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Abstract—An efficient and accurate higher order, large-domain
hybrid computational technique based on the method of moments
(MoM) and physical optics (PO) is proposed for analysis of large
antennas and scatterers composed of perfectly conducting surfaces
of arbitrary shapes. The technique utilizes large generalized curvi-
linear quadrilaterals of arbitrary geometrical orders in both the
MoM and PO regions. It employs higher order divergence-con-
forming hierarchical polynomial basis functions in the context of
the Galerkin method in the MoM region and higher order diver-
gence-conforming interpolatory Chebyshev-type polynomial basis
functions in conjunction with a point-matching method in the PO
region. The results obtained by the higher order MoM-PO are val-
idated against the results of the full MoM analysis in three char-
acteristic realistic examples. The truly higher order and large-do-
main nature of the technique in both MoM and PO regions enables
a very substantial reduction in the number of unknowns and in-
crease in accuracy and efficiency when compared to the low-order,
small-domain MoM-PO solutions. The PO part of the proposed
technique, on the other hand, allows for a dramatic reduction in
the computation time and memory with respect to the pure MoM
higher order technique, which greatly extends the practicality of
the higher order MoM with a smooth transition between low- and
high-frequency applications.

Index Terms—Electromagnetic analysis, higher order modeling,
hybrid methods, method of moments (MoM), physical optics (PO),
reflector antennas.

1. INTRODUCTION

HE method of moments (MoM) for discretizing integral
equations in electromagnetics is an extremely powerful
and versatile general numerical methodology for electromag-
netic-field simulation in antenna and scattering applications [1].
However, traditional MoM analysis is inherently limited to elec-
trically small and moderately large electromagnetic structures,
because its computation costs (in terms of memory and CPU
time) increase rapidly with an increase in electrical size of the
problem. Modern radio, wireless, and satellite communication
and radar systems, on the other hand, often involve electrically
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very large metallic surfaces, that span many wavelengths in
three dimensions and may possess arbitrary curvature. Most
frequently, major parts of these surfaces are smoothly curved (on
the scale of the wavelength), so that they can be approximated as
locally planar. Therefore, one strategy to substantially reduce the
computation time and memory requirements at high frequencies
is based on a hybridization of the MoM, which is a numerically
exact method, with numerically approximate high-frequency
techniques [2], [3] for asymptotic analysis of electrically very
large smooth parts of the structure. With this, the applicability of
MoM may be extended to analysis of a wide class of large-scale
practical electromagnetic problems. The overall accuracy of the
analysis can be kept high by rigorously treating (by MoM) all
nonsmooth parts of the structure that exhibit singular or resonant
behavior and are expected to introduce significant errors if in the
asymptotic region (e.g., electrically small and resonant surfaces,
parts near edges and wedges, etc.).

MoM can be hybridized with either ray-based high-frequency
asymptotic techniques, such as the uniform geometric theory of
diffraction (UTD) [3], or current-based high-frequency asymp-
totic methods, such as the physical optics (PO) [3]. When some
regions of an arbitrary complex structure have to be treated with
the MoM and the remaining parts by an asymptotic technique,
combining MoM with a current-based asymptotic technique
is a preferable choice since MoM is based on currents as well.
For instance, with such purely current-based hybrid method, a
continuous current flow can be modeled on the entire surface
of the object.

Several current-based hybrid general methods have been
proposed and used for modeling of three-dimensional (3-D)
metallic radiation and scattering structures over the last several
years [4]-[11]. The fundamental shortcoming of the existing
methods is the adopted low-order current approximation, which
implies that the surface elements for modeling the structure
geometry must be electrically very small, that is, on the order
of A/10 in each dimension, where ) is the free-space wave-
length. This gives rise to small-domain (low-order) MoM-PO
computational techniques and results in a very large number of
unknowns (unknown current-distribution coefficients) required
to obtain results of satisfactory accuracy, with all the associated
problems, and still considerably limits the applicability and effec-
tiveness of the hybrid approach in real-world radiation/scattering
problems. In specific, the existing hybrid MoM-PO methods use
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Rao—Wilton—Glisson (RWG)rooftopbasis functions [ 12] defined
on triangular patches, which are normally on the order of A2 /100
in area, for the approximation of currents over metallic surfaces
in both the MoM- and PO-regions and 1-D rooftop functions
(piecewise linear expansion) for the approximation of the current
intensity along wires. A notable example of using large surface
elementsinthe POregionisthehybridtechnique proposedin[13],
where the low-order RWG scheme over PO elements has been
improved and asignificantreductioninthe required number of PO
unknowns achieved by implementing alinear phase interpolation
over large triangular patches. Only very recently, higher order
MoM-PO methods have been proposed [ 14], [15] that show great
potential for dramatically reducing the number of unknowns for a
given problem and enhancing further the accuracy and efficiency
of the MoM-PO analysis in practical applications.

This paper proposes an efficient and accurate higher order,
large-domain PC-oriented hybrid MoM-PO technique for 3-D
analysis of arbitrary perfectly conducting antennas and scatterers
in frequency domain. In general, the higher order, large-domain
approach in computational electromagnetics utilizes higher
order expansion functions defined in electrically relatively large
elements (e.g., [16]-[19]). Theoretical foundation of the hybrid
technique is a system of coupled surface integral equations, with
an electric field integral equation (EFIE) in the exact (MoM) part
of the structure under consideration and a magnetic field integral
equation (MFIE) in the asymptotic (PO) part of the structure
[5]. The PO approximation for surface currents is employed
in the asymptotic region, which is assumed to be composed of
smooth large surfaces. The proposed technique represents a
generalization and extension of the higher order Galerkin-type
MoM [19], which is referred to as a double-higher order method
because it combines higher order geometrical modeling and
higher order current modeling. Within the presented MoM-PO
method, all the surfaces in the system, in both the MoM and PO
regions, are modeled by electrically large generalized curvilinear
quadrilaterals of arbitrary geometrical orders (large domains).
Different higher order divergence-conforming basis and testing
functions are used in the MoM and PO regions of the structure,
in order to maximize the overall efficiency and accuracy of the
hybrid method. In the MoM region, basis functions are higher
order hierarchical polynomials of the parametric coordinates over
generalized quadrilaterals that automatically satisfy continuity
boundary conditions for the current components normal to the
quadrilateral edges shared by adjacent elements in the model
(divergence conformity) and the same functions are used for
testing (Galerkin technique). In the PO region, basis functions are
higher order divergence-conforming interpolatory polynomials
based on modified Chebyshev polynomials of parametric coor-
dinates and the testing procedure is a modified point-matching
technique at the interpolation points of the basis functions. Some
preliminary results of our higher order MoM-PO modeling are
givenin [15].

