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Higher-order linear lossless systems
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We define a lossless autonomous system as one having a quadratic differential form associated with it, called the
total energy, which obeys the property of positivity and which is conserved. In this paper, we show that an
autonomous system is lossless if and only if it is oscillatory. Next we discuss a suitable way of splitting the total
energy function into its kinetic and potential energy components. We also extend the investigation to the case of
open systems.
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tial inputs; energy function

1. Introduction

What is a lossless system? This problem has occupied
theoretical physicists and applied mathematicians alike
for quite some time. In theoretical physics (Young,
Freedman, Sandin, and Ford 1999), a system is called
lossless if the work done by a force is path-independent
and equal to the difference between the final and initial
values of an energy function that remains positive for
non-zero trajectories of the system.

In most of the work done so far in the area of
lossless systems, characterisation of losslessness is done
assuming a given supply rate or the rate at which
external work is done. An example for such a
characterisation is the one by Willems (1972), in
which losslessness was defined with respect to a given
scalar function associated with the system, known as
the supply rate. The system is called lossless if the given
scalar function is the derivative of another scalar
function, known as the storage function, along the
trajectories of the system. Pillai and Willems (2002)
have extended the concept of losslessness introduced
by Willems (1972) to the case of distributed systems.

A lot of research has been carried out in the area of
characterisation of lossless systems in the state-space.
For example, Hill and Moylan (1976, 1980) have
characterised lossless non-linear systems in the state
space in a way similar to Willems (1972), and have
proved that under certain conditions, there exists
a positive definite storage function for the system.
Weiss, Staffans, and Tucsnak (2001) and Weiss and
Tucsnak (2003), have given algebraic characterisations

of energy preserving and of conservative linear systems

based on a state space description of the system. Here,

a system is called energy preserving if the rate of

change of a scalar positive definite function defined on

its state space called energy, is equal to the difference

between an incoming power and an outgoing power,

which are respectively assumed to be the square of the

norms of the input signal u and the output signal y.

Note that in the sense of Willems (1972), if a system is

energy preserving, then it is lossless with respect to the

difference between the incoming and outgoing power.

For a given energy preserving system, a related system

known as its dual has been defined by Weiss et al.

(2001). Here, a system is called conservative if both the

system and its dual are energy preserving. In addition,

Weiss et al. (2001) have also given results about the

stability, controllability and observability of conserva-

tive systems and have illustrated these with the help of

a model of a controlled beam. Malinen, Staffans, and

Weiss (2006), have extended the characterisation of

Weiss and Tucsnak (2003) for the case of infinite

dimensional linear systems.
In many cases, the term ‘‘conservative’’ has been

used instead of ‘‘lossless’’. In the following papers,

special assumptions have been made in order to

characterise conservative systems. Jacyno (1984) has

constructed a class of non-linear autonomous con-

servative systems, starting from the general class of

non-linear systems given by _x ¼ FðxÞ, by deriving a

certain condition on F(x) and the total energy function

Q(x) for the system. Here it is assumed that the total
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energy function Q(x) is a positive definite function of
the state variables x. Van der Schaft (2000, 2004) has
studied the properties of Hamiltonian and port-
Hamiltonian conservative systems starting from sets
of equations namely Hamiltonian, respectively port-
Hamiltonian equations of motion. Here, it is assumed
that the Hamiltonian (total energy) for the system is
given a priori, i.e., one does not begin with the basic
equations of motion.

The purpose of this paper is to give a definition of
linear lossless systems which agrees with the basic
intuition, derived from physics, that the external work
done on such a system is equal to the difference
between the final and initial values of the total energy
for the system. We also make use of the fact that the
total energy of such a system is a quadratic functional
in the system variables and their derivatives that is
positive for all infinitely differentiable non-zero trajec-
tories. In a sense, our approach is similar to the one by
Jacyno (1984), as we assume positivity of energy
function. The main differences are that unlike Jacyno
(1984), we restrict our characterisation to only linear
systems and we do not restrict our analysis to systems
described by the equation _x ¼ FðxÞ. Unlike popular
literature on lossless systems, we do not assume a given
supply rate or derivative of energy function. We first
characterise losslessness for the case of autonomous
systems, which is defined below.

An autonomous system is a system with no inputs
or free variables, i.e., a system which evolves on its
own. For such a system, the future of every trajectory
is completely determined by its past. We first
characterise autonomous lossless systems based on
the observation that the total energy of a physical
system of this type is conserved. For this characterisa-
tion and for that of open lossless systems, we make use
of the concept of quadratic differential forms (QDF),
which we now define.

Consider the set of bilinear functionals acting on
infinitely differentiable trajectories w1 and w2 of the
form

L�ðw1,w2Þ ¼
XN
h,k¼0

dhw1

dth

 !T

�h,k
dkw2

dtk

 !
,

where �h,k are w1�w2-dimensional real matrices, w1

and w2 respectively stand for the dimensions of the
trajectories w1 and w2, and N is a non-negative
integer. Such a functional is called a bilinear differ-
ential form (BDF). We denote L�(w, w) by Q�(w), and
we call such a quadratic functional acting on an
infinitely differentiable trajectory w, a quadratic
differential form (QDF).

A conserved quantity associated with a behaviour
is a QDF, whose time-derivative along the

trajectories of the behavior is zero. We define a
lossless autonomous system as one for which there
exists a conserved quantity that remains positive for
all infinitely differentiable non-zero trajectories. We
show the equivalence between linear autonomous
lossless systems and oscillatory systems, i.e., systems
whose trajectories are linear combinations of vector
sinusoidal functions. Physical examples of oscillatory
systems are mechanical systems consisting of friction-
less springs and masses having as external variables
the displacements or the velocities of the masses
from the equilibrium positions; and electrical systems
consisting of the interconnection of inductors and
capacitors, having as external variables the voltages
across the capacitors or the currents in the induc-
tance components. We show that a linear autono-
mous system is lossless if and only if it is oscillatory.

We extend the characterisation of losslessness to
open systems by making use of two properties. The
first property is that the total energy of such a system is
always positive for all infinitely differentiable non-zero
trajectories. The second property is that the rate of
change of total energy is zero if the inputs of the system
are made equal to zero.

We assume that the reader is familiar with the
calculus of B/QDF’s, and with the behavioral frame-
work, and we refer to Polderman and Willems (1997)
and Willems and Trentelman (1998) respectively, for a
thorough exposition of the concepts and mathematical
techniques.

The structure of the paper is as follows. In x 2, we
discuss properties of oscillatory systems and the
notions of conserved quantities for oscillatory systems
and of B-canonicity and positivity of QDFs. In x 3, we
prove the equivalence of autonomous lossless and
oscillatory systems and in x 4, we do the same for the
state space case. In x 5, we extend the characterisation
of losslessness to the case of open systems.

The notation used in this paper is standard: we
denote the space of n dimensional real, respectively
complex vectors by R

n, respectively C
n, the space of

m�n real, respectively complex matrices, by R
m�n,

respectively C
m�n and the space of m� n symmetric

real matrices, by R
m�n
s . Whenever one of the two

dimensions is not specified, a bullet . is used; so that
for example, R

��n denotes the set of real matrices
with n columns and an unspecified number of rows.
In order to enhance readability, when dealing with a
vector space R

� whose elements are commonly
denoted with w, we use the notation R

w (note the
typewriter font type!); similar considerations hold for
matrices representing linear operators on such
spaces. The ring of polynomials with real coefficients
in the indeterminate � is denoted by R½��; the set of
two-variable polynomials with real coefficients in the
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indeterminates � and � is denoted by R½�, ��.
The space of all n�m polynomial matrices in the

indeterminate � is denoted by R
n�m
½��, and that

consisting of all n�m polynomial matrices in the

indeterminates � and � by R
n�m
½�, ��. We denote with

C
1
ðR,Rq

Þ the set of infinitely differentiable

functions from R to R
q. R

þ denotes the set of

positive real numbers. Ip stands for identity matrix

of size p. 0p�q denotes a matrix of size p�q

consisiting of zeroes. col(L1,L2) denotes the matrix

obtained by stacking the matrix L1 over L2. Re(s)

and Im(s) denote the real and imaginary parts of a

complex quantity s. A* denotes the matrix obtained

by transposing the complex conjugate of the

matrix A. The class of linear differential behaviours

with w external variables is denoted by Lw.

diag(a1, . . . , an) denotes the diagonal matrix whose

diagonal entries are a1, . . . , an in the given order.

colrank(P) denotes the column rank of the poly-

nomial matrix P, as defined by Kailath (1980,

p. 652).

