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Abstract

Markov Random Field is now ubiquitous in many formu-
lations of various vision problems. Recently, optimization
of higher-order potentials became practical using higher-
order graph cuts: the combination of i) the fusion move
algorithm, ii) the reduction of higher-order binary energy
minimization to first-order, and iii) the QPBO algorithm. In
the fusion move, it is crucial for the success and efficiency
of the optimization to provide proposals that fits the ener-
gies being optimized. For higher-order energies, it is even
more so because they have richer class of null potentials.
In this paper, we focus on the efficiency of the higher-order
graph cuts and present a simple technique for generating
proposal labelings that makes the algorithm much more ef-
ficient, which we empirically show using examples in stereo
and image denoising.

1. Introduction

Many problems in computer vision such as segmenta-
tion, stereo, and image restoration are often formulated as
optimization problems involving inference of the maximum
a posteriori solution of a probability distribution defined by
Markov Random Fields (MRFs)'. Typically, the problem
is defined as finding a labeling of pixels that minimizes a
function on the space of labeling, called the energy. Such
optimization schemes are now ubiquitous in vision, largely
owing to the success of optimization techniques such as
graph cuts[3, 9, 14], belief propagation[5, 21], and tree-
reweighted message passing[13].

Recently, optimization of higher-order potentials became
practical using what we might call the higher-order graph

! The notion of conditional random field (CRF) is increasingly popular
in the vision literature. A CRF contains both hidden and observed vari-
ables; when the values of the observed variables are fixed, the rest of the
model on the hidden variables is an MRF. In the context of this paper, there
is not much difference between MRF and CREF, since the observed data is
assumed to be fixed before optimization.
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Figure 1. Minimization of a third-order energy for denoising of an
image. The vertical axis is the energy and the horizontal axis is the
time elapsed for optimization. The three plots are for the same en-
ergy discussed in 4.2. Alpha expansion failed to achieve the same
level of minimum energy. Proposals by pixel-wise random label
and blurring is used in [10]. The new technique by gradient de-
scent proposal achieves the same level of minimum energy much
faster.

cuts: i.e., a combination of the following three techniques.

i) The fusion move algorithm[18], which is a general-
ization of the a-expansion[3] algorithm that iteratively
fuses the current labeling and a proposed labeling us-
ing binary optimization.

ii) The reduction of higher-order binary enery minimiza-
tion to first-order. A method for reducing second-order
energies[6, 14] has been known for some time, and its
generalization[10] to general order was found recently.

iii) The QPBO algorithm[1, 2, 7], which allows the mini-
mization of non-submodular binary problems.

The combination was first proposed by Woodford et al.[27]
when they demonstrated a second-order prior for stereo, us-
ing the reduction[6, 14] then available. The more recent
reduction[10] for energies of even higher order made the
framework potentially more useful.
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In this paper, we focus on the efficiency of this algorithm.
Specifically, we introduce a technique that makes it much
faster (see Figure 1) by moving the current labeling by the
gradient of the energy on the space of labelings to produce a
proposal. We also show that using only a part of the energy
for taking gradient can also be effective. We demonstrate it
through experiments with energies of order two and three.

In the next section, we continue with an overview, ex-
plaining the relevant techniques. In section 3, we formu-
late the higher-order graph cuts in more detail and present
the new technique for generating the proposal labelings.
In section 4, we report the results of experiments showing
the effectiveness of the technique using two examples, after
which we conclude.

2. Preliminaries

In this section, we give an overview of the recent de-
velopments in higher-order energy minimization, which we
then formally define. Then we explain the algorithms that
the new method in this paper is directly related.

2.1. Higher-Order Energies

As the newer energy minimization techniques came to
be widely used, the limitations of the energies readily op-
timizable by these algorithms came to be more salient. As
pointed out by Meltzer et al.[21] after they introduced an
algorithm that can find the global minimum of certain en-
ergy functions, even global minimum of an energy does not
solve many problems if the energy itself does not reflect the
given vision problem well enough. In particular, because of
the lack of efficient general algorithms to optimize energies
with higher-order interactions, in most applications energies
are represented in terms of unary and pairwise clique poten-
tials, with a few exceptions that consider triples[4, 14].

