
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1989

Higher-Order Horn Clauses Higher-Order Horn Clauses

Gopalan Nadathur
Duke University

Dale Miller
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Gopalan Nadathur and Dale Miller, "Higher-Order Horn Clauses", . September 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-52.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/847
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/847
mailto:repository@pobox.upenn.edu

Higher-Order Horn Clauses Higher-Order Horn Clauses

Abstract Abstract
A generalization of Horn clauses to a higher-order logic is described and examined as a basis for logic
programming. In qualitative terms, these higher-order Horn clauses are obtained from the first-order ones
by replacing first-order terms with simply typed λ-terms and by permitting quantification over all
occurrences of function symbols and some occurrences of predicate symbols. Several proof-theoretic
results concerning these extended clauses are presented. One result shows that although the
substitutions for predicate variables can be quite complex in general, the substitutions necessary in the
context of higher-order Horn clauses are tightly constrained. This observation is used to show that these
higher-order formulas can specify computations in a fashion similar to first-order Horn clauses. A
complete theorem proving procedure is also described for the extension. This procedure is obtained by
interweaving higher-order unification with backchaining and goal reductions, and constitutes a higher-
order generalization of SLD-resolution. These results have a practical realization in the higher-order logic
programming language called λProlog.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-52.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/847

https://repository.upenn.edu/cis_reports/847

HIGHER-ORDER HORN CLAUSES

MS-CIS-89-52
LINC LAB 157

Gopalan Nadathur
Dale Miller

Department of Computer and Information Science

School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

September 1989

ACKNOWLEDGEMENTS:

This research of G. Nadathur was supported in part by NSF grant

MCS-82-19196 and a Burroughs contract.

The research of D. Miller was supported in part by NSF grant

CCR-87-05596 and DARPA grant N000-14-85-0018.

HIGHER-ORDER HORN CLAUSES

GOPALAN NADATHUR

Duke University, Durham, North Carolina

DALE MILLER

University of Pennsylvania, Philadelphia, Pennsylvania

Abstract: A generalization of Horn clauses to a higher-order logic is described and ex-

amined as a basis for logic programming. In qualitative terms, these higher-order Horn

clauses are obtained from the first-order ones by replacing first-order terms with simply

typed X-terms and by permitting quantification over all occurrences of function symbols

and some occurrences of predicate symbols. Several proof-t heoretic results concerning

these extended clauses are presented. One result shows that although the substitutions for

predicate variables can be quite complex in general, the substitutions necessary in the con-

text of higher-order Horn clauses are tightly constrained. This observation is used to show

that these higher-order formulas can specify computations in a fashion similar to first-order

Horn clauses. A complete theorem proving procedure is also described for the extension.

This procedure is obtained by interweaving higher-order unification with backchaining and

goal reductions, and constitutes a higher-order generalization of SLD-resolution. These re-

sults have a practical realization in the higher-order logic programming language called

XProlog.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Defi-

nitions and Theory - syntax; F.4.1 [Mathematical Logic and Formal Languages]:

Mathematical Logic - logic programming; 1.2.3 [Artificial Intelligence] : Deduction and

Theorem Proving - logic programming

General Terms: Languages, Theory

Additional Key Words and Phrases: Higher-order logic, higher-order unification, Horn

clauses, Prolog, SLD-resolution

The work of G. Nadathur was funded in part by NSF grant MCS-82-19196 and a Burroughs

contract. The work of D. Miller was funded by NSF grant CCR-87-05596 and DARPA

grant N000-14-85-K-0018.

Authors' current addresses: G. Nadathur, Computer Science Department, Duke Univer-

sity, Durham, NC 27706; D. Miller, Department of Computer and Information Science,

University of Pennsylvania, Philadelphia, PA 19104-6389.

1. Introduction

A principled analysis of the nature and role of higher-order notions within logic pro-

gramming appears to be absent from the literature on this programming paradigm. Some

attempts, such as those in [34], have been made to realize higher-order features akin to

those in functional programming languages, and have even been incorporated into most

existing versions of the language Prolog. These at tempts are, however, unsatisfactory from

two perspectives. First, they have relied on the use of ad hoc mechanisms and hence are

at variance with one of the strengths of logic programming, namely its basis in logic. Sec-

ond, t hey have not taken full cognizance of t he difference between the functional and logic

programming paradigms and, consequently, of potential differences between higher-order

notions in these paradigms.

Towards filling this lacuna, this paper initiates investigations into a logical basis for

higher-order features in logic programming. The principal concern here is that of describing

an extension to Horn clauses [33], the basis of languages such as Prolog [32], by using a

higher-order logic. The use of the term "extension" clearly signifies that there is some

character of Horn clauses that is to be retained. This character may most conveniently be

enunciated in the context of a generalized version of Horn clauses that is, in some senses,

closer to actual realizations of logic programming. Letting A represent an atomic formula,

we identify goal formulas as those given by the rule

and definite sentences as the universal closure of atomic formulas and of formulas of the

form G > A; the symbol G is used in each case as a syntactic variable for a goal formula.

These formulas are related to Horn clauses in the following sense: Within the framework

of classical first-order logic, the negation of a goal formula is equivalent to a set of negative

Horn clauses and, similarly, a definite sentence is equivalent to a set of positive Horn

clauses. Now, if P is a set of definite sentences and t denotes provability in (classical)

first-order logic, then the following properties may be noted:

(i) P t- 3xG only if there is a term t such that P t G[t/x] , where G[t/x] represents the

result of substituting t for all the free occurrences of x in G.

(ii) P t- G1 V G2 only if P t- GI or P t- G2.

(iii) P I- G1 A G2 only if P I- G1 and P t- G2.

(iv) If A is an atomic formula, then P t A only if either (a) A is a substitution instance of

a formula in P, or (b) there is a substitution instance of the form G > A of a definite

sentence in P such that P I- G.

While the converse of each property above follows from the meanings of the logical

connectives and quantifiers, these properties themselves are a consequence of the special

structure of goal formulas and definite sentences. The importance of these properties is in

the role they play in the computational interpretation accorded to these formulas. Logic

programming is based on construing a collection, P, of definite sentences as a program

and a goal formula, G, as a query. The idea of a computation in this context is that of

constructing a proof of the existential closure of G from P and, if this process is successful,

of extracting from this proof a substitution instance of G that is provable from P. The

consistency of this view is apparently dependent on (i). In a more fine-grained analysis,

(i)-(iv) collectively support a feature of importance to logic programming, namely the

ability to construe each formula as contributing to the specification of a search, the na-

ture of the search being described through the use of logical connectives and quantifiers.

Thus, (ii) and (iii) permit the interpretation of the propositional connectives V and A as

primitives for specifying non-deterministic or and and branches in a search, and (i) war-

rants the conception of the existential quantifier as the means for describing an infinite

(non-deterministic) or branch where the branches are parameterized by the set of terms.

Similarly, (iv) permits us to interpret a definite sentence as partially defining a procedure:

For instance, the formula G > A corresponds to the description that an attempt to solve a

procedure whose name is the predicate head of A may be made by trying to solve the goal

G. As a final observation, we see that (i)-(iv) readily yield a proof procedure, closely re-

lated to SLD-resolution [2], that, in fact, forms the computational machinery for realizing

this programming paradigm.

The properties discussed above thus appear to play a central role in the context of

logic programming, and it is desirable to retain these while extending the formulas under-

lying this programming paradigm. This paper provides one such extension. The formulas

described here may, in an informal sense, be characterized as those obtained from first-

order goal formulas and definite sentences by supplanting first-order terms with the terms

of a typed A-calculus and by permitting quantification over function and predicate sym-

bols. These formulas provide for higher-order features of two distinct kinds within logic

programming. The first arises out of the presence of predicate variables. Given the cor-

respondence between predicates and procedures in logic programming, this facilitates the

writing of procedures that take other procedures as arguments, a style of programming

often referred to as higher-order programming. Occurrences of predicate variables are re-

stricted and so also are the appearances of logical connectives in terms, but the restrictions

are well motivated from a programming perspective. They may, in fact, be informally un-

derstood as follows. First, the name of a procedure defined by a definite sentence, i. e. the

head of A in a formula of the form G > A, must not be a variable. Second, only those

logical connectives that may appear in the top-level logical structure of a goal formula are

permitted in terms; the picture here is that when a predicate variable in the body of a pro-

cedure declaration is instantiated, the result is expected to be a legitimate goal formula or

query. The quantification over predicate variables that is permitted and the corresponding

enrichment to the term structure are however sufficient to allow a direct emulation within

logic programming of various higher-order functions (such as the map and reduce functions

of Lisp) that have been found to be useful in the functional programming context.

The second, and truly novel, feature of our extension is the provision of A-terms

as data structures. There has been a growing interest in recent years in programming

environments in which complex syntactic objects such as formulas, programs and proofs

can be represented and manipulated easily [6, 11, 311. In developing environments of

this kind, programming languages that facilitate the represent ation and manipulation of

these kinds of objects play a fundamental role. As is evident from the arguments provided

elsewhere [16, 22, 30, 281, the representation of objects involving the notion of binding,

i.e. objects such as formulas, programs and proofs, is best achieved through the use of a

term language based on the A-calculus. The task of reasoning about such objects in turn

places an emphasis on a programming paradigm that provides primitives for examining

the structure of A-terms and that also supports the notion of search in an intrinsic way.

Although the logic programming paradigm is a natural choice from the latter perspective,

there is a need to enrich the data structures of a language such as Prolog before it is

genuinely useful as a "metalanguage". The analysis in this paper provides for a language

with such an enrichment and consequently leads to a language that potentially has several

novel applications. Detailed experiments in some of the application realms show that this

potential is in fact borne out. The interested reader may refer, for instance, to [7, 13, 20,

22, 25, 291 for the results of these experiments.

It should be mentioned that the extension to first-order Horn clauses described in

this paper is not the only one possible that preserves the spirit of properties (i)-(iv).

The primary aim here is that of examining the nature and role of higher-order notions

within logic programming and this underlies the focus on enriching only the nature of

quantification within (first-order) Horn clauses. It is possible, however, to consider other

enrichments to the logical structure of these formulas, perhaps after explaining what it

means to preserve the spirit of properties (i)-(iv) if a richer set of connectives is involved.

Such a task is undertaken in [23]. Briefly, a proof-theoretic criterion is presented therein

for determining when a logical language provides the basis for logic programming and

this is used to describe a family of extensions to first-order Horn clauses. The "richest"

extension described in [23] replaces definite sentences by a class of formulas called higher-

order hereditary Harrop or hohh formulas. The higher-order definite sentences of this paper

are a subclass of the latter class of formulas. Further, the use of hohh formulas provides

for notions such as modules, abstract data types and lexical scoping in addition to higher-

order features within logic programming. There is, however, a significant distinction to

be made between the theory of the higher-order Horn clauses presented in this paper and

of the hohh formulas presented in [23]. The distinction, expressed informally, is that the

programming interpretation of higher-order definite sentences accords well with classical

logic, whereas a shift to intuitionistic logic is required in the context of hohh formulas.

This shift in semantic commitment may not be acceptable in some applications of logic

programming. Despite this difference, it is to be noted that several of the proof-theoretic

techniques presented in this paper have been generalized and utilized in [23]. It is in fact

a perceived generality of these techniques that justifies their detailed presentation here.

This rest of this paper is organized as follows. In the next section we describe the

higher-order logic used in this paper, summarizing several necessary logical notions in the

process. The axiomatization presented here for the logic is in the style of Gentzen [9]. The

use of a sequent calculus, although unusual in the literature on logic programming (see [4]

for an exception), has several advantages. One advantage is the simplification of proof-

theoretic discussions that we hope this paper demonstrates. In another direction, it is the

casting of our arguments within such a calculus that has been instrumental in the discovery

of the "essential" character of logic programming and thereby in the description of further

logical extensions to it [IS, 231. In Section 3, we outline the classes of formulas within this

logic that are our generalizations to first-order goal formulas and definite sentences. Section

4 is devoted to showing that these formulas satisfy properties (i)-(iv) above when I- is

interpreted as provability in the higher-order logic. The main problem here is the presence

of predicate variables; substitutions for these kinds of variables may, in general, alter the

logical structure of formulas in which they appear and thus complicate the nature of proofs.

Fortunately, as we show in the first part of Section 4, predicate variable substitutions can

be tightly constrained in the context of our higher-order formulas. This result is then

used to show that these formulas provide a satisfactory basis for a logic programming

language. In Section 5 we describe a theorem-proving procedure that provides the basis

for an interpreter for such a language. This procedure interweaves higher-order unification

[15] with backchaining and goal reductions and constitutes a higher-order generalization

to SLD-resolution. These results have been used to describe a logic programming language

called XProlog. A presentation of this language is beyond the scope of this paper but may

be found in [21, 25, 271.

2. A Higher-Order Logic

The higher-order logic used in this paper is derived from Church's formulation of the

simple theory of types [5] principally by the exclusion of the axioms concerning infinity,

choice, extensionality and description. Church's logic is particularly suited to our purposes

since it is obtained by superimposing logical notions over the calculus of A-conversion. Our

omission of certain axioms is based on a desire for a logic that generalizes first-order logic

by providing a stronger notion of a variable and a term, but at the same time encompasses

only the most primitive logical notions that are relevant in this context; only these notions

appear to be of consequence from the perspective of computational applications. Our logic

is closely related to that of [I], the only real differences being the inclusion of q-conversion

as a rule of inference and the incorporation of a larger number of propositional connectives

and quantifiers as primitives. We describe this logic below, simultaneously introducing the

logical vocabulary used in the rest of the paper.