2. Preliminaries

In this section, we illustrate the basic definitions and

concepts of Kailath (1980, p. 188) necessary to

understand the results illustrated in this article.

2.1 Oscillatory systems

Definition 1: A behaviour B defines a linear oscilla-

tory system if

. B is the set of solutions of a system of linear

constant-coefficient differential equations

R
d

dt

� �
w ¼ 0; R2R

��w
½��;

equivalently, B belongs to the class of linear

differential behaviors with w external

variables;

. every solution w : R! R
w is bounded on

(�1, 1).

From the definition, it follows that an oscillatory

system is necessarily autonomous: if there were any

input variables in w, then those components of w could

be chosen to be unbounded.
In the following, the case of multivariable (w4 1)

oscillatory systems will be often reduced to the scalar

case by using the Smith form of a polynomial matrix.

Consequently, we now examine in more detail the

properties of scalar oscillatory systems and of their

representation.
It was proved in proposition 2 of Rapisarda and

Willems (2005) that any behaviour B is oscillatory if

and only if every non-zero invariant polynomial of B

has distinct and purely imaginary roots. Consequently,

if r2R½�� then B ¼ kerðrðd=dtÞÞ defines an oscillatory

system if and only if all the roots of r are distinct and

on the imaginary axis. From this it follows that r has

one of the following two forms

rð�Þ ¼ ð�2 þ !2
0Þð�

2 þ !2
1Þ . . . ð�2 þ !2

n�1Þ

or

rð�Þ ¼ �ð�2 þ !2
0Þð�

2 þ !2
1Þ . . . ð�2 þ !2

n�1Þ

where !0, . . . ,!n�1 2R
þ. Recall from Polderman

and Willems (1997, p. 69) that the dimension of

ker(r(d/dt)) as a linear subspace of C
1
ðR,RÞ equals the

degree of the polynomial r and that the roots of r are

called the characteristic frequencies of ker(r(d/dt))�
In the following, a polynomial matrix will be called

oscillatory if all its invariant polynomials have distinct

and purely imaginary roots.
In the following proposition, we give a condition

on the state space equation of an autonomous system

under which it is oscillatory.

Lemma 1: A linear system described by the state space

equation dx/dt¼Ax, where x2C
1
ðR,Rx

Þ and A2R
x�x

is oscillatory if and only if A has purely imaginary

eigenvalues that occur in conjugate pairs, and A is

diagonalisable, i.e., 9 an invertible matrix V2C
x�x such

that V AV�1¼Ad, where Ad is a diagonal matrix whose

diagonal entries are purely imaginary and occur in

conjugate pairs.

Proof: (If) Let Vx ¼ z2C
x�1. Consider the system

dz/dt¼Adz. Each component of z is bounded because

the diagonal entries of Ad are purely imaginary and

occur in conjugate pairs. Since V is invertible, this

implies that each component of x is also bounded.

Hence, the system is oscillatory.
(Only if) By contradiction, if A is not diagonal-

isable, it implies that A has at least one eigenvalue

with geometric multiplicity less than its algebraic

multiplicity, which in turn implies that the system is

not bounded on (�1,1). Hence A is diagonalisable.

Again by contradiction, if any of the eigenvalues

of A is not purely imaginary, then one of the

components of z¼Vx, is unbounded on (�1,1),

which implies that one or more components of x

are unbounded. Hence A has purely imaginary

eigenvalues. Since the characteristic polynomial of

A has real coefficients, the eigenvalues of A occur in

conjugate pairs. œ
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2.2 B-canonicity of QDFs

Equip the set of QDFs associated with a behaviour B,

with the equivalence relation defined by

Q� �
B

Q� , Q�ðwÞ ¼ Q�ðwÞ 8w2B:

It is easy to see that the set of equivalence classes

under �
B

is a linear vector space over R. With every

equivalence class of QDFs associated with an

autonomous behaviour B, we associate a certain

representative known as the B-canonical

representative. Below, we define the notion of

B-canonicity of QDFs.

Definition 2: Let B be an autonomous behaviour

given by B ¼ kerðRðd=dtÞÞ, where R2R
w�w
½��. Then a

QDF Q� is B-canonical if R(�)�T�(�, �)R(�)�1 is

strictly proper.

If R2R½�� and has degree n, then from the

definition, it follows that the two-variable polynomials

associated with B-canonical QDFs are spanned by

monomials �k�j, with k, j� n� 1. It is easy to see that

every QDF has a B-canonical representative.

2.3 Conserved quantities associated with an

oscillatory behaviour

Definition 3: Let B2L
w be a linear behaviour.

A QDF Q� is a conserved quantity if

d

dt
Q�ðwÞ ¼ 0 8w2B:

Note that the trivial QDF Q�¼ 0 is always conserved.

Any conserved QDF which is identically not equal to

zero will be called ‘‘non-trivial conserved quantity’’ in

the following. Consider an oscillatory behaviour

B ¼ kerðrðd=dtÞÞ, where r2R½��. If r is an even

polynomial of degree 2n, then it can be shown (see

Rapisarda and Willems 2005) that the two-variable

polynomials �i(�, �) given by

�ið�, �Þ ¼
r ð�Þ�2iþ1 þ r ð�Þ�2iþ1

� þ �

i¼ 0, 1, . . . , n� 1, induce a basis for the space of

B-canonical conserved quantities over B. If r is an

odd polynomial of degree 2nþ 1, then it can be shown

that a basis of conserved quantities over B is induced

by the set f� 0i ð�, �Þgi¼0, 1,..., n, where

� 0i ð�, �Þ ¼
r ð�Þ�2i þ r ð�Þ�2i

� þ �
:

2.4 Positivity of QDFs

Definition 4: Let �2R
w�w
s ½�, ��. Q� is said to be

positive denoted by Q�4 0, if Q�� 0 for all
w2C

1
ðR,Rw

Þ, and Q�(w)¼ 0 implies w¼ 0.

It can shown (see Willems and Trentelman (1998,
p. 1712) that a QDF Q�, where �2R

w�w
s ½�, �� is

positive if 9 D2R
��w
½�� such that �(�, �)¼D(�)>’D(�),

and D(l) has full column rank w for all l2C.

3. Autonomous conservative systems

In this section, we define an autonomous lossless
system as an autonomous system for which there exists
a positive conserved quantity. We then prove the
equivalence between autonomous lossless and oscilla-
tory systems. This is first done for the case of scalar
systems and then extended to the case of multivariable
systems. We also discuss a few properties of energy
functions of scalar lossless systems.

The main advantage of the higher-order approach
over the state space method lies in its ability to deal
with higher-order differential equations obtained
directly from the modelling of the system, instead of
having to set up a system of first order differential
equations.

We begin with the following definition for auton-
omous lossless systems.

Definition 5: A linear autonomous behaviour B2Lw

is lossless if there exists a conserved quantity QE

associated with B, such that QE4 0. Such a QE is
called an energy function for the system.

Remark 1: The total energy of any physical system
does not have an absolute measure as such. It is always
defined with respect to an arbitrary choice of a reference
level, which is hence indeterminate. However this
indeterminacy is not important as in any physical
application, it is always the difference between the initial
and final values of energy that matters, and this
difference is independent of the reference level. Hence
it is convenient to define the reference level for the total
energy of a system as its lower bound. This point has
been elaborated upon in Sears (1946, pp. 128–129).
While defining lossless systems, we fix the reference level
or lower bound of the energy functions for the system at
zero, which leads to positivity of energy functions. We
implicitly assume that an energy function of a lossless
system is bounded from below.

