(fl))(zx,.. .,z<) is created in P m_i,

where R = opt ions(f,Pm,m). Using the semantics of application and Lemma 4.1, it can

easily be shown that

Mfc(xj) E [actualsmifl(£m(* 0 i)>fedom(/i)r(2/t)

This fact is used in the proof given below. The following facts are also used: given the

context (w JJ- L), head((vi Ij. L)m) = [E] because L = L U {(m, [E])}. Moreover, it can be

easily shown from the definition of the set R = options(i,Pm,m) that 72f£] = L. The left

CHAPTER 6. THEORETICAL FOUNDATIONS 92

hand side of the statement we want to establish can be written as:

lSm(S) f (u k ®a)(wii ,L) =

= f£m(xi)]*('% ® °) (w ^ L)
(Because S = x_j)

= IxjF(2fc © <0(«> ^ L)
(Definition of the transformation algorithm)

= Uk(x-j)(w ^ L)

(Variable Xj is (m — l)-order)

C Iactualsm,R(fm(i © jy)i&(lom(Rix v "O' IJ)
(Replacing Xj by its defining expression)

= {€mm 0 j)T (u k)((w J)X)(T P\E])

(Semantics of actuals)

= I M %) m -) (M £) i H)
(Definition of 0 and JKfE] = L)

= [^ (E j) n « ,) (^)

(Because (w 1). L) ft L = w)

Q [£ m (E j) n % + i)0<0
(Monotonif ity of [£ m(Ej)fl*)

= Pk+i(x i)(w ^ L)
(Definition of Pk+i)

= IX j]* (« © (T 0 ,o j | .+1) (w ^ X)

(Variable Xj gets a value from pk+i)

= ISJ*(« 0 a 0 p k + 1) { w f y L)

(Because S = Xj)

^

CHAPTER 6. THEORETICAL FOUNDATIONS 93

Case 2: S is equal to a variable Xj € { x i,.. . ,x n}, and xj is less than (to — l)-order. We

should remind here that d°° is a constant intension, and therefore its value does not vary

from context to context. The left hand side of the statement we want to establish can be

written as follows:

[£m(S)J*(2* © £) =
= ® a)(w ^ L)

(Because S = X j)

= IxjF(ufc ® cr)(w L)

(Definition of £m)

= ct(x.7)(w JJ- L)

(Because Xj is less than (m — l)-order)

= L)

(Because < r (x j) = df3)

= [x j* (u® <t ® pk+i)(w L)

(Because xj is less than (to - l)-order)

= [Sj*(u ® a ® pk+i)(w -!/• L)

(Because S = Xj)

Case 3: S is equal to a nullary constant symbol c. The proof in this case is st raightforward,

because the denotation oi c is a constant intension, and therefore its value is independent

of context.

CHAPTER 6. THEORETICAL FOUNDATIONS 1)1

Case 4: S is equal to call/^h), where h is not a formal of f. In this case, the order of h is

strictly less than m (because m -order only have full applications in P,„). Recall now that

the outer induction hypothesis for functions of order less than m, specifies that:

ttfc(h) Q «(h)

The left hand side of the statement we want to establish can then be written as follows:

iem(s)Y (uk © <t)(w (i L) =

= [fm(callK-(h))F(Mfc © a)(w J). L)

(Because S = x ,•)

= |[callfl'(h)]*(ufc © a)(w ^ L)

(Definition of £m)

= callji(uk(\i)){w JJ. I j)

(Semantics of call')

C callj^(u(h))(w f| L)

(Outer induction hypothesis)

= callji[(’ 1) L)

(Because of Theorem 6.1)

= [cal!/f(h)]*(w © a © p k+1)(w 1) L)

(Semantics of call)

= ISJ*(« ©o’ © pk+i)(w 0- T)

(Because S = call^(h))

09

CHAPTER 6. THEORETICAL FOUNDATIONS 95

S tru c tu ra l Induction Step.

Case I: S = x y (S] S r) where xy € { x i,.. , ,x n}, and xy is (m - l)-order. The proof

uses the following fact which was shown in the induction basis:

Uk(xj)(w |1 2) C pk+1(xj)(w |L L)

In the following, notice that none of the arguments of x j is eliminated during the transfor

mation because all of them are less than (m - l)-order. The proof has as follows:

^ m(s) n % .© <T)(W^ £) =

= I£m(Xj(Si,. . ., S r)) Y (U k © o r) (w II 2)

(Assumption for S)

= Ixy(fm(S7) , . . . , £ m(Sr))r(vk © H L)

(Definition of £m)

= %-(xy)(w (I T)(lfm(Sx)l*(St © cr){w (I 2) , . . [£m(Sr)]*(«* © <r)(w (1 2))

(Semantics of application)

C p k + ,(xy)(u> | | i)([£Tm(Si)r(«* © a) (w (1 2) , . . [£ro(Sr)F(€fc © *)(« U L))

(Because uk(xj)(w (1 2) C pk+i(xj)(w Jj. L))

C Pk+i{xj){w Jj. Z)(|Si]*(u © a © pk+i)(w 4 [Srf (« © a © p*+i)(ti> |1 L))

(Using structural induction hypothesis and monotouicity)

= Ixy(St,. . . , Sr)J*(« © a © pk+t)(v> II L)

(Semantics of application)

= [SJ*(m© cr©/5*.+1)(w (|X)

(Assumption for S)

CHAFTER 6. THEORETICAL FOUNDATIONS 9(1

C ase 2: S = Xj(Sl5. . . , Sr) where x j € and Xj is less than (i n - ! ' , ier,

Then, Xj gets its value from cr, in both sides of the statement we want to establish. ..oiice

also that a (x j) = i.e., it is a constant intension, and therefore its value is independent

of context. Then:

[M s)r(S fc© < T)(w ^2) =

= ^ - (^ (S i) , .. .,£m(Sr))!*(«* ® a)(w jj. L)

(Definition of Sm)

= ^ L)(l£m(S i) f (u k © ff)(w i). l£m(Sr)r(Gk © o-)(u> K /,))

(Semantics of application)

= CT(xi)(w X)([fm(Si)F(«fc © <r) (w 4- , I^m(Sr)r(w; © c r) (w U- £))

(Because <r(xj) is a constant intension)

C <r(x/)(w 4 £))([Sti*(u © (T © p k + \) (w 4 1) , ■ ■ ■ , [Srr (« © o © p k + i)(w ^ £))

(Using the induction hypothesis and monotonicity)

= . . . , Sr)J*(a © a © Pk+i){w -11- L)

(Semantics of application)

= I S |* (« © <7 © p k + i) { w (1 L)

(Assumption for S)

CHAPTER 6. THEORETICAL FOUNDATIONS 97

Case 3: S = c(S i,. . . ,S r). Ti e proof in this case uses the fact that the denotation C*(c)

is a constant intension. The proof has as follows:

© cr)(w $ £) =

= |[fm(c (S i , . . . ,S r))l,,(«ifc©<T)(t«4Z)

(Assumption for S)

= , £m(Sr))]T(fifc © <f)(.W 0 X)
(Definition of £m)

= Cm(c)(w 0- X)([£m(Si)]]*(tifc © a)(w (IX),..., IXm(Sr)]*(2fc © <r){w 0 X))