The Language. The language used is based on a typed A-calculus. The types in

this context are determined by a set S of sorts, that contains at least the sort o and

one other sort, and by a set C of type constructors each member of which has a unique

positive arity: The class of types is then the smallest collection that includes (i) every

sort, (ii) (c a1 . . . a,), for every c E C of arity n and every 01,. . . ,a, that are types, and

(iii) (a + ,B) for every a and p that are types. We refer to the types obtained by virtue

of (i) and (ii) as atomic types and to those obtained by virtue of (iii) as funct ion types.

In an informal sense, each type may be construed as corresponding to a set of objects.

Understood in this manner, (al + a2) corresponds to the collection of functions each of

whose domain and range is determined by al and a 2 , respectively. In writing types, the

convention that + associates to the right is often used to omit parentheses. In this paper,

the letters a and ,B are used, perhaps with subscripts, as syntactic variables for types. An

arbitrary type is occasionally depicted by an expression of the form (al + . . + a, + ,B)

where ,B is assumed to be an atomic type. When a type is displayed in this form, we refer

to cu l , . . . , a, as its argument types and to ,B as its target type. The use of such a notation

for atomic types is justified by the convention that the argument types may be an empty

sequence.

We now assume that we are provided with a denumerable set, Var,, of variables for

each type a, and with a collection of constants of arbitrary given types, such that the

subcollection at each type a is denumerable and disjoint from Var,. The latter collection

is assumed to contain at least one member of each type, and to include the following infinite

list of symbols called the logical constants: T of type o, N of type o -+ o, A, V and > of

type o -+ o + o, and, for each a, C and II of type (a + o) -+ o. The remaining constants

are referred to as parameters. The class of formulas or t e rms is then defined inductively

as follows:

(i) A variable or a constant of type a is a formula of type a .

(ii) If x is a variable of type a1 and F is a formula of type a 2 then [Ax.F] is a formula of

type a1 --+ a 2 , and is referred to as an abstraction that binds x and whose scope is F.

(iii) If Fl is a formula of type al -+ a 2 and F2 is a formula of type a1 then [Fl F2], referred

to as the application of Fl to F 2 , is a formula of type a 2 .

Certain conventions concerning formulas are employed in this paper. First, lower-case

letters are used, perhaps with subscripts, to denote formulas that are variables; such a

usage may occur at the level of either the object or the meta language. Similarly, upper-

case letters are used to denote parameters at the object level and arbitrary formulas in

the meta language. Second, in the interest of readability, the brackets that surround

expressions formed by virtue of (ii) and (iii) above are often omitted. These may be

restored by using the conventions that abstraction is right associative, application is left

associative and application has smaller scope than abstraction. Finally, although each

formula is specified only in conjunction with a type, the types of formulas are seldom

explicitly mentioned. Such omissions are justified on the basis that the types are either

inferable from the context or inessential to the discussion at hand.

The rules of formation serve to identify the well-formed subparts of each formula.

Specifically, G is said to occur in, or to be a subformula of, F if (a) G is F, or (b) F

is Xx.Fl and G occurs in Fl, or (c) F is [Fl F2] and G occurs in either Fl or F2. An

occurrence of a variable x in F is either bound or free depending on whether it is or is not

an occurrence in the scope of an abstraction that binds x. x is a bound (free) variable of F

if it has at least one bound (free) occurrence in F . F is a closed formula just in case it has

no free variables. We write F (F) to denote the set of free variables of F. This notation is

generalized to sets of formulas and sets of pairs of formulas in the following way: F(D) is

U{F(F) I F E 2)) if D is a set of formulas and U{F(Fl) U F(F2) I (Fl , F2) E D) if 2) is a

set of pairs of formulas.

The type o has a special significance. Formulas of this type correspond to propositions,

and a formula of type a1 + - - . + a, + o is a predicate of n arguments whose i th

argument is of type ai. In accordance with the informal interpretation of types, predicates

may be thought of as representing sets of n-tuples or relations. The logical constants are

intended to be interpreted in the following manner: T corresponds to the tautologous

proposition, the (proposi t ional) connect ives -, V , A, and > correspond, respectively, to

negation, disjunction, conjunction, and implication, and the family of constants C and II

are, respectively, existential and universal quantifiers, viewed as propositional functions of

propositional functions. There are certain notational conventions pertaining to the logical

constants that find use below. First, disjunction, conjunction and implication are written

as infix operations; e.g. [V F G] is usually written as [F V GI. Second, the expressions [3x.F]

and px. F] serve as abbreviations for [C Ax. F] and [II Ax. F]; these abbreviations illustrate

the use of C and ll along with abstractions to create the operations of existential and

universal quantification familiar in the context of first-order logic. Finally 2 is sometimes

used as an abbreviation for a sequence of variables XI , . . . , x,. In such cases, the expression

35.F serves as a shorthand for 3x1. . . . 3xn.F. Similar interpretations are to be bestowed

upon V2.F and X2.F.

The Calculus of A-Conversion. In the interpretation intended for the language, A is

to correspond to the abstraction operation and juxtaposition to the operation of function

application. These intentions are formalized by the rules of A-conversion. To define these

rules, we need the operation of replacing all free occurrences of a variable x in the formula

F by a formula G of the same type as x. This operation is denoted by S& F and may be

made explicit as follows:

(i) If F is a variable or a constant, then Sz F is G if F is x and F otherwise.

(ii) If F is of the form Ay.C, then S& F is F if y is x and Ay.SZi; F otherwise.

(iii) If F is of the form [C Dl, then S& F = [(Sz C) (S& D)].

In performing this operation of replacement, there is the danger that the free variables of

G become bound inadvertently. The term "G is free for x in F" describes the situations in

which the operation is logically correct, i.e. those situations where x does not occur free in

the scope of an abstraction in F that binds a free variable of G. The rules of a-conversion,

p-conversion and q -conversion are then, respectively, the following operations on formulas:

(1) Replacing a subformula Ax.F by Ay.S; F provided y is free for x in F and y is not

free in F .

(2) Replacing a subformula [Ax.F] G by Sz F provided G is free for x in F and vice versa.

(3) Replacing a subformula Ax.[F x] by F provided x is not free in F and vice versa.

The rules above, collectively referred to as the A-conversion rules, are used to define

the following relations on formulas.

2.1. Definition. F A-conv (p-conv, =) G just in case there is a sequence of applications

of the A-conversion (respectively a- and p-conversion, a-conversion) rules that transforms

F into G.

The three relations thus defined are evidently equivalence relations. They correspond, in

fact, to notions of equality between formulas based on the following informal interpretation

of the A-conversion rules: a-conversion asserts that the choice of name for the variable

bound by an abstraction is unimportant, p-conversion relates an application to the result

of evaluating the application, and q-conversion describes a weak notion of extensionality

for formulas. In this paper we use the strongest of these notions, i.e. we consider F and G

equal just in case F A-conv G. There are certain distinctions to be made between formulas

by omitting the rules of 7-conversion, but we feel that these are not important in our

context.

A formula F is said to be a p-normal form if it does not have a subformula of the

form [Ax.A] B, and a A-normal form if, in addition, it does not have a subformula of the

form Ax.[A x] with x not occurring free in A. If F is a p-normal form (A-normal form)

and G p-conv (X-conv) F, then F is said to be a p-normal (X-normal) form of G. From

the Church-Rosser Theorem, described in, e.g., [3] for a X-calculus without type symbols

but applicable to the language under consideration as well, it follows that a @-normal

(X-normal) form of a formula is unique up to a renaming of bound variables. Further,

it is known [I, 81 that a @-normal form exists for every formula in the typed X-calculus;

this may be obtained by repeatedly replacing subformulas of the form [Ax. A] B by Sg A,

preceded, perhaps, by some a-conversion steps. Such a formula may be converted into a

X-normal form by replacing each subformula of the form Xx.[A x] where x does not occur

free in A by A. In summary, any formula F may be converted into a X-normal form that

is unique up to a-conversions. We denote such a form by Xnorm(F). Occasionally, we

need to talk of a unique normal form and, in such cases, we use p(F) to designate what we

call the principal normal form of F . Determining this form essentially requires a naming

convention for bound variables and a convention such as that in [I] will suffice for our

purposes.

The existence of a X-normal form for each formula provides a mechanism for deter-

mining whether two formulas are equal by virtue of the X-conversion rules. These normal

forms also facilitate the discussion of properties of formulas in terms of a representative for

each of the equivalence classes that has a convenient structure. In this context, we note

that a @-normal form is a formula that has the structure

where A is a constant or variable, and, for 1 5 i 5 m, Fi also has the same form. We

refer to the sequence xl , . . . , x, as the binder, to A as the head and to Fly . . . , F, as the

arguments of such a formula; in particular instances, the binder may be empty, and the

formula may also have no arguments. Such a formula is said to be rigid if its head, i.e.

A, is either a const ant or a variable that appears in the binder, and flexible otherwise. A

formula having the above structure is also a X-normal form if F, is not identical to x,

and, further, each of the Fis also satisfy this constraint. In subsequent sections, we shall

have use for the structure of X-normal forms of type o. To describe this, we first identify an

atom as a X-normal form whose leftmost symbol that is not a bracket is either a variable

or a parameter. Then, a X-normal form of type o is one of the following: (i) T, (ii) an

atom, (iii) -F, where F is a X-normal form of type o, (iv) [F V GI, [F A GI, or [F > GI

where F and G are X-normal forms of type o, or (v) C P or II P, where P is a X-normal

form.

Substitutions. A substitution is a set of the form {(xi, Pi) I 1 5 i 5 n), where, for

1 5 i 5 n, each xi is a distinct variable and F; is a formula in principal normal form of

the same type as, but distinct from, xi; this substitution is a substitution for {xl, . . . , x,),

and its range is {Fl, . . . , F,). A substitution may be viewed as a type preserving mapping

on variables that is the identity everywhere except the points explicitly specified. This

mapping may be extended to the class of all formulas in a manner consistent with this

view: If 8 = {(x;, F;) 1 1 5 i < n) and G is any formula, then

This definition is independent of the order in which we take the pairs from 8. Further, given

our notion of equality between formulas, the application of a substitution to a formula G

is evidently a formalization of the idea of replacing the free occurrences of X I , . . . , xn in G

simultaneously by the formulas Fl, . . . , F,.

We need certain terminology pertaining to substitutions, and we summarize these here.

A formula F is said to be an ins tance of another formula G if it results from applying a

substitution to G. The res t r ic t ion of a substitution 8 to a set of variables V, denoted by

8 T V, is given as follows

It is evident that O(G) = (8 T F(G))(G). The composi t ion of two substitutions 81 and

82, written as 61 o 02, is precisely the composition of O1 and 82 when these are viewed

as mappings: o B2(G) = O1(O2(G)). TWO substitutions, 81 and O2 are said to be equal

relative to a set of variables V if it is the case that 81 T V = 82 f V; this relationship is

denoted by 81 =, 62. 81 is said to be less general t h a n 82 relative to V, a relationship

denoted by 81 sv 02, if there is a substitution a such that 81 =, a o 82. Finally, we

shall sometimes talk of the result of applying a substitution to sets of formulas and to

sets of pairs of formulas. In the first case, we mean the set that results from applying the

substitution to each formula in the set, and, in the latter case, we mean the set of pairs

that results from the application of the substitution to each element in each pair.

The Formal System. The notion of derivation used in this paper is formalized by

means of the sequent calculus LKH that is a higher-order extension to the logistic classical

calculus LK of 191. A sequent within the calculus LK H is an expression of the form

where n 2 0, m > 0, and, for 1 5 i 5 n and 1 5 j 5 m, Fi and G j are formulas; the

listing F l , . . . , Fn is the antecedent of the sequent, and GI , . . . ,G, forms its succedent.

The in i t ia l sequents or ax ioms of the calculus are 4 T and the sequents of the form

A -+ A' where A and A' are atomic formulas such that A G A'. The in ference figures

are the arrangements of sequents that result from the schemata in Figures 2.1 and 2.2

by replacing (i) the r s and As by finite sequences of formulas of type o, (ii) A and B

by formulas of type o, (iii) A', in the schemata designated by A, by a formula resulting

by a sequence of A-conversions from the formula that replaces A in the lower sequent of

the schema, and, finally, (iv) P, C, and y in the schemata designated by C-IS, II-IS,

C-IA, and 11-IA by, respectively, a formula of type a -+ o, a formula of type a, and a

parameter or variable of type a that does not occur free in any formulas substituted into

the lower sequent, for some choice of a. An inference figure is classified as a s t ruc tural or

an operational one, depending on whether it results from a schema in Figure 2.1 or 2.2. In

the operational inference figures, we designate the formula substituted for the expression

containing the logical constant as the principal formula of the figure. Some operational

inference figures contain two upper sequents, and these are referred to, respectively, as the

left and right upper sequents of the figure.

