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Abstract. Noting that time-accurate computations of the unsteady incompressible Navier-
Stokes (INS) equations can be computationally expensive, a family of higher order implicit
multi-stage time integration schemes (namely ESDIRK) is used for advancing the solution to the
unsteady INS in time. The higher order time integration schemes have the potential to decrease
the computational cost of obtaining engineering levels of accuracy relative to the traditionally
used 2nd order implicit schemes. The finite volume method is used for spatial discretization,
and co-located arrangement of the primitive variables is considered. Furthermore, an iterated
PISO algorithm is used to solve the incompressible Navier-Stokes equations. By using a tem-
porally consistent Rhie-Chow interpolation, higher order temporal accuracy in solving the INS
equations on co-located grids is achieved. For a two-dimensional lid driven cavity test case, the
temporal convergence of the solution is investigated, with the third and fourth order ESDIRK
schemes for time integration. The results demonstrate the temporal consistency and temporal
order preservation of the algorithm.
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1 INTRODUCTION

The unsteady incompressible Navier-Stokes equations in primitive variables are given by:

∂u

∂t
= −∇.(uu) + ν∇2u−∇p = R(u)−∇p = F(u, p, t), (1)

∇.u = 0.

where u is the velocity vector, p is the kinematic pressure and ν the kinematic viscosity. The
stability and accuracy of a numerical approach to solve Eqn.(1) in primitive variables, are influ-
enced by the method with which the velocity-pressure coupling is resolved; both in the solution
algorithm and in the arrangement of the variable in discretization of Eqn.(1) [1].

In solving the steady form of Eqn.(1) on a co-located grid using the Finite Volume Method
(FVM), straightforward discretization of the equations can result in spurious oscillations in the
pressure field. One of the widely used methods in the literature and large scale CFD packages
to tackle this issue, is the Rhie-Chow interpolation [2]. This interpolation technique relies on
the determination of an expression for the cell face velocity (which appears in the continuity
equation) in terms of the pressure gradient across the cell face, thus restoring the lost linkage
between the velocity and pressure fields [1, 3].

In solving the unsteady INS equations (in which implicit time integration is used for ad-
vancing the solution in time), a class of segregated solution algorithms includes SIMPLE-like
and PISO-like approaches. Extensive research has been conducted to extend the original Rhie-
Chow interpolation (developed for steady-state computations) to unsteady flows. In Pascau [4],
a survey of the literature on this topic is presented and it has been pointed out that by performing
the interpolation incorrectly, the numerical scheme is temporally inconsistent.

In engineering applications, to advance the solution to the unsteady INS (Eqn.(1)) in time,
typically an implicit time integration is preferred over an explicit one in order to circumvent
time step restrictions due to probable stiffness in the problem. Stiffness in a system can, for
example, arise due to the nature of the governing equations or due to the generated grid (such as
clustering of nodes near the interface or walls of the domains [5]). In the literature, for the men-
tioned class of solution algorithms to solve the unsteady INS, mainly the first order Backward
Euler (BDF1) and the second order BDF2 and Crank-Nicolson schemes have been considered.

In this paper, a family of higher order implicit multi-stage time integration schemes is used
for advancing the solution to the unsteady incompressible Navier-Stokes (INS) in time. In par-
ticular the Explicit first stage, Singly Diagonally Implicit Runge-Kutta (ESDIRK) schemes are
considered. The eventual goal of using the higher order time schemes is to decrease the com-
putational cost to obtain a certain accuracy level (in particular engineering levels of accuracy)
relative to traditionally used implicit first and second order time integration schemes.

Obtaining higher order temporal accuracy in solving the unsteady INS on co-located grids is
not straight forward. The obtained solution may fail to preserve the design order of the applied
higher order time integration scheme (and in particular the ESDIRK), mainly due to use of (1) a
temporally inconsistent Rhie-Chow interpolation, and (2) a segregated solution algorithm (e.g.
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PISO). In this paper, the first issue is tackled and the second issue is left to future work. In order
to neglect the influence of the second issue on the temporal order preservation, an iterated PISO
algorithm is considered. This class of higher order implicit time integration schemes has also
been considered in [7] to solve the incompressible Navier-Stokes equations, however, the so-
lution algorithm made use of the temporally inconsistent Rhie-chow interpolation of Choi [6, 4].

In what follow, first the semi-discrete form of Eqn.(1) is obtained by discretizing the spatial
operators. After a small discussion on the higher order implicit ESDIRK schemes, the solution
algorithm to advance the solution in time using the ESDIRK schemes is presented. The lid
driven cavity is used to validate the temporal convergence of the schemes.