(Semantics of constant symbols)

= C*(c)(iu 0 X)([£m(Si)J*(ttfe © a)(w (IX),.. ., IXm(Sr)F (% © <r)(w 0 X))

(Because C*(c) is a constant intension)

C C*(t:)(w 0 X)([Sj]*(u © a © pk+i)(w O X),..., [Srf (t t © a © p t+i)(uj 0 X))

(Using structural induction hypothesis and monotonicity)

= [c (S i,. . . , Sr) f (u © a © pk+i)(w 0 X)

(Semantic" of constant symbols)

= [SF(u© (T© pH 1)(iuOX)

(Assumption for S)

CHAPTER 6. THEORETICAL FOUNDATIONS 98

Case 4: S = call/,,(g)(S i,. . . , Sr) where g is an m-order function defined in P m. Assume

that the corresponding definition for g in P m is g (y i , . . . ,y r) = B g and that y u . . . , y (,

0 < t < r are the (m - lVorder parameters of g. Then, in P rt,_i, the corresponding call is

call2i (g)(^TO(S i+ i),.. . , f m(Sr)), where L\ = L\ U {(m, [S])}. Also, the definition for g in

P m_i becomes g(yt+x, . . . , y r) = £m(Bg).

= [fm(callLl(g)(S i,.. . ,S r))]*(fi* ® cr)(w$L)

(Assumption for S)

= [call^ (g)(£m(S*+i),.. . ,£ m(Sr))] (uk © cr)(w 11 L)

(Definition of £m)

= ca//£i (u*(g))(u; 0- I)([fm (S t+i)!*(«* ® er)(w ((. £) , . . [£,„(Sr) f (uh ffi <r)(w (1 £))

(Semantics of call)

= ca//£,,(M(g))(u) (J. i) ([^ m(Si)]*(ufc ® a)(w (1 , I f ,„(S, -)f(uk ® ct)(w (1 £))

(Outer induction hypothesis)

= callLl(u(g))(w 0- ZrXIfmfSjJl^Ufc ® cr)(to t y l) , . . . , [£,n(Sr)]|*(«* ® a)(w (J. £))

(Because of Theorem 6.1)

C callLi(u(g))(w (1 Z)([SiJ*(m ® a ® pk+i)(w U- £) , . . . , |[S „])*(«■ ffi <r ffi Pk+i)(i>’ J) L))

(Structural induction hypothesis and monotonicity)

= Jcalli, (g)(S i, . . . , Sr)l*(« ffi <r ffi pk+i)(w -(J- L)

(Semantics of application)

= ISJ*(« ffi a ffi Pk+i)(w J) L)

(Assumption for S)

CHAPTER 61 THEORETICAL FOUNDATIONS 99

Case 5: S = call/,, (g)(S i,. . . , Sr) where g is a function defined in P m, of order less than

m. Recall that by the outer induction hypothesis it is:

«*(g) E «(g)

Then, the left hand side of the statement we want to establish can be written as follows:

I^m(S)l*(Sfc © <t)(w ((. X) =

= [£m(call/-, (g)(S i,. . . , S r))J*(S* © *)(«; ((L)

(Assumption for S)

= [call/,, (g)(fm(S i Sm(S,))]*(«* © ct)(w (1 X)

(Definition of Sm)

= callLl(uk(g))(w (1 2)([^m(S1)]*(«fc © <r)(w (IX),..., [£m(Sr)]*(«* © cr)(w () X))

(Semantics of call)

C callLl(u(g))(w (J. X)([Xm(S1)J*(2fc ffi ct)(w (J. X),. . . , |[£’m(Sr)])*(«* © <r)(w d- X))

(Outer induction hypothesis)

= callLi(u(g))(w (1 X)([£m(Si)]*(Sj. ffi cr)(w (IX),.. ., [£m(Sr)]T(tt* ffi a)(w (J. X))

(Because of Theorem 6.1)

C callLl(u(g))(w (1 £)([Si]*(u ffi a ffi pk+i)(w (IX),..., [Snf (u ffi a ffi pk+i)(w (1 X))

(Structural induction hypothesis and monotonicity)

= IM l/o (g)(Si, • • •, Sr)]*(t» ffi a ffi p*+i)(w (1X)

(Semantics of application)

= [S]]*('!t ffi O ffi Pk+i)(w (1 X)

(Assumption for S)

This completes the proof of the theorem for the case of ordinary definitions.

CHAPTER 6. THEORETICAL FOUNDATIONS 100

P ro o f for A ctuals D efinitions

In this case, the definition for the function fin program P m is of the form f (x j , . . ,,x „) = Bf

where Bf = ac tua lsm<,r ({S;);€,(om(ft)). Notice that m' > m, because this definition has

been created in a previous step of the transformation algorithm. We want to establish the

following result:

[£m(B f)!*(«* © (T)(w (J. L) C [Bf]*(u © cr © pk+t)(w L)

Notice now that the two contexts (w J). L) and (w 1} L) agree on the m' dimension, because

their only difference is in the m dimension and m < m ' . Therefore, using the semantics of

actuals, it suffices to show that for every i € dom(R):

[£ m (S ,-)r (8 * © a){w ^ L ft Ri) C [S , r (« © cr © pk+l)(w JJ. L ft /?.,)

By Lemma 5.1, we know that there exists a function g and K C N X N sucli that S, =

call/i'(g)(Q i,. . . , Q„), where Q; = call/j,(xj), j = 1, . . . ,n . In the translated program

P 7n—x the corresponding call is of the foim (St) = call/?(g)(£m(Q,+,) , . . . , f wt(Qn)),

where K = K U {(m, [S,])}. For brevity, we let w x = w ft Z ft Ri and wi = w ft L ft J It

can be shown that:

P m (Q j)] * (t » * © < ^) (w i) C I Q j } * (u ffi a © p k + t) (w i) (6 . 1)

CHAPTER 6. THEORETICAL FOUNDATIONS 101

This follows easily, using the definitions of a and pk+i- Consider now the left hand side of

the statement to be established. This can be written as follows:

= |[£m(callK-(g)(Qi,. • •, Q n))F(«* ©

(Assumption for S,)

= [c a ll^ (g)(fnl(Q/4. i) , . . . , £TO(Qn))l (ufc © <7’)(wl)

(Definition of £m)

= callfi(uk(g,))(wi)([€m(Qi+i)Y(uk © <r)(wi),. . [£m(Qn)F0*fc © <r)(wi))

(Semantics of call)

= ca//K-(u(g))(u7i)([fm(Q i)F (2 /! © or)(w i) , . . . , [£m(Q „)F(2* © <t)(u>i))

(Outer induction hypothesis)

= ca//A'(u(g))(w2)([£m (Q i)F(“ * © <r)(wi), ■■■, |? m(Qfi)F(«/fe © ffXwi))

(Because of Theorem 6.1)

C ca//fr(u(g))(ti;2)([Q iF (« © ° © Pk+1 X ^ 2), • • •, [Q n F (u © ° © P k + i) M)

(Using equation 6.1 and monotonicity)

= [ca ll/c (g)(Q i,. . . , Q »)F(« © o © Pk+i)(w2)

(Semantics of application)

= [S<F(tt©<T©pfc+1)(u>2)

(Assumption for S)