Th inn ing : in t he antecedent

r + A

in t h e succedent

r -+ A

Contrac t ion: in t he antecedent in t h e succedent

Interchange: in t he antecedent in t h e succedent

in t h e antecedent

A1,r -+ A

in t h e succedent

I? + A7A1

Figure 2.1: The LKH Structural Inference Figure Schemata

Intrinsic to a sequent calculus is the notion of a der iva t ion or proof figure. These

are tree-like arrangements of sequents that combine to form inference figures such that

(i) each sequent, with the exception of one called the endsequent , is the upper sequent of

exactly one inference figure, (ii) each sequent is the lower sequent of at most one inference

figure and those sequents that are not the lower sequents of any inference figure are initial

sequents. Such an arrangement constitutes a derivation for its endsequent. If there is a

A , r * A B , r --4 A
V-IA

A , r t A B , r --+ A
A-IA A-IA

A A B , F t A AAB,I ' t A

P ([P Y]) ~ ~ --+ A
C-IA

~ ([p C l) , r + A
II-IA

Figure 2.2: The LKH Operational Inference Figure Schemata

derivation for --, A, where A is a formula, then A is said to be provable from r. A path

in a derivation is a sequence of sequents whose first member is the endsequent and whose

last member is an initial sequent, and of which every member except the first is the upper

sequent of an inference figure whose lower sequent is the preceding member. The height of

the proof figure is the length of the longest path in the figure. Each sequent occurrencet in

a derivation is on a unique path, and we refer to the number of sequents that precede it on

this path as its distance from the endsequent. The notion of a derivation is relativized to

particular sequent calculi by the choice of initial sequents and inference figures, and we use

this observation in Section 4. Our current focus is on the calculus LKH, and we intend

unqualified uses of the term "derivation" below to be read as LKH-derivation.

It is of interest to note that if q-conversion is added as a rule of inference to the

system 7 of [I], then the resulting system is equivalent to the calculus LKH in the sense

described in [9]. Specifically, let us say that the associated formula of the sequent I' + A

is AT > VA if neither the antecedent nor the succedent is empty, VA if only the antecedent

is empty, AT > p A ~p if only the succedent is empty, and p A ~p if the antecedent and the

succedent are both empty; p is a designated propositional variable here, and [A r] and [VA]

are to be read as conjunctions and disjunctions of the formulas in I? and A respectively. It

is then the case that a derivation exists for I' + A if and only if its associated formula

is a theorem of 7 with the rule of 7-conversion; we assume here that the symbols A, >
and C are introduced via abbreviations in 7.

The reader familiar with [9] may notice several similarities between the calculi LK

and LKH. One difference between these is the absence of the C u t inference figure in

LKH. This omission is justified by the cut-elimination result for the version of higher-

order logic under consideration [I]. Another, apparently superficial, difference is in the

use in LKH of A-conversion to capture the notion of substitution in inference figures

pertaining to quantifiers. The only significant difference, then is in the richer syntax of

formulas and the presence of the A inference figures in LKH. We note in particular that

the presence of predicate variables in formulas of L K H enables substitutions to change

their logical structure. As a result, it is possible to describe several complex derivations in

a concise form in this higher-order logic. However, this facet makes the task of constructing

satisfactory proof procedures for this logic a difficult one. In fact, as we shall see shortly,

considerable care must be taken even in enunciating and verifying the proof-theoretic

properties of our higher-order formulas.

3. Higher-Order Definite Sentences and Goal Formulas

Using the higher-order logic of the previous section, the desired generalizations to first-

order definite sentences and goal formulas may be identified. Intrinsic to this identification

is the notion of a positive formula. As made precise by the following definition, these are

the formulas in which the symbols N, > and II do not appear.

t The qualification "occurrence" will henceforth be assumed implicitly where necessary.

13

3.1. Definition. The class of positive formulas, PF, is the smallest collection of formulas

such that (i) each variable and each constant other than -, > and ll is in PF, and (ii) the

formulas Ax.A and [A B] are in PF if A and B are in P F . The Positive Herbrand Universe,

'H+, is the collection of all A-normal formulas in P F , and the Herbrand Base, 'FID, is the

collection of all closed formulas in 'H+.

As will become apparent shortly, 'FID in our context plays the same role as the Herbrand

Universe does in the context of other discussions of logic programming: it is the domain

of terms that is used in describing the results of computations.

3.2. Definition. A higher-order goal formula is a formula of type o in I f + . A positive

atom is an atomic goal formula, i. e. an atom in 'H+. A higher-order definite formula is

any formula of the form Vz.G > A where G is a goal formula, A is a rigid positive atom;

in particular, 2 may be an empty sequence, i.e. the quantification may be absent. Such a

formula is a higher-order definite sentence if it is closed, i.e. if 2 contains all the variables

free in G and A. The qualification "higher-order" used in this definition is intended to

distinguish the formulas defined from the first-order formulas of the same name and may

be omitted if, by so doing, no confusion should arise.

A formula is a positive atom if it is either T or of the form [A Fl . . . F,] where A is a

parameter or a variable and, for 1 5 i 5 n, Fi is a positive formula, and is a rigid positive

atom if, in the latter case, A is also a parameter. It is easily verified that a goal formula

must be one of the following: (i) a positive atom, (ii) A V B or A A B, where A and B are

goal formulas, or (iii) C P where P is a predicate in 'H+; in the last case, we observe that

it is equivalent to a formula of the form 3x.G where G is a goal formula. Thus, we see that

the top-level logical structure of definite sentences and goal formulas in the higher-order

setting is quite similar to those in the first-order context. The first-order formulas are,

in fact, contained in the corresponding higher-order formulas under an implicit encoding

that essentially assigns types to the first-order terms and predicates. To be precise, if i is

a sort other that o, the encoding assigns the type i to variables and constants, the type

i -+ . - . + i -+ i, with n + 1 occurrences of i, to each n-ary function symbol, and the

type i + . . . -+ i + o, with n occurrences of i, to each n-ary predicate symbol. Looked at

differently, our formulas contain within them a many-sorted version of first-order definite

sentences and goal formulas. However, they do embody a genuine generalization to the

first-order formulas in that they may contain complex terms that are constructed by the

use of abstractions and applications and, further, may also include quantifications over

variables that correspond to functions and predicates. The following examples serve to

illustrate these additional facets.

3.3. Example. Let list be a 1-ary type constructor and let int be a sort. Further, let

nil and cons be parameters of type (list int) and int + (list int) + (list int) respectively,

and let mapfun be a parameter of type (int + int) + (list int) + (list int) + o. Then

the two formulas below are definite sentences:

V f . [T > [map f un f nil nil]],

Vf .Vx.Vll .Vl2.[[map f un f 11 121 > [map f un f [cons x 11] [cons [f x] 12]]];

f is evidently a function variable in these formulas. If 1, 2, and and g are parameters of

type int, int, and int + int --+ int respectively, the following is a goal formula:

3l.[map f un [Xx.[g x 111 [cons 1 [cons 2 nil]] 11.

Observe that this formula contains the higher-order term Xx.[g x 11.

3.4. Example. Let primrel be a parameter of type (i + i + o) + o and let rel,

wife, mother, jane, and mary be parameters of appropriate types. The following are

then definite sentences:

[T > [mother jane mary]], [T > [wi f ejohnjane]],

[T > [primrel mother]], [T > [primrel wi f el], Vr.[[primrel r] > [re1 r]],

Vr.Vs.[[[primrel r] A [primrel s]] 3 [re1 [Xx.Xy.qz.[[r x z] A [s z y]]]]].

Observe that the last definite sentence contains the predicate variables r and s. Further,

the complex term that appears as the argument of the predicate re1 in this definite sentence

contains an existential quantifier and a conjunction. The formula

+.[[re1 r] A [r john mary]]

is a goal formula in this context. It is a goal formula in which a predicate variable occurs

"extensionally", i. e. in a position where a substitution made for it can affect the top-level

logical structure of the formula.

In the next section, we examine some of the properties of higher-order definite sen-

tences and goal formulas. To preview the main results there, we introduce the following

definition.

3.5. Definition. A substitution 9 is a positive substitution if its range is contained in

7f+. It is a closed positive substitution if its range is contained in W .

Now let P be a finite collection of definite sentences, and let G be a goal formula whose

free variables are contained in the listing x. We shall see, then, that 3z.G is provable from

P just in case there is a closed positive substitution v for x such that 9(G) is provable

from P. This observation shall also facilitate the description of a simple proof procedure

that may be used to extract substitutions such as v . From these observations it will follow

that our definite sentences and goal formulas provide the basis for a generalization to the

programming paradigm of first-order logic.

4. Properties of Higher-Order Definite Sentences

As observed in Section 3, one difference between the top-level logical structure of

first-order and higher-order goal formulas is that, in the higher-order context, predicate

variables may appear as the heads of atomic goals. A consequence of this difference is that

some of the proofs that can be constructed for goal formulas from definite sentences in the

higher-order setting have quite a different character from any in the first-order case. An

illustration of this fact is provided by the following derivation of the goal formula 3y.[P y]

from the definite sentence Vx. [x > [P A]].

[PBI + [PBI
C-IS

[PBI + 3Y-[PYl
--IS

[PA1 + [PA1
C-IS

+ 3 y . p Y] , -[P Bl [P A] + 3Y.[PYI > -1A

- [PB] 3 [P A] 3Y.[PYI, 3Y.[PYI
Contraction

- [p Bl 3 [P A] + ~ Y - [P Y I II-IA

Vx.[x > [P A]] -+ 3y.[P y]

It is easily observed that the top-level logical structure of a first-order formula remains

invariant under any substitutions that are made for its free variables. It may then be

seen that in a derivation whose endsequent contains only first-order definite formulas in

the antecedent and only first-order goal formulas in the succedent, every other sequent

must have only definite formulas and atoms in the antecedent and goal formulas in the

succedent. This is, however, not the case in the higher-order context, as illustrated by the

above derivation. Consider, for instance, the penultimate sequent in this derivation that

is reproduced below:

- [PB] > [P A] + 3y.[Py]. (*>

The formula -[P B] > [P A] that appears in the antecedent of this sequent is neither a

definite formula nor an atom. Looking closely at this sequent also reveals why this might

be a cause for concern from the perspective of our current endeavor. Although this sequent

has a derivation, we observe that there is no term t such that

-[P B] > [P A] --+ [P t]

has a derivation. Now, if all derivations of

Vx . [x > [P A]]

involve the derivation of (*), or of sequents similar to (*) in the sense just outlined, then

there would be no proof of 3y.[P y] from 3x. [x > [P A]] from which an "answer" may be ex-

tracted. Thus, it would be the case that one of the properties critical to the computational

interpret ation of definite sentences is false.

We show in this section that problems of the sort alluded to in the previous paragraph

do not arise, and that, in fact, higher-order definite sentences and goal formulas resemble

the corresponding first-order formulas in several proof-theoretic senses. The method that

we adopt in demonstrating this may be described as follows. Let us identify the following

inference figure schemata

where we expect only closed positive formulas, 2.e. formulas from 'HZ?, to be substituted

for C. These are evidently subcases of 11-IA and C-IS. We shall show that if there is

any derivation at all of a sequent I? + A where consists only of definite sentences and

A consists only of closed goal formulas, then there is one in which every inference figure

obtained from 11-IA or C-IS is also an instance of II-IA' and C-IS' respectively. These

schemata are of interest because in any of their instances, if the lower sequent has only

closed positive atoms and definite sentences in the antecedent and closed goal formulas

in the succedent then so too does the upper sequent. Derivations of the sort mentioned,

therefore, bear structural similarities to those in the first-order case, a fact that may be

exploited to show that higher-order definite sentences and goal formulas retain many of

the computational properties of their first-order counterparts.

The result that we prove below is actually of interest quite apart from the purposes of

this paper. The so-called cut-elimination theorems have been of interest in the context of

logic because they provide an insight into the nature of deduction and often are the basis for

its mechanization. In the context of first-order logic, for instance, this theorem leads to the

subformula property: if a sequent has a derivation, then it has one in which every formula

in any intermediate sequent is a subformula of some formula in the endsequent. Several

other useful structural properties of deduction in the first-order context flow from this

observation, and the traditional proof procedures for first-order logic are based on it. As

is evident from the example at the beginning of this section, the subformula property does

not hold (under any acceptable interpretation) for higher-order logic even though the logic

admits a cut-elimination theorem; predicate terms containing connectives and quantifiers

may be generalized upon in the course of a derivation, and thus intermediate sequents

may have formulas whose structure cannot be predicted from the formulas in the final

one. For this reason, the usefulness of cut-elimination as a mechanism for analyzing and

automating deduction in higher-order logic has been generally doubted. However, Theorem

4.1 below shows that there is useful structural information about proofs in higher-order

logic to be obtained from the cut-elimination theorem for this logic, and is one of few

results of this sort. This theorem permits us to observe that in the restricted setting of

higher-order Horn clauses proofs for every derivable sequent can be constructed without

ever having to generalize on predicate terms containing the logical constants N, >, and

I I . This observation in turn provides information about the structure of each sequent in

a derivation and constitutes a restriction on substitution terms that is suffcient to enable

the description of a complete theorem proving procedure for higher-order Horn clauses.

A Simplified Sequent Calculus. Part of the discussion above is given a precise form

by the following theorem:

4.1. Theorem. Let I? be a sequence of formulas that are either definite sentences or

closed positive atoms of type o, and let A be a sequence of closed goal formulas. Then

I' + A has an LKH-derivation only if it has one in which

(i) the only inference figures that appear are Contraction, Interchange, Thinning, V-IS,

A-IS, C-IS, > -1A and 11-IA, and

(ii) each occurrence of the figure 11-IA or C-IS is also an occurrence of the figure II-IA'

or C-IS'.

The proof of this theorem is obtained by describing a transformation from an arbitrary

LKH-derivation of I' + A into a derivation of the requisite kind. This transformation is

performed by replacing the formulas in each sequent by what we might call their "positive

correlates" and by removing certain parts of the derivation that become unnecessary as a

result. The following definition describes the manner in which the formulas in the succedent

of each sequent are transformed.

4.2. Definition. Let x, y E Var, and, for each a, let z, E Var(,,,). The function pos

on formulas is then defined as follows:

(i) If F is a constant or a variable

I Ax.Ay.T, if F is 3;
pos(F) =

Az,.T, if F is IT of type ((a + o) + 0);

I F, otherwise.