Higher-order energies can model more complex interac-
tions and reflect the natural statistics better. This has been
long realized[11, 22, 24], but with the success of energy
optimization methods, there is a renewed emphasis on the
necessity of an efficient way to optimize MRFs of higher-
order. Since the algorithms mentioned above can only op-
timize energies with unary and pairwise clique potentials,
there have been efforts to expand them to higher-order en-
ergies. For instance, belief propagation variants[17, 23]
have been introduced to do inference based on higher-order
clique potentials. Kohli et al.[12] extend the class of energy
functions for which the optimal a-expansion moves can be
computed in polynomial time. Komodakis and Paragios[16]
employ a master-slave decomposition framework to solve a
dual relaxation to the MRF problem. Rother et al.[26] use a
soft-pattern-based representation of higher-order functions
that may for some energies lead to very compact first-order
functions with small number of non-submodular terms, as
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well as addressing the problem of transforming general
multi-label functions into quadratic ones.

2.2. Minimization Problem

The energy minimization problem considered here is as
follows. Let V be a set of pixels and L a set of labels, both
finite sets. Also, let € be a set of subsets of V. We call an
element of € a clique. The energy E(X) is defined on the
space LY of labelings X : V — L, i.e., an assignment of a
label X, € L to each pixel v € V. The crucial assumption is
that E(X) is decomposable into a sum

EX)= )" fe(Xc), (1)

Ce¥

Here, for a clique C € ¥, fc(Xc) expresses a function f¢
that depends only on labels assigned by X to the pixels v in
C. We denote the set of labelings on the clique C by L¢;
thus Xc € LC and f¢ : L — R. The cliques define a form
of generalized neighborhood structure. In the case where all
cliques consist of one or two pixels, it can be thought of as
an undirected graph G = (V, E), where the set of cliques are
divided into the set of all singleton subsets of V and the set
E of pairs of pixels, i.e., edges. In the general case, the pair
(V, ¥) can be thought of as a hypergraph. Then the Markov
Random Field of first order is written as

EX) = Y filX)+ ) fuXw). @)

veV {u,v}eE

Although it is a little confusing, an n-th order MRF is
the one that has cliques of size up to n + 1. Thus, a second-
order MRF can have cliques containing three pixels, and an
energy of the form

Z f[v}(X{v})+ Z ﬁuv}(X{uv})+ Z ﬁuvw}(Xluv»t'})~ (3)

{vieC {u,v}eC {u,y,wleC

As we have already done above, we sometimes abuse the
notation slightly and write X,,,, instead of Xy, ,;, and so on.

2.3. Graph Cuts and Move-Making Algorithms

Currently, one of the most popular optimization tech-
niques in vision is @-expansion[3]. It starts from an initial
labeling and iteratively makes a series of moves by solving
a binary optimization problem with an s-f mincut algorithm,
which can globally optimize a class of binary energy poten-
tials called submodular functions[14]. Here, we explain it
and its extension, the fusion move algorithm.

The a-expansion Algorithm The a-expansion algorithm
starts with an arbitrary labeling X and iteratively makes a
move, i.e., a change of labeling. In one iteration, the al-
gorithm changes the labeling so that the energy becomes
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smaller or at least stays the same. The move is decided by
either keeping the original label or replacing it with a glob-
ally fixed label « at each pixel. Thus, the “area” that has
the label « can only expand; hence the name a-expansion.
The choice of either leaving the label the same or changing
it to  at each pixel defines a binary labeling problem, using
as its energy the original energy after the move. By mini-
mizing the binary energy, the move that reduces the energy
most is chosen. When the binary problem is submodular, it
can be solved globally by the minimum-cut algorithm. By
visiting all labels @ in some order, and repeating it, E(X) is
approximately minimized. The algorithm also has a guar-
antee on how close it can approach the global minima.