Because the adopted quadrilateral patches have both higher
order geometrical flexibility for curvature modeling and higher
order current-approximation flexibility for current modeling,
large curved quadrilaterals that are on the order of A (e.g.,
1)\ — 2)\) in each dimension can be used as building blocks for
modeling of the electromagnetic structure. This means that the

surface elements can be by two orders of magnitude larger in
area than traditional low-order patches, which greatly reduces
the overall number of unknowns and significantly enhances
the performance of the technique, as compared to traditionally
used low-order basis functions in MoM-PO modeling. In
addition, the choice of higher order hierarchical polynomials
in the MoM region allows for a whole spectrum of element
sizes and “regular” and “irregular” element shapes, with the
corresponding current-approximation orders, to be used at the
same time in a single simulation model of a complex structure.
This enables a very efficient nonuniform selective discretization
of the MoM solution domain. On the other side, the proposed
interpolatory polynomials and conformal point-matching
testing in the PO region make possible that the extremely large
PO-PO projection matrix in the general EFIE/MFIE matrix
equation for a structure be made an identity matrix, which
tremendously reduces the computational costs associated with
electromagnetic interactions in the PO region. This is crucial
for the overall efficiency of the hybrid method. Finally, this
particular choice of basis and testing functions in the PO region
enables junctions of generalized quadrilaterals with different
current-approximation orders, which yields the same flexibility
in discretizing the surfaces as in the MoM region.

Due to its PO extension, the proposed hybrid higher order
MoM-PO method is much more efficient in analysis of large
metallic structures than its pure MoM counterpart [19]. Due to
its truly higher order and large-domain nature in both MoM and
PO regions, on the other hand, the presented hybrid method is
much more efficient than the existing hybrid MoM-PO tech-
niques [4]-[11], which are based on low-order, small-domain
discretization of both MoM and PO regions.

This paper is organized as follows. Section II presents the theo-
retical background and numerical components of the higher order
hybrid MoM-PO method. This includes the derivation of the hy-
brid MoM-PO system of electric and magnetic surface integral
equations for unknown surface electric currents in the structure
with the PO approximation in the asymptotic region and repre-
sentation of this system in matrix form, geometrical modeling of
MoM and PO surfaces by curved generalized quadrilaterals, de-
velopmentofhigherorderbasis and testing functions for the MoM
and PO region, respectively, and evaluation of MoM-PO interac-
tion impedance and projection matrices for higher order quadri-
lateral elements and the proposed basis and testing functions. In
SectionIII, numerical examples showing excellent efficiency and
accuracy of the proposed technique at modeling of radiation sys-
tems that include flat and curved large surfaces are an array of
dipoles in front of a large metallic cylinder, a monopole antenna
attached to alarge metallic plate, and a parabolic reflector antenna
with a pyramidal horn feed.

II. HIGHER ORDER HYBRID MoM—PQO TECHNIQUE

A. Hybrid MoM-PO System of Electric and Magnetic Surface
Integral Equations

Consider an electromagnetic structure consisting of arbi-
trarily shaped metallic surfaces and wires. Let the structure be
excited by a time-harmonic electromagnetic field of complex
field-intensities E' and H', and angular frequency w. This
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Fig. 1.
region.

Decomposition of an electromagnetic structure into a MoM and a PO

field may be a combination of incident plane waves (for a
scattering structure) or the impressed field of one or more
lumped generators (for an antenna structure). Our primary goal
is to numerically evaluate the distribution of surface electric
currents in the structure. The analysis can be performed using
the MoM alone. However, at higher frequencies, significant
reductions in memory requirements and computation time can
be achieved if high-frequency approximations, such as the PO
method, are employed on electrically large, smooth parts of
the structure. To this end, we hybridize the MoM and the PO
method, both as truly higher order computational techniques.

As the first step, we decompose the structure under consid-
eration into two parts: a MoM region and a PO region (Fig. 1).
The surface current density vectors in the MoM and PO regions
are denoted by J§°™ and J5©, respectively. Note that, as the
two regions are separated only in the basis-functions space, they
can be physically connected or even overlap.

The currents in both the MoM and PO regions are the sources
of scattered electric and magnetic fields, of intensities £ and H.
The boundary conditions for the tangential components of the
total (incident plus scattered) electric and magnetic field vectors
on the metallic (perfectly conducting) surfaces in the model can
be written as

nx [E(JYM +E(JEC)+E] =0 (EFIE) (1)
JEO + JYM = on x [H (J§°M) + H (JEC) + H')
(MFIE) (2)

where n is the unit normal vector on the surface, and H is the
average value of H as the surface is approached from the op-
posite sides, i.e., at points just above and below the surface. For
E, such averaging is not necessary, since the tangential scat-
tered electric field is continuous at the surface. The first condi-
tion, which represents an electric field integral equation (EFIE),
is applied on surfaces in the MoM region. The second condi-
tion represents the magnetic field integral equation (MFIE) and

is imposed over surfaces in the PO region. Note that the term
J gqoM on the left-hand side of (2) is nonzero only if there is
an overlapping between the MoM and PO current-domains, for
current expansion functions defined on surface elements that are
geometrically on the PO surfaces but computationally belong to
the MoM current-domain in order to enforce the current-conti-
nuity condition across the boundary between the MoM and PO
regions.

The scattered electric and magnetic fields are expressed via
the magnetic vector potential, A, and the electric scalar poten-
tial, ®, in a standard fashion:

E(Js) = —jwA -V 3)

H(Jg) = %v « A. @)

The operator V signifies that, for the field points lying in the
current sheet Js (thus coinciding with the source points), V x A
is determined as the average value of V x A on both sides of
the current sheet, close to the surface (for other field points,
V = V). For V®, the averaging is not necessary, as we are
interested only in the tangential component of F in (1). The
potentials, in turn, are obtained by the following expressions in

terms of the current density:

A=y / JsgdS, 5)
S
@:L VS-JsgdS (6)
we
S

where S represents all the surfaces in the system. Green’s func-
tion is given by

e R

© 47R’

g v =jwyeEnr @)
with R being the distance of the field point from the source point
and € and p the permittivity and permeability of free space.