This completes the proof for actuals definition and the proof for the whole theorem. ■

CHAPTER 6. THEORETICAL FOUNDATIONS 102

T heorem 6.3 Let u and u be tlie least environments that satisfy under the synchronic

interpretation the definitions in P m and P m_i respectively. Then:

• For every definition (f (x i, . . . , x„) = B f) in P TO, if x i : T\ , . . . , x n : r„ and there exists

1 < I < n such that order{r\) = (m - 1),. ..,order(ri) = (m — 1) and order(ri+1) <

(m — 1) ,. . . , order(rn) < (m - 1), then for every call E = ca ll/,(f)(E i,. . . , E n) to f

in P TO, for all d/+i G [t i + i] , G fr„] and for all w € W,

CflWI,U{(m,rEl>}(w(f))(w)(rf/+l» ■ • -rdn) 3
c«Z/z,(«(f))(to)(i^m(E1)r(S)(to),. . . , J£m(E/)]]*(fi)(u;), dl+ u . . ., dn)

• For every definition (f (x i , . . .,x „) = Bf) in P m, if x i : r i , .. . ,x n : rn and order(ri) <

(m - 1) , , order(rn) < (m - 1), then for ail d\ 6 [rij, € [rn| and for all

w G W,

u({)(w)(di, . . . , dn) □ u(f)(w)(du . . . , dn)

Proof: Following the same ideas as the proof for Theorem 6.2. ■

T heorem 6.4 Let u and u be the least environments that satisfy under the synchronic

interpretation the definitions in P m and P m_i respectively. Then:

• For every definition (f(x1?. . . , x n) = B f) in P r„ , if x j : r i , . . . , x„ : rn and there exists

1 < I < n such that order{T\) = (m - 1 order(ri) = (to - 1) and order(n+1) <

(to - 1 order(rn) < (to - 1), then for every call E = caH j,(f)(E i,. . .,E „) to f

in P m, for all d/+i G G [rn] and for all w G W,

• ■ ’>dn) =
ca////(u(f))(w)([£m(Ei)]]*(2)(w),. . . , m(E ,) f (n)(w),d,+u .. . ,dn)

• For every definition (f (x j , . . . ,x n) = Bf) in P m, if x t : r j , .. .,x „ : rn and order (r i) <

(to - 1) , , order(rn) < (to - 1), then for all d\ G In i, G tr„] and for all

CHAPTER 6. THEORETICAL FOUNDATIONS 103

w € W ,

u(f)(w)(dt , . . . , d n) = u (f)(w)(d i,...,d„)

Proof: A direct consequence of Theorems 6.2 and 6.3. ■

The following theorem demonstrates that the programs P m and P m_i are semantically

equivalent under the synchronic interpretation.

T heorem 8.5 Let u and u be the least environments that satisfy under the synchronic

interpretation the definitions in P m and P m_i respectively. Then, j[Pm]*(w) = |P m_iJ*(u).

Proof: Straightforward, by applying the second statement of Theorem 6.4 on the variable

resu lt of the programs P m and P m_i. ■

It remains to show that the initial extensional program P m , has the same standard

denotational semantics as the final zero-order intensional program Po- This is demonstrated

by the following theorem:

T heorem 8.6 Let P m be an M-order FL program and let Pm -i? . . . ,P q be the intensional

programs that result at the successive stages of the transformation algorithm. Let u m and

«o be the least environments that satisfy the definitions of P m and Po under the standard

interpretations. Then, for every w € W,

IP m 1zj(«m) = IPol(W^D)(Uo)(u>)

CHAPTER 6. THEORETICAL FOUNDATIONS 104

Proof: Let u*M, . . . , u„ be tlie least environments that satisfy the definitions in the programs

P Mi • ■ ■ > Po under the synchronic interpretation. Then, for every w € IT:

IP m 1d(mm) =

= [P AfJD(MAf)(w)

(Theorem 4.3)

= IPA/-ll£)(«M-l)(w)
(Theorem 6.5)

= [p o]d (wo)(w)

(Theorem 6.5)

= I P o J (W _ * D) (M o) (w)

(Theorem 4.4)

■

6.5 Discussion

The correctness proof given in the previous section, concludes the formal presentation of the

transformation algorithm from higher-order extensional programs to intensional programs

of nullary variables. It should be mentioned here that the proof did not just serve the

purpose of validating the correctness of the algorithm; it also suggested changes that had

to be performed. Notice that the transformation for higher-order programs is much more

sophisticated than the one for the first-order case, and it is imperative that the informal

intuitions one may have, be supported by formal reasoning.

The most crucial change that the proof suggested was the change in the ac tuals oper

ator. One can easily realize by closely examining Case 1 of the structural induction basis,

that the ac tua ls operator suggested in [Wad9lj would not work. The problem would be

that the operator would not perform all the necessary “cleaning” of the context that is

CHAPTER 6. THEORETICAL FOUNDATIONS 105

required, leaving in this way unnecessary information “floating around”. From our experi

ence, this resulted in unacceptable performance in the implementation of many programs.

It should be noted that these performance problems could not be intuitively explained by

the author, before the proof was undertaken.

Another important aspect of the algorithm that is reflected in the proof is the fact that

M different dimensions are used in a controlled way, in the transformation of an M -order

program. Theorem 6.1 indicates that a program that appears in an intermediate stage of

the transformation, only depends on those dimensions that have appeared until now in the

translation. This theorem is used in many different parts of the proof. However, we should

note at this point that it is not at all obvious that exactly M (and not less) dimensions are

necessary (although such a choice is a mathematically appealing one as it associates one

dimension for every order of the program).

106

C hapter 7

Im plem entation Strategies

As it was discussed in Chapter 1, the conceptual basis for implementing intensional lan

guages is the eduction model of execution. However, each intensional language has its own

idiosyncrasies, and the concrete way in which eduction can be implemented for a specific

language, is not always straightforward. In this chapter we examine how the zero-order

subset of the IL language can be educed, providing in this way an implementation tech

nique for the source functional language FL. More specifically, we propose two strategies

for implementing eduction on von Neumann machines. The first approach heavily relies

on hashing techniques [Knu75], while the second one is an enhancement of the traditional

activation-record ideas [ASU86] to include context information. Toth of the strategies we

propose, focus on resolving the following two issues:

1. Efficient context operations. Recall that the contexts are tuples of lists of natural

numbers. During computation, the lists can get arbitrarily long, especially if the

source functional program contains recursively defined functions. Therefore, it is

imperative that lists be represented in such a way so as that they can be efficiently

manipulated.

CHAPTER 7. IMPLEMENTATION STRATEGIES 107

2. A voidance o f recom putations. The value of a variable under a specific context

may be demanded many times during program execution. A scheme that avoids

duplication of computational effort is necessary.

The last section of the chapter investigates the relationship between eduction and the

dataflow model of computation. More specifically, we demonstrate that the technique de

veloped in this dissertation offers a solution to the implementation of higher-order functions

on dataflow architectures.

7.1 A Hashing-Based Implementation

Traditionally, the Lucid language and all the Lucid-related systems, have been implemented

based on a technique known as eduction [WA85, DW90b, DW90a]. However, until now, only

first-order languages have been implemented based on the eduction model. In this section

we describe an enchancement of the eduction engine that can handle the implementation

of higher-order functional programs.