The Fusion Move The fusion move[18, 19] is a simple
generalization of @-expansion: in each iteration, define the
binary problem as the choice at each pixel between two ar-
bitrary labelings, instead of between the current label and
a fixed label @. It seems so simple and elegant that one
may wonder why the move-making algorithm was not for-
mulated this way from the beginning. The answer is simple:
it is because fusion moves are non-submodular in general,
whereas in the case of a-expansion, the submodularity can
be guaranteed by some simple criterion. For instance, if the
pairwise energy is a metric, each @-expansion is guaranteed
to be submodular. It is only because of the emergence of
the QPBO/roof-duality optimization below that we can now
consider the general fusion move. Another special case that
has a guarantee of submodularity is -3 swap, which allows
those moves that, at each pixel, leave the current label un-
changed or swap the two fixed labels @ and .

QPBO Separately, there is a recent (at least to the vi-
sion community) innovation that is important to the move-
making graph-cut algorithms: the optimization of binary
energies saw an advance that allows the optimization of
non-submodular functions. This method by Boros, Hammer
and their co-workers [1, 7, 2] is variously called QPBO[15]
or roof-duality[25] in the vision literature. If the function
is submodular, QPBO is guaranteed to find the global min-
imum. Even if it is not submodular, QPBO returns a par-
tial solution assigning either 0 or 1 to some of the pixels,
leaving the rest unlabeled. The algorithm guarantees that
the partial labeling is a part of a global minimum labeling.
This has a crucial impact on the move-making algorithms
since the choice of the move in each iteration depends on
binary-label optimization. In particular, QPBO has an “au-
tarky” property[15]: if we take any labeling and “overwrite”
it with a partial labeling obtained by QPBO, the energy for
the resulting labeling is not higher than that for the original
labeling. This lets us ensure that energy does not increase
in move-making: we just leave the label unchanged at those
pixels that are not labeled by QPBO. In the context of op-
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timizing higher-order potentials, it means that some limita-
tions that prevented the use of these algorithms for higher-
order functions can possibly be overcome.

2.4. Higher-Order Graph Cut

Now, the development of the two algorithms above—
fusion move and QPBO—has an important implication in
optimization of higher-order energies. For second order po-
tentials (i.e., those with cliques having up to three pixels), a
reduction technique that can reduce them into pairwise po-
tentials has been introduced by Kolmogorov and Zabih[14]
and later reformulated by Freedman and Drineas[6]. How-
ever, for the result of the reduction to be minimized with the
popular techniques such as graph cuts, it must be submod-
ular. This requirement made its actual use quite rare, if not
nonexistent.

Thanks to the QPBO technique, now we can think of
reducing higher-order potentials into pairwise ones with a
hope that at least part of the solution can be found. Al-
though it is not a solution to every problem, the QPBO tech-
nique often allows solving non-submodular problem ap-
proximately by giving a large enough part of the globally
optimal solution to be used in a move-making algorithm
to iteratively improve the solution. Moreover, we recently
introduced[10] a technique that extends the reduction in [6]
and [14] to general higher-order energies. It is a simple
technique that can convert the minimization problem of any
higher-order binary energy to that of a first order energy.

In the same paper, we also obtained a result suggest-
ing that the use of fusion move as opposed to a-expansion
is more important in higher-order energies. This may be
because higher-order energies have richer class of null (or
almost null) potentials. The proposals in a-expansion are
constant labelings; and a-expansion works well exactly
with those energies, such as the Potts potential, that heavily
favors piecewise-constant solutions. For higher-order ener-
gies, it is crucial for the success and efficiency of the op-
timization to provide proposals that fits the energies being
optimized.