In the hybrid MoM-PO method, MFIE (2) is solved using the
PO approximation for the surface currents, which inherently ne-
glects mutual interaction effects within the currents in the PO
region and imposes the geometrical-optics shadow condition,
thus reducing (2) to (8), shown at the bottom of the page. Com-
bined with the integral expressions for the electric and magnetic
fields (3)—(7), the EFIE/MFIE system of equations can now be
rewritten as

n X —jwu/ (JgIOM + JSPO) gdS
S

—éV/Vs-(Jg/IOM—I—JSPO)gdS—l—Ei =0 (9
5

Jg/IoM + JSPO _ {Z'n X [H (JgﬁoM) + Hi]

0,

in the lit PO region
in the shadowed PO region

®
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JEO 4+ JMM = 9 % | V x / JyeMgds + H

(in the lit PO region). (10)

We expand the currents using separate sets of basis functions
Byion and Bpo for the MoM and PO regions, respectively,
and test the integral equations using separate testing (weighting)
functions TM°M and TT© for the two regions. The complete
hybrid MoM-PO system matrix equation can then be expressed
as [5]

b NN zﬁgg‘} _ [IMOM} _ [vh;ogl} Can
P MoM ZMoM P PO Iro 14

Applying the surface divergence theorem and having in mind
that divergence-conforming testing functions on the elements
in the MoM region will be used [19], the elements of the
MoM-MoM and MoM-PO impedance matrices are obtained as

ZM.SM/FO :jwu/ /TMOM 'BMoM/POgdS(b)dS(t)
(t) §(b)

/ / V TMoM (V

s(t) S(b)
- Brtort/po)g dS™ dS™ (12)
(“MoM/PO” in the subscripts means “MoM or PO”), while the
PO-MoM interaction impedances are given by

INowt = / T -nx |V x / Bhiong dS™ | ds™
S() S(p)
(if in the lit region). (13)
The elements of the PO-MoM and PO-PO projection matrices
are

© . Brtor/podS™. (14)

1
PO
Pyiom/pPo = ) /T

S(t)

Finally, the MoM and PO voltages (excitation-matrix elements)
are evaluated as

pMoM _ / TMoM | pri g 5 (t) (15)
50

PO = / TPO . (n x H')dS®, (16)
5

In (12)—(16), S® and S® represent the domains of basis
and testing functions, respectively. Note that the reduced com-
plexity of the MoM-PO method, as compared to the full MoM,
is achieved by neglecting the mutual interactions between the

((Ky 1Ky +1) v

et

(0
(By+1)

Fig. 2. Generalized curved parametric quadrilateral of arbitrary geometrical
orders for modeling of MoM and PO surfaces.

PO currents, therefore eliminating from the matrix equation the
large, dense, matrix Zgg. From the second equation of the two
partitioned matrix equations equivalent to (11), the unknown
PO current coefficients Ipo can be expressed as

Ieo = (PES) ™' [VFO - ZEO) Ivon] . (17)

PO

(P MoM —
Substituting this expression in the first partitioned equation of
(11) then leads to the following matrix equation:

[le\\fc?f\\/[/[ ZpsM (PPP) (Piont — ZﬁgM)]IMol\fI

__ 1/MoM MoM [ pPO\~1 ;PO
=V - ZpS (PPO) 4

(18)

which can be solved for the unknown MoM current coefficients
Iyion. Once the MoM currents are known, the PO currents can
be obtained using (17).

B. Geometrical Modeling of MoM and PO Surfaces

In this paper, generalized curved parametric quadrilaterals
of higher (theoretically arbitrary) geometrical orders [19] are
adopted as basic elements for the approximation of all the sur-
faces in the system, in both the MoM and PO regions. A gen-
eralized quadrilateral (Fig. 2) is determined by M = (K, +
1)(K, + 1) points (interpolation nodes) arbitrarily positioned
in space, where K, and K, (K, K, > 1) are geometrical or-
ders of the element along the u- and v- parametric coordinate,
respectively. The quadrilateral can be described analytically as

K,

M K.,
= E Tipi(u,v) E reuto!
1=1 =

k=0 1=0

where 71,79,...,7) are the position vectors of the interpo-
lation nodes, p;(u,v) are Lagrange-type interpolation polyno-
mials satisfying the Kronecker delta relation p;(u;,v;) = 6;j,
with u; and v; representing the parametric coordinates of the
Jth node, and rj; are constant vector coefficients related to
T1,T2,...,TM-
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C. Higher Order Basis and Testing Functions in the MoM
Region

The surface electric current density vector over quadrilaterals
in both the MoM and PO regions is represented as

Js(u,v) = Z aB(u,v)

1 w Ny—1 87‘
Tar — ar] Z auijfuij(u7v>_
ou X Bvl |i=0 j=0 Ou
Nu—1 N, or
+ ; ;arvijfwj(u,v)% (20)

where f are divergence-conforming basis functions of coordi-
nates u and v, V,, and N, are the adopted orders of the current
approximation, c,;; and c,;; are unknown current-distribution
coefficients, and r = 7(u, v) is given in (19).

In the MoM region, the following simple divergence-con-
forming hierarchical polynomials of arbitrary orders [16], [17],
[19] are adopted as basis functions

u+1, 1=0
u—1 1=1 j
.. — . ’ J
fl\/[o]\’{,’lll] (’U,,’U) - wt — 17 7 Z 2,6V€Il v (21)
ui —u, 'L Z 3./Odd

with an analogous expression for fqi\zljoM The same functions are
used for testing, which gives rise to the Galerkin method.

Note that if the MoM subsystem is to be solved by an itera-
tive procedure and the number of unknowns in the MoM region
is very large, alternative higher order hierarchical polynomial
basis functions with improved orthogonality and conditioning
properties [20] may be implemented to accelerate the solution
procedure. However, these basis functions, being more compli-
cated than the regular polynomials in (21), require larger MoM
matrix filling times, and are therefore impractical when iterative
solvers (e.g., those based on the conjugate gradient method) are
not used for the MoM part of the system.

Note also that the MoM solution to EFIE (1) using expansions
(21) appears to yield equally accurate results at internal reso-
nances of closed metallic surfaces [19], even though the condi-
tion number of the MoM matrix is very large at these frequen-
cies (the solution is sensitive to internal resonances only when
the current approximation orders are not sufficient).

Wires are modeled using the thin-wire (reduced-kernel) ap-
proximation and the 1-D version of the basis functions in (21).
Of course, wires (and wire-surface junctions) must belong to the
MoM region (the PO does not make sense for wires).