2 SPATIAL DISCRETIZATION AND SEMI-DISCRETE FORM

The method of lines is used to discretize Eqn.(1), with spatial operators being discretized
first to obtain the semi-discrete form of the equations. The computational domain is subdivided
into N finite volumes (or cells) where each cell is bounded by arbitrary number of cell faces
Nf . Through out this paper, it is assumed that the grid does not vary with time. The volume
integral form of Eqn.(1) is applied to each finite volume, and the Gauss divergence theorem is
used to convert the volume integrals to surface integration over the closed boundary of the cell
(see [8, 9, 10] for more details). Noting that each cell is bounded by discrete number of faces,
the resultant discrete form of Eqn.(1) is give by:

VP
dUP

dt
= −

Nf∑
f

ϕfU f + ν

Nf∑
f

(∇U )f .nfSf −
Nf∑
f

pfnfSf = FP , (2)

Nf∑
f

ϕf = 0. (3)

where VP is the volume of the cell and VP (∇p)P is approximated by
∑Nf

f pfnfSf . For a
given cell face f , nf is the face normal vector, Sf is its surface area, and ϕf = U f .nfSf is the
flux through the face.

After using appropriate schemes to discretize the convective and diffusive fluxes, the follow-
ing semi-discretized form of Eqn.(1) for each cell P surrounded by Nnb neighboring cells is
obtained (where Eqn.(2) is divided by the cell volume):

dUP

dt
+ aPUP −

∑
nb

anbUnb = −(∇p)P + rP ,

Nf∑
f

ϕf = 0

(4)

where aP and anb are the diagonal and off-diagonal coefficients of the (spatial) discretization
matrix. rP represents the explicit convection and diffusion terms as well as boundary contribu-
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tions and (∇p)P = 1
VP

∑Nf

f pfnfSf . Using the following definition:

HP (UP ) =
∑
nb

anbUnb + rP , (5)

we can rewrite the first equation of Eqn.(4) as:

dUP

dt
+ aPUP = HP − (∇p)P . (6)

or in short,
dUP

dt
= FP (UP , p, t). (7)

The resultant system of equations, can be written by:

dU

dt
= F(U , p, t) = RU −Gp = −CU +BU −Gp+ r (8)

where R is sum of the convective C and diffusive B matrices and G the gradient operator.

3 TIME INTEGRATION

In this paper a family of multi-stage implicit Runge-Kutta schemes (IRK), namely the Ex-
plicit first stage, Singly Diagonally Implicit Runge-Kutta (ESDIRK) schemes, is considered
for time integration which can be made of arbitrary higher order while retaining the L-stability
property. While BDF1 and BDF2 are L-stable, the Crank-Nicolson scheme is not. It is possible
to construct higher order BDF methods, but they are only L(α) stable and their stability region
rapidly drops as the order of the scheme is increased [5]. For a coupled ODE system of the form
dU
dt

= F(U , t), the solution at each stage of an ESDIRK scheme can be written as:

U (k) = Un +∆t
k∑

i=1

aIkiF(tn + ci∆t,U (i)) = Un +∆t
k∑

i=1

aIkiF (i), (9)

where aIki are the coefficients of the corresponding stage and ci =
∑

j a
I
ij is the location (quadra-

ture node) of the stage solution at t(i) = tn+ci∆t. High order solution at the next time level can
be achieved by the weighted sum of the stage residuals such that the lower order errors cancel
out:

Un+1 = Un +∆t

s∑
i=1

biF (i), (10)

where bi are the weight factors with
∑

i bi = 1, and s is the number of stages. In this paper, the
stiffly accurate ESDIRK schemes presented in [11] are considered where aIsi = bi and thus the
solution of the last stage is equal to the solution of the time-level, Un+1 = U s. The coefficients
and weights are usually arranged in Butcher tableau (see Table.(1)). For the ESDIRK schemes,
as the name implies, the diagonal coefficients are equal (akk = γ). Furthermore, it is possible
to incorporate the ESDIRK schemes into solvers which already include Backward Euler, since
from an implementation view point, the solution at each stage of the ESDIRK scheme resembles
the BDF1 scheme with a source term.
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Table 1: A four stage ESDIRKscheme.