The combination, which we might call the higher-order
graph cuts, was first introduced by Woodford et al.[27],
where they show that second-order smoothness priors can
be used for stereo reconstruction by introducing an inter-
esting framework. It integrates existing stereo algorithms,
which may sometimes be rather ad hoc, and combines their
results in a principled way. In the framework, an energy
is defined to represent the global tradeoff of various fac-
tors. The energy is minimized using the fusion move algo-
rithm, in which the various existing algorithms are utilized
to generate the proposals in each iteration. In particular,
this allows the powerful segmentation-based techniques to
be combined with the global optimization methods. In this
way, the framework allows the integration of energy formu-
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lation and any other stereo method that produces disparity
map.

3. Gradient-Descent Fusion Move

In this section, we first formulate the higher-order graph
cuts in more detail and then present the new technique for
generating the proposal labelings.

3.1. Higher-Order Graph Cut Algorithm

The algorithm solves the minimization problem ex-
plained in 2.2 by minimizing the energy (1).

It maintains the current labeling X. In each iteration, the
algorithm fuses X and a proposed labeling P € L by min-
imizing a binary energy. For instance, in the a-expansion
algorithm, the proposal is a constant labeling with label «
everywhere. Here, it can be any labeling and how it is pre-
pared is problem-specific, as is how X is initialized at the
beginning.

Let us denote the set {0, 1} of binary labels by B. The
following binary energy is minimized every iteration. We
consider a binary labeling variable ¥ € BY. It consists of a
binary variable Y, € B for each pixel v € V that indicates
the choice of the value that X, will have at the end of the
iteration. That is, ¥, = 0 if X, is to remain the same and
Y, = 1if X, is to change to the proposed label P,.

Let us denote by F )C(’P( B) € L€ the labeling on clique C
that X will have if the value Y¢ of Y on C is 8 € B¢:

if5,=0

X,
FXP _
(Fe"B), {Pv. ifp, =1
With this notation, we define a binary energy

ey = > fe(FEN(B) oL, 5)

Ce€ BeBC

vel) “)

where Og(YC) is a polynomial of degree |C| defined by

lre) = [{BYo+ 1 =p)1-Y)L (6
veC
which is 1 if Yo = B8 and 0 otherwise.

The polynomial &(Y) is then reduced into a quadratic
one, i.e., a first-order MRF, using the technique described in
[10] or its predecessor [6, 14]. We then minimize the energy
using the QPBO algorithm, obtaining a partial labeling. For
each pixel v that is labeled 1, we update X, to P,, leaving
it unchanged for other pixels. We iterate the process until
some convergence criterion is met.

3.2. Proposal by Gradient Descent

The successful use and efficiency of the fusion move al-
gorithm crucially depends on the choice of the proposal la-
beling P. We can consider the a-expansion as a special case
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where the proposal labeling is the constant labeling that as-
signs the same label to every pixel.

The contribution of this paper is the simple but useful
observation that often the energy E(X) or its part can be
differentiated, and then we can move the current labeling by
the gradient of the energy in order to generate the proposal
labeling.

P =X —ngradE(X) @)
OE
P,=X,-n—.
v=X o (®)

That is, we can generate the proposal labeling in each iter-
ation by using a simple gradient descent. We found empir-
ically that, unlike in the case of ordinary gradient descent,
we can omit some of the energy and still get an efficient re-
sult. For instance, we can use only the prior, higher-order
part of the energy to get the gradient and move the label-
ing in that direction, with very fast decrease in energy at the
beginning of the minimization process. If we do that in or-
dinary gradient descent, there is usually no guarantee that
energy even decreases. However, the fusion move is always
guaranteed to decrease, or at least not increase, the energy;
so we can do rough things such as this. Another benefit of
the protection by the graph cuts is that we can take a very
large step compared to ordinary gradient descent.

In the next section, we give concrete examples and also
demonstrate the efficiency of the method.

4. Experiments

We show the effectiveness of the gradient descent pro-
posal generation in higher-order graph cuts with two exam-
ples. One is the second-order stereo[27] that uses the cur-
vature term. The other is a third-order denoising example.