D. Higher Order Basis and Testing Functions in the PO Region

If the basis and testing functions in the PO region are chosen
to be the same as in the MoM region, the inverse of the pro-
jection matrix PLS becomes block-diagonal, where each block
corresponds to a group of connected quadrilateral surfaces in
the PO region. If all of the elements in the PO region form a
single, connected PO surface (which is the case most frequently
encountered in practical applications), then (P5Q)~! is dense,

Fig. 3. Representative 1-D sixth-order interpolatory basis functions based
on modified Chebyshev polynomials (fq, f1, f2, and f; are nonzero for
u = —1,—0.802, —0.445, and 0, respectively).

and the overall analysis becomes extremely costly in terms of
the required memory and computation time.

The computational cost associated with the inversion of the
projection matrix PSS and matrix multiplications in (17) and
(18) can be considerably reduced by a proper choice of basis
and testing functions in the PO region. If the surface currents
in the PO region are expanded in terms of interpolatory polyno-
mials and a modified point-matching technique is applied at the
interpolation points, PLS can be made an identity matrix and
(17)—(18) reduced to

MoM MoM PO PO
[ZMOM - ZPO (PMOM - ZMOM)] IMOM

= yMoM _ ZMoMy/PO (22)
Ipo = V'O — (P — Zaiont) Intont- (23)

With this aim in mind, we choose 2-D interpolatory polyno-
mials based on modified Chebyshev polynomials as basis func-
tions in the PO region. In specific

T3 (uv) Ty, (v)

mod .
U —Uu; v Vj

fPouij(u,v) = Cyij (24)

where 7%, (u) and Ty, (v) are the modified and regular
Chebyshev polynomials, respectively, and C,,;; is a normal-
ization factor. The zeros of modified polynomials, u;“"d, are
obtained by scaling the zeros of regular Chebyshev polyno-
mials by a factor of cos{w/[2(N, + 1)]}. The left-most and
right-most zeros therefore have a value of —1 and +1, respec-
tively, making the basis functions divergence conforming on
the segment [—1, 1]. Fig. 3 shows several basis functions based
on modified Chebyshev polynomials in one dimension. Note
that an interpolation based on polynomials with arbitrary dis-
tribution of zeros on the segment [—1, 1] could also have been
used. Such interpolation, however, would yield basis functions
with larger nonmaximum “ripples.”

We also note that the use of basis functions (24) in conjunc-
tion with the point-matching testing procedure allows junctions
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of generalized quadrilaterals with different current-approxima-
tion orders. For example, if the nth quadrilateral in the model
shares an edge defined by u,, = —1 with the mth one, the con-
tinuity of the normal surface current density component across
the common edge is enforced by adopting the basis functions of
the nth quadrilateral that correspond to the common edge in the
following form:

T3 (W) Tonin(Nosn N (V)
.. = Cuif Nu+1 . mln( v vn)
fPO(n),uz] (u7 ’U) J w— (_1) v —v;

7=0,1,...,min(Nym, Npp)

’

(25)

so that the interpolation points of the basis functions along the
edge are the same for the two quadrilaterals. The orders of other
basis functions on the nth quadrilateral do not depend on the
expansions in neighboring elements. This yields the same flexi-
bility in discretizing the PO surfaces using elements of different
sizes and shapes (with the corresponding current-approxima-
tion orders) as with the use of the hierarchical MoM basis func-
tions (21) [19]. At the external edges of open metallic surfaces,
the normal component of Bpg is forced to zero, which means
that .J SPO differs from the conventional PO current in (8) in the
vicinity of these edges.

Given the definition of PLS in (14), we conclude that its re-
duction to an identity matrix requires that the point-matching
testing functions in the PO region, TFO, satisfy the Kronecker
relationship

1 PO ) _ _J1L, m=n
S(t)

(26)

The testing functions defined on higher order quadrilaterals have
the following general form:

1
T?n% (u,v) = th(u7 0)6(U — U, v — V) (27)
ou ov
which reduces (26) to
1
§tm (um-, vm,) ' BPO(n) (um7 vm) = 6m,n- (28)

The point matching technique is performed exactly at the inter-
polation points of the basis functions, and hence
Bpon)(tUm,vm) =0 (if m #mn). (29)
To construct the testing function that corresponds to the
u-directed basis function, we note that, at the interpolation
point (U, vm ), only one u-directed and almost all v-directed
basis functions are nonzero. Therefore, the corresponding
testing function has to be constructed in such a manner that its
product with current expansion functions equals one for u-di-
rected basis function and zero for v-directed basis functions.
Accordingly, the testing function is chosen to be perpendicular
to the v parametric coordinate
(30)

tm(“m; 'Um) = tm(umv 'Um)wv

) P VX (UxV)
o [Vx@xv)|

Fig. 4. Surface unit vectors @ and ¢ along the two parametric coordinates
and unit vector % of the testing function corresponding to the u-directed basis
function (all vectors are in the same plane).

where 0 is the unit vector perpendicular to 9(w - © = 0) at the
point (w,, vm) (Fig. 4)

0 — ?x(z}x?) _ f/x(.ﬂxf/) 31)
|0 X (0 X D)] | w=um sin 6 w=um,

=vm

f being the angle between the unit vectors © and v along the
parametric coordinates. The dot product of testing and basis
functions can, therefore, be expressed as

tm(uma 'Um) ' BPO(n) (um7 'Um)
1

= tm(um,vm)w fPO(n)(Umvvm)UAj
du " Julizim
or
3u u=um
1
= tm(um, ’Um)—| T fPO(n) (U,m, Um). (32)
m uizm
Since f(um,vm) = 1, we conclude that a choice
or .
tm(umavm) =2 % B w 33)

V=V

ensures that PLQ is an identity matrix, which gives rise to the
following final expression for the testing function corresponding

to the u-directed basis function in the PO region
2 or A
TFW?)(U,U) = W‘% (U — U, U — Uy ).

U=Um

V=V

(34)

The testing function that corresponds to the v-directed basis
function is constructed in an analogous manner.

In general, regardless of the particular choices of basis and
testing functions proposed and implemented in this paper, it is
worth noting that it is impossible to implement the Galerkin
testing in conjunction with the current continuity (divergence
conformity) of basis sets in the PO region and still have the pro-
jection matrix PES be an identity matrix. These features are
contradictory because the orthogonality condition (26) requires
that all of the zeros of all of the expansion functions over PO
elements belong to the interior of the element, while the cur-
rent-continuity condition requires that some of the higher order
functions have some of their zeros at the element edges, i.e.,
at the boundaries of integration domains. While it is extremely
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important to ensure the current continuity across the boundaries
between the PO elements, the point-matching testing in the PO
region, as implemented in this paper, has proved to be accu-
rate enough in all applications and is faster than the Galerkin
procedure.