(ii) pos([Fl F2]) = [pos(F~) pos(F2)I.

(iii) pos(Ax .F) = Ax.pos(F).

Further, pc is the mapping on formulas defined as follows: If F is a formula, pc(F) =

P(Pos(F)).

From the definition above it follows easily that F(pc(F)) 2 F(pos(F)) = F (F) . Thus

if F is a closed formula, then pc(F) E 'HB. The properties of pc stated in the following

lemma are similarly easily argued for; these properties will be used in the proof of the main

theorem.

4.3. Lemma. Let F be a A-normal formula of type o.

(i) If F is an atom, then pc(F) is a positive atom.

(ii) I f F is -Fl, Fl > F 2 , or II P, then pc(F) = T.

(iii) If F is G * H where * is either V or A, then pc(F) = pc(G) * pc(H).

(iv) If F is C P, then pc(F) = Cpc(P)

In the lemma below, we argue that pc and p commute as operations on formulas. This

observation is of interest because it yields the property of pc that is stated in Corollary

4.5 and is needed in the proof of the Theorem 4.1.

4.4. Lemma. For any formula F, pc(p(F)) = p(pc(F)).

Proof. Given any formula B of the same type as x, an easy induction on the structure

of a formula G verifies the following facts: If B is free for x in G, then pos(B) is free for

x in pos(G) and pos(Sfj G) = S;o,(B)pos(G). Now, let us say that a formula H results

directly from a formula G by an application of a rule of A-conversion if the subformula of G

that is replaced by virtue of one of these rules is G itself. We claim that if H does indeed

result from G in such a manner, then pos(H) also results from pos(G) in a similar manner.

This claim is easily proved from the following observations:

(i) If G is Ax.G1 and H is Ay.Si GI, pos(G) is Xx.pos(G1) and pos(H) is Ay.S;pos(G1).

Further if y is free for x in G1 then y is free for x in pos(G1).

(ii) If G is [Ax .GI] Ga and H is Sc2 G1 then pos(F) is [[Ax.pos(G1)] pos(G2)] and pos(H)

is ';os(G~) pos(G1). Further if G2 is free for x in G1 then pos(G2) is free for x in

pos(G1).

(iii) If G is of type a -+ P then pos(G) is also of type a + P. If G is Ay.[H y] then pos(G)

is Ay.[pos(H) y] and, further, y E F(pos(H)) only if y E .F(H).

Now let F' result from F by a rule of A-conversion. By making use of the claim

above and by inducing on the structure of F, it may be shown that pos(F') results from

pos(F) by a similar rule. From this it follows that pos(p(F)) results from pos(F) by the

application of the rules of A-conversion. Hence p(pos(p(F))) = p(pos(F)). Noting further

that p(pos(F)) = p(p(pos(F))), the lemma is proved. I

4.5. Corollary. If P and C are formulas of appropriate types, then

PC(P([P Cl)) = P(bc(P) pc(C)I).

Proof. The claim is evident from the following equalities:

PC(P([PCI)) = P(Pc([PCI)) by Lemma 4.4

= P(bos(P) P O S (~)]) using definitions

= p([p(pos(P)) p(pos(C))]) by properties of A-conversion

= P(bc(p) PC(C)] using definitions. I

While the mapping pc will adequately serve the purpose of transforming formulas in

the succedent of each sequent in the proof of Theorem 4.1, it does not suffice as a means

for transforming formulas in the antecedent. It may be observed that if F is a definite

formula then pc(F) = T. The transformation to be effected on formulas in the antecedent

must be such that it preserves definite formulas. In order to describe such a mapping,

we find it useful first to identify the following class of formulas that contains the class of

definite formulas.

4.6. Definition. A formula of type o is an implicational formula just in case it has one

of the following forms

(i) F > A, where F and A are A-normal formulas and in addition A is a rigid atom, or

(ii) Vx.F, where F is itself an implicational formula.

We now define a function on implicational formulas whose purpose is to transform

these formulas into definite formulas.

4.7. Definition. The function posi on implicational formulas is defined as follows

(i) If F is H > A then posi(F) = pos(H) > pos(A).

(ii) If F is Vx.F1 then posi(F) = Vx.posi(F1)

If F is an implicational formula then pci(F) = p(posi(F)).

From the definition, it is evident that if F is a definite formula, posi(F) = F and,

hence, pci(F) = p(F). While this is not true when F is an arbitrary implicational formula,

it is clear that pci(F) is indeed a definite formula. The following lemma states an additional

property of pc; that will be useful in the proof of Theorem 4.1.

4.8. Lemma. IfFisanimplicationalformulaandx andCare,respectively, avariable

and a formula of the same type, then

~c i (~ ([Ax-F l C)) = p([Ax.pci(F)l PC(C)).

Proof. An easy induction on the structure of F shows that p([Ax.F] C) is an implica-

tional formula. Hence posi is defined on this formula and, consequently, the left-hand side

of the equality is defined. We now claim that

pos;(p([Ax .F] C)) A-conv [Ax.pos;(F)] pos(C).

Given this claim, it is clear that

~(~osi(p([Ax-F] C))) = p([Ax.~osi(F)] ~ o s (C) ,

and the lemma follows by observing that p([Ax.A] B) = p([Xx.p(A)] p(B)).

Thus, it only remains to show the claim. Given any implicational formula Fl, we

observe that if Fl E F2 then posi(Fl) E posi(F2). In trying to show the claim, we may

therefore assume that the bound variables of F are distinct from x and from the free

variables of C. Making such an assumption, we now induce on the structure of F :

(a) F is of the form H > A. In this case p([Ax.F] C) E p(S8 H) > p(SE A). Using the

definition of posi and arguments similar to those in Lemma 4.4, we see that

posi(p(Si,H)>p(SZ.A)) A-con~ S ~ 0 3 (c) ~ 0 s (H) 3 S ~ O ~ (~) ~ 0 s (A)

The claim easily follows from these observations.

(b) F is of the form Vy.F1. Since the bound variables of F are distinct from x and the free

variables of C, we see that

p([Xx.F] C) E Vy.p([Ax.F1] C).

Using the inductive hypothesis and the definitions of A-conversion and of posi we see

that

pos; AX . F] C)) A-conv Vy . [[Ax .posi (F1)] pos (C)] .

Observing that F(C) = F(pos(C)), it is clear that

Vy . [[Ax .posi(F1)] pos(C)] A-conv [Ax. ~y.pos;(F1)]] pos(C).

The claim is now apparent from the definition of pos;. 1

Using the two mappings pc and pc;, the desired transformation on sequent s may now

be stated. This is the content of the following definition.

4.9. Definition. First, we extend pci to the class of all formulas of type o:

(F) = { P C ; (~) , if F is an implicational formula;
pc(F), otherwise.

The mapping pc, on sequents is then defined as follows: pc,(I' 4 A) is the sequent that

results by replacing each formula F in F by pco(F) and each formula G in A by pc(G).

We are now in a position to describe, in a precise manner, the transformation of

LKH-derivations alluded to immediately after the statement of Theorem 4.1. We do this

below, thereby proving the theorem.

Proof of Theorem 4.1 We assume initially that every formula in I? and A is in principal

normal form; we indicate how this requirement may be relaxed at the end. Now, a simple

inductive argument on the heights of derivations convinces us of the following fact: If O'

and A' are finite sequences of formulas that are obtained from O and A, respectively, by

replacing each formula by one of its A-normal forms, then O + A has a derivation only

if O' + A' has a derivation in which the inference figure A does not appear. Since every

formula in I? and A is in A-normal form, we may assume that r + A has a derivation

in which no use is made of the inference figure A. Further, since every formula in r and

A is closed, we may assume that each instance of the schemata IT-IA and C-IS in this

derivation is obtained by substituting a closed formula for C; if a variable y does appear

free in the formula substituted for C, then we replace each free occurrence of y in it and in

the sequents in the derivation by a parameter of the same type as y that does not already

appear in the derivation; it is easy to see that the result is still a derivation of the same

kind, and that its endsequent is still r + A. Let T be such a derivation. We show below

that T can be transformed into a derivation satisfying the requirements of the theorem.

To define the transformation, we need to distinguish between what we call the essential

and the inessential sequents in T. A sequent (occurrence) is considered inessential if it

appears above the lower sequent of a ll-IS, > -IS or --IS inference figure along any

path in the derivation. A sequent is essential if it is not inessential. We claim that every

formula in the antecedent of an essential sequent is either a rigid atom or an impl.icationa1

formula. Observe that from this claim it also follows that each essential sequent, except the

endsequent, is the upper sequent of one of the figures Contraction, Interchange, Thinning,

V-IS, A-IS, C-IS, > -1A or 11-IA.

The claim is proved by inducing on the distance of an essential sequent from the

endsequent. If this distance is 0, the claim is obviously true. Assuming then that the

claim is true if the distance is d, we verify it for distance d + 1. Given the inductive

hypothesis, we only need to consider the cases when the sequent in question is the upper

sequent of an inference figure in which there is a formula in the antecedent of an upper

sequent that is not in the antecedent of the lower sequent, i. e. one of the figures --IS,

V-IA, A-IA, 1 -IA, 3 -IS, ll-IA, and C-IA. The cases of --IS and > -IS are ruled

out, given that we are considering essential sequents. Also, since the antecedent of the

lower sequent contains only implicational formulas and rigid atoms, the figure in question

cannot be one of V-IA, A-IA, or C-IA. The only cases that remain are > -1A and

IT-IA. In the first case, i. e. when the inference figure in question is

the principal formula must be an implicational formula, and G must therefore be a rigid

atom. From this it is clear that the claim holds in this case. If the inference figure is

ll-IA, i.e. of the form
p(PC),O + A

l lP ,O + A

the principal formula must again be an implicational formula, and so P must be of the

form Xx.F where F is an implicational formula. But then it is easily seen that p(P C)

must be an implicational formula and the claim is verified.

Now let e(T) be the structure that results from removing all the inessential sequents

from T; e(T) is a derivation of I? -+ A but for the fact that some of its leaf sequents are

not axioms: Such sequents are of the form E + a, P , where P is -F, I1 B or F > G.

Let pe(T) be the result of replacing each O + A in e(T) by PC,(@ + A). We claim

that each pair of upper sequent(s) and lower sequent in pe(T) is an instance of the same

inference figure schema as the corresponding pair in e(T). To show this, we consider each

of the possible cases in e(T) and check the corresponding pairs in pe(T). The claim is

easily verified if the pair is an instance of Contraction, Interchange or Thinning. The cases

for V-IS and A-IS are similarly clear, given Lemma 4.3. If the pair is an instance of

> -IA, the principal formula is an implicational formula of the form F > A. Observing

then that pci (F > A) = pc(F) > pc(A), the claim follows in this case as well. If the pair

from e(T) is an instance of C-IS, i. e. of the form

the claim follows from Lemma 4.3 and Corollary 4.5; pc(C P) = Cpc(P) and

P ~ (P (P C)) = P(PC(P) P~(C)) .

We note further that, since C is a closed formula, pc(C) E 'Ha and so the corresponding

figure in pe(T) is actually an instance of C-IS'. Finally, let the pair in e(T) be an instance

of IT-IA, i.e. of the form
p(PC),O + A

rIP,O 4 A

By our earlier observations I2 P is an implicational formula, and hence P is of the form

Xx.F, where F is an implicational formula. Using Lemma 4.8, we see that

Noting now that pci(II [Xx.F]) G [11 [Xx.pci(F)]] and that pc(C) E 'HB, it is clear that the

corresponding pair in pe(T) is also an instance of 11-IA, and in fact of 11-IA' .

Given the forms of formulas in I? and A, we observe that pc,(I? -+ A) = I' -+ A.

We also note that if A is an atomic formula and A F A', then pc,(A) = pc(A1). Thus

we may conclude, from the above considerations and Lemma 4.3, that pe(T) would be a

derivation of r + A of the sort required by the theorem but for the fact that some of

its leaf sequent s are of the form O + A, T. However, we may adjoin derivations of the

form - sequence of Thinnings
and Interchanges

O + A , T

above sequents of this sort to obtain a genuine LKH-derivation that satisfies the theorem.

The above argument is adequate in the case that each formula in I? and A is in

principal normal form. If this is not the case, then we proceed as follows. First we

construct a derivation of the requisite sort for I?' t A', where I?' and A' are obtained

from I' and A respectively by placing each formula in principal normal form. A simple

inductive argument then suffices to show that this derivation may be converted into one

for I? + A by replacing some of the formulas in the derivation by formulas that they

convert to via the rule of a-conversion.

4.10. Example. An illustration of the transformation described in the proof of Theorem

4.1 may be provided by considering the derivation presented at the beginning of this

section. This would be transformed into the following:

- Thinning

+ T, 3 Y . P YI
Interchange

[PA1 + [PA1
C-IS

T 3 [PA1 + ~Y.[PYI, 3Y.[PYI
Contraction

T > [P A] --+ 3y.[Py]
11-IA

VX.[X > [PA]] -+ 3y.[Py]

The content of Theorem 4.1 may be expressed by the description of a simplified

sequent calculus for definite sentences and goal formulas. Let LKH D be the subcalculus

of LKH with exactly the same initial sequents but with inference figures restricted to

being instances of the schemata Contraction, Interchange, Thinning, V -IS, A-IS, C-IS' ,
> -IA, and II-IA'. In the discussions below we shall be concerned with derivations for

sequents of the form I? d A, where r is any finite sequence of definite sentences and

closed positive atoms and A is a finite sequence of closed goal formulas. By virtue of

Theorem 4.1 we see that such a sequent has an LKH-derivation exactly when it has an

LKHD-derivation. In considering questions about derivations for such a sequent we may,

therefore, restrict our attention to the calculus LKHD, and we implicitly do so below.