For proving that lossless autonomous systems are
necessarily oscillatory, we examine all the linear
autonomous scalar systems, for which conserved
QDFs exist. To this end, we first determine the
conditions under which a linear system has conserved
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QDFs associated with it, and the dimension of the

space of conserved QDFs for such systems. We begin

with the following definition.

Definition 6: Let r2R½��. The maximal even poly-

nomial factor of r is its monic even factor polynomial

of maximal degree.

For any given polynomial r2R½��, it is easy to see that

there exists a unique maximal even polynomial factor.

In the next proposition, we examine the conditions

under which a linear behaviour B has conserved QDFs

associated with it.

Proposition 1: Consider a linear behaviour

B ¼ kerðrðd=dtÞÞ, where r2R½��. There exists a non-

trivial conserved quantity for B if and only if either r has

a non-unity maximal even polynomial factor re or

r(�)¼ �. Moreover if p:¼ r/re is such that p(0) 6¼ 0,

then the dimension of the space of conserved QDFs is

deg(re)/2, otherwise it is equal to (deg(re)/2)þ 1.

Proof: Let the degree of r be equal to n. Let r¼ rep.

Assume that B has a conserved QDF whose two-

variable polynomial representation is �(�, �). Then

�ð�, �Þ ¼
rð�Þ f1ð�, �Þ þ rð�Þ f1ð�, �Þ

� þ �

for some f1 2R½�, ��. It is easy to see that since � is

B-canonical, f1 is independent of � and is of degree less

than or equal to n� 1 in �. Let f(�)¼ f1(�, �). Since
� exists, the numerator is divisible by �þ �.
Consequently r(��)f(�)þ r(�)f(��)¼ 0. This implies

that g(�)¼ r(�)f(��)¼ re(�)p(�)f(��) is an odd function.

Hence

pð�Þfð��Þ ¼ �pð��Þfð�Þ: ð1Þ

Two cases arise.

. Case 1: p(�) is not divisible by �. In this case,

for Equation (1) to hold, it is easy to see that f

should be of the form

fð�Þ ¼ pð�Þfoð�Þ,

where fo(�) is an odd function such that

deg( f )� n� 1. Hence, we obtain

degðfoÞ � degðreÞ � 1: ð2Þ

From property (2), it follows that the dimension of

the space of all possible polynomials fo(�) for a given

even polynomial re(�) and hence that of the space of

conserved QDFs in this case is deg(re(�))/2.
. Case 2: p(�) is divisible by �. Let

p(�)¼ �p1(�). In this case, since p1(�) does not

have a root at zero, for Equation (1) to hold, it

is easy to see that f should be of the form

fð�Þ ¼ p1ð�Þfeð�Þ,

where fe(�) is an even function such that

deg(f)� n� 1. Hence, we obtain

degðfeÞ � degðreÞ: ð3Þ

From property (3), it follows that the dimension

of the space of all possible polynomials fe(�) for a

given even polynomial re(�) and hence that of the

space of conserved QDFs in this case is equal to

(deg(re(�))/2)þ 1. œ

Remark 2: We now associate a concept called

reversibility with the existence of conserved quantities

for the case of scalar behaviours. An autonomous

behaviour B is said to be reversible if

w2B) revðwÞ 2B where rev(w) is defined as

rev(w)(t):¼w(�t). For further details and physical

insight into the concept of reversibility, the reader is

referred to Fagnani and Willems (1991) and Lamb and

Roberts (1998). We now examine what kind of scalar

behaviours are reversible.
Let r2R½�� have distinct roots li 2C,

i¼ 1, . . . ,mþ 2N of multiplicity ni, i.e., rð�Þ ¼Qmþ2N
k¼1 ð� � lkÞ

nk . Assume that the first m distinct

roots are real numbers and the remaining distinct

roots are the conjugate pairs lmþ1, �lmþ1,
lmþ2, �lmþ2, . . . , lmþN, �lmþN. Let B ¼ kerðrðd=dtÞÞ.
Then from Polderman and Willems (1997), Corollary

3.2.13, p. 75), it follows that w2B iff it is of the form

wðtÞ ¼
Xm
k¼1

Xnk�1
l¼0

rklt
lelkt þ

XmþN
k¼mþ1

Xnk�1
l¼0

tl rkle
lkt þ �rkle

�lkt
� �

with rkl, arbitrary real numbers for k¼ 1, 2, . . . ,m and

arbitrary complex numbers with non-zero imaginary

parts for k¼mþ 1, mþ 2, . . . ,mþN. We have

wð�tÞ ¼
Xm
k¼1

Xnk�1
l¼0

ð�1Þlrklt
le�lkt

þ
XmþN

k¼mþ1

Xnk�1
l¼0

ð�1Þltl rkle
�lkt þ �rkle

��lkt
� �

:

Thus if the system is reversible, it follows that every

non-zero root lk of r is accompanied by another root

�lk of r. This implies that r is either even or odd.

Hence from Proposition 1, it can be inferred that every

reversible scalar behaviour has conserved quantities

associated with it.
In order to prove the equivalence between oscilla-

tory systems and autonomous lossless systems, we first

consider the case of scalar behaviours.

International Journal of Control 1523
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Theorem 1: A behaviourB2L1 is lossless if and only if

it is oscillatory.

Proof: (If) We consider the two forms of scalar
oscillatory behaviours mentioned in x 2.1. For each of

these forms of oscillatory behaviour, we construct an

energy function that is positive.

. Case 1: The oscillatory behaviour is of the

form B ¼ kerðrðd=dtÞÞ, where rð�Þ ¼ ð�2 þ !2
0Þ

ð�2 þ !2
1Þ . . . ð�2 þ !2

n�1Þ and !0, . . . ,!n�1 2

R
þ. From the discussion of x 2.3, it can be

said that the two-variable polynomial asso-

ciated with a general B-canonical conserved

quantity for this case has the form

�ð�, �Þ ¼
�rð�Þfeð�Þ þ �rð�Þfeð�Þ

� þ �
, ð4Þ

where fe is an even function of degree less than

or equal to 2n� 2. Define vpð�Þ :¼
rð�Þ=ð�2 þ !2

pÞ. It can be seen that the set

{vp(�)}p¼0,. . .,n�1 is a basis of even polynomials
of degree less than or equal to 2n� 2. It

follows that there exist, bp 2R, p¼ 0, . . . , n� 1

such that feð�Þ ¼
P

n�1
p¼0bpvpð�Þ. Now

�ð�, �Þ ¼
Xn�1
p¼0

bp
�rð�Þvpð�Þ þ �rð�Þvpð�Þ

� þ �

� �

¼
Xn�1
p¼0

bpvpð�Þvpð�Þð��þ !
2
pÞ:

Define �pð�, �Þ :¼ vpð�Þvpð�Þð��þ !
2
pÞ. From

Equation (4), it can be seen that linearly

independent fe’ s produce linearly independent

�’s. Hence f�pð�, �Þgp¼0,..., n�1 is a basis of the

space of two-variable polynomials that induce
B-canonical conserved quantities. Now con-

sider Eð�, �Þ ¼
P

n�1
p¼0a

2
p�pð�, �Þ ¼ Dð�Þ>Dð�Þ,

where ap 2Rnf0g for p¼ 0, . . . , n� 1 and

Dð�Þ ¼

a0�v0ð�Þ
a0!0v0ð�Þ
a1�v1ð�Þ
a1!1v1ð�Þ

..

.

an�1�vn�1ð�Þ
an�1!n�1vn�1ð�ÞÞ

2
6666666664

3
7777777775
:

It can be verified that D(l) 6¼ 02n�1 for any
l2C. This proves that E induces an energy

function for Case 1 oscillatory systems.
. Case 2: The oscillatory behaviour is of

the form B ¼ kerðrðd=dtÞÞ where rð�Þ ¼
�ð�2þ!2

0Þð�
2þ!2

1Þ . . .ð�
2þ!2

n�1Þ ¼ �reð�Þ and

!0, . . . ,!n�1 2R
þ. From the discussion of

x 2.3, we conclude that the two-variable poly-
nomial associated with a general B-canonical
conserved quantity for this case has the form

�ð�, �Þ ¼
rð�Þfeð�Þ þ rð�Þfeð�Þ

� þ �
, ð5Þ

where fe is an even function of degree less than
or equal to 2n. Define vpð�Þ :¼ reð�Þ=ð�

2 þ !2
pÞ.