Finally, note that the matrix product ZyS™M(PH9 — 2o
in (22), which becomes very time-consuming when the number
of unknowns in the MoM region is large, can be avoided by ap-
plying the multiple-reflection iterative approach [5], [11], [13]
given by

MoM 7(N) MoM MoM 7(N—1)
Zniom Iyon =V —Zpo Ipo
N N
Ir()o) =VPo - (Pﬁ?M Zl\lj[(gM) Il&lo%v[

N=1,2..., withI) =0 (35)

instead of the direct solution of (11) using (22) and (23).

E. MoM-PO Interaction Impedance and Projection Matrices
for Higher Order Quadrilateral Elements

In this section, we finalize the expressions for the MoM-PO
system matrix elements based on proposed higher order basis
and testing functions for the MoM and PO regions of a general
structure. Without the loss of generality, we consider only the
u-components of basis and testing functions. Furthermore, for
the basis functions in both the MoM and PO regions and the
testing functions in the MoM region (which are the same as the
corresponding basis functions), we consider the functions in the
following simplified form:

1 or(u,v)
du ~ v
where I" are the simple 2-D power functions
Lij(u,v) = u'r. 37

The impedances and projections corresponding to the com-
plete basis functions defined by (20), (21), and (24) can be ob-
tained as a linear combination of those corresponding to the
simplified functions in (36) and (37). Finally, for the matrix
elements associated with the basis functions in the MoM re-
gion and testing functions in the PO region, we assume that the
PO quadrilaterals are not in the shadowed region. If the testing
(matching) point is in the shadow, the corresponding matrix el-
ements are zero.

Combining (12), (20), (36), and (37), the impedances for the
testing function defined by indices ¢,,, and j,,, on the mth quadri-
lateral in the MoM region and the basis function defined by in-
dices %, and j, on the nth quadrilateral in either the MoM or
PO region are obtained as

MoM
ZMoM /PO

U2m V2m U2n V2n

. Orm
= pr’ / (F'inwjrr7 W) <F

Ulm Vlm Uln Vin
X g(R) du,, dv,, du,, dv,,

U2m U2m U2n VU2n

=]

Ulm Vim Uln Vln

or,
tn]n (9un

Zm]m n.ln

Oy,

x g(R)du,, dv, du,, dv,
K™ g g ge(m

Z Z Z Zk kn"kz Tkl)

km=11m=0kn,=11,=0

Xg(Lm'i'km_l;Jm'i'lm;Ln'i'kn ]-7Jn+ln>
1
- WQ—MZman(Zm - lajmain - l:jn)
im=0,1,...,N™ j.=01,.. N™
in=0,1,....,N™ . =01,...,N™ (38

where (thm), Ném)) and (K}(,m), Kém)) are the current-ap-
proximation orders and geometrical orders, respectively, of the
mth quadrilateral along the u- and v-coordinate, and rgln) are
the geometrical vector coefficients in the pol nomlal expansion
of the mth quadrilateral, while (N, Ny™), (K, k™),
and 1'2,7) are the corresponding parameters for the nth quadrilat-
eral in the model. The integration limits in both quadrilaterals
areu; = v; = —1l and us = v = 1, and

1 1 1 1
f(imvjmaiann —Jwﬂ////u;{lvﬁn ulnvhg(R) dun,
—1-1-1-1

(39)

dv,, du,,, dv,,.

The expressions for the MoM-PO matrix elements that cor-
respond to testing functions in the PO region are considered
next. From (13) and (34), the elements of the impedance ma-
trix Z5 2\ have the form

or _
P .
ot = 2 | - [n X H(Byiom))] u=unm
OV |z, wa
or R _
—9| (w x 'n,:) - H(Buont) v=em . (40)
O | u=um v=vm B
Noting that @ X mu=um = —0|«=«m and using the identity

V=Vm V=Vm

V x (Cg) = —C x Vg, we can write

or =
711\3121\/[ = — V) u=um -V X / BMOI\/I.(] dS(b)
a'U u= um v=rm
S(b)
or ¥,
=_-2 / (BMOM X U u:"m) 'ngs(b)
OV | uum . e
v=vm g(b)

(for lit region). (41)

If the MoM and PO regions overlap and the testing and source
surface elements are the same (m = n), Vg is computed as the
average value of Vg at the two points placed at the same small
distance on opposite sides of the surface

- 1 1 dg(R")
V(] - 5 |:(Ttest + d - rsource) ﬁ dR+
1 dg(R™
+ (Ttest - d - ‘rsource)? ZFR_ ) (42)
where Rt = |riest + d — Tsource| and d = nd is the displace-

ment vector perpendicular to the surface at the testing point,
with the displacement d being very small when compared to the
quadrilateral dimensions. When the testing and source points
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coincide (Tiest = Tsource), BT = d. When they are close to
each other, the vector Ttest — Tsource 15 tangential to the surface,
and therefore RT =~ \/ [Ttest — Tsource|? + |d]?. Finally, when
the distance between the testing and source points is large com-
pared to d, RT & |Fiest — Tsource|- Hence, in all cases we can
assume that RT ~ R~ so that (42) becomes

1 dg(R")

"'sourcc) R+ dR+ (43)

vg ~ (Ttost
If the testing and source surface elements are not the same,
Vg = Vg.
With (20), (36), (37), and (43), the final expression for the
elements of Z} 0, is

U2n V2n

PO or

ZMoM — 8 0

u=um
VEYM Uiy, Vin

or, .

<D (G iz ) - (=)
1 dg(R)
R dR
or

v

du,dv,

A~
V|lv=um
V=V

=2

U=um
V=V,

K™ KM g g

DIDID IS NACH

krn1=01p1=0kp,=11,=0

X rgzl) )

X dj(Ln + kn 4 kn1 — 1,jn + I + lnl) (44)
where
(nl) _ N
"'E:;l)*: {’l'](crlll) Tm k—O . =0 (45)
T otherwise
and
U2y V2n ' ‘ 1 dg(R)
a2 a — Un gyIn
Y(in, jn) = / / U B R dupdv,.  (46)

Uln Vlin

For the testing quadrilateral coinciding with the source one,
R is to be substituted by RT in (44) and (46) according to
(43), i.e., the integrals are computed slightly above the quadri-
lateral surface. Based on extensive numerical experiments, we
have found that the concrete value of the small displacement d
above the surface is not critical at all for the accuracy of the
results, and have adopted a value of 107> times the maximum
dimension (diagonal) of the quadrilateral for this parameter in
the MoM-PO code.