4.1. Second-order Stereo Prior

Woodford et al.[27] showed that second-order smooth-
ness priors can be beneficial to stereo reconstruction. Their
algorithm is the higher-order graph-cut algorithm explained
in 3.1 with the following special case of (1) as the energy:

E(X) = Ep(X) + Ep(X) ©
= DA+ ) feXe). (10)
veV Ceép

Here, the set € of cliques is divided into the set of singleton
cliques ép = {{v}|v € V} and the set ¢p of cliques with
three pixels.

The prior approximates the second derivative; thus each
clique C in %p consists of three consecutive pixels C =
(u,v,w) as shown in Figure 2, and the energy term is a trun-
cated absolute second difference of the disparity:

fC(XC) = W¢ min (o7, |X, — 2X, + X,,]), (11)
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where oy > 0 is a constant cut-off value for robustness and
We is a weight for each clique. The gradient of the prior
Ep(X) has, as the component for each pixel v, the partial
derivative by X,:

(eradEp(X)), = Z dfc(Xc) _ Z 5fg§(Xc).

(12)
Ce€¢ oxX,

CyeC

The RHS is the sum of the terms for (in general) six cliques
C that contain v (Figure 3). Each term depends on the sign
and the absolute values of the second difference, e.g.,:

Ofc(Xc) _
0X,
We ifC=@w,uw),0<X, -2X,+X, <0,
2We if C =, v,w),—0, < X, —2X,+ X, <0
0 ifC=w,v,w),oy <X, —2X, + X,

etc.

13)

We omit the rest since it is clear that they can be computed
easily.

In the first phase of their fusion-move optimization,
Woodford et al.[27] use the result of the segmentation-based
stereo with different degree of coarseness as proposals.
They first use a local window matching process to gener-
ate an approximate disparity map. Then they use 14 sets of
parameters in total and two segmentation algorithms to pro-
duce segmentations of different degree of coarseness, rang-
ing from highly undersegmented to highly oversegmented.
For each segment in each segmentation, LO-RANSAC is
used to find the plane that produces the greatest number of
inlying correspondences by the approximate disparity and
set the proposal so that all the pixels in the segment lie on
that plane. In the second phase, a-expansion-like constant
proposals are used with uniformly random disparity.

Experiments Then, in the third phase, they use the result
of the first and second phases as two of the six rotating pro-
posals. For the other four of the six proposals, they use the
proposal generated by a smoothing operation on the current
disparity map. Curiously, they say the smoothing proposal
“can be viewed as a proxy for local methods such as gra-
dient descent,” but do not seem to have actually tested the
simple gradient descent for generating proposals.
We use the gradient descent proposal

Py =X, —n(gradEp(X)), (14)

instead of the smoothing proposals and compare the result
of the third phase with the original one. Table 1 and 2 show
that the technique yields a result with the comparable qual-
ity and energy almost twice as fast.
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Figure 2. The second-order cliques used in Woodford et al.[27].
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Figure 3. Six cliques that contains a particular pixel in [27].

Table 1. Second-order stereo results for the “cones” stereo pair.

Bad pixels Final Energy Time
Original[27] 5.82% 2.84 x 1010 2153 sec.
n = 0.003 5.78% 2.84 x 100 1215 sec.
7 =0.01 7.06% 2.86 x 1010 740 sec.

Table 2. Second-order stereo results for the “teddy” stereo pair.

Bad pixels Final Energy Time
Original[27] 6.59% 2.60 x 1010 1630 sec.
7 =0.001 6.55% 2.61 x 10" 1188 sec.
17 =0.003 6.67% 2.62 x 1010 524 sec.