It can be seen that the set freð�Þg[
f�2vpð�Þgp¼0,..., n�1 is a basis of even polynomials
of degree less than or equal to 2n. It follows
that there exist bp 2R, p ¼ 0, . . . , n, such that
feð�Þ ¼

P
n�1
p¼0bp�

2vpð�Þ þ bnreð�Þ. Now

� �, �ð Þ ¼
Xn�1
p¼0

bp
�2rð�Þvpð�Þ þ �

2rð�Þvpð�Þ

� þ �

� �

þ bn
rð�Þreð�Þ þ rð�Þreð�Þ

� þ �

� �

¼
Xn�1
p¼0

bp��vpð�Þvpð�Þð��þ !
2
pÞ þ bnreð�Þreð�Þ:

Define �pð�, �Þ :¼ vpð�Þvpð�Þð��þ !
2
pÞ. From

Equation (5), it can be seen that linearly
independent fe’s produce linearly independent
�’s. Hence freð�Þreð�Þg [f���pð�, �Þgp¼0,..., n�1
is a basis of two-variable polynomials
that induce conserved quantities associated
with B. Now consider

Pn�1
p¼0 a

2
p���pð�, �Þþ

a2nreð�Þreð�Þ ¼ Dð�Þ>Dð�Þ, where ap 2R
þ for

p¼ 0, . . . , n and

Dð�Þ ¼

a0�
2v0ð�Þ

a0!0�v0ð�Þ
a1�

2v1ð�Þ
a1!1�v1ð�Þ

..

.

an�1�
2vn�1ð�Þ

an�1!n�1�vn�1ð�Þ
anreð�Þ

2
666666666664

3
777777777775
:

It can be verified that D(l) 6¼ 0(2nþ1)�1 for any
l2C. This proves that E induces an energy
function for Case 2 oscillatory systems.
(Only if) We consider all scalar systems for
which conserved quantities exist and prove
that a conserved quantity cannot be positive
unless the system is oscillatory. Let B be a
behaviour whose kernel representation is r(d/
dt)w¼ 0. Let r(�)¼ re(�)p(�) where re is the
maximal even polynomial factor of r. If p(�) is
not a constant and p(�) 6¼ a�, where a2R, then
it has at least one root, say l2Rnf0g or two
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roots, say l, �l2CnR. From the proof of

Proposition 1, depending on whether p(�) is

divisible by � or not, any two-variable poly-

nomial inducing conserved QDF over B can

either have the form

�1ð�, �Þ ¼
rð�Þp1ð�Þfeð�Þ þ rð�Þp1ð�Þfeð�Þ

� þ �
,

where p1(�)¼ p(�)/� and fe is an even function,

or the form

�2ð�, �Þ ¼
rð�Þpð�Þfoð�Þ þ rð�Þpð�Þfoð�Þ

� þ �
,

where fo(�) is an odd function. It can be seen

that both �1 and �2 are divisible by (�� l)
(�� l) if l2R and divisible by ð� � lÞð� � �lÞ
ð�� lÞð�� �lÞ if l2CnR. Hence along the

trajectory wðtÞ ¼ elt þ e
�lt 2B, the QDFs

induced by �1 and �2 are equal to zero. This

implies that B does not have a positive

conserved QDF. This eliminates all scalar

systems except those for which the kernel

representation is r(d/dt)w¼ 0, such that either

r(�) is even, or r(�)¼ �re(�), where re(�) is an

even function.

We now consider all those remaining cases except the

oscillatory one, for which B ¼ kerðrðd=dtÞÞ is such that

r does not have repeated roots. For each of these, we

will construct a general conserved quantity which is

zero on at least one of the trajectories of B, thus

proving the claim by contradiction.

. Case 1: r is even and has roots at l0 and�l0,
where l0 2R. Let rð�Þ ¼ r0ð�2Þ ¼ ð�2 � l20Þr1ð�Þ,
where r1ð�Þ ¼

Qn�1
p¼1 ð�

2 � l2pÞ and lp 2C for

p¼ 1, . . . , n� 1. Any two-variable polynomial

that induces a conserved QDF over B has the

form

�ð�, �Þ ¼
�rð�Þfð�2Þ þ �rð�Þfð�2Þ

� þ �
:

We can write f(�2) in terms of the

basis fu0pð�
2Þgp¼0,..., n�1, where u0pð�

2Þ ¼

r0ð�2Þ=ð�2 � l2pÞ. Hence

�ð�, �Þ ¼ b0r1ð�Þr1ð�Þð��� l20Þ þ ð�
2 � l20Þð�

2 � l20Þ�1ð�, �Þ:

Along the trajectory wðtÞ ¼ el0t 2B, the QDF

induced by the above polynomial is zero.

Hence in this case, a positive conserved QDF

does not exist.

. Case 2: r is odd and has roots at l, �l, �l
and ��l, where l is a point in the complex

plane that is not on any of the co-ordinate

axes. Let rð�Þ ¼ �r0ð�2Þ ¼ �ð�2 � l2Þ
ð�2 � �l2Þr1ð�Þ, where r1ð�Þ ¼

Qn�2
p¼1 ð�

2 � l2pÞ
and lp 2C for p¼ 1, . . . , n� 2. Any two-

variable polynomial that induces a conserved

QDF over B has the form

�ð�, �Þ ¼
rð�Þfð�2Þ þ rð�Þfð�2Þ

� þ �
:

We can write f(�2) in terms of a new basis as

follows:

fð�2Þ ¼ b0
�2r0ð�2Þ

�2 � l2
þ �b0

�2r0ð�2Þ

�2 � �l2

þ
Xn�2
p¼1

bp
�2r0ð�2Þ

�2 � l2p
þ bn�1r

0ð�2Þ:

Hence

�ð�, �Þ ¼ b0r1ð�Þr1ð�Þ��ð�
2 � �l2Þð�2 � �l2Þð��� l2Þ

þ �b0r1ð�Þr1ð�Þ��ð�
2 � l2Þð�2 � l2Þð��� �l2Þ

þ ð�2 � l2Þð�2 � �l2Þð�2 � l2Þð�2 � �l2Þ�1ð�, �Þ:

Along the trajectory wðtÞ ¼ elt þ e
�lt 2B, the

QDF induced by the above polynomial is

zero. Hence in this case, a positive conserved

QDF does not exist.

There are two other cases, namely:

. Case 3: r is odd and has roots at l0 and �l0,
where l0 2R.

. Case 4: r is even and has roots at l, �l, �l
and ��l, where l is a point in the complex

plane that is not on any of the co-ordinate

axes.

The proofs for the last two cases are very

similar to the ones for the first two cases and

will not be given explicitly. Finally, we con-

sider those remaining cases, for which B ¼

kerðrðd=dtÞÞ is such that r has repeated roots.