Rapid and accurate recursive procedures for evaluation of
MoM-PO impedances in (38) and (44) are developed, which en-
sure that the CPU time per unknown in higher order, large-do-
main solutions is comparable to that in low-order, small-domain
solutions. Similar procedures for evaluation of MoM imped-
ances in the case of volume-integral-equation analysis of di-
electric scatterers are explained in [21]. When the testing (field)
point is close to or lies in the source quadrilateral surface, the in-
tegrals (39) and (46) are solved by combined analytical/numer-
ical integration procedures that include the (quasi)singularity
extraction [21].

For an arbitrary structure modeled by a system of generalized
curvilinear quadrilaterals, a testing point in the PO region can
be in the shadow with respect to one part of the source quadrilat-
eral, while being lit by the remainder of the quadrilateral. There-
fore, the exact implementation of the shadow condition (8) at
this point implies the integration [in (46)] of the associated basis
functions only over the part of the source quadrilateral that is
actually visible from the testing point. This, in turn, means that
the shadow/lit determination must be carried out for all pairs
of testing points (in the PO region) and numerical-integration
points (in the MoM region), which in some cases is exceedingly
time consuming. The cost of multiple shadow determinations
can be reduced if the “point-to-point” approach is applied in
combination with the “element-to-point” and “element-to-ele-
ment” approaches so that the overall computation time is mini-
mized without sacrificing accuracy. The development of an op-
timal solution to the visible surface determination problem for
a general geometry, which itself is a challenging research task
(similar problems are encountered in computer graphics appli-
cations), and its adaptive implementation combining the above
three “source-to-target” ray-tracing approaches is part of our
current and future work.

The projection matrix PL9, is nonzero only if there is an
overlapping between the MoM and PO current-domains. For
example, such overlapping occurs for currents of the zeroth
and first approximation orders [which serve for adjusting the
current-continuity boundary condition at the corresponding
quadrilateral edges (u,v = #£1)] in quadrilaterals that share
an edge belonging to the boundary between the MoM and
PO regions. Although the associated zeroth- and first-order
functions By, are defined on generalized quadrilaterals that
are geometrically on the PO surfaces, computationally they
belong to the MoM current-domain in order to enable the auto-
matic adjustment of the current-continuity condition across the
boundary. Using (14), (34), and (36), the elements of Pl{’,ISM, if
nonzero, are evaluated as

0 1
pEIOoM 2 . Lij (s vm )0
av . ﬁ’" | ou v | tft‘;’:
or
- % . = Fij(um,vm). (47)

V=V,

Although the matrix P59, is not an identity matrix, this does
not add significantly to the complexity of the method and com-
putation cost of the analysis, because P59, is added to the neg-
ative of the dense impedance matrix Zl\lj[?M in (22)—(23) or (35),
and no additional matrix inversion or multiplication is needed.

The projection matrix PES is an identity matrix and does not
appear in (22)—(23) and (35).

Finally, note that the MFIE (2) and the PO approximation in
(8) are formally valid only on smooth surfaces. If the PO re-
gion contains sharp edges, the normal n at the testing points
belonging to these edges is not defined. In such cases, n is de-
termined similarly as in [8], as the average of the corresponding
normal vectors on the two connected surfaces, that is, on the two
adjacent quadrilateral elements, at points close to the boundary.
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Fig. 5. Simulated higher order MoM-PO geometrical model of an antenna
system consisting of an array of nine A/2 dipoles in front of a large metallic
cylinder of finite length (all dipoles are fed by generators of equal amplitudes
and phases).

III. NUMERICAL RESULTS AND DISCUSSION

We present three characteristic realistic examples aimed at
demonstrating the accuracy and efficiency of the proposed
higher order MoM-PO technique. All the simulations are per-
formed on a relatively modest PC (AMD XP-1700+ with 512
MB of RAM).

A. Array of Dipoles in Front of a Large Metallic Cylinder

As the first example, consider an antenna system consisting
of an array of nine A/2 dipoles in front of a circular metallic
cylinder (Fig. 5). The diameter of the cylinder is 15\ and its
height 12)\. The wire diameter for the dipoles is A/1000. The
dipoles are parallel to the cylinder axis and are situated 1.25\
from the cylinder surface with an angular separation of 3.75°
between the adjacent dipoles in the array. All of the dipoles are
center-fed by point generators of equal amplitudes and phases.
The lateral surface (barrel) of the cylinder is approximated using
144 quadrilaterals of the second geometrical orders (K, =
K, = 2) and each of the cylinder bases (caps) is represented by
a total of 24 second-order and 36 first-order (K, = K, = 1)
geometrical elements, with the seventh-order current approxi-
mation in both parametric coordinates (N,, = N, = 7) for
all of the quadrilaterals in the model. All quadrilaterals are ap-
proximately 2 on a side, which is 20 times the usual low-order
limit of A/10. Each dipole is modeled using two straight wire
segments with fourth-order current approximations (N, = 4).
In the hybrid MoM-PO analysis, the dipole array is in the MoM
region and the cylinder is in the PO region. Note that the shadow
condition (8) is enforced in this example for individual dipoles
independently at all matching points in the PO region, that is,
the lit and shadow regions of the cylinder depend on the source
location in the MoM region.

Fig. 6 shows the computed radiation pattern of the array in
three characteristic planes that contain the z-axis and form an
angle of (a) 0°, (b) 45°, and (c) 90°, respectively, with the cen-
tral dipole of the array. In all of the cuts, we observe an excel-
lent agreement of the results obtained by the hybrid MoM-PO
method and the full MoM results in the front region (for angles
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Fig. 6. Far field of the antenna system in Fig. 5, computed by the full MoM
and hybrid MoM-PO higher order techniques, respectively, in planes defined by
(a) ¢ = 0°,(b) ¢ = 45°, and (c) ¢ = 90° (¢ is the standard cylindrical angle
measured from the positive x-axis around the z-axis in Fig. 5).

up to 90°) with the largest difference (of approximately 1 dB)
being in the cuts (b) and (c) for the angle of about 85°. In the
back region (for angles between 90° and 180°), however, the
MoM-PO prediction is not accurate enough. The discrepancy
between the pure MoM and hybrid MoM-PO here is certainly
primarily due to the fact that the currents over the parts of the
cylinder surface in the shadow region (it includes both caps and
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a large portion of the cylinder barrel), which are quite weak as
compared to the currents in the lit region but contribute signif-
icantly to the (low-field) radiation in the back region of the an-
tenna system, are set to be zero [(8)] in the MoM-PO simulation.