The architecture consists of three interacting components (Figure 7.1): the List Store,

the Value Store, and the Execution Engine. In the following we describe in detail the

purpose of each component.

7.1.1 T h e List S tore

The purpose of this component is to ensure a compact representation of contexts as well as

efficient operations on them. Recall that for an m-order functional program, a context w is

an m-tuple (w \,. . . , ivm), where w \ , . w m are lists of natural numbers. The solution we

adopt is to convert each list into a natural number, using a technique known in computer

science as “hash-consing” (described below). In this way, contexts appear as m-tuples

(« i , . . . , n m), where n i , . . . , n m € N, and their manipulation is much more convenient.

CHAPTER 7. IMPLEMENTATION STRATEGIES 108

figure 7.1 Architecture of the implementation

List
Store

Value -
Store

Execution
Engine

The List Store component in Figure 7.1, takes care of the details of hash-consing and also

supports functions that can be used to implement the call and actuals operators.

The idea of hash-consing is to store a list in a hash table [Knu75], as a pair (head,

position of tail). The list is then represented by the position of the tuple in the table

(Figure 7.2).

figure 7.2 The hash-consing technique

head taiicode
1 0 0 11

2 l l 11]

3 5 l [5]

4 2 3 [2 , 5]

5 1 4 [1 , 2 , 5]

•

The following primitive functions are supported by the List Store:

• hashcons(head,tailxode): Uses a hash function to check if the pair (head, tail xotle)

CHAPTER 7. IMPLEMENTATION STRATEGIES 109

already exists in the hash table. If it does not, then it inserts it. Finally, it returns

the position of the pair in the table.

• hashhead(listjcode) : It returns the first element of the pair found in the list-code

position of the hash table.

• hashtail(list-code) : It returns the second element of the pair found in the listjcode.

position of the hash table.

The above operations can in general be performed in an efficient way. They are used by

the Execution Engine to implement the semantic equations of the call and actuals operators

that appear in the intensional code that results from the transformation. Moreover, the

space occupied by the hash table is reasonable. Encoding lists as natural numbers using

the above primitives, allows a greater flexibility on context manipulation.

7.1.2 T h e V alue Store

During the execution of a program, many identical computations take place. The technique

we propose has an inherent potential for avoiding unnecessary recalculations. More specif

ically, consider an identifier x whose value v has already been computed under a specific

context w. The Value Store is a hash table whose purpose is to keep this kind of informa

tion. A schematic description is given in Figure 7.3. If the value of the identifier x under

the same context w is demanded again during program execution, then a lookup of the

Value Store can potentially save significant time.

It is important to note that the Value Store is not a required component of the archi

tecture. In fact, the only space that is actually essential for the technique, is the table used

for implementing hash-consing. However, our experience shows that the use of the Value

Store gives an important benefit to the technique, by drastically reducing the number of

steps that have to be performed in order to evaluate a program. One problem that the im

plementation faces with respect to the Value Store, is how to control its size: as new entries

CHAPTER 7. IMPLEMENTATION STRATEGIES 110

figure 7.3 The Value Store

I d n tf Tag V alue

X <6,J9> 20

y <10,8> 100

are added, the Value Store gets bigger and bigger, and the insertion and search procedures

start to become less efficient. The size of the Value Store can be controlled in two ways:

• H euristics: A particularly successful one is the retirement age scheme which has

been used in Lucid implementations. It follows similar ideas as the “Least Recently

Used” technique for performing page replacement in operating systems.

• A nalysis B ased Techniques: Cbmpile-time analysis of the source program can be

used to predict how long a specific entry needs to stay in the Value Store [BagSO].

The efficiency of the above scheme can be significantly improved by performing dimen

sionality analysis at compile-time. The main idea is that the value of an identifier in the

target program under a given context, may only depend on a subset of the fields of the

context. Therefore, space and time savings can result from determining the dependence

between identifiers and context fields. Then, one need only save for each identifier, those

components of the context that are absolutely necessary. A promising technique for dimen

sionality analysis of multidimensional intensional languages is presented in [Dufll], and can

be adapted for the language IL that we propose in this dissertation.

CHAPTER 7. IMPLEMENTATION STRATEGIES 111

7.1.3 T h e E xecution Engine

The Execution Engine coordinates the actions of the List and Value components of the

architecture. Its main purpose h to evaluate the program of nullary intensional definitions

that results at the end of the '.rant;formation algorithm. This code has the form:

resu lt — Bo

fx = B,

fn ~ B„

In the following, we describe a simple interpretative Execution Engine. Given a nullary

variable intensional program P , the Execution Engine stalls by demanding the value of

the variable resu lt of P under a context consisting of empty lists. To be more accurate,

the initial context is of the form (c ,...,c) , where e is the encoding under hash-consing of

the empty list. The Execution Engine performs different actions, depending on the kind of

expressions that it evaluates. We present each case separately:

Variables: When a variable f is encountered during the execution of the program, the

following actions are performed. The variable is first looked up in the Value Store under

the current context w. If it is found, then the corresponding value is returned. Otherwise,

the body B of f is evaluated in order to compute the value of fin the current context w. The

result of the evaluation is then inserted in the Value Store. It should be noted that compile

time analysis of the program may indicate that some identifiers should never be stored in

the Value Store because they are never going to be demanded. Such an optimization can

help reduce the space occupied by the Value Store as well as the search and insert access

times.

Call Operator: When the expression call&(E) is encountered during execution, the evalu

ator performs the following. The current context w is transformed according to the semantic

CHAPTER 7. IMPLEMENTATION STRATEGIES 112

definition of the call operator. Then, the expression E is evaluated under the new context.

We should note at this point that the transformation that is performed on the current con

text, is a multi-consing operation as dictated by the subscript L of the call operator. This

operation is implemented using the hashcons primitive provided by the List Store.

Actuals Operator: To evaluate actualsm /e(E) the following actions are required. The

m-th element of the current context w is selected, and its head is extracted and used to

select the corresponding argument of actuals. The context w is transformed according to

the semantic definition of the actuals operator. The argument that was selected is then

evaluated under the new context. The above actions are implemented using the linshhead

and hashtail primitives of the List Store.

Constants: To evaluate c (E i , . . . ,E n) under a context w, the expressions E i , . . . , E n are

evaluated under w, and the meaning of c is applied to the results. However, we should

emphasize here that is it is not always necessary (or desirable) to evaluate all the arguments

of the constant c at once. For example, the if-then-else operation first evaluates its first

argument, and according to the result produced, either evaluates its second or its third

argument.

7.2 An Activation-Record Based Implementation

In this section, we present an alternative implementation strategy which attempts to reduce

the overhead associated with the hashing-based approach. The main idea of the technique is

that the List Store and the Value Store can be appropriately merged into a single structure.

This is achieved by incorporating context-related information into traditional activation

records.

CHAPTER 7. IMPLEMENTATION STRATEGIES 113

7.2.1 In c o rp o ra t in g C o n te x ts in to A c tiv a tio n R eco rd s

To illustrate the proposed technique, consider the program given in section 5.6. During

execution of the program (Figure 5.7), the formal parameter x of apply is demanded at

some point under the context ([I2], [/1]). This demand for x is directly related to the demand

for apply under the same context ([Z2], [/1]). Similarly, notice the demands for both z and

f under the context ([/3 , / 2],[fi])* In general, whenever a zero-order formal parameter in

the program that results before the last step in the transformation (like x and z above) is

demanded under a context, there has existed a previous demand, under the same context,

for the function variable (like apply and f above), in which the formal belongs.