. Case 1: r is even and has at least twice

repeated roots at	 l, where l is either purely

real or purely imaginary. Let rð�Þ ¼ ð�2 � l2Þ2

ð
Pn�2

p¼0 ap�
2pÞ. In this case, any two-variable

polynomial that induces a conservedQDF over

B has the form

�ð�, �Þ ¼
�rð�Þ

Pn�1
p¼0 bp�

2p
� �

þ �rð�Þ
Pn�1

p¼0 bp�
2p

� �
� þ �

¼
Xn�2
i¼0

Xn�1
j¼0

aij�ijð�, �Þ,

International Journal of Control 1525
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where

�ijð�, �Þ ¼
�2ið�2 � l2Þ2�2jþ1 þ �2ið�2 � l2Þ2�2jþ1

� þ �
: ð6Þ

We show that �ij can be written as

�ijð�, �Þ ¼ ð�
2 � l2Þgijð�, �Þ þ gijð�, �Þð�

2 � l2Þ: ð7Þ

Assuming that this is true, comparing

Equations (6) and (7), we obtain

gijð�, �Þð� þ �Þ ¼ ð�
2 � l2Þ�2i�2jþ1

gijð�, �Þð� þ �Þ ¼ ð�
2 � l2Þ�2i�2jþ1:

Adding the above equations, we get

gijð�, �Þ þ gijð�, �Þ ¼
ð�2 � l2Þ�2i�2jþ1 þ ð�2 � l2Þ�2i�2jþ1

� þ �
:

It can be seen that the numerator in the

right hand side of the above equation

is divisible by the denominator. Let

gij(�, �)þ gij(�, �)¼�ij(�, �). Since �ij is a

symmetric polynomial, we can take

gij(�, �)¼�ij(�, �)/2. This shows that gij(�, �)
is a symmetric polynomial.
Hence from Equation (7), along the trajectory

wðtÞ ¼ elt þ e�lt 2 kerðrðd=dtÞÞ, the QDF

induced by �(�, �) is zero. Hence no conserved

QDF is positive in this case.

. Case 2: r is odd and has at least twice

repeated roots at 	l and 	�l where l is a

point in the complex plane that does not lie on

any of the co-ordinate axes. Let

rð�Þ ¼ �ð�2 � l2Þ2 ð�2 � �l2Þ2ð
Pn�4

p¼0 ap�
2pÞ. As

in the previous case, any two-variable poly-

nomial that induces a conserved QDF over B

has the form

�ð�, �Þ ¼
Xn�4
i¼0

Xn
j¼0

aij�ijð�, �Þ,

where

�ijð�,�Þ¼

�2iþ1ð�2�l2Þ2ð�2� �l2Þ2�2jþ�2iþ1ð�2�l2Þ2ð�2� �l2Þ2�2j

�þ�
:

Following the argument used in the proof

of Case 1, it can be shown that �ij can be

written as

�ijð�, �Þ ¼ ð�
2 � l2Þð�2 � �l2Þgijð�, �Þ

þ gijð�; �Þð�
2 � l2Þð�2 � �l2Þ:

Thus along the trajectory wðtÞ ¼ elt þ e
�lt 2

kerðrðd=dtÞÞ, the QDF induced by �(�, �) is
zero. Hence no conserved QDF is positive in
this case.

There are two other cases, namely:

. Case 3: r is even and has at least twice
repeated roots at 	l and 	�l where l is a point
in the complex plane that does not lie on any
of the co-ordinate axes.

. Case 4: r is odd and has at least twice
repeated roots at 	l, where l is either purely
real or purely imaginary.

The proofs for these cases are very similar to the
ones for Cases 1 and 2 and will not be given explicitly.

We have considered all linear scalar systems apart
from oscillatory ones for which conserved QDFs exist
and we have shown that a positive conserved QDF does
not exist for any of these cases. Since we have already
proved the existence of a positive conserved QDF for
oscillatory systems, this concludes the proof. œ

An alternate proof for the (Only if) part of Theorem 1
has been given in the Appendix. This proof makes use
of concepts from Lyapunov theory of stability and the
following proposition, whose proof is also given in the
Appendix.

Proposition 2: If r2R½�� given by r(�)¼ r0(�2)þ �r00(�2),
where r0, r00 2R½��, is Hurwitz then r0 and r00 have distinct
roots on the negative real axis.

We now discuss a few properties of energy functions
for scalar oscillatory behaviours. We first present an
analysis of the conditions under which a conserved
quantity for a scalar oscillatory behaviour is positive.
The following lemma can be used to construct an
energy function for a scalar oscillatory behaviour.

Lemma 2: Let r1 2R½�� be given by r1ð�Þ ¼ ð�
2 þ !2

0Þ

ð�2 þ !2
1Þ . . . ð�2 þ !2

n�1Þ, where !0, . . . ,!n�1 2R
þ and n

is a positive integer. Define vpð�Þ :¼ r1ð�Þ=ð�
2 þ !2

pÞ

p¼ 0, . . . , n� 1. Define r2(�) :¼ �r1(�). Then the follow-
ing hold.

(1) Let B1 ¼ kerðr1ðd=dtÞÞ. If the conserved quan-
tity for B1 induced by
�1ð�, �Þ ¼

Pn�1
p¼0 bpvpð�Þvpð�Þð��þ !

2
pÞ is positive,

then bp4 0 for p¼ 0, . . . , n� 1.
(2) Let B2 ¼ kerðr2ðd=dtÞÞ. If the conserved quan-

tity for B2 induced by �2ð�, �Þ ¼Pn�1
p¼0 bp��vpð�Þvpð�Þð��þ !

2
pÞ þ bnr1ð�Þr1ð�Þ is

positive, then bp4 0 for p¼ 0, . . . , n.

Proof: Assume that bi� 0 for some i2 f0, . . . , n� 1g.
Consider a trajectory wðtÞ ¼ kej!it þ �ke�j!it 2B1,B2.
Along this trajectory, vp(d/dt)w¼ 0 for

1526 S. Rao and P. Rapisarda
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p2 f0, . . . , n� 1gnfig. Since �pð�, �Þ ¼ vpð�Þvpð�Þ
ð��þ !2

pÞ and ���pð�, �Þ are non-negative, the QDF

induced by �1ð�, �Þ and �2ð�, �Þ over B1 and B2

respectively along this trajectory turns out to be non-

positive. Hence by contradiction, bp4 0 for

p¼ 0, . . . , n� 1 in both cases.
In order to complete the proof consider now

statement 2 of the Lemma and assume by contra-

diction that bn� 0. Consider a trajectory wðtÞ ¼ k2B2.

Along this trajectory vp(d/dt)w¼ 0 for

p2 f0, . . . , n� 1g. Since r1(�)r1(�) is non-negative, the

QDF induced by �2(�, �) over B2 turns out to be non-

positive. Hence, bn4 0. This concludes the proof. œ

The next Theorem relates the positivity of a conserved

quantity to an important property known as interla-

cing property, which also arises in applications like

electrical network theory.

Theorem 2: Let r1 2R½�� be given by r1ð�Þ ¼ ð�
2 þ !2

0Þ

ð�2 þ !2
1Þ . . . ð�2 þ !2

n�1Þ, where !0 < !1 � � � < !n�1 2R
þ

and n is a positive integer. Define r0(�2) :¼
r1(�); r2(�) :¼ �r1(�) and r

^
ð�Þ :¼ �r0ð�Þ. Then the following

hold.

(1) Let B2 ¼ kerðr1ðd=dtÞÞ. Let f1(�) be a polyno-

mial of degree less than or equal to n� 1.

A conserved quantity for B1 induced by

�1ð�, �Þ ¼
�r0ð�2Þf1ð�

2Þ þ �r0ð�2Þf1ð�
2Þ

� þ �
ð8Þ

is positive if and only if f1ð�!
2
0Þ > 0 and the

roots of f1 are interlaced between those of r0, i.e.,

along the real axis, exactly one root of f1 occurs

between any two consecutive roots of r0.
(2) Let B2 ¼ ker ðr2ðd=dtÞÞ. Let f2(�) be a poly-

nomial of degree less than or equal to n. A

conserved quantity associated with B2 induced

by

�2ð�, �Þ ¼
�r0ð�2Þf2ð�

2Þ þ �r0ð�2Þf2ð�
2Þ

� þ �

is positive if and only if f2(0)4 0 and the roots of

f2 are interlaced between those of r
^
.

Proof: (Only if) From Lemma 2 and Theorem 1, we

know that f1 and f2 are of the form

f1ð�
2Þ ¼

Xn�1
p¼0

bpv
0
pð�

2Þ ð9Þ

f2ð�
2Þ ¼

Xn�1
p¼0

bp�
2v0pð�

2Þ þ bnr
0ð�2Þ, ð10Þ

where bp 2R
þ and v0pð�

2Þ ¼ r0ð�2Þ=ð�2 þ !2
pÞ. The roots

of r0 are �!2
0, � !