4.2. Denoising by Third-order Field of Experts

In [10], we use an image denoising problem to test the
higher-order graph cuts with a third-order energy, which is
made possible by the new reduction introduced in the paper.
The image restoration scheme uses the recent image statis-
tical model called the Fields of Experts (FoE) by Roth and
Black[24], which captures complex natural image statistics
beyond pairwise interactions by providing a way to learn an
image model from natural scenes. FoE has been shown to
be highly effective, performing well at image denoising and
image inpainting using a gradient descent algorithm. Simi-
lar to its predecessor, the Product of Experts model[8], the
FoE model represents the prior probability of an image as
the product of several student-T distributions:

K 1 —a;
o« []]] (1 + 50 ~XC)2) : (15)
C i=1

where C runs over the set of all n X n patches in the image,
and J; is an n X n filter. The parameters J; and «; are learned
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from a database of natural images.

In the simple image restoration problem, we are given
a noisy image N made by adding a Gaussian i.i.d. noise
with known standard deviation ¢ and find the maximum a
posteriori estimation according to the prior model (15). The
prior gives rise to a third-order MRF, with clique potentials
that depend on up to four pixels. The likelihood of noisy
image N given the true image X is assumed to be

(_ (Nv - XV)Z)

202 (10

pINIX) o | Jexp

veV

The energy in [10] is of the form (1). Specifically, it is:

E(X) = ED(X) + Ep(X) )

Ep(X) = 5 s (18)
veV

Ep(X)= ) Za/i log(l + %(J,»~Xc)2), (19)
Ce%p i=1

where the set %p of cliques consists of all 2 X 2 patches in
the image.

Experiments In [10], similarly to the stereo example[27],
the proposed image is one of the following two, alternating
each iteration:

i) a uniform random image created every time it is used,

ii) a blurred image, which is made every 30 iterations by
blurring the current image with a Gaussian kernel (o~ =
0.5625).

We compared the results by this original algorithm with the
gradient descent fusion proposal

P, =X, — n(gradE(X)), . (20)

From the energy (18) and (19), the partial derivative of the
energy is

0E(X) J(w
_=—Z(X N)+ZZ 1+ AR XC)Z)

veV Ce%p i=

where Ji(v) denotes the component of the filter J; that corre-
sponds to the pixel v.

Table 3 shows the energy and the time for four exam-
ple noisy images with o0 = 20 made from four images in
the Berkeley segmentation database [20], grayscaled and
reduced in size. Figure 4 shows the result for one of the
example images (test003). The quality of the two denoising
results are comparable, but the new result was produced al-
most 20 times faster. Figure 1 on the first page shows the
plot of the energy for the original and our proposal method,
as well as the @-expansion, for the example image test001.
All experiments used a 2.33GHz Xeon E5345 processor.
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Table 3. Third-order image restoration results.

test001 test002 test003 test004
Original[10] E 37769 25030 29805 27356
Original time 1326 sec. | 1330sec. | 1305sec. | 1290 sec.
This paper E 38132 24831 29683 27354
This paper time 71 sec. 81 sec. 67 sec. 79 sec.

5. Conclusion

We suggested in [10] that the use of fusion moves as
opposed to a-expansion is more important in higher-order
energies, because they have richer class of null potentials.
The proposals in a-expansion are constant labelings; and a-
expansion works well exactly with those energies, such as
the Potts potential, that heavily favors piecewise-constant
solutions. The message this paper brings is that, for fusion
moves with higher-order energies, it is crucial for the suc-
cess and efficiency of the optimization to provide proposals
that fit the energies being optimized.

For each application, a mix of various strategies will be
probably necessary. In this paper, we point out a simple
technique: we generate proposal labelings in fusion moves
by moving the current labeling by the gradient of the en-
ergy. It is not really gradient descent as i) the gradient of
even a part of the energy (e.g. the prior in the stereo ex-
periment) can be used to speed up the fusion move, and ii)
unlike ordinary gradient descent, the descent step can safely
be made quite large, which speeds up the optimization es-
pecially in the early stage. These can safely be done only
because the actual move is “guarded” against increasing the
energy by graph cuts. Although it is simple and seems obvi-
ous, the technique makes the fusion move algorithm much
more efficient in the case of higher-order potential.
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