Notice that the above discussion only applies to the zero-order formals of functions.

As we will see, this makes the technique introduced in this section less general than the

liashing-based approach. However, the hashing overhead is avoided, ensuring in this way a

faster execution for many programs.

During the last step of the transformation algorithm (that is, before the translation

from first-order to zero-order), the number of zero-order formal parameters of each function

in the program is recorded. This information will be used to determine the size of the

activation record that has to be allocated when a call to this function occurs. Moreover, for

every formal parameter, an offset from the beginning of the activation record is assigned.

As we have seen, given an m-order extensional program, there are m dimensions used for

its translation. Therefore, the contexts that will be used for the execution of the intensional

program that results fri)m the translation, will be m-tuples of lists of natural numbers.

During execution, each component of the current context is represented as a tuple (head,

pointer to tail), and it is stored in the beginning of the current activation record (this

will be further explained below). Therefore, a component of the context can be uniquely

characterized by the address in the stack of the corresponding tuple. In other words, the

current context can be characterized by m pointers (addresses) in the stack. We will call

these addresses context pointers, denote them by c p i,... ,c p m, and assume that they are

CHAPTER 7. IMPLEMENTATION STRATEGIES U 4

stored in corresponding registers. Just before the execution of the program starts, ail

pointers are set to point to the beginning of the stack.

7 .2.2 E x e c u tio n o f In te n s io n a l C o d e

In the following, we describe the execution of intensional programs of nullary variables, using

a stack of activation records. As before, different actions need to be performed depending

on the kind of expression that is under evaluation. We consider each case separately:

C all O pera to r: Consider the first-order program that results just before the last step of

the transformation algorithm is performed. Let f be a function in this program and let

X i,.. .,x „ be its formal parameters (which are all zero-order). Whenever during execution

of the resulting zero-order program, an expression of the form c a l l f) is encountered, where

L = {(m i,ii),...,(m jt,ifc)}, a new activation record is allocated in the stack (Figure 7.4).

The new context pointers are set as shown in this figure.

figure 7.4 Activation Record with Context Information

Actuals Operator: Whenever an expression of the form actualsm>n(i?) is encountered

during execution, the following actions are performed: the context pointer cpm is considered,

and the position in the stack that it is pointing to, is located. This position holds a tuple

CHAPTER 7. IMPLEMENTATION STRATEGIES 115

that contains the head and a pointer to the tail of the m-th context component. The head is

used to select the appropriate expression from the sequence E. Moreover, the set R is used

in order to perform the appropriate multiple tail operation on the corresponding context

pointers (that is, the pointers will be set to their previous value).

V ariables: When a variable x is demanded during execution, the following actions are

performed: if x is not one of the formals that was removed in the last step of the trans

formation, then execution continues with the body of the definition for x. Otherwise, the

context pointer that corresponds to the last step in the transformation (i.e. cp i), is used

in order to find the activation record that corresponds to the current context. The field

of the activation record that is reserved for x, can be located by using the offset of x that

was recorded during compilation. If the corresponding entry is full, then the stored value is

retrieved and used. Otherwise, the definition for x is used in order to calculate the desired

value, which is then placed in its position in the activation record.

C onstan ts: The evaluation of expressions involving constants is performed in the usual

way.

The activation records are deallocated as usual, when control is returning after the evalua

tion of a call/,(f) expression.

The activation-record-based technique is more restricted than the hashing-based one,

for two main reasons:

• It does not store all (identifier,context,value) triples that appear during execution.

It only considers those identifiers that are eliminated during the last step of the

transformation.

• There does not seem to be any straightforward way to generalize it for arbitrary

intensional languages.

CHAPTER 7. IMPLEMENTATION STRATEGIES 116

However, the activation-record-based approach can prove more efficient in certain cases

(such as for example, first-order functional languages), because it completely avoids the

hashing-related overheads.

7.3 Preliminary Implementation Results

In this section we present some preliminary implementation results regarding the activation-

record based approach. The material in this section should not be taken as conclusive per

formance benchmarks, but instead as preliminary experimental results regarding the ideas

developed in this dissertation. In the following, we present a comparison of our technique

with other implementations of functional languages. Notice that all the implementations

considered below are lazy, which means that arguments to functions are not evaluated until

they are absolutely necessary [Jon87].

Following a recent trend in functional language implementation [TLA92], our implemen

tation uses as its target machine code the C language. Such an approach ensures portability

and allows several optimizations to be performed by the available C compiler. However,

some performance penalty is paid for not generating native machine code directly. We

consider the following lazy functional language implementations:

• Lazy ML compiler [AJ92]: The LML system is based on the O-machine [Aug84],

[Joh84], and it is one of the fastest compilers of lazy functional languages available.

It produces native code and uses a set of sophisticated optimizations.

• Gofer [JonOl]: It is based on supercombinators [F1I88]. As it produces C code as

the target code, it is a good candidate for comparison with our implementation.

• Miranda1 [Tur85]: It is based on combinator graph reduction [Tur79]. Although

clearly slower than some of the recently developed compilers, it is one of the most

1 Miranda is a trademark of Research Software Ltd.

CHAPTER 7. IMPLEMENTATION STRATEGIES 117

robust interpreters for lazy functional languages.

The programs used are mostly standard benchmarks for functional languages. Their main

characteristic is the high number of function calls, as this is the main comparison criterion.

• F ib(27): Recursively computes the 27th Fibonacci number.

• Tak(22,12,6): The “Takeushi” benchmark.

• A ck(6,3): It computes the very rapidly increasing Ackermann’s function.

• Mersenne: A program with first and second order functions. It examines a famous

conjecture of number theory, which concerns the primality of a certain family of

numbers [New56]. The conjecture was negatively settled in 1903.

• Integration: A third-order program. It uses numerical approximation methods in

order to compute the area below a given curve.

The benchmarks were run on a Sun SPARCserver 690MP, with 64MB RAM, and the timings

were obtained using the UNIX2 time utility. Both user and system times w^re added. For

both our system and Gofer, the same optimization settings were used during compilation.

The gee compiler was used with -02 and -finline-functians. The second flag allows the

inlining of certain simple functions. Such functions usually result from the compilation of

definitions that start with the actuals operator. This optimization can also be performed

to the intensional code, before compiling to C. The following table shows the execution

times for the above benchmarks. Entries containing indicate that ihe corresponding

execution of the program terminated abnormally.