2
1, . . . ,� !2

n�1 and the roots of r
^
are

0, �!2
0, � !

2
1, . . . , � !2

n�1. From Equation (9), it can

be seen that

f1ð�!
2
0Þ ¼ b0

Yn�1
p¼1

ð!2
p � !

2
0Þ

 !
> 0

f1ð�!
2
1Þ ¼ b1

Y
p 6¼1

ð!2
p � !

2
1Þ

 !
50

f1ð�!
2
2Þ ¼ b2

Y
p 6¼2

ð!2
p � !

2
2Þ

 !
> 0

..

.

Since f1 is a continuous function and can have a

maximum of n� 1 real roots, it follows that the roots

of f are interlaced between those of r0.
In a similar way, it can be verified that f2(0)4 0

and the roots of f2 are interlaced between those of r
^
.

(If) Assuming that the roots of f1 are interlaced

between those of r0 and f1ð�!
2
0Þ > 0, since f1 is

continuous and can have a maximum of n� 1 roots,

we have

f1ð�!
2
0Þ ¼ b0

Yn�1
p¼1

ð!2
p � !

2
0Þ

 !
40

f1ð�!
2
1Þ ¼ b1

Y
p 6¼1

ð!2
p � !

2
1Þ

 !
50

f1ð�!
2
2Þ ¼ b2

Y
p 6¼2

ð!2
p � !

2
2Þ

 !
> 0

..

.

This implies that bp4 0 for p¼ 0, . . . , n� 1, which in

turn implies that �1(�, �) is positive.
Assuming that the roots of f2 are interlaced

between those of r
^
and f2(0)4 0, from the continuity

of f2, using the method used above, it can be proved

that �2(�, �) is positive. œ

Remark 3: The above property known as interlacing

property can be deduced from Fuhrmann (1996,

Theorem 9.1.8, p. 258). This property also arises in

the case of positive real transfer functions of lossless

electrical networks (see Baher (1984, p. 50)), wherein

the transfer function is of the form

Zð�Þ ¼
Hð�2 þ !2

1Þð�
2 þ !2

3Þ . . . ð�2 þ !2
2n�1Þ

�ð�2 þ !2
2Þð�

2 þ !2
4Þ . . . ð�2 þ !2

2n�2Þ

� �	1

where H2R
þ, and

0 < !1 < !2 < !3 < !4 < � � � :
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We show the link between interlacing property of

positive real transfer functions of lossless electrical

networks and the interlacing property of Theorem 2.

Assume that the input voltage of a lossless electrical

network is set to zero. Define

Vð�Þ ¼ rð�Þ ¼ r0ð�2Þ

¼ Hð�2 þ !2
1Þð�

2 þ !2
3Þ . . . ð�2 þ !2

2n�1Þ

Ið�Þ

�
¼ f1ð�

2Þ ¼ ð�2 þ !2
2Þð�

2 þ !2
4Þ . . . ð�2 þ !2

2n�2Þ:

Observe that the behaviour B ¼ kerðVðd=dtÞÞ ¼
kerðrðd=dtÞÞ corresponds to an autonomous lossless

electrical network and also that r0 and f1 obey the

interlacing property mentioned in Theorem 2. The two-

variable polynomial corresponding to the power

delivered to the network is given by

Pð�, �Þ ¼ Vð�ÞIð�Þ þ Ið�ÞVð�Þ

¼ �r0ð�2Þf1ð�
2Þ þ �r0ð�2Þf1ð�

2Þ:

If �1(�, �) represents the two-variable polynomial

corresponding to the energy function for the lossless

network, then ð� þ �Þ�1ð�, �Þ ¼ Pð�, �Þ and this corre-

sponds with Equation (8).
In the next corollary, we give the general expression

for an energy function of a scalar conservative

behaviour that has no characteristic frequency at zero.

Corollary 1: Let B ¼ ker ðrðd=dtÞÞ be an oscillatory

behaviour, where rð�Þ ¼ ð�2þ!2
0Þð�

2þ!2
1Þ . . .ð�

2þ!2
n�1Þ.

Define vpð�Þ :¼ rð�Þ=ð�2 þ !2
pÞ, V(�) :¼ col(v0(�),

v1(�), . . . , vn�1(�)) and � :¼ diag(!0, !1, . . . ,!n�1). A

two-variable polynomial E induces an energy function

for B, if and only if there exists a diagonal matrix

C2R
n�n with positive diagonal entries, such that

Eð�, �Þ ¼ ��Vð�ÞTC2Vð�Þ þ Vð�ÞTC2�2Vð�Þ: ð11Þ

Proof: (If) From the (if) part of the proof of

Theorem 1, it follows that

Eð�, �Þ ¼
Xn�1
p¼0

a2pvpð�Þvpð�Þð��þ !
2
pÞ

induces an energy function for B if ap 2R
þ for

p¼ 0, . . . , n� 1. If C is defined as

C :¼ diagða0, a1, . . . , an�1Þ

then, it is easy to see that Equation (11) holds.
(Only if) From the proof of Lemma 2, it follows

that every energy function forB has an associated two-

variable polynomial of the form

Eð�, �Þ ¼
Xn�1
p¼0

bpvpð�Þvpð�Þð��þ !
2
pÞ,

where bp 2R
þ for p¼ 0, . . . , n� 1. Let ap 2R

þ be such
that a2p ¼ bp for p¼ 0, . . . , n� 1. Define

C :¼ diagða0, a1, . . . , an�1Þ:

Then, it is easy to see that Equation (11) holds. œ

With reference to the previous Corollary, if we
interpret q¼V(d/dt)w as a generalised position, then
dq/dt¼ (d/dt)V (d/dt)w is a generalised velocity. Define
M :¼ 2C2 and K :¼ 2C2�2. Using these expressions
the system equations can be written in a way similar to
the equations describing a second order mechanical
system as

M
d2q

dt2
þ Kq ¼ 0

C2 I
d2

dt2
þ�2

� �
V

d

dt

� �
w ¼ 0

which reduces to col(r(d/dt), r(d/dt), . . .)w(t)¼ 0. Thus
M and K can be interpreted as the mass and the
stiffness matrix respectively. This leads to the two-
variable polynomials K and P corresponding to the
kinetic energy ð12Mðdq=dtÞ

2
Þ and potential energy ð12Kq

2Þ

respectively being given by

Kð�, �Þ ¼ ��Vð�ÞTC2Vð�Þ ð12Þ

Pð�, �Þ ¼ Vð�ÞTC2�2Vð�Þ: ð13Þ

We now illustrate the concepts discussed so far in this
section using the example of a mechanical system.

Example 1: Consider two masses m1 and m2 attached
to springs with constants k1 and k2. The first mass is
connected to the second one via the first spring, and
the second mass is connected to the wall with the
second spring as shown in Figure 1. Denote by w1 the
position of the first mass. The differential equation
governing w1 is

r
d

dt

� �
w1 ¼

d4

dt4
w1 þ

k1 þ k2
m2

þ
k1
m1

� �
d2

dt2
w1

þ
k1k2
m1m2

� �
w1 ¼ 0:

Let m1¼m2¼ 1, k1¼ 2 and k2¼ 3. Then
r(�)¼ �4þ 7�2þ 6¼ (�2þ 6)(�2þ 1). The natural

m1m2

k1k2

w1

Figure 1. A mechanical example.