Proofs from Higher-Order Definite Sentences. We now use the preceding results

to demonstrate that higher-order definite sentences and goal formulas retain the proof-

theoretic properties of the corresponding first-order formulas that were discussed in Section

1. In this endeavor, we use the characteristics of the higher-order formulas observed in the

two lemmas below. The first lemma subsumes the statement that a finite set of higher-order

definite sentences is consistent.

4.11. Lemma. If I? is a finite sequence of definite sentences and closed positive atoms,

then there can be no derivation for r -+ .

Proof. Suppose the claim is false. Then there is a least h and a I? of the requisite sort

such that I? + has a derivation of height h. Since I' -+ is not an initial sequent, h is

evidently not 1. Consider now by cases the inference figures of which I? + could be the

lower sequent, i. e. the figures Contraction, Thinning and Interchange in the antecedent,

II-IA', and > -1A. In each of these cases it is easily observed that there must be a

finite sequence of definite sentences and closed positive atoms I" such that I?' d has a

derivation of height < h. This contradicts the leastness of h. I

The lemma below relates the notions of classical and intuitionistic provability of a

goal formula from a set of definite sentences.

4.12. Lemma. Let I? be a finite sequence of definite sentences and closed positive atoms

and let G be a closed god formula. Then I? ---+ G has a derivation only if it has one in

which there is at most one formula in the succedent of each sequent.

Proof. We claim that a slightly stronger statement is true: A sequent of the form

I' -+ GI, . . . , G,, where I? consists only of definite sentences and closed positive atoms

and GI, . . . , G, are closed goal formulas, has a derivation only if there is an i such that

1 5 i 5 n and I? + Gi has a derivation in which at most one formula appears in the

succedent of each sequent.

The claim is proved by an induction on the heights of derivations for sequents of the

sort hypothesized in it. If the height is 1, then n = 1 and the claim is obviously true. Let

us, therefore, assume the height is h + 1 and consider the possible cases for the inference

figure that appears at the end of the derivation. If this figure is a Contraction, Thinning

or Interchange in the succedent , the claim follows directly from the inductive hypothesis;

in the case of Thinning, we only need to observe that, by Lemma 4.11, n > 1. The cases

of Contraction, Thinning, and Interchange in the antecedent, V-IS, A-IS, C-IS' and

II-IA', also follow from the hypothesis with a little further argument. Consider, for

instance the case when the figure is an A-IS. The derivation at the end then has the

following form:

r --+ GI, . . . , Gn-1, Gt, A G2,

By the hypothesis, there must be a derivation of the requisite sort either for I' + Gi

for some i, 15 i 5 n - 1, or for both + G; and r --+ G;. In the former case the

claim follows directly, and in the latter case we use the two derivations together with an

A-IS inference figure to construct a derivation of the requisite sort for I? + Gk A G;.

The only remaining case is that of > -IA, i.e. when the inference figure in question is

of the form
rl + GI, ..., Gk,G A,r2 + Gk+l , . . - ,Gn

From Lemma 4.11 it follows that k < n. By the hypothesis, we see that there is a derivation

of the requisite sort either for rl + Gi for some i between 1 and k or for rl + G.

In the former case, by adjoining a sequence of Thinning and Interchange figures below the

derivation for rl + Gi we obtain the required derivation for G > A, rl, rz -+ Gi.

In the latter case, using the induction hypothesis again we see that there is a derivation

of the required sort for A , r 2 + Gj for some j between k + 1 and n. This deriva-

tion may be combined with the one for ---, G to obtain the required derivation for

G > A , r 1 7 r 2 --+ Gj. (

Lemmas 4.11 and 4.12 permit us to further restrict our sequent calculus in the context

of definite sentences. To make the picture precise, let us assume that r is a finite sequence

of definite sentences and closed positive atoms, and that G is a goal formula such that

r + G has a derivation. Then, using Lemma 4.12 we see that this sequent has a deriva-

tion in which there is no occurrence of Contraction or Interchange in the succedent . Using

Lemma 4.11 it may be seen that such a derivation is also one in which the figure Thinning

in the succedent does not appear. Thus, in considering questions about derivability for

sequents of the sort described above, we may dispense with the structural inference figures

pertaining to the succedent. This fact is made use of in the proof of Theorem 4.14 and

in the discussions that follow it. We present this theorem after introducing a convenient

notational convention.

4.13. Definition. Let D be the definite sentence VZ.G > A. Then (Dl denotes the set

of all closed positive instances of G > A, i.e.

ID(= {p(G > A) I cp is a closed positive substitution for 2).

This notation is extended to sets of definite sentences: If P is such a set,

lPl = U W I I D E PI.
From this definition it readily follows that ID1 and J P (are both collections of definite

sentences.

4.14. Theorem. Let I' be a finite sequence of definite sentences and closed positive

atoms, and let G be a closed goal formula. Then there is a derivation for r + G if and

only if

(i) G is G1 A G2 and there are derivations for r + G1 and I' - G2, or

(ii) G is G1 V G2 and there is a derivation for either I? -+ GI or - G2, or

(iii) G is C P and there is a C E If.23 such that - p(P C) has a derivation, or

(iv) G is an atom and either G is T, or G r A for some A in I?, or, for some definite

sentence D in r, G' > A E IDI, G A, and there is a derivation for r --+ G'.

Proof. (3) As we have noted, there is a derivation for a sequent of the sort described

in the Theorem only if there is one in which there are no structural figures pertaining to

the succedent. An induction on the heights of such derivations now proves the theorem in

this direction.

If I? + G has a derivation of height 1, then G is T or I? is A and G z A. In either

case the theorem is true. For the case when the height is h + 1, we consider each possibility

for the last inference figure in the derivation. If it is one of A-IS, V-IS or C-IS', the

theorem is evidently true. If it is a Contraction in the antecedent, i.e. of the form

F, F, r + G

F,r - G

we see that the upper sequent is of the kind described in the theorem and, in fact, has a

derivation of height h. A recourse to the induction hypothesis now completes the proof.

For instance, assume that G is of the form GI V G2. By the hypothesis, there is a derivation

for F, F, r 4 Gi for i = 1 or i = 2. By adjoining below this derivation a Contraction in

the antecedent, we obtain a derivation for F, l? - Gi. The analysis for the cases when

G has a different structure follows an analogous pattern.

In the cases when the last inference figure is a Thinn ing or an Interchange in the

antecedent, the argument is similar to that of Contraction. If the figure is II-IA', i.e. of

the form

we see that p(P C) and 11 P are both definite sentences and, further, that Ip(P C)I C J l I PI.

Applying the induction hypothesis to the upper sequent, the proof may now be completed

by arguments similar to those outlined in the case of Contraction in the antecedent.

The only remaining case is that of > -1A. In this case, by Lemma 4.11 we observe

that the derivation at the end has the following form

The right upper sequent of this inference figure is evidently of the form required for

the induction hypothesis. Once again using arguments similar to those in the case of

Contraction in the antecedent, the proof may be completed in all cases except when

G - A. But if G - A, we observe that the theorem is still true, since a derivation

for G' > A, r l , r2 + G' may be constructed by adjoining a sequence of Thinning and

Interchange inference figures below the derivation for rl + GI.

(c) The only case that needs explicit consideration here is that when, for some definite

sentence D in I?, there is a G' > A E ID1 such that G = A and r + G' has a derivation.

In this case a derivation for ---+ G may be constructed as follows:

G 1 > A , r --+ G
sequence of II-IA'

D' I? - sequence of Interchanges
and a Contraction

In Section 1 we outlined the proof-theoretic properties of first-order definite sentences

and goal formulas that play a pivotal role in their use as a basis for programming. Theorem

4.14 demonstrates that our higher-order generalizations of these formulas retain these

properties. Thus, if G is a higher-order goal formula whose free variables are included in

the listing X I , . . . , x, and P is a finite set of higher-order definite sentences, we see from

clause (iii) of Theorem 4.14 that 3x1.. . .3x,.G is provable from P just in case there is a

closed positive substitution cp for X I , . . . , xn such that cp(G) is provable from P. Hence,

sets of higher-order definite sentences and higher-order goal formulas may be construed,

respectively, as programs and queries in a manner exactly analogous to the first-order

case. Furthermore, clauses (i) - (iii) show that A, V and the existential quantifier provide

primitives for search specification in exactly the same way as in the first-order setting.

Finally, by virtue of (iv), higher-order definite sentences provide the basis for defining

nondeterministic procedures. Notice that in a definite sentence of form Vz.(G > A), the

head of A must be a parameter, and construing this formula as a procedure defining this

head of A, therefore, makes good sense.

Theorem 4.14 also provides the skeleton for a procedure that may be used for deter-

mining whether a goal formula is provable from a set of definite sentences. In essence,

clauses (i) - (iii) describe the means by which the search for a proof of a complex goal

formula may be reduced to the search for proofs of a set of atoms. The search for a proof of

an atomic goal may be progressed by "backchaining" on definite sentences in the manner

indicated by clause (iv). A precise description of this proof procedure requires the expli-

cation of the notion of higher-order unification, and we undertake this task in the next

section. We note, however, that the steps mentioned above must simplify the search in

some manner if they are to be effective in finding a proof. That they do have this effect

may be seen by associating a measure, indexed by a finite set of definite sentences, with

each goal formula. For this purpose, we identify the notion of a reduced path in a derivation

as a sequence of sequents that results by the removal of the lower sequents of structural

inference figures from a path in the derivation; intuitively, the length of a reduced path is

a count of the number of operational inference figures that appear along the corresponding

path. Letting the true height of a derivation be the length of the longest reduced path in

the derivation, the required measure may be defined as follows.

4.15. Definition. Let I' be a finite sequence of definite sentences, and let G be a closed

goal formula. Further, let k be the least among the true heights of derivations for I' --+ G

in which there appear no structural inference figures pertaining to the succedent; if no such

derivation exists, k = w . Then

if k < w ;

" (G) = { $' otherwise.

The measure is extended to be relative to a finite set, P, of definite sentences by defining

pp(G) = pr(G) where I' is a listing of the members of P. This extension is clearly

independent of the particular listing chosen.

The properties of this measure that are of interest from the perspective of describing

a proof procedure are stated in the following Lemma.

4.16. Lemma. Let P be a finite set of definite sentences and let G be a closed goal

formula that is provable from P. Then pp(G) > 0 and pp(G) < w . Further,

(i) If G is an atom other than T then there is a G' > G E (PI such that pP(G') < pp(G).

(ii) If G is GI V G2 then pp(G;) < pp(G) for i = 1 or i = 2.

(iii) If G is G1 A G2 then pP(Gl) + pP(G2) < pp(G).

(iv) If G is C P then for some C E 7-B it is the case that pp(p(P C)) < pp(CP) .

Proof. pP(G) is obviously greater that 0. Since G is provable from P, it is also obvious

that pp(G) < w . Now let r be a finite sequence of definite sentences such that I' + G

has a derivation of true height h. A reexamination of the proof of Lemma 4.14 reveals

the following facts: If G is GI V G2, then I' 4 Gi has a derivation of true height < h

for i = 1 or i = 2. If G is GI A G2, then I' + Gi has a derivation of true height < h

for i = 1 and i = 2. I f G is C P , then there is a C E 71% such that r --+ p(PC) has a

derivation of true height < h. If G is an atom, then there is a G' > G E (PI such that

+ G' has a derivation of true height < h. From these observations, the rest of the

lemma follows easily.

5. Searching for Proofs from Definite Sentences

We now turn to the task of describing a procedure for determining whether there

is a proof for the existential closure of a goal formula from a set of definite sentences.

As already noted, the description of such a procedure requires a consideration of the

problem of unifying two higher-order formulas. This problem has been studied by several

researchers, and in most extensive detail by [15]. In the first part of this section, we

summarize this problem and detail those aspects of its solution in [15] that are pertinent

to our current endeavor. We then introduce the notion of a P-derivation. P-derivations

are a generalization to the higher-order context of the notion of SLD-derivations described

in [2] and prevalent in most discussions of first-order definite sentences. At one level,

they are intended to be syntactic objects for demonstrating the existence of a proof for a

goal formula and our discussions show their correctness from this perspective. At another

level, they are intended to provide a basis for an actual proof procedure - a symbol

manipulating procedure that searches for P-derivations would constitute an interpreter

for a programming paradigm that is based on higher-order definite sentences - and we

explore some of their properties that are pertinent to the description of such a procedure.

The Higher-Order Unification Problem. Let us call a pair of formulas of the same

type a disagreement pair. A disagreement s e t is then a finite set, {(F;, Hi) 1 1 5 i < n),

of disagreement pairs, and a uni f ier for the set is a substitution a such that, for 1 < i 5

n, a(Fi) = a(H,). The higher-order un i f ica t ion problem is then the following: Given a

disagreement set, we desire to determine whether it has unifiers, and to explicitly provide

a unifier if it does have one.

The problem described above is a generalization of the well-known unification problem

for first-order terms. The higher-order unification problem has several properties that are,

in a certain sense, divergent from those of the problem in the first-order case. For instance,

the question of whether a unifier exists for an arbitrary disagreement set in the higher-

order context is an undecidable question [lo, 14, 171, whereas the corresponding question

for first-order terms is decidable. As another example, it has been shown [12] that most

general unifiers do not always exist for unifiable higher-order disagreement pairs. Despite

these characteristics of the problem, a systematic search can be made for unifiers of a given

disagreement set, and we discuss this aspect below.