* UNIX is a registered trademark of AT & T Bell Laboratories

CHAPTER 7. IMPLEMENTATION STRATEGIES 118

Time (in sec)

Program Intensional LML (not strict) LML GOFER MIRANDA

Fib 3.0 3.3 2.0 14.0 45

Tak 3.7 2.7 2.4 16.4 54

Ack 2.3 1.3 1.0 6.0 16

Mersenne 4.8 - 1.4 15.8 43

Integration 3.6 2.3 2.3 - 19

The results indicate that code generated by our compiler runs at about half the speed of

the code produced by the LML compiler. We believe that this is partly due to the fact

that LML produces native code and uses many “source to source” transformations in order

to produce a program for which generation of efficient code is less complicated. A similar

slowdown between native code compilers and compilers that produce C code as output, lias

been observed by other researchers [TLA92]. For a more fair comparison, we have given

the results for LML with and without strictness analysis. The comparison with Gofer and

Miranda shows that the code produced by these systems is generally slower. The Gofer

system, which is the best candidate for comparison as it also compiles to C code, is usually

around three to four times slower. However, it is also important to stress the fact that the

language we implemented is much smaller than the ones we compare it with, a fact that

gives an advantage to our implementation.

7.4 Relationship with Tagged Dataflow

In this section, we argue that the technique developed in this dissertation, provides an

elegant solution to a long lasting problem in the area of data/low computation.

The basic principle of the dataflow model of computation, is that data can be processed

while they are in motion, flowing through a dataflow network. A dataflow network is a

CHAPTER 7. IMPLEMENTATION STRATEGIES 119

system of processing stations (or nodes), connected by a number of communication channels

(or arcs). Each node may have one or more input and output arcs.

There exist two main paradigms of dataflow. In pipeline dataflow, data items flow along

the arcs of a network, in a first-in first-out way. Therefore, the edges can be thought as

queues between the nodes (see Figure 7.5).

figure 7.5 A pipeline dataflow network.___

3 b e

a
a
a

a 2 * b2 +

In tagged dataflow, data items are labelled with tags, and edges can now be thought as

sets of such items. The purpose of the tags is to impose some conceptual ordering on the

data items. A node can execute if it finds in its input arcs data items that have identical

tags. The tagged approach eliminates the need to maintain first-in first-out queues on the

arcs, and in this way it offers more parallelism than the pipeline model. In the following we

will denote the tagged data that flow along the arcs of a dataflow network as pairs {v,c),

where c is the tag and v is the actual value. For an illustration of the above ideas, see

CHAPTER 7. IMPLEMENTATION STRATEGIES 120

Figure 7.6. We use thick arrows as arcs, in order to demonstrate the difference from the

pipeline model.

figure 7.6 A tagged dataflow network.

The notion of tag can be used in order to implement first-order functions in a dataflow

way. The main idea is that we would like to distinguish between data items that corre

spond to different function invocations. This can be achieved by letting the tag uniquely

characterize a particular invocation of a function. Intuitively, a tag can be thought of as

a distinct colour [AC87] that is assigned to the data items of a function invocation, so as

that we can distinguish them from those data items that belong to other invocations of the

same function.

Consider now the technique for first-order programs that we formalized in Chapter 3.

The contexts used during evaluation are lists of Godel numbers of function calls. In other

words, a context represents the sequence of function calls that has led to the current call.

Therefore, the lists we use correspond to the “colour” idea of the dataflow community. The

important contribution of Chapter 3 is that it formalizes through the use of intensional

CHAPTER 7. IMPLEMENTATION STRATEGIES 121

logic, the “colouring” technique. Consequently, the execution of the intensional code that

results from the transformation, is actually demand-driven tagged dataflow: demand-driven

because the evaluator continuously asks for the value of identifiers under particular contexts,

and tagged because the contexts used can be considered as labels that accompany data items

during evaluation. Moreover, the call and actuals operators can be thought as operations

that change the context part of the data that flow through the dataflow network.

However, the implementation of higher-order functions on a tagged dataflow framework,

has never before been successful. The approach that is usually followed is to implement

them using non-dataflow concepts, such as closures [AN90]. In other words, tagging is

abandoned and data-structures are used for the implementation of closures. Apart from

being inelegant, such an approach can prove quite costly in practice as it does not use

the tagging capabilities of modern dataflow machines. These facts are recognized in the

dataflow literature, and the implementation of higher-order functions is often cited as a

problematic issue. The following quotes are relevant:

“The general app ly schema [for implementing higher-order functions] is of

course not inexpensive” [AN90]

“... [the language] Id has adopted much of the flavor of modern functional

languages, including higher-order functions (which, incidentally, are not easily

implemented on a dataflow machine)” [Hud91]

“Another problem with the dataflow model is its inefficiency in handling data

structures... A number of schemes have been proposed in the literature, but the

problem of efficiently representing and manipulating data structures remains a

difficult challenge” [LH94]

The transformation algorithm proposed in this dissertation, remedies the above deficiency.

The class of higher-order functions we consider, can be implemented using a tagged ap

proach, without resorting to the use of complicated data-structures. The only difference

CHAPTER 7. IMPLEMENTATION STRATEGIES 122

is that multidimensional tags are now required. In dataflow terminology, a colour is not

enough anymore to distinguish data items that belong to different function invocations.

What is shown in this dissertation is that we need a palette of m colours, where m is the

order of the program under consideration.

Concluding, we believe that the support of data structures is not a vital part of a

dataflow architecture: many things that can be done using data-structures can also be done

using the tagging capabilities of the dataflow machine. In this dissertation we have shown

that the implementation of higher-order functions does not require the use of closures, but

can instead be performed using a more sophisticated tagging scheme. It is our belief that

other functional programming features can be handled in a similar purely dataflow way.

123

C hapter 8

C onclusions and Future W ork

The main objective of this dissertation is to propose a semantics preserving transformation

from extensional programs to intensional programs of nullary variables. We initially consider

the transformation of first-order programs and then extend the technique to a large class

of higher-order programs. A crucial point in both cases is the choice of the set of possible

worlds, a choice that can be guided by our intuitions concerning the constructs of the source

language.

Every major extension to the expressive power of the source language, will probably

require a more powerful intensional language. There does not seem to exist any obvious

“brute-force” algorithm that would “intensionalize” all language constructs: extensions to

the source language have to be treated one-by-one. The main advantage of such an approach

is that it gives us further insight on the nature of programming languages and the intuition

behind their constructs.

In the rest of this chapter we describe the main contributions of our work and we give

pointers to open problems that we consider fruitful for further research.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 124

8.1 Contributions

The main contributions of our work can be summarized as follows:

• We propose a precisely defined transformation algorithm from first-order functional

programs, to intensional programs of nullary variables. We give a rigorous correctness

proof of the proposed algorithm, establishing in this way, for the first time, a semantics

preserving transformation between the two formalisms. In this way we remedy the

two main deficiencies of the work introduced in [Yag84].

• We define a transformation algorithm from a class of higher-order functional programs

to intensional programs of nullary variables. The algorithm proceeds in steps, reducing

at each step the order of the program by introducing appropriate intensional operators.

The programs that result in intermediate steps of the transformatior, are higher-order

intensional ones. We define the synchronic semantics of these programs, which will

be used in establishing the correctness proof of the transformation.

• We give a correctness proof of the algorithm for higher-order programs. In this way, we

establish a rigorou& transformation from a significant class of higher-order functional

programs, to intensional programs of nullary variables.

• We show that the transformation algorithm developed in this dissertation, can serve

as the basis for the implementation of functional languages. We propose two imple

mentation strategies: one based on hashing and another one which extends traditional

activation records to keep context-related information.