Using the two-fold symmetry of the problem, the total
number of unknowns for the antenna system amounts to 6181
with both techniques. In the pure MoM analysis, the portion of
the overall CPU time needed for the matrix filling and that for
the solution of the system of linear equations by LU decompo-
sition are 226 and 907 s, respectively. In the hybrid MoM-PO
analysis, the number of unknowns in the MoM region is 20
and that in the PO region 6461. The CPU times for filling the
MoM-PO matrices and solving the system of equations are 1.9
and 0.03 s, respectively, which is by three orders of magnitude
faster than with the rigorous (full MoM) higher order technique.
Note also that the estimated number of unknowns, based on a
topological analysis, for a common low-order small-domain
MoM-PO solution with RWG basis functions on triangular
patches and the use of two-fold symmetry is more than 65000
for the analysis of the same problem.

B. Monopole Antenna Attached to a Large Square Metallic
Plate

Consider next a vertical A/4 monopole antenna attached at
the center of a horizontal metallic square plate 9\ on a side. The
monopole is modeled using a single straight wire segment with
the third-order current approximation (N, = 3). The wire di-
ameter equals A\/1000. The plate is represented by a total of 84
quadrilaterals of the first geometrical orders (K,, = K, = 1),
as shown in Fig. 7. This model consists of 80 square patches
(each )\ on a side) with the fifth-order current approximation in
both parametric coordinates and four trapezoidal (triangle-like)
quadrilaterals around the wire-to-surface junction with the
third- and fourth-order current approximations in different
directions. The triangle-like surface elements enable current
continuity across the junction without introducing special junc-
tion basis functions. The structure is analyzed using the pure
MoM and two hybrid MoM-PO models. In the first MoM-PO
arrangement, the MoM region consists of the monopole and
the four triangle-like patches in the junction, while all of the
square patches are in the PO region, as indicated in Fig. 7(a).
The second MoM-PO arrangement, shown in Fig. 7(b), in-
troduces an additional layer (rim) of MoM surface elements
along the plate edges, to improve the hybrid solution. Note that
the MoM-PO model (b) contains junctions of MoM and PO
elements both around the triangle-like MoM elements in the
wire-to-surface junction and along the square-shaped MoM
elements near the plate edges. Note also that the basis functions
on the PO elements in these MoM-PO junctions that serve
for adjusting the current-continuity condition for the normal
component of Jg along an edge shared with a MoM element are
actually treated as MoM basis functions and computationally
belong to the MoM current-domain.

Fig. 8 shows the dominant component of the surface current
density vector induced on the plate along the line connecting
the center of the plate (monopole junction) and the center of
one of its sides. As can be seen, while the magnitude and phase
of the current density predicted by both hybrid models agree

Fig. 7. Hybrid MoM-PO models of a metallic square plate with an attached
monopole antenna at the plate center consisting of (a) 5 MoM and 80 PO
elements and (b) 37 MoM and 48 PO elements (MoM and PO patches are
shaded dark gray and light gray, respectively).

well with the pure MoM solution over the interior part of the
plate surface, the improved hybrid model with the MoM rim in
Fig. 7(b) yields much better prediction for the current behavior
near the plate edge than the model in Fig. 7(a). Note that the
currents in the MoM region of both MoM-PO models almost
exactly overlap with the corresponding parts of the full MoM
solution. Note also that the numerical values constituting the
MoM-PO current density curves indicate slight (almost invis-
ible) mismatches in the slope (first derivative) of the curves at
the boundaries between MoM and PO regions in the models [for
the model in Fig. 7(b), they are located 0.5\ and 3.5\ from the
plate center]. This can be attributed to the fact that the current
distribution coefficients corresponding to those basis functions
that are zero at the MoM-PO boundary and do not influence the
value of the current density at the connection, but do contribute
to the value of the slope of the current density at the connec-
tion, are taken into the overall hybrid system of equations dif-
ferently at the two sides of the boundary. On the MoM side, they
are expressed numerically exactly from the EFIE, while the PO
approximation of the MFIE is employed on the PO side of the
junction.

The antenna impedance computed in both MoM-PO arrange-
ments, ZN[O]\/I*PO(a) = (4130—_]2231) Q) and ZMOI\’I*PO(b) =
(41.31-j22.31) , agrees very well with the pure MoM result,
Znviom = (41.53-j22.63) Q.

Shown in Fig. 9 are the far field patterns in two characteristic
planes obtained by the three higher order models. We observe
that even the first set of hybrid MoM-PO results agrees well with
the rigorous MoM solution for both cuts in the upper half-space
and in the part of the lower half-space closer to the plane of
the plate, with an excellent agreement for angles between 60°
and 100° and some inaccuracy for observation points closer to
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the monopole axis. However, substantial disagreements of the
results using the model in Fig. 7(a) and the full MoM are ob-
served in the shadow region below the plate. On the other hand,
the improved arrangement with the MoM rim in Fig. 7(b) yields
accurate results in the entire range of angles in both far-field
cuts. In particular, the agreement with the full MoM solution
is almost perfect in the entire upper half-space and in the deep
shadow region, whereas the maximum discrepancies between
the two sets of results for the angles between 115° and 150° in
the cut (a) and for angles between 100° and 150° in the cut (b)
are less than 2 and 3 dB, respectively.

Without the use of symmetry, the total number of unknowns
is 4026 in all three higher order arrangements. In the pure MoM
approach, the CPU times for filling and solving the system
matrix are 21 and 187 s, respectively. The first hybrid MoM-PO
arrangement requires 126 MoM and 3900 PO unknowns, and
the MoM-PO system filling and solving times are 5.5 and
0.6 s, respectively. With the second MoM-PO arrangement,
the distribution of unknowns in the MoM and PO region is
1706 versus 2320, respectively, and the system matrix filling
time is 32.5 s. The iterative solution for MoM and PO current
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Fig. 9. Far field patterns of the monopole antenna in Fig. 7 obtained using the
full MoM and two hybrid MoM-PO higher order models in (a) the plane parallel
to a pair of plate edges and (b) the plane containing a plate diagonal.

coefficients given by (35) is carried out in this case, and the
CPU time required is only 2.2 s using 10 multiple-reflection
iterations. Note that the simulation of the structure in Fig. 7
using RWG basis functions on small triangular patches would
require more than 24 000 unknowns.