c1 0 0 0 0
c2 aI21 aI22 0 0
c3 aI31 aI32 aI33 0
c4 aI41 aI42 aI43 aI44

b1 b2 b3 b4

4 SOLUTION ALGORITHM

In this section the ESDIRK schemes introduced in the previous section are applied to the
semi-discrete form of the problem given by Eqn.(8) to advance the solution of the INS in time.
In order to obtain the solution field at each stage, an iterated PISO algorithm is employed (no
under-relaxation is considered in this paper). Furthermore, due to the use of a co-located grid,
an appropriate Rhie-Chow interpolation is used to avoid a check-board pressure field. For an
implicit stage of the ESDIRK schemes, at each iteration j the solution algorithm begins by
solving an intermediate velocity field (predictor step) given by:

ãPU
∗
P −

∑
N

aNU
∗
N =

1

∆tak,k
Un

P − (∇pj−1)P + rP +
1

ak,k

k−1∑
i=1

F (i)
P , (11)

where,

ãP =
1

∆tak,k
+ aP . (12)

Using the earlier definition of HP (Eqn.(5)), the above equation can be rewritten as:

U ∗
P =

1

∆tak,k

Un
P

ãP
+

HP (U
∗)

ãP
− (∇pj−1)P

ãP
+

1

ak,k

∑k−1
i=1 F

(i)
P

ãP
. (13)

It is noted that the current available values of the solution fields are used in evaluating the
pressure gradient, the linearized convective flux ϕf (picard iterations are used for linearization
of the nonlinear convection term), and rP (if it contains explicit diffusion and convection terms).
The evaluation of FP is discussed in section 4.1. The obtained velocity field is not divergence
free since the pressure field was treated explicitly. To satisfy the incompressibly constrain, the
intermediate velocity field needs to be corrected by an amount which is obtained by solving for
the pressure field. The expression for U j

P (denoted as the divergence free velocity field) with
pj as its corresponding pressure field is given by:

U j
P =

1

∆tak,k

Un
P

ãP
+

HP (U
∗)

ãP
− (∇pj)P

ãP
+

1

ak,k

∑k−1
i=1 F

(i)
P

ãP
. (14)

As pointed out earlier, the Rhie-Chow interpolation is based on the determination of an
expression for the cell face velocity. An equivalent relationship as the one for the centered
velocity Eqn.(14) can be defined for the face (convective) velocity (which is also divergence-
free):

U j
f =

1

∆tak,k

Un
f

ãf
+

Hf (U
∗
f )

ãf
− (∇pj)f

ãf
+

1

ak,k

∑k−1
i=1 F

(i)
f

ãf
, (15)
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where, following [12], in order to have a consistent scheme, the following interpolations are
used:

Hf (U
∗
f )

ãf
=

HP (U
∗)

ãP
, (16)

and
1

ãf
=

1

ãP
. (17)

It is noted that as Eqn.(5) shows, HP only contains spatial contribution as a result of the
discretization of the spatial operators [4]. It does not contain the previous time-step solution,
nor previous iteration solution (if under-relaxation is used), nor the contribution of the previous
stages (which appears as sum of previous stage residuals). The evaluation of Ff is also dis-
cussed in section 4.1.

The discrete continuity equation is given by:∑
f

U j
f .nfSf = 0. (18)

Substituting Eqn.(15) into Eqn.(18):∑
f

[
1

ãf
(∇pj)f

]
.Sf =

∑
f

(
1

∆tak,k

Un
f

ãf
+

Hf (U
∗
f )

ãf
+

1

ak,k

∑k−1
i=1 F

(i)
f

ãf

)
.Sf (19)

which is the equation for obtaining the pressure field that results in a divergence free velocity
field.

4.1 Evaluation of the cell and face momentum residuals

After the computation of the solution field at each stage, the cell-centered and face residual
vectors (Fp and Ff ) must be evaluated. The evaluation FP is given by :

FP = −aPUP +HP − (∇p)P , (20)

Note that aP is the diagonal coefficient matrix as a result of spatial discretization. The resultant
residual vector for the whole domain can be expressed by:

F = −C(ϕ)U −BU −Gp+ r. (21)

The evaluation of Ff is not as clear as FP , since the discretized operators at the face are not
available. Here Ff is computed based on the fully-discretized form of dUf

dt
= Ff :

U
(k)
f −Un

f

∆tak,k
= F (k)

f +
1

ak,k

k−1∑
i=1

F (i)
f . (22)

Noting that at the end of a stage, U (k)
f is known, it is possible to evaluate Ff using:

F (k)
f =

U
(k)
f −Un

f

∆tak,k
− 1

ak,k

k−1∑
i=1

F (i)
f (23)

A similar approach was used in [13] to compute the residual vector for a different (spatial
and) temporal discretization scheme.
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5 RESULTS