1528 S. Rao and P. Rapisarda

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
3
:
0
4
 
1
1
 
A
u
g
u
s
t
 
2
0
0
8



frequencies of the system are given by !0 ¼
ffiffiffi
6
p

and

!1¼ 1. The total kinetic energy and the total potential
energy for the system can be expressed as QDFs in
terms of only w1. The two variable polynomials
corresponding to these are

Kð�, �Þ ¼
1

8
½�3�3 þ 2ð��3 þ �3�Þ þ 8��� ð14Þ

Pð�, �Þ ¼
1

8
½5�2�2 þ 6ð�2 þ �2Þ þ 12�: ð15Þ

The total energy of the system is a positive conserved
quantity and hence from Lemma 2 will correspond to
the two-variable polynomial of the form

Eð�, �Þ ¼ a20ð��þ 6Þð�2 þ 1Þð�2 þ 1Þ

þ a21ð��þ 1Þð�2 þ 6Þð�2 þ 6Þ

Indeed by comparison with Equations (14) and (15),
we obtain real values for a0 and a1 as

a0 ¼
ffiffiffiffiffiffiffi
0:1
p

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:025
p

In this case, with C¼ diag(a0, a1) and �¼ diag(!0, !1),
it can be verified that Equations (12) and (13) reduce to
Equations (14) and (15), respectively.

We now build upon the result of Theorem 1 and
extend it to the multivariable case.

Theorem 3: A linear autonomous system B2L
w is

lossless if and only if it is oscillatory.

Proof: We proceed by reduction of the multivariable
case to the scalar case by use of the Smith form.
Consider a kernel representation of B given by
B ¼ kerðRðd=dtÞÞ, where R2R

w�w
½�� and

det(R(�)) 6¼ 0. Let R¼U�V be the Smith form decom-

position of R. Let the behaviour B
0 be given by

B
0
¼ kerð�ðd=dtÞÞ. Denote the number of invariant

polynomials of R equal to one with w1 and let
frið�Þgi¼w1þ1,..., w be the set consisting of the remaining
invariant polynomials of R. Let B0i ¼ kerðriðd=dtÞÞ.

(Only If) We assume that B and hence B
0 are

lossless. Consider a trajectory w0 2B0. Let fw0igi¼1,..., w
be the components of w0. Consider an energy function
Q� of B acting on w. Let �0ð�, �Þ ¼
ðVð�ÞÞ�T�ð�, �ÞðVð�ÞÞ�1. Let �0ið�, �Þ be the ith diagonal

entry and �0ikð�, �Þ be the entry corresponding to the ith

row and kth column of the polynomial matrix �0ð�, �Þ.
Then

Q�ðwÞ ¼ Q�0 ðw
0Þ ¼

Xw
i¼1

Q�0
i
ðw0iÞ þ

X
i 6¼k

L�0
ik
ðw0i,w

0
kÞ ð16Þ

Since Q� > 0, also Q�0 > 0. Since each component of w0

can be chosen independently of each other, it follows
that Q�0

i
> 0 and is conserved over B

0

i for i¼ 1,

2, . . . , w. This is possible only if each of B
0

i is

oscillatory for i¼ 1, 2, . . . , w, which implies that B
0

and hence B is oscillatory.
(If) Assume that B and hence B0 is oscillatory. We

construct a QDF that is positive and conserved along
B and hence prove that the system is lossless. For
i¼w1þ 1, . . . , w, let ri have non-zero roots at 	j!0i,
	j!1i, 	j!2i, . . . and maximal even polynomial factor
equal to si. Define vpqð�Þ :¼ sqð�Þ=ð�

2 þ !2
pqÞ. Consider

Dð�Þ ¼

0w1�w1
0w1�1 . . . . . . . . .

0��w1
Dw1þ1 0��1 . . . . . . . . .

0��w1
0��1 Dw1þ2 0��1 . . . . . .

..

. ..
.

0��1
. .

. . .
. ..

.

0��w1
0��1

..

. . .
. . .

.
0��1

0��w1
0��1 . . . . . . . . . Dwð�Þ

2
666666664

3
777777775
,

ð17Þ

where Di¼ col(a0i��0i(�), a0i!0i�0i(�), a1i��1i(�),
a1i!1i�1i(�), . . .) if ri is even and Di¼ col(a0i�

2v0i(�),
a0i!0i�v0i(�), a1i�

2v1i(�), a1i!1i�v1i(�), . . .) if ri is odd,
aik 2R

þ as in the proof of the sufficiency part of
Theorem 1. From the argument used in order to prove
the scalar case, it is easy to see that
�0ð�, �Þ ¼ Dð�ÞTDð�Þ is positive and conserved along
B
0, and hence �ð�, �Þ ¼ Vð�Þ>Dð�Þ>Dð�ÞVð�Þ is positive

and conserved along B. This concludes the proof. œ

4. State space case

In this section, we define an autonomous lossless
system for the state space case in a way analogous to
the one in higher-order approach. We then prove that
an autonomous system is lossless if and only if it is
oscillatory. We begin with the following definition.

Definition 7: A linear system given by the state space
equation dx/dt¼Ax, where x2C

1
ðR,Rx

Þ and
A2R

x�x is lossless if there exists S2R
x�x
s , such that

S4 0 and the functional QE defined by
QE(x)(t) :¼ x(t)TSx(t) is conserved along the trajec-
tories of the system, i.e., (d/dt)QE(x)¼ 0 8x that satisfy
dx/dt¼Ax. We call E an energy function for the
system.

We now prove the main result of this section,
namely equivalence of autonomous lossless and
oscillatory systems using the state space method.

Theorem 4: Consider a linear autonomous system that
obeys the state space equation dx/dt¼Ax where
x2C

1
ðR,Rx

Þ and A2R
x�x. B is oscillatory if and

only if it is lossless.

Proof: (If) We consider two cases, namely A diag-
onalisable and A not diagonalisable. We prove that in
the diagonalisable case, the existence of an energy

International Journal of Control 1529
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function implies that the system is oscillatory. We then

prove that an energy function cannot exist for the non-

diagonalisable case of linear systems.

. Case 1: A is diagonalisable. Let

Vx ¼ z2C
1
ðR,Cx

Þ, where V is invertible

and V AV�1¼Ad is a diagonal matrix whose

ith diagonal element is �i 2C. We have

dz

dt
¼ V

dx

dt
¼ V Ax ¼ VAV�1z ¼ Adz

Assume that there exists a matrix K2C
x�x such that

K¼K* and z*Kz4 0 for all non-zero z2C
x�1. Since x

is a real vector and V is invertible,

z
Kz ¼ xTV
KVx > 0 8x 6¼ 0:

This implies that S¼V*KV is positive definite and

real. Let E¼ z*Kz¼ xTSx. This implies that

dE

dt
¼ z
ðKAd þ A
dKÞz:

Let Kik be the element of the matrix K corresponding to

the ith row and kth column. Then Equation (18) holds

K Ad þA
dK ¼

2Reð�1ÞK11 ð�1 þ �2Þ �K12 ð�1 þ �3Þ �K13 . . .

ð�1 þ �2ÞK12 2Reð�2ÞK22 ð�2 þ �3Þ �K23 . . .

ð�1 þ �3ÞK13 ð�2 þ �3ÞK23 2Reð�3ÞK33 . . .

..

. ..
. ..

. . .
.

2
66666664

3
77777775
ð18Þ

Now dE=dt ¼ 0 8 y2C
x�1
) KAd þ A
dK ¼ 0. Also

since K is positive definite, Kpp4 0, for p¼ 1, . . . , x.

This implies that each of the diagonal entries of Ad is

purely imaginary. Hence the system whose governing

equation is dz/dt¼Adz, is oscillatory. Since oscillatory

nature is invariant under similarity transformation, the

given system is also oscillatory.

. Case 2: A is not diagonalisable. Let

Vx ¼ z2C
x�1, where V is invertible and

VAV�1¼AJ is the Jordan form of A.

Let AJ¼ diag(�1, . . . ,�n), where

�i ¼

�i 1 0 . . . 0

0 �i 1 . .
.

0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 �i 1
0 . . . 0 0 �i

2
666664

3
777775:

As in the earlier case, let E¼ z*Kz¼ x>Sx, where

K is positive definite. This implies that

dE

dt
¼ z
ðKAJ þ A
JKÞz:

Let Kik be the element of the matrix K

corresponding to the ith row and kth column.