Huet, in [15], describes a procedure for determining the existence of unifiers for a

given disagreement set and shows that, whenever unifiers do exist, the procedure may

be used to provide some of them. The basis for this procedure is in the fact that there

are certain disagreement sets for which at least one unifier may easily be provided and,

similarly, there are other disagreement sets for which it is easily manifest that no unifiers

can exist. Given an arbitrary disagreement set, the procedure then attempts to reduce it

to a disagreement set of one of these two kinds. This reduction proceeds by an iterative

use of two kinds of simplifying functions, called SIMPL and MATCH, on disagreement

sets. Since our notion of a P-derivation uses these functions in an intrinsic way, we devote

some effort to describing them below.

In presenting the functions SIMPL and MATCH and in analyzing their properties,

the normal form for formulas that is introduced by the following definition is useful.
-

5.1. Definition. A @-normal form F = Axl.. . . Axn.[H Al . . . A,] is said to be a pq-long

form if the type of H is of the form a1 + - . . + a , + ao, where a. is an atomic type,

and, for 1 5 i 5 m, Ai is also a pq-long form. If F is a formula such that F A-conv F, then

F is said to be a pq-long fonn of F . Given a ,@-long form F = Az.[H A1 . . . A,], a count

of the number of occurrences of applications in F is provided by the following recursively

defined measure on F :
m

It is clear that every formula has a pq-long form; such a form may be obtained by

first converting the formula to a p-normal form, and then performing a sequence of q-

expansions. We shall write ki below to denote a Pq-long form of a formula F . The formula

thus denoted is ambiguous only up to a renaming of bound variables. To see this, let

Fl = Axl . . . Ax,.[H A1 . . . A,] and F2 = Ayl.. . . Ayn.[H1 B1 . . . B,] be two pq-long forms

such that Fl A-conv F2. Observing that Fl and F2 must have the same A-normal forms, it

is clear that Axl . . . Ax,. H = Ayl Ay,. HI, and hence m = n and r = s. Furthermore,

for all i, 1 5 i 5 r , it must be the case that Axl . . . Axm.Ai A-conv Xyl . . . Aym.Bi. A simple

argument by induction on the measure in Definition 5.1 then shows that Fl z F 2 . This

observation permits us to extend the measure (to arbitrary formulas. For any formula F,

we may define ((F) = ((F) . Given the uniqueness of ,617-long forms up to a-conversions

and the fact that ((Fl) = ((F2) for any pq-long forms Fl and F2 such that Fl = F2, it

follows that this extension of 6 is well-defined.

Given any formula F and any substitution a, it is apparent that a (F) = a (~) . The

interest in the prl-long form of representation of formulas stems from the fact that the

effects of substitutions on formulas in this form can be analyzed easily. As an instance of

this, we observe the following lemma that is the basis of the first phase of simplification in

the search for unifiers for a given disagreement set. In this lemma, and in the rest of this

section, we use the notation U(D) to denote the set of unifiers for a disagreement set 2).

A proof of this lemma is contained in [15] and also in [25].

5.2. Lemma. Let Fl = &[HI Al . . . A,] and F2 = X2[H2 B1 . . . B,] be two rigid

pq-long forms of the same type. Then a E U({(Fl, F2))) if and only if

(i) H1 = H2 (and, therefore, r = s), and

(ii) a E U({(X?.Ai, X2.B;) I 1 < i 5 r)) .

Let us say that F is rigid (flexible) just in case is rigid (flexible), and let us refer

to the arguments of F as the arguments of F. If Fl and F2 are two formulas of the same

type, it is evident that pq-long forms of Fl and F2 must have binders of the same length.

Furthermore, we may, by a sequence of a-conversions, arrange their binders to be identical.

If Fl and F2 are both rigid, then Lemma 5.2 provides us a means for either determining

that Fl and F2 have no unifiers or for reducing the problem of finding unifiers for Fl and F2

to that of finding unifiers for the arguments of these formulas. This, in fact, is the nature

of the simplification effected on a given unification problem by the function SIMPL.

5.3. Definition. The function SIMPL on sets of disagreement pairs is defined as follows:

(1) If D = 0 then SIMPL(D) = 0.

(2) If 2, = {(Fl,F2)}, and

(a) if Fl is a flexible formula then SIMPL(D) = 2); otherwise

(b) if F2 is a flexible formula then SIMPL(D) = {(F2, Fl));

(c) otherwise Fl and F2 are both rigid formulas. Let Az.[C1 A1 . . . A,] and Xz.[C2

B1 . . . B,] be ,&-long forms for Fl and F2. If C1 # C2 then SIMPL(D) = F;

otherwise SIMPL(2)) = SIMPL({(X2.Ai, X2.Bi) 1 1 5 i 5 r)).

(3) Otherwise 2) has at least two members. Let D = {(Fi, Gi) I 1 < i 5 n).

(a) If SIMPL({(Fi7 Gi))) = F for some i then SIMPL(D) = F;
n

(b) Otherwise SIMPL(2)) = U SIMPL({(F;, G;))).
i=l

Clearly, SIMPL transforms a given disagreement set into either the marker F or a

disagreement set consisting solely of "flexible-flexible" or "flexible-rigid" formulas. By an

abuse of terminology, we shall regard F as a disagreement set that has no unifiers. The

intention, then, is that SIMPL transforms the given set into a simplified set that has the

same unifiers. The following lemma shows that SIMPL achieves this purpose in a finite

number of steps.

5.4. Lemma. SIMPL is a total computable function on sets of disagreement pairs.

Further, if 2) is a set of disagreement pairs then a E U(V) if and only if SIMPL(V) # F

and a E U(SIMPL(V)).

Proof. We define a measure 1C, on sets of disagreement pairs in the following fashion. If

2, = {(Fi7Gi) (1 < i 5 n) , then

The lemma follows from Lemma 5.2 by an induction on this measure. I

The first phase in the process of finding unifiers for a given disagreement set 2) thus

consists of evaluating SIMPL(V). If the result of this is F, D has no unifiers. On the

other hand, if the result is a set that is either empty or has only flexible-flexible pairs, at

least one unifier can be provided easily for the set, as we shall see in the proof of Theorem

5.14; such a set is, therefore, referred to as a solved set. If the set has at least one flexible-

rigid pair, then a substitution for the head of the flexible formula needs to be considered

so as to make the heads of the two formulas in the pair identical. There are essentially

two kinds of "elementary" substitutions that may be employed for this purpose. The first

kind of substitution is the one that makes the head of the flexible formula "imitate" that

of the rigid formula. In the context of first-order terms this is, in fact, the only kind of

substitution that needs to be considered. If the head of the flexible formula is a higher-

order variable, however, there is also another possibility. This is that of "projecting" one

of the arguments of the flexible formula into the head position, in the hope that the head

of the resulting formula becomes identical to the head of the rigid one or may be made so

by a subsequent substitution. There are, thus, a set of substitutions, each of which may be

investigated separately as a component of a complete unifier. The purpose of the function

MATCH that is defined below is to produce these substitutions.

5.5. Definition. Let V be a set of variables, let Fl be a flexible formula, let F2 be a

rigid formula of the same type as Fl, and let Xs.[f Al . . . A,], and XZ.[C B1 . . . B,] be

prl-long forms of Fl and F2. Further, let the type of f be al -+ . . . -+ a, -, P, where ,f? is

primitive and, for 1 < i 5 r , let w; be a variable of type a;. The functions IMIT, PROJ,

and MATCH are then defined as follows:

(i) If C is a variable (appearing also in z), then IMIT(Fl, F2, V) = 8 ; otherwise

IMIT(Fl, F2, V) = {{(f, Awl . . . Aw,.[C [hl wl . . . w,] . . . [h, wl . . . w,]])}},

where h l , . . . , h, are variables of appropriate types not contained in V U {wl,. . . , w,).

(ii) For 1 5 i 5 T , if ai is not of the form ,Bl -+ . . . -t pt -t ,B then PROJi(Fl, F 2 , V) = 0;

otherwise,

PROJi(Fl, F2, V) = {{(f, Awl . . . Awr.[wi [hl wl . . . w,] . . . [ht wl . . . w~]]))) ,

where hl, . . . , ht are variables of appropriate type not contained in V U {wl,. . . , w,).

(iii) MATCH(F1, F2, V) = IMIT(Fl, F2, V) U (IJ PROJi(F17 F2, V)).
1Sisr

The purpose of MATCH is to suggest a set of substitutions that may form "initial

segments" of unifiers and, in this process, bring the search for a unifier closer to resolu-

tion. To describe the sense in which MATCH achieves this purpose precisely, we need the

following measure on substitutions:

5.6. Definition. Let cp = {(fi, Ti) I 1 5 i 5 n) be a substitution. We define a measure

on c p as follows:

The correctness of MATCH is now stated in the lemma below. We omit a proof of

this lemma, referring the interested reader to [15] or [25].

5.7. Lemma. Let V be a set of variables, let Fl be a flexible formula and let F2 be

a rigid formula of the same type as Fl. If there is a substitution a E U({(Fl,F2))) then

there is a substitution cp E MATCH(Fl, F2, V) and a corresponding substitution a' such

that

(i) a =V 0' o c p , and

(ii) .(a') < r(a1.t

A unification procedure may now be described based on an iterative use of SIMPL

and MATCH. A procedure that searches for a P-derivation, a notion that we describe

next, actually embeds such a unification procedure within it.

P-Derivations. Let the symbols 6, 27, 6 and V, perhaps with subscripts, denote sets

of formulas of type o, disagreement sets, substitutions and sets of variables, respectively.

The relation of being "P-derivable from" between tuples of the form (6, V, 0, V) is defined

in the following manner.

t This lemma may actually be strengthened: If f E V, then there is exactly one c p

corresponding to each a.

5.8. Definition. Let P be a set of definite sentences. We say a tuple (G2, V2,02, V2) is

P-derivable from the tuple (61, 101, 01, V1) if 'Dl # F and, in addition, one of the following

situations holds:

(1) (Goal reduction step) O2 = 0, V2 = Dl, and there is a goal formula G E 61 such that

(a) G is T and G2 = 61 - {G) and V2 = V1, or

(b) G is G1 A G2 and = (GI - {G)) U {GI, G2) and V2 = V1, or

(c) G is G1 V G2 and, for i = 1 or i = 2, G2 = (GI - {G)) U {Gi) and V2 = Vl, or

(d) G is C P and for some variable y 4 Vl it is the case that V2 = V1 U {y) and

62 = (61 - {G)) U {Xnorm(Py)).

(2) (Backchaining step) Let G E G1 be a rigid positive atom, and let D E P be such

that D = Vx1. . . . Vxn.G1 3 A for some sequence of variables XI , . . . , x, for which

no x; E V1. Then O2 = 0, V2 = V1 U {XI , . . . , x,), 6 2 = (61 - {G)) U {GI), and

D2 = SIMPL(Dl U {(G, A))) .

(3) (Unification step) Dl is not a solved set and for some flexible-rigid pair (Fl, F2) E Dl,

either MATCH(Fl, F2, Vl) = 0 and D2 = F, or there is a a E MATCH(Fl, F2, V1)

and it is the case that O2 = c, G2 = a(G1), D2 = SIMPL(a(D1)), and, if a = {(x,T)),

V2 = V1 U F(T).

Let us call a finite set of goal formulas a goal set, and a disagreement set that is

F or consists solely of pairs of positive formulas a positive disagreement set. If G1 is a

goal set and Dl is a positive disagreement set then it is clear, from an inspection of the

above definition, the definitions 5.3 and 5.5, and the fact that a positive formula remains

a positive formula under a positive substitution, that G2 is a goal set and V2 a positive

disagreement set for any tuple (G2, D2, 02, V2) that is P-derivable from (61, Dl, 01, V l) .

5.9. Definition. Let 6 be a goal set. Then we say that a sequence (Gi7 Vi, 0i7 Vi)lliln

is a P-derivation sequence for G just in case = 6, V1 = F (G 1), Dl = 0, 01 = 0, and, for

1 5 i < n, (G;+l, ;Di+l, Bi+1, Vi+1) is P-derivable from (Gi, Vi, O;, V;).

From our earlier observations, and an easy induction on the length of the sequence, it

is clear that in a P-derivation sequence for a goal set 6 each G; is a goal set and each Vi

is a positive disagreement set. We make implicit use of this observation in our discussions

below. In particular, we intend unqualified uses of the symbols 6 and 2) to be read as

syntactic variables for goal sets and positive disagreement sets, respectively.

A P-derivation sequence (G;, Vi, Oi, V;) - <i<n - terminates, i. e. is not contained in a

longer sequence, if

(a) Gn is either empty or is a goal set consisting solely of flexible atoms and Dn is either

empty or consists solely of flexible-flexible pairs, or

(b) Dn = F.

In the former case we say that it is a successfully terminated sequence.

5.10. Definition. A P-derivation sequence, (G;, Di, Oil Vi)l<ilnl for G that is a success-

fully terminated sequence is called a P-derivation of 6 and 6, o - . . o 61 is called its answer

substitutzon. If 4 = {G) then we also say that the sequence is a P-derivation of G.

5.11. Example. Let P be the set of definite sentences in Example 3.3. Further, let fl

be a variable of type int + int and let G be the goal formula

[map f un fl [cons 1 [cons 2 nil]] [cons [g 1 11 [cons [g 121 nil]]].