The presented solution algorithm for advancing the solution to the transient INS in time
using the ESDIRK schemes for time integration was implemented into OpenFoam v1.7.1 (an
open source CFD package). The solver has BDF1 as one of the available time integration
schemes and as mentioned earlier can be used as a basis to construct the higher order ESDIRK
schemes. The temporal consistency and accuracy of the algorithm are investigated using a two-
dimensional lid driven cavity with Re = 10 as a test case. Prior to discussing the result several
definitions are given. The temporally exact solution U exact is defined as one acquired by solv-
ing the problem using a fine time step. The time integration error ϵt is defined as the difference
between the temporally exact solution and the solution obtained using a coarse time step relative
to the temporally exact solution (ϵt = U exact −U ).

Computations are performed using the iterated PISO algorithm with a fixed number of (outer)
iterations. The selected number of iterations was sufficient to neglect the influence of the split-
ting error on temporal accuracy of the solution algorithms for the considered accuracy lev-
els. The temporally exact solution was obtained by solving the problem using a time step of
∆tfine = 10−6. Computations were carried out to tfinal = 0.01. Other model parameters are
shown in Table.(2).

Table 2: Set of parameters used in analyzing temporal accuracy of the various solution algorithms.

ν Lx Ly Nx Ny PISO loops Outer Iter solver Tol
0.01 0.1 0.1 50 50 2 20 10−15

−5.5 −5 −4.5 −4 −3.5 −3
−15

−10

−5

0

log
10

 ∆ t

lo
g 10

 m
ax

 (
ε  t )

 

 

BDF2− Inconsistent RC
ESDIRK−3
ESDIRK−4

O(∆ t3)

O(∆ t4)

O(∆ t)

Figure 1: Temporal error convergence of two solution algorithms: 1) An inconsistent Rhie-Chow interpolation
using BDF2 for time integration.2) A consistent Rhie-Chow using the higher order esdirk schemes for time inte-
gration.

By investigating the temporal convergence of an algorithm it is possible to detect mistakes in
the implementation that would be otherwise difficult to find. For example, in order to demon-
strate the influence of using an inconsistent Rhie-Chow interpolation on the temporal conver-
gence of a scheme, computations are performed using the standard INS solver of OpenFoam. It
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has been pointed out in [9] that the solver uses an inconsistent Rhie-Chow interpolation and to
remove this inconsistency, the temporally consistent Rhie-Chow interpolation of [12] is applied.
The temporally inconsistent Rhie-Chow interpolation in the standard INS solver of OpenFoam
has similarities to the inconsistent Rhie-Chow interpolation of Choi [6]. The second order
BDF2 is used for time integration. In Fig.(1), the temporal convergence of the time integra-
tion error corresponding to the u-component of the velocity is shown (denoted in the figure as
BDF2 − InconsistentRC). As the figure shows, the temporal error in the solution does not
seem to reduce with a specific order (aside from the fact that it does not show second order
accuracy (∆t2)). The results are irrespective of the used time integration scheme.

In Fig.(1), temporal convergence of the time integration error for the third and fourth order
ESDIRK schemes using the solution algorithm proposed in section 4 is demonstrated. As the
figure demonstrates the design order of the time integration schemes are preserved, validating
the temporal consistency and accuracy of the algorithm.

6 CONCLUSIONS

A family of higher order implicit multi-stage time integration schemes (namely ESDIRK)
has been used for advancing the solution to the unsteady INS in time. The eventual goal of
using the higher order time schemes is to decrease the computational cost to obtain a certain ac-
curacy level (in particular engineering levels of accuracy) relative to traditionally used implicit
first and second order time integration schemes. The finite volume method was used for spatial
discretization, and co-located arrangement of the primitive variables was considered. Further-
more, an iterated PISO algorithm was used to solve the incompressible Navier-Stokes equations.
By using a temporally consistent Rhie-Chow interpolation, higher order temporal accuracy in
solving the INS equations on co-located grids has been achieved. For a two-dimensional lid
driven cavity test case, the temporal convergence of the solution was investigated, with the third
and fourth order ESDIRK schemes for time integration. The results demonstrated the temporal
consistency and temporal order preservation of the algorithm. Using a temporally inconsistent
Rhie-Chow interpolation which maybe encountered in some of the literature and engineering
CFD codes, such as OpenFoam, will deteriorate the temporal accuracy and potential computa-
tional efficiency of the higher order time integration schemes.

In the next step, in order to increase the computational efficiency of the algorithm, the
iterated-PISO algorithm will be replaced by the PISO algorithm.
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