In the next section, we discuss certain problems that have not been addressed in this

dissertation, and which can be the starting points for future research.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 125

8.2 Future Work

There are certain aspects of our work that need to be further investigated, and which are

described below:

A fully higher-order functional language: The syntax of the functional languages

considered in this dissertation, imposes some restriction on the use of higher-order functions.

More specifically, the only partially applied objects that can appear in the program, are

function names. Consider for example the following program:

result = g(8)

g(x) = twice(add(x),x)

tw ice(f.y) = f (f (y))

add(a)(b) = a+b

This is clearly not a valid program of the language F L : the call to the function twice,

has as an actual parameter the partially applied call add(x). In the following, we demon

strate the problems that we face when we attempt to apply the technique developed in this

dissertation, on programs such as the above. The highest order formal parameter in this

program, is the formal f of the twice function. If we attempt to eliminate this parameter

as usual, we get the following result:

result = g(8)

g(x) = (call^a,;,)} twice) (x)

twice(y) = f (f (y))

add(a)(b) = a+b

f = act2)/t({(/i, add(x))})

where / 1 and R are obtained as usual. Notice now that the variable x appears free in the

definition of f , while it is bound in the definition of g. The program that has resulted,

can not be semantically equivalent to the initial one. Therefore, the transformation has to

CHAPTERS. CONCLUSIONS AND FUTURE WORK 126

be performed in a different way. We conjecture that the extended transformation will first

have to take care of those variables that cause problems (like the formal parameter x of g

above).

On the other hand, it seems that the set of possible worlds that we have adopted until

now, is not sufficient to accommodate programs such as the above. To understand why, we

can equivalently rewrite the above source functional program as follows:

result = g(8)

g(x) = twice(h.x)

where

h(z) = add(x)(z)

end

tw ice(f.y) = f (f (y))

add(a)(b) = a+b

In the above program, the only partial application that exists, is a partially applied

function name. However, we have now introduced a nested where-clause in the program,

and our translation scheme applies only to flat programs. As it has been pointed out by

Yaghi [Yag84], for first-order programs with nested where-clauses we need to extend the

set of possible worlds to what he calls “the set of b-lists of natural numbers”. Therefore,

it is reasonable to conjecture that for general higher-order programs, the context space will

be the set of infinite tuples of b-lists of natural numbers.

Concluding this paragraph, we should mention that a desirable but dearly much more

difficult attempt would be the intensionalization of the whole untyped A-calculus.

Efficient and General Implementation o f Eduction: This is probably one of the

most challenging problems in the area of intensional programming. By generality we mean

that the implementation technique should be applicable to all the “reasonable” intensional

languages (such as for example Lucid or the language IL considered in this dissertation).

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 127

The hashing based strategy presented in Chapter 7 is general in the above sense, but

its efficiency is not always acceptable. However, hashing plays a very important role when

implementing operators that require random access (such as for example the operation

attim e of Lucid). Therefore, a hybrid scheme that would combine the advantages of the

stack and hashing based approaches might prove more appropriate.

On the other hand, an efficient implementation of eduction would require the develop

ment of powerful optimization techniques for intensional languages. Chapter 6 of [WA85]

presents an introduction to this topic (for the Lucid intensional language). We believe that

this an interesting area of research that may result in many important results regarding

eduction and its efficiency.

128

B ibliography

[AC87] Arvind and D. Culler. Dataflow Architectures. In S. S. Thakkar, editor, Se

lected Reprints on Dataflow and Reduction Architectures, pages 79-101. IEEE

Computer Society Press, 1987.

[AJ92] L. Augustsson and T. Johnsson. Lazy ML User’s Manual. Technical report,

Department of Computer Science, Chalmers University of Technology, Sweden,

1992.

[AN90] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token

Dataflow Architecture. IEEE Transactions on Computers, 39(3):300~318, Mar.

1990.

[Apt90] K. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, pages 494-574. Elsevier Science Publishers, 1990.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[Aug84] L. Augustsson. A compiler for Lazy ML. In A CM Symposium on Lisp and

Functional Programming, pages 218-227,1984.

[AW76] E. Ashcroft and W. Wadge. Lucid - A Formal System for Writing and Proving

Programs. SIAM J. on Computing, 5(3):336—354, September 1976.

BIBLIOGRAPHY 12 9

[AW77] E. Ashcroft and W. Wadge. Lucid, a Nonprocedural Language with Iteration.

Communications of the ACM, 20(7):519-526, July 1977.

[Bag86] R. Bagai. Compilation of the Dataflow Language Lucid. Master’s thesis, Depart

ment of Computer Science, University of Victoria, 1986.

[Bar 77] J. Barwise. An Introduction to First-Order Logic. In J. Barwise, editor, Handbook

of Mathematical Logic, pages 5-46. North Holland, 1977.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,

1984.

[Du91] W. Du. Indexical Parallel Programming. PhD thesis, Department of Computer

Science, University of Victoria, Canada, 1991.

[DW90a] W. Du and W. W. Wadge. The Eductive Implementation of a Three-dimensional

Spreadsheet. Software-Practice and Experience, 20(11):1097-1114, November

1990.

[DW90b] W. Du and W.W.Wadge. A 3D Spreadsheet Based on Intensional Logic. IEEE

Software, pages 78-89, July 1990.

[DWP81] D. Dowty, R. Wall, and S. Peters. Introduction to Montague Semantics. Reidel

Publishing Company, 1981.

[EW82] E.A.Ashcroft and W.W.Wadge. Prescription for Semantics. ACM Transactions

on Programming Languages and Systems, 4(2):283-294, April 1982.

[FH88] A. Field and P. Harrison. Functional Programming. Addison-Wesley, 1988.

[FL89] A. A. Faustini and E. Lewis. Toward a Real-Time Dataflow Language. In

J. Stankovic and K. Ramamrithan, editors, Hard Real-Time Systems, pages 139-

145. IEEE, 1989.

[Gal75] D. Gallin. Intensional and Higher-Order Modal Logic. North-Holland, 1975.

BIBLIOGRAPHY 130

[Gun92] C. Gunter. Semantics of Programming Languages. The MIT Press, 1992.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and X-calculus.

Cambridge University Press, 1986.

[Hud89] P. Hudak. Conception, Evolution, and Application of Functional Programming

Languages. ACM Computing Surveys, 21(3):359—411, September 1989.

[Hud91] P. Hudak. Para-Functional Programming in Haskell. In B.K.Szymanski, editor,

Parallel Functional Languages and Compilers, pages 159-196. ACM Press, 1991.

[JGW85] C. Kirkham J. Gurd and I. Watson. The Manchester Prototype Dataflow Com

puter. Communications of the ACM, pages 34-52, January 1985.

[Joh84] T. Johnsson. Efficient Compilation of Lazy Evaluation. In ACM SIGPLAN

Symposium on Compiler Construction, pages 58-69,1984.

[Jon87] S. L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall, 1987.

[Jon91] Mark P. Jones. The Gofer Functional Programming Environment. Technical

report, Department of Computer Science, Yale University, 1991.

[JPL93] R. Khedri J. Plaice and It. Lalement. From Abstract Time to Real Time. In

Proceedings of the Sir,th International Symposium on Lucid and Intensional Pro

gramming, pages 83-93,1993.

[Knu75] D. E. Knuth. The Art of Computer Programming (Sorting and Searching), vol

ume 3. Addison-Wesley, 1975.