Then the tuple (61, Dl, 0, V1) is P-derivable from ({G), @ , 0 , { fl }) by a backchaining step,

if

Vl = {f1,f2,11,12,x},

GI = {[mapfunf21112]), and

Dl = {(fl, f 2) , (x, I) , ([fi X I , [g 1 I]), (11, [cons 2 nil]), (12, [cons [g 1 21 nil])},

where f 2 , 11, 12, and x are variables. Similarly, if

v2 = Vl u {hl,h,},

G2 = {[mapf un f2 11 12]},

02 = {(fl , Xw.[g [hl w][h2 w]])), and

V2 = ((11, [cons 2 nil]), (12, [cons [g 121 nil]), (x, I) ,

([h l ~ l , I), ([h2 X I , 1) 1 (f 2 , Xw.[g [hl wl [h2 wll)),

then the tuple (G2, V2, 02, V2) is P-derivable from (GI, Dl, 0, V1) by a unification step. It

is, in fact, obtained by picking the flexible-rigid pair ([fl XI, [g 1 11) from V1 and using the

substitution provided by IMIT for this pair. If the substitution provided by PROJl was

picked instead, we would obtain the tuple (G2, F, {(fl, XW.~)} , V1).

There are several P-derivations of G, and all of them have the same answer substitu-

tion: {(fl, Xw.[g w I])}.

5.12. Example. Let P be a set of definite sentences that contains the definite sentence

Vx.[x > [P A]], where P and A are parameters of type int -+ o and int, respectively. Then,

the following sequence of tuples constitutes a P-derivation of 3y.[P y]:

Notice that this is a successfully terminated sequence, even though the final goal set

contains a flexible atom. We shall see, in Theorem 5.14, that a goal set that contains

only flexible atoms can be "solved" rather easily. In this particular case, for instance, the

final goal set may be solved by applying the substitution { (x, T)) to it.

As mentioned at the beginning of this section, a P-derivation of a goal formula G is

intended to be an object that demonstrates the provability of G from the set of definite

sentences P. Our next endeavor, culminating in the Theorems 5.14 and 5.18, is to show

that this notion is true to our intention. In the process, we shall see that a P-derivation of G

encodes enough information to make it possible to extract the result of a computation. We

shall also observe some properties of P-derivations that are of interest from the perspective

of constructing a procedure that searches for such a derivation of a goal formula.

5.13.Lemma. Let (G2,D2,02,V2) b e P - d e r i v a b l e f r ~ m (~ ~ , D ~ , O ~ , V ~) , a n d l e t D ~ # F .

Further let o E U(D2) be a positive substitution such that every closed positive instance

of the formulas in a(G2) is provable from P . Then

(i) a 0 82 E U(D1), and

(ii) every closed positive instance of the formulas in a o 62 (61) is provable from P .

Proof. The lemma is proved by considering the cases in Definition 5.9.

A goal reduction or a backchaining step. In these cases O2 = 8 and so a o O2 = a. Further,

in a goal reduction step D2 = Dl, and in a backchaining step Dl C_ 272. From these

observations and the assumptions in the lemma, it follows that (i) is true. Similarly, it

is clear that all the closed positive instances of a o 02(G) of each G E GI that is also an

element of G2 are provable from P. To verify (ii), therefore, we only need to establish the

truth of the previous statement for the case when the G E G1 is not in G2, and we do this

below by considering the possibilities for such a G.

In the case that G is T, the argument is obvious. If G is G1 V G2, then

Thus the closed positive instances of a o 02(G) are of the form G' V GI' where GI and GI'

are closed positive instances of a(G1) and a(G2) respectively. Noting that either a(G1) or

a(G2) is an element of a(G2), the argument may be completed using the assumptions in

the lemma and Theorem 4.14. A similar argument may be provided for the case when G

is GI A G2.

Before considering the remaining cases, we define a substitution that is parameterized

by a substitution and a sequence of variables. Let c, be an arbitrary parameter of type 0.

If y is a sequence of variables and S is a substitution, then

Sg = {(x, c,) 1 x is a variable of type a such that x E .F(S o a(yi)) for some yi in y}.

We note that if F is a positive formula all of whose free variables are included in the list

jj and if S is a positive substitution, then Sji o S o o(F) is a closed positive formula.

Now let the G under consideration be C P . Any closed positive instance of a o d2(G)

may be written in the form C (6 o a (P)) for a suitable S; note that then S o a (P) must itself

be a closed positive formula. From Definition 5.9, we see that, for some y, Xnorm(P y) E G2

and hence a (P y) E a(G2). It is easily seen that Sy o S o a (P y) is a closed positive instance

of a (P y) and is, therefore, provable from P. But now we observe that

Using Theorem 4.14 it then follows that C (6 o a(P)) , is provable from P . The choice of S

having been arbitrary, we may thus conclude that any closed positive instance of a o O2 (G)

is provable from P .

The only other case to consider is when G is removed by a backchaining step. In this

case, by Definition 5.9 and Lemma 5.4, there must be a D E P such that

DGV5? .G1>A? G1EG2, and a (G) = a (A) .

Once again, we observe that any closed positive instance of a o 02(G) may be written as

S o a(G) for a suitably chosen S. Now 6% o S o a(G1 > A) is a closed positive instance of

G1 > A, and hence is a member of 17'1. Further,

Finally, S,oSoa(G1) is evidently a closed positive instance of a(G1),and is therefore provable

from P . Using these facts in conjunction with Theorem 4.14 we may now conclude that

S o a(G) is provable from P .

A unification step. We note first that V2 # F. Hence, in either of these cases, it follows

from Lemma 5.4 that if a E U(D2) then a E U(02(D1)). But then, it is easy to see that

a o d2 E U(D1). Since G2 = d2 (GI) it is evident that every closed instance of a goal formula

in a o d2 (61) is also a closed instance of a goal formula in a(G2). From this the second part

of the lemma is obvious. I

5.14. Theorem. (Soundness of P-derivations) Let (Gi, D,, Oi, Vi) <iln be a P-derivation

of G, and let d be its answer substitution. Then there is a positive substitution a such

that

(i) a E U(D,), and

(ii) all the closed positive instances of the goal formulas in ~ (6 ,) are provable from 'P.

Further, if a is a positive substitution satisfying (i) and (ii), then every closed positive

instance of a o d(G) is provable from P .

Proof. The second part of the theorem follows easily from Lemma 5.13 and a backward

induction on i, the index of each tuple in the given P-derivation sequence. For the first

part we exhibit a substitution - that is a simple modification of the one in Lemma 3.5 in

[15] - and then show that it satisfies the requirements.

Let h, E Var, be a chosen variable for each atomic type a. Then for each type a we

identify a formula E, in the following fashion:

(a) If a is o, then E, = T.
A

(b) If a is an atomic type other than o, then E, = h,.

(c) If a is the function type ,B1 -+ ... t ,Bk t ,B where ,B is an atomic type, then

, = Ax. . . . AX k. Ep, where, for 1 5 i 5 k, xi is a variable of type Pi that is distinct

from hPi .

Now let y = {(y, E,) I y E Var,}. Finally, letting V = F(Gn)UF(Dn), we define o = y f V.

We note that any goal formula in G, is of the form [P C1 . . . C,] where P is a variable

whose type is of the form a1 t t a, -+ o. From this it is apparent that if G E 6,

then any ground instance of a(G) is identical to T. Thus, it is clear that a satisfies (ii).

If D, is empty then a E U(D,). Otherwise, let (Fl, F2) E D,. Since Fl and F2 are two

flexible formulas, it may be seen that o(Fl) and a(F2) are of the form A y i Ay;,. EP,,
2 A and Ayq.. . . Aym2 .Epn respectively, where Pi is a primitive type and $ {y;, . . . , yLi}

for i = 1,2. Since Fl and F2 have the same types and substitution is a type preserving

mapping, it is clear that ,B1 = ,B2, ml = m2 and, for 1 5 i < ml, y; and y8 are variables

of the same type. But then evidently a(Fl) = o(F2). I

In order to show a converse of the above theorem, we need the observation contained

in the following lemma that may be verified by a routine inspection of Definition 5.9.

5.15. Lemma. Let (6 2 , D2, 82, V2) be P-derivable from (GI, Dl, 01, VI) and let 27 # F.

Then V1 C V2 and if F(G1) U F(D1) C V1, then F (G 2) U F(D2) C V2.

We also need a measure of complexity corresponding to a goal set and a unifier. In

defining such a measure, we use those introduced in Definitions 4.15 and 5.6.

5.16. Definition.

(i) Let G be a set of closed goal formulas. Then vp(6) = C pp(G).
GEG

(ii) Let be a set of goal formulas and let a be a positive substitution such that each

formula in a(6) is closed. Then ~ ~ (6 , a) = (vp(a(G)), ~ (a)) .

(iii) 4 is the lexicographic ordering on the collection of pairs of natural numbers, i.e.

(ml, nl) 4 (m2, n2) if either ml < m2 or ml = m2 and nl < n2.

If 6 is a finite set of closed goal formulas such that each member of G is provable from

P, then it is easily seen that vp(G) < w . We make implicit use of this fact in the proof of

the following lemma.

5.17. Lemma. Let (GI, Dl, el, Vl) be a tuple that is not a terminated P-derivation

sequence and for which .F(G1) U .F(D1) & Vl. Further, let there be a positive substitution

a1 E U (Dl) such that, for each G1 E 61, a1 (GI) is a closed goal formula that is provable

from P . Then there is a tuple (G2, V2, 02, V2) that is P-derivable from (61, Dl, 81, V1) and

a positive substitution a2 such that

(ii) 01 =vl 0 2 o 82

(iii) for each G2 E 62, u2(G2) is a closed goal formula that is ~rovable from P, and

(iv) ~ (G 2 , 6 2) 4 ~p(G1, ~ 1) .

In addition, when there are several tuples that are P-derivable from (61, Dl, 81, Vl) , such

a tuple and such a substitution exist for every choice of (1) the kind of step, (2) the

goal formula in a goal reduction or backchaining step, and (3) the flexible-rigid pair in a

unification step.

Proof. Since (GI, Dl, 01, V1) is not a terminated P-derivation sequence, it is clear that

there must be a tuple (G2, V2, 02, V2) that is P-derivable from it. We consider below the

various ways in which such a tuple may result to show that there must exist a tuple, and a

corresponding substitution, satisfying the requirements of the lemma. From this argument

it will also be evident that this is the case no matter how the choices mentioned in the

lemma are exercised.

Goal reduct ion step. If there is tuple that is P-derivable from (G1,V1,81, V l) by such a

step, then there must be a goal formula in G1 of the form T, G1 V G2, G1 A G2, or C P.

Let us consider the first three cases first. In these cases, we let

V2 = Dl, 82 = 0, V2 = Vl, and a 2 = a l .

Since a1 E U(Vl), it is obvious that a 2 E U(D2). Further, a1 =,, a 2 o 82; in fact,

a1 = a 2 o 82. Now we consider each of the cases in turn to provide a value for G2 that,

toget her with the assignments provided above, meets the requirements of the lemma.

(a) If T E 61, then let G2 = Gl -{TI. (6 2 , D2, 82, V2) is obviously a tuple that is P-derivable

from (GI, Dl, el, V1). The observations above show that this tuple and a 2 satisfy con-

ditions (i) and (ii) in the lemma. That (iii) is true follows from the facts that G2 2 G1

and a2 = a l . Observing additionally that P ~ (T) > 0, (iv) follows.

(b) Let G1 V G2 E GI. We note here that

and, further, that a2(G1) and a2(G2) are closed goal formulas. Using Theorem 4.14

and the assumption that al(G1 VG2) is provable from P, we see that g2(Gi) is provable

from P for i = 1 or i = 2. Further, by Lemma 4.16, it is the case that for the same i

Setting

62 = (61 - {GI V G2)) U {Gi),

we obtain a tuple that is P-derivable from (61, Dl, 01, Vl) and that together with a 2

satisfies the requirements in the lemma.

(c) If GI A G2 E 61, let 6 2 = (61 - {GI A G2)) U {GI, G2). By arguments similar to those

in (b), it follows that (61, Dl, el, V1) and a 2 meet the requirements in the lemma.

The only case remaining is when C P E G1. Here we choose a variable y such that

y $ V1, and let

G2 = (61 - {C P)) u {Xnorm(P y)), D2 = Dl, 02 = @,and V2 = V1 U {y).

Evidently (62, V2, 02, V2) is a tuple that is P-derivable from (GI, Dl, 01, V1). Now if we

let P' = al (P), we see that C P' E al (GI). Thus, by assumption, P I is a closed positive

formula and C P I is provable from P. From Theorem 4.14 and Lemma 4.16 it follows that

there is a closed positive formula C such that P(P' C) is provable from P and, in fact,

pp(p(P1 C)) < pF(C PI). Setting

we see that (6 2 , V2, 02, V2) and a 2 meet the requirements in the lemma: Since y $! V1 and

.F(V1) C VI, 0 2 E U(V2) and 01 =v, 02. Since .F(G1) Vl, (iii) is satisfied for each

G E G2 that is also in GI. For the only other G E 6 2 , i. e. Xnorm(P y), it is apparent that

a2(G) = P(P' C) and so (iii) is satisfied in this case too. From these observations and the

fact that pP(p(P1 C)) < P ~ (U ~ (C P)) , (iv) also follows.