C. Parabolic Reflector Antenna With a Pyramidal Horn Feed

The last example is a 14-GHz parabolic reflector antenna
system shown in Fig. 10. The reflector is fed by a pyramidal
horn, with the phase center of the horn being at the focal point of
the reflector. The cross-sectional dimensions of the waveguide
feeding the horn are 1.58 cm x 0.79 cm (Ku-band waveguide),
the horn flare aperture dimensions are 2.52 cm x 2.28 cm, and
the lengths of the waveguide and the flare are 3.14 cm and 5 cm,
respectively. The entire horn is modeled by 28 flat quadrilaterals
of the first geometrical order (K,, = K, = 1) and of rectan-
gular or trapezoidal shapes, with current approximation orders
N, and N, ranging from 2 to 8 for different patches. The wave-
guide is excited by a wire probe in the form of a short dipole
modeled by two straight wire segments with the first-order cur-
rent approximation (N,, = 1). The diameter of the parabolic
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Fig. 10. Simulated higher order MoM-PO geometrical model of a parabolic
reflector antenna with a pyramidal horn feed (the horn is excited by a wire
probe).

reflector is 51.44 cm and its focal length is 25.72 cm. The re-
flector surface is modeled using 420 curved quadrilaterals of the
second geometrical order (K, = K, = 2) with the fifth-order
current approximation (N,, = N,, = 5) for all of the quadrilat-
erals. Note that the surface elements in this model are between
0.88)\ and 1.11\ on a side, which is about 10 times the usual
small-domain limit. The horn far field pattern is slightly asym-
metric in terms of the F plane versus H plane, and the feed taper
at the reflector edge is about 10 dB.

The results for the radiated far field of the antenna system in
Fig. 10 obtained by the higher order MoM-PO, with the horn
antenna in the MoM region and the parabolic reflector in the
PO region, are compared with the results obtained by the higher
order MoM alone. The simulated co-polarization and cross-po-
larization normalized patterns in the 45° plane are shown in
Fig. 11, and an excellent agreement of the results obtained by
the two methods is observed. In particular, the discrepancy in
the co-polarization pattern is practically nonexistent for all an-
gles less than almost 50° from the main beam. The maximum
discrepancy for angles between 50° and 60° is less than 2 dB for
fields that are approximately 50 dB below the field in the main
beam, while the only considerable disagreements between the
MoM-PO and full MoM results occur in the deep shadow re-
gion behind the reflector, for angles between 130° and 180°.
In the cross-polarization pattern, a noticeable discrepancy of
about 4 dB between the two sets of results at an angle of 35°
from the main beam may be attributed to the diffraction of the
primary field radiated by the horn feed at the edge of the re-
flector. However, the cross-polarization field level for this direc-
tion is more than 55 dB below the main beam level, which means
that this discrepancy is practically negligible as well. Note that
the antenna directivity obtained by the higher order MoM-PO,
Driom—po = 36.08 dBi, agrees perfectly with the result of the
rigorous analysis, Dyon = 36.12 dBi.

The total number of unknowns using the two-fold symmetry
of the problem is 5458 in both methods. In the pure MoM model,

the matrix filling time is 305 s and the LU decomposition takes
504 s. The hybrid MoM-PO solution requires 243 MoM and
5215 PO unknowns. The CPU times for filling the MoM-PO
matrices and solving the system of equations are 24 and 7.4 s,
respectively, which makes the hybrid higher order analysis more
than 25 times faster when compared to the rigorous (full MoM)
higher order analysis. Note also that the small-domain technique
with RWG basis functions and the use of two-fold symmetry
would require more than 33 000 unknowns for the analysis of
the same problem.

Fig. 11 also shows the far-field results for a MoM-PO ar-
rangement with a rim in the form of a single layer of MoM
patches introduced along the reflector edge. This arrangement
requires 943 MoM and 4515 PO unknowns, and 273.09 and
5.76 s of CPU time for the MoM-PO matrix filling and 20
multiple-reflection iterative solution of the system, respectively.
A perfect agreement of the MoM-PO results with the MoM
solution is observed in this case as a result of an additional
accuracy in modeling the currents and fields near the reflector
edges.

Finally, shown in Fig. 11 are also the patterns obtained by a
“decoupled” version of the higher order MoM-PO in which the
effects of the PO currents on the currents in the MoM region
are neglected. Although this technique predicts the antenna di-
rectivity almost ideally, DvioM—PO decoupled = 36.00 dBi, we
observe a considerable inaccuracy in the “decoupled” MoM-PO
computing of both the co-polarized and cross-polarized patterns
apart from the main beam (as compared to the rigorous MoM
computation). This is an indication of advantages of the pre-
sented (“coupled”) higher order MoM-PO simulation over its
(much simpler) “decoupled” version in this and similar exam-
ples—of course, if the accuracy that it brings is desired. On the
other hand, the “decoupled” higher order MoM-PO is certainly a
preferable choice in cases where taking into account the mutual
interactions between the MoM and PO regions as implemented
in this paper does not yield any (significant) improvement to the
“decoupled” solution.

IV. CONCLUSION

This paper has presented an efficient and accurate PC-ori-
ented higher order, large-domain hybrid MoM-PO technique for
3-D analysis of perfectly conducting antennas and scatterers of
arbitrary shapes. The technique is based on a system of coupled
surface integral equations, with an EFIE in the MoM region and
a MFIE in the PO region, and combines higher order geomet-
rical modeling and higher order current modeling in both re-
gions. All the surfaces in the system are modeled by large gen-
eralized curvilinear quadrilaterals of arbitrary geometrical or-
ders (large domains). The new technique employs higher order
divergence-conforming hierarchical polynomial basis functions
in the context of the Galerkin method in the MoM region and
higher order divergence-conforming interpolatory basis func-
tions based on modified Chebyshev polynomials in conjunc-
tion with a modified point-matching method at the interpolation
points of the basis functions in the PO region. This mixed mod-
eling approach optimizes the overall performance of the hybrid
method in practical applications.
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(W]

Normalized co-polarization (a) and cross-polarization (b) far-field patterns in the 45-degree plane of the antenna in Fig. 10 computed using (1) the full

MoM, (2) the MoM-PO with the horn in the MoM region and the reflector in the PO region, (3) the MoM-PO with a rim of MoM patches added around the reflector

edge, and (4) the “decoupled” version of the MoM-PO.

The accuracy, efficiency, and versatility of the proposed
MoM-PO technique have been demonstrated in three character-
istic realistic examples. The results obtained by the higher order
MoM-PO have been validated against the results obtained by
the full MoM analysis. The truly higher order and large-domain
nature of the proposed technique in both MoM and PO regions
enables a very substantial reduction in the number of unknowns
and increase in accuracy and efficiency when compared to the
existing low-order, small-domain MoM-PO techniques. The
PO part of the presented technique, on the other hand, has
allowed for a dramatic reduction in the computation time and

memory requirements with respect to the pure MoM higher
order technique, which greatly extends the practicality of the
higher order MoM and provides a smooth transition between
low- and high-frequency applications.
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