[LH94] B. Lee and A. Hurson. Dataflow Architectures and Multithreading. IEEE Com

puter, pages 27-38, August 1994.

[Llo87] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

BIBLIOGRAPHY 131

[LP81] H. Lewis and C. Papadimitriou. Elements of the Theory o f Computation.

Prentice-Hall, 1981.

[Man 74] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[Nel91] G. Nelan. Firstification. PhD thesis, Department of Computer Science, Arizona

State University, U.S.A, 1991.

[New56] J. Newman. The World of Mathematics. Simon and Schuster, 1956.

[Org91] M. A. Orgun. Intensional Logic Programming. PhD thesis, Department of Com

puter Science, University of Victoria, Canada, 1991.

[Org94] M. Orgun. Temporal and Modal Logic Programming. SIGART Bulletin, 5(3),

July 1994.

[OW92] M. Orgun and W. W. Wadge. Towards a Unified Theory of Intensional Logic

Programming. Journal o f Logic Programming, 13(4), 1992.

[PP94] J. Paquet and J. Plaice. On the Design of an Indexical Query Language. In

Proceedings o f the Seventh International Symposium on Lucid and Intensional

Programming, pages 28-36,1994.

[R.ey72] J. Reynolds. Definitional Interpreters for Higher-Order Programming Languages.

In Proceedings of the 25th ACM National Conference, pages 717-740,1972.

[Rol92] D. Rolston. Parallel Logic Programming Using an Intensional Model o f Compu

tation. PhD thesis, Department of Computer Science, Arizona State University,

U.S.A, 1992.

[Ron92] P. Rondogiannis. Design and Implementation of an Eductive Interpreter for

Higher Order Lucid. University of Victoria, Canada, August 1992.

[SE86] L. Sterling and E.Shapiro. The Art of PROLOG. MIT Press, 1986.

BIBLIOGRAPHY 132

[Sto77] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, 1977.

[Sto79] R. Stoll. Set Theory and Logic. Dover Publications, 1979.

[Tao93] S. Tao. TLucid ana Intensional Attribute Grammars. In Proceedings of the Sixth

International Symposium on Lucid and Intensional Programming, pages 9.1-106,

1993.

[Tao94] S. Tao. Indexical Attribute Grammars. PhD thesis, Department of Computer

Science, University of Victoria, Canada, 1994.

[Ten76] R. Tennent. The Denotational Semantics of Programming Languages. Commu

nications of the ACM, 19(8), August 1976.

[Ten91] R. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[Tho74] R. Thomason, editor. Formal Philosophy, Selected Papers of R. Montague. Yale

University Press, 1974.

[TLA92] D. Tarditi, P. Lee, and A. Acharya. No Assembly Required: Compiling Standard

ML to C. ACMLOPLAS, 1(2):161-177, June 1992.

[Tur79] D. A. Turner. A New Implementation Technique for Applicative Languages.

Software Practice and Experience, 9:31-49,1979.

[Tur85] D. A. Turner. Miranda: A non-strict language with polymorphic types. In Pro

ceedings o f IFIP Conference on Functional Programming Languages and Com

puter Architecture, pages 1-16,1985.

[vB88] J. van Benthem. A Manual of Intensional Logic. C'SLI Lecture Notes, 1988.

[vK76] M. H. vanEmden and R. A. Kowalski. The Semantics of Predicate Logic as a

Programming Language. Journal of the ACM, 23(4):733-742, October 1976.

BIBLIOGRAPHY 133

[WA85] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Language.

Academic Press, 1985.

[Wad85] W. Wadge. Tense Logic Programming: a Sane Alternative. University of Victo

ria, Canada 1985.

[Wad88] W. Wadge. Tense Logic Programming: a Respectable Alternative. In Proceedings

of the First International Symposium on Lucid and Intensional Programming,

pages 26-32,1988.

[Wad91] W. W. Wadge. Higher-Order Lucid. In Proceedings of the Fourth International

Symposium on Lucid and Intensional Programming, 1991.

[Yag84] A. A. Yaghi. The Intensional Implementation Technique for Functional Lan

guages. PhD thesis, Department of Computer Science, University of Warwick,

Coventry, UK, 1984.

VITA

Surname: Rondogiannis Given Names: Panagiotis

Place of Birth: Athens, Greece Date of Birth: August 31, I960

Educational Institutions Attended:

University of Patras 1984 to 1989
University of Victoria 1990 to 1994

Degrees Awarded:

M.Sc. University of Victoria 1991
Ptihion University of Patras 1989

Honours and Awards:

University of Victoria Fellowship 1990-1994
Technical Chamber of Greece Scholarship 1991-1992
Graduate Teaching Award 1990-1991
Scholarship of the Hellenic-Canadian Association 1990-1991
National Institute of Scholarships Award 1985-1986
National Institute of Scholarships Award 1984-1985

Publications:
Theses:

• P. Rondogiannis, Detecting Deadlocks in CCS Agents Using Petri Net Reduction Tech
niques,, University of Victoria, November 1991.

• P. Rondogiannis, Deadlock Detection in Distributed Systems, University of Patras,
Greece, June 1989.

Journal Publications:

• P. Rondogiannis and M. H. M. Cheng. Petri Net Based Deadlock Analysis of Process
Algebra Programs, Science of Computer Programming, North Holland, vol. 23, no.
1, pp. 55-89, October 1994.

• P. Rondogiannis. G. Pavlides and A. Levy. A Distributed Algorithm for Commu
nication Deadlock Detection, Information and Software Technology, 33(7):483~488,
September 1991.

Conference Publications:

• P. Rondogiannis and W. W. Wadge, Compiling Higher-Order Functions for Tagged
Dataflow, in Proceedings of the IFIP/ACMInternational Conference on Parallel Ar
chitectures and Compilation Techniques, Montreal, Canada, August 1994, North Hol
land.

• P. Rondogiannis and W. W. Wadge, Higher-Order Dataflow and its Implementation
on Stock Hardware, in Proceedings of the ACM Symposium on Applied Computing,
March 1994.

• P. Rondogiannis and M. H. M. Cheng. DART: A Prolog System for Detecting Dead
locks in Concurrent Programs, in Proceedings of the International Conference of Pro
log Applications, April 1992.

Symposium Publications:

• P. Rondogiannis and W. W. Wadge, A Dataflow Implementation Technique for Lazy
Typed Functional Languages, In Proceedings of the International Symposium on Lucid
and Intensional Programming, April 1993.

• P. Rondogiannis and W. W. Wadge,Transforming First-Order Functional Programs to
Intensional Programs of Nullary Variables: Theoretical Foundations, In Proceedings
of the International Symposium on Lucid and Intensional Programming, September
1994.

PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my dissertation to users of the University of Victoria Library,
and to make single copies only for such users or in response to a request from the Library
of any other university, or similar institution, on its behalf or for one of its users. I further
agree that permission for extensive copying of this dissertation for scholarly purposes may
be granted by me or a member of the University designated by me. It is understood that
copying or publication of this dissertation for financial gain shall not be allowed without
my written permission.

Title of Dissertation:

Higher-Order Functional Languages and Intensional Logic

A u th o r : ____________________
Panagiotis Rondogiannis

December I'M, 159*4__________
Date