Backchaining step. For this step to be applicable, there must be a rigid positive atom

G E GI. Let G, = al(G). By assumption, G, is a closed positive atom that is provable

from P . Therefore, by Theorem 4.14, there must be a formula GI' > G, E (PI such that

G" is provable from P; in fact, by Lemma 4.16, pp(G1I) < pp(Ga). Since GI1 > G, E 17'1,

there must be a D E P such that

where XI, . . . , x, are not members of Vl, and a positive substitution for {xi, . . . , x,)

such that G, = y(A) and G" = y(G1). Now, setting

D2 = SIMPL(V1 U ({(G, A))), V2 = V1 U {xi, - . . , x,),

we obtain the tuple (62, D2, 62, V2) that is P-derivable from (Gl,Vl,Ol, V1). Letting a 2 =

a1 o cp, we see that this tuple and a2 also meet the requirements in the lemma: Since

xi @ V1 for I 5 i 5 n,

a1 =v, 0 2 =v, 02 002.

Thus (ii) is satisfied. Also, since ?-(Dl) Vl , a 2 E U(D1). Noting that p(A) is a closed

formula and that F(G) C_ Vl,

From these observations and Lemma 5.4, it is clear that 02 E U(D2), i. e. (i) is satisfied.

Now, since F(&) V1, a2(G1) = al(G1) for each G1 E G2 that is also in 61. Thus (iii) is

true by assumption for such a G1. For the only other formula in G2, i .e. G', this follows

by observing that

a2(G1) = cp(G1) = GI1;

GI1 is by assumption provable from P. Finally, (iv) follows by observing that

Unification step. For this case to be applicable, there must be a flexible-rigid pair in Dl.

Let (Fl, F2) be an arbitrary such pair. By Lemma 5.7, there is a (positive) substitution

cp E MATCH(Fl, F2, V1) and a (positive) substitution S such that a1 =,, 6 o p and T(S) <
r (a l) . Setting

G2 = p(Gi), v2 = SIMPL(cp(R)), 02 = p,

and choosing V2 appropriately, we see that there is a tuple (5 2 , D2, 62, V2) that is P-derivable

from (61, Dl , O1 , V1) . Letting a 2 = 6 we see easily that the other requirements of the lemma

are also satisfied: Since .F(D1) 2 Vl, it is clear that

Noting that a1 E U(D1), (i) follows from Lemma 5.4. (ii) is evidently true. Since F(G1)

V1, we see that

oi(G1) = 0 2 0 62(G1) = 02(62(G1)) = 02(G2)-

That every G2 E a2(G2) is a closed goal formula that is provable from P now follows

trivially from the assumptions. Finally

5.18. Theorem. (Completeness of P-derivations) Let c p be a closed positive substitution

for the free variables of G such that cp(G) is provable from P. Then there is a P-derivation

of G with an answer substitution 0 such that cp d F (q 0.

Proof. From Lemmas 5.17 and 5.15 and the assumption of the theorem, it is evident that

there is a P-derivation sequence (Gi, Vi, Oi, Vi) l< i for {G) and a sequence of substitutions

ai such that

(ii) a;+l satisfies the equation ai =,i ai+l o 8i+l,

(iii) ai E U (Vi), and

(iv) ~p(Gi+l , "i+l) 4 ~ p (G i , oi).

From (iv) and the definition of 4 it is clear that the sequence must terminate. From (iii)

and Lemmas 5.4 and 5.7 it is evident, then, that it must be a successfully terminated

sequence, i . e . a P-derivation of G. Using (i), (ii) and Lemma 5.15, an induction on the

length n of the sequence then reveals that cp 5 y, 0, o - . - o el. But F(G) = V1 and 0,o. . . o 01

is the answer substitution for the sequence. 1

P-derivations, thus, provide the basis for describing the proof procedure that we de-

sired at the outset. Given a goal formula G, such a procedure starts with the tuple

({G), 0,0, F(G)) and constructs a P-derivation sequence. If the procedure performs an ex-

haustive search, and if there is a proof of G from P, it will always succeed in constructing

a P-derivation of G from which a result may be extracted. A breadth-first search may be

inappropriate if the procedure is intended as an interpreter for a programming language

based on our definite sentences. By virtue of Lemma 5.17, we see that there are certain

cases in which the procedure may limit its choices without adverse effects. The following

choices are, however, critical:

(i) Choice of disjunct in a goal reduction step involving a disjunctive goal,

(ii) Choice of definite sentence in a backchaining step, and

(iii) Choice of substitution in a unification step.

When it encounters such choices, the procedure may, with an accompanying loss of com-

pleteness, perform a depth-first search with backtracking. The particular manner in which

to exercise these choices is very much an empirical question, a question to be settled only

by experiment at ion.

6. Conclusion

In this paper we have concerned ourselves with the provision of higher-order features

within logic programming. An approach that has been espoused elsewhere in this regard

is to leave the basis of first-order logic programming languages unchanged and to provide

some of the functionality of higher-order features through special mechanisms built into the

interpreter. This approach is exemplified by the presence of "extra-logical" predicates such

as univ and functor in most current implementations of Prolog [32]. While this approach

has the advantage that usable "higher-order" extensions may be provided rapidly, it has

the drawbacks that the logical basis of the resulting language is no longer clear and,

further, that the true nature and utility of higher-order features within logic programming

is obscured.

We have explored an alternative approach based on strengthening the underlying logic.

In a precise sense, we have abstracted out those properties of first-order Horn clauses that

appear to be essential to their computational interpretation, and have described a class of

higher-order formulas that retain these properties. Towards realizing a higher-order logic

programming language based on these formulas, we have also discussed the structure of a

theorem-proving procedure for them. These results have been used elsewhere [21, 251 in

the description of a language called AProlog. Although space does not permit a detailed

discussion of this language, it needs to be mentioned that an experimental implementation

for it exists, and has in fact been widely distributed. This implementation has, among

other things, provided us with insights into the practical aspects of the trade-offs to be

made in designing an actual theorem-proving procedure based on the discussions in Section

5 [25]. Its existence has also stimulated research into applications of the truly novel feature

of the extension discussed in this paper: the use of A-terms as data structures in a logic

programming language.

This work has suggested several questions of both a theoretical and a practical na-

ture, some of which are currently being examined. One theoretical question that has been

addressed is that of providing for a stronger use of logical connectives within logic program-

ming. Our approach in this regard has been to understand the desired "search" semantics

for each logical connective and to then identify classes of formulas within appropriately

chosen proofs systems that permit a match between the declarative and search-related

meanings for the connectives. One extension along these lines to the classical theory of

Horn clauses is provided by the intuitionistic theory of hereditary Harrop formulas. The

first-order version of these formulas is presented in [18, 191 and the higher-order version

is discussed in detail in [23]. These formulas result from allowing certain occurrences

of universal quantifiers and implications into goals and program clauses and provide the

means for realizing new notions of abstractions within logic programming. The higher-

order version of hereditary Harrop formulas has been incorporated into the current version

of AProlog [27] and has provided significant enrichments to it as a programming language.

A second theoretical issue is the provision of a richer term language within AProlog.

The use of simply typed A-terms has turned out to be a limiting factor in the programming

context, and we have therefore incorporated a form of polymorphism inspired by ML [ll,

241. A complete theoretical analysis for this extension is, however, yet to be provided.

Further, there is reason to believe that a term language that permits an explicit quantifi-

cation over types, e.g. the one discussed in [8], may be a better choice in this context. In

a similar vein, a richer term language like the one provided in [30], may also be considered

as the basis for the data structures of AProlog.

Among the practical questions, an important one that is being addressed is the de-

scription of an efficient implementation for a AProlog-like language [26]. The key pursuit

in this respect is to devise data structures for A-terms that will support reasonable im-

plement ations of the reduction mechanism of functional programming on the one hand,

and of the unification and backchaining mechanisms of logic programming on the other.

Another issue of interest is the harnessing of the richness added to the logic programming

paradigm by the use of A-terms as data structures. As already indicated, ongoing research

has been focused on exploiting such a language in areas that include theorem proving, type

inference, program transformation, and computational linguisit ics.

Acknowledgements. This paper is based on Nadathur's doctoral dissertation. The

authors gratefully acknowledge helpful comments provided on this work by Jean Gallier,

Andre Scedrov and Richard Statman.

References

[I] Andrews, P. B. Resolution in type theory. Journa l of Symbolic Logic 36 (1971) 414 -

432.

[2] Apt, K. R., and van Emden, M. H. Contributions to the theory of logic programming.

J. ACM 29, 3 (1982) 841 - 862.

[3] Barendregt, H.P. T h e Lambda Calculus: I t s S y n t a x and Seman t i c s , North Holland

Publishing Co., 1981.

[4] Bowen, K. A. Programming with full first-order logic. Mach ine Intel l igence 10, Hayes,

J . E., Michie, D. and Pao, Y-H, eds., Halsted Press, 1982, 421 - 440.

[5] Church, A. A formulation of the simple theory of types. Journa l of Symbol ic Logic 5

(1940) 56 - 68.

[6] Constable, R. L. et. al. Implement ing Mathematics w i th the Nuprl Proof Development

Sys tem, Prentice-Hall, 1986.

[7] Felty, A., and Miller, D. Specifying theorem provers in a higher-order logic program-

ming language. Proceedings of the 9th International Conference on Automated De-

duction, 1988, Springer-Verlag, 61 - 80.

[8] Fortune, S., Leivant, D., and O'Donnell, M. The expressiveness of simple and second-

order type structures. J. A C M 30, 1 (1983) 151 - 185.

[9] Gentzen, G. Investigations into logical deduction. T h e Collected Papers of Gerhard

Gentzen, Szabo, M. E., ed., North-Holland Publishing Co., 1969, 68 - 131.

[lo] Goldfarb, W. D. The undecidability of the second-order unification problem. Theoret-

ical Computer Science 13 (1981) 225 - 230.

[ll] Gordon, M., Milner, A., and Wadsworth, C. Edinburgh L C F : A Mechanized Logic of

Computat ion , L N C S 78, Springer-Verlag, 1972.

[12] Gould, W. E. A matching procedure for w-order logic. Scientific Report No. 4, A F C

R L (1976) 66 - 781.

[13] Hannan, J. and Miller, D. Uses of higher-order unification for implementing program

transformers. Proceedings of the Fifth International Conference and Symposium on

Logic Programming, 1988, MIT Press, 942 - 959.

[14] Huet, G. P. The undecidability of unification in third order logic. In format ion and

Control 22, 3 (1973) 257 - 267.

[15] Huet , G . P. A unification algorit hrn for typed A-calculus. Theoretical Computer Science

1 (1975) 27 - 57.

[16] Huet, G. and Lang, B. Proving and Applying Program Transformations Expressed

with Second-Order Logic. Acta Informatica 11 (1978) 31-55.

[17] Lucchesi, C. L. The undecidability of the unification problem for third order languages.

Report C S R R 2059, Dept. of Applied Analysis and Computer Science, University of

Waterloo, 1972.

[18] Miller, D. Hereditary Harrop formulas and logic programming. Proceedings of the VIII

International Congress of Logic, Methodology, and Philosophy of Science, Moscow,

August 1987.

[I91 Miller, D. A logical analysis of modules in logic programming. Journal of Logic Pro-

gramming 6 (1989) 79 - 108.

[20] Miller, D., and Nadathur, G. Some uses of higher-order logic in computational linguis-

tics. Proceedings of the 24th Annual Meeting of the Association for Computational

Linguistics, 1986, 247 - 255.

[21] Miller, D. and Nadathur, G. Higher-order logic programming. Proceedings of the Third

International Logic Programming Conference, London, 1986, L N C S 225, Springer Ver-

lag, 448 - 462.

[22] Miller, D., and Nadathur, G. A logic programming approach to manipulating formulas

and programs. IEEE Symposium on Logic Programming, 1987, 379 - 388.

[23] Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A. Uniform proofs as a foundation

for logic programming. To appear in the Annals of Pure and Applied Logic.

[24] Milner, R. A theory of type polymorphism in programming. Journal of Computer and

S y s t e m Sciences 17 (1978) 348 - 375.

[25] Nadathur, G. A higher-order logic as the basis for logic programming. Ph.D. Disser-

t ation, University of Pennsylvania, May 1987.

[26] Nadathur, G. and Jayararnan, B. Towards a WAM model for XProlog. To appear

in the Proceedings of the North American Conference on Logic Programming, MIT

Press, 1989.

[27] Nadathur, G. and Miller, D. An overview of XProlog. Proceedings of the Fifth Inter-

national Conference on Logic Programming, 1988, MIT Press, 810 - 827.

[28] Paulson, L. C. Natural deduction as higher-order resolution. T h e Journal of Logic

Programming 3, 3 (1986) 237 - 258.

[29] Pfenning, F. Partial polymorphic type inference and higher-order unification. Pro-

ceedings of the 1988 ACM Conference on Lisp and Functional Programming, 1988,

153 - 163.

[30] Pfenning, F. and Elliot, C. Higher-order abstract syntax. Proceedings of the ACM-

SIGPLAN Conference on Programming Language Design and Implementation, 1988,

199 - 208.

[31] Scherlis, W. and Scott, D. First steps towards inferential programming. In format ion

Processing 89, North-Holland, Amsterdam, 1983.

[32] Sterling, L., and Shapiro, E. T h e A r t of Prolog: Advanced Programming Techniques.

MIT Press, Cambridge MA, 1986.

[33] van Emden, M. H., and Kowalski, R. A. The semantics of predicate logic as a pro-

gramming language. J. A C M 23, 4 (1976) 733 - 742.

[34] Warren, D. H. D. Higher-order extensions to Prolog: Are they needed? Machine

Intelligence 10, Hayes, J . E., Michie, D. and Pao, Y-H, eds., Halsted Press, 1982, 441

- 454.

	Higher-Order Horn Clauses
	Recommended Citation

	Higher-Order Horn Clauses
	Abstract
	Comments

	tmp.1201278550.pdf.HAAkl