Then Equation (19) holds.

dE

dt
¼ 0

implies that the right hand side of Equation

(19) is zero. Since Kii 6¼ 0, we obtain Re(�g)¼ 0

for g¼ 1, . . . , n, which in turn implies that

Kii þ 2Reð�gÞ �Ki, iþ1 ¼ Kii ¼ 0, which is not

possible since K is positive definite. Hence a

non-diagonalisable system cannot be lossless.

Thus an autonomous lossless system is necessarily

oscillatory.
(Only if) We prove that for an oscillatory system,

there exists a quadratic functional which is positive

definite and is conserved. Let Vx ¼ z2C
1
ðR,Cx

Þ,

where V is invertible and VAV�1¼Ad is a diagonal

matrix whose ith diagonal element is �i, which is

purely imaginary. We have

dz

dt
¼ V

dx

dt
¼ V Ax ¼ V AV�1z ¼ Adz:

Now consider a diagonal matrix K of size x� x, each of

whose diagonal entries is real and positive. It is easy to

see that z*Kz4 0 for all non-zero z2C
x�1. Since x is a

real vector and V is invertible,

z
Kz ¼ xTV
KVx > 0 8x 6¼ 0:

KAJ þ A
JK ¼

. .
. ..

. ..
. ..

.

. . . 2Reð�gÞKii Kii þ 2Reð�gÞ �Ki, iþ1 . . .

. . . Kii þ 2Reð�gÞKi, iþ1 2Reð�gÞKiþ1, iþ1 þ 2ReðKi, iþ1Þ . . .

. . . Ki, iþ1 þ 2Reð�gÞKi, iþ2 Ki, iþ2 þ Kiþ1, iþ1 þ 2Reð�gÞKiþ1, iþ2 . . .

..

. ..
. ..

. . .
.

2
66666666664

3
77777777775

ð19Þ
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This implies that S¼V*KV is positive definite and

real. Let E¼ z*Kz¼ xTSx. This implies that

dE

dt
¼ z
ðKAd þ A
dKÞz ¼ 0:

Hence an oscillatory system is necessarily lossless. œ

5. Open lossless systems

In this section, we consider systems that are not

autonomous, i.e., systems which have inputs. Here we

define open lossless systems based on the observation

that the total energy of a physical system of this type is

positive definite and that the rate of change of total

energy of such a system is zero if the inputs of the

system are made equal to zero.

Definition 8: A controllable behaviour B is

called lossless with respect to an input/output

partition col(u, y) of B, if 9 a QDF QE > 0

ðE2R
ðuþyÞ�ðuþyÞ

½�, ��Þ, such that

d

dt
QEðwÞ ¼ 0 8w ¼ colð0, yÞ 2 B

Any QDF QE that satisfies the properties of the

above definition is called an energy function for the

system.

Lemma 3: Consider a controllable behaviour B2Luþy.

B is lossless with respect to an input/output partition

w¼ col(u, y) of B, if and only if

By :¼ fy2C
1
ðR,Ry

Þjcolð0, yÞ 2Bg is oscillatory.

Proof: (If) Assume that 9 an input/output partition

w¼ col(u, y) of B such that By is oscillatory and hence

lossless. Let QE1
be an energy function for By in the

sense of Definition 5. Define

Eð�, �Þ :¼
Iu 0
0 E1ð�, �Þ

� �
:

Since QE1
> 0, it follows that QE4 0. Also

ðd=dtÞQEðwÞ ¼ 0 8 w ¼ colð0, yÞ 2B. Thus QE is an

energy function for B in the sense of Definition 8.

Hence B is lossless with respect to the input/output

partition w¼ col(u, y).
(Only If ) Assume that B is lossless with respect to

an input/output partition w¼ col(u, y) of B. Hence

there exists an energy function QE, such

that ðd=dtÞQEðwÞ ¼ 0 8 w ¼ colð0, yÞ 2B. Partition

the two-variable polynomial matrix E(�, �) inducing

QE as

Eð�, �Þ ¼
E11ð�, �Þ E12ð�, �Þ
E12ð�, �Þ

T E22ð�, �Þ

� �
,

where E11 2R
u�u �, �½ �, E12 2R

u�y �, �½ � and
E22 2R

y�y �, �½ �. Since QE4 0, it follows that
QE22

> 0. Also since QE is an energy function for B

in the sense of Definition 8, ðd=dtÞQE22
ðwÞ ¼

0 8 w2By. Hence By is lossless, which in turn
implies that it is oscillatory. œ

Remark 4: With reference to the above lemma,
it is easy to see that if P(d/dt)y¼Q(d/dt)u and
u¼D(d/dt)‘, y¼N(d/dt)‘ are respectively a minimal
kernel representation and an observable image repre-
sentation for B then P, respectively D are oscillatory.

In the next algorithm, we show the computation of an
energy function of a controllable lossless behaviour,
starting from an observable image representation of
the behaviour.

Algorithm 1: Input: An observable image representa-
tion of B2L

uþy of the form u¼D(d/dt)‘,
y¼N(d/dt)‘, where N2R

y�u �½ � and D2R
u�u �½ � is

oscillatory.
Output: A two-variable polynomial matrix

E2R
ðuþyÞ�ðuþyÞ �, �½ � that induces an energy function

for B in the sense of Definition 8.

Step 1: Compute a Smith form decomposition of D
given by D¼U�V.

Step 2: Let w1¼number of invariant polynomials of
D equal to one.

Step 3: Let frið�Þgi¼w1þ1,..., u be the set consisting of
the non-unity invariant polynomials of D.

Step 4: For i¼w1þ 1, . . . , u, let 	j!0i, 	j!1i,
	j!2i, . . . be the non-zero roots of ri and let si be the
maximal even polynomial factor of ri.

Step 5: Define vpqð�Þ :¼ sqð�Þ=ð�
2 þ !2

pqÞ.

Step 6: Construct the matrix

D0ð�Þ ¼

0w1�w1
0w1�1 . . . . . . . . .

0��w1
Dw1þ1 0��1 . . . . . . . . .

0��w1
0��1 Dw1þ2 0��1 . . . . . .

..

. ..
.

0��1
. .

. . .
. ..

.

0��w1
0��1

..

. . .
. . .

.
0��1

0��w1
0��1 . . . . . . . . . Duð�Þ

2
666666666664

3
777777777775
,

where Di¼ col(a0i��0i(�), a0i!0i�0i(�), a1i��1ı́(�),
a1ı́!1ı́�1ı́(�), . . .) if ri is even, Di¼ col(a0ı́�

2�0i(�),
a0i!0i��0i(�), a1ı́�

2�1ı́(�), a1ı́!1ı́��1ı́(�), . . .) if ri is odd
and aik 2R

þ.

Step 7: DefineM :¼ col(D, N). Compute a left inverse
C0 of M.
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Step 8: Compute

Eð�, �Þ ¼ C0ð�Þ
TVð�ÞTD0ð�ÞTD0ð�ÞVð�ÞC0ð�Þ: ð18Þ

The next lemma gives an explanation for the steps in
the previous algorithm.

Lemma 4: With reference to Algorithm 1, the two-
variable polynomial matrix E given by Equation (18)
induces an energy function for B.

Proof: Let QE0 be a QDF, such that for any trajectory
w2B, QE(w)¼QE0(‘), where w¼M(d/dt)‘ is an
observable image representation of B. Then

E 0ð�, �Þ ¼Mð�ÞTEð�, �ÞMð�Þ ¼ Vð�ÞTD0ð�ÞTD0ð�ÞVð�Þ:

Consider the behaviour Baut 2L
u, defined as

Baut :¼ ‘2C
1
ðR,Ru

Þ
��D d

dt

� �
‘ ¼ 0

	 

:

From the method of construction of an energy
function for an autonomous lossless system given in
the proof of Theorem 3, it follows that QE 0 is an
energy function for the lossless autonomous behaviour
Baut in the sense of Definition 5. Now
w ¼Mðd=dtÞ‘) ‘ ¼ C0ðd=dtÞw. Hence from
Definition 8, it follows that

Eð�, �Þ ¼ C0ð�Þ
TVð�ÞTD0ð�ÞTD0ð�ÞVð�ÞC0ð�Þ

induces an energy function for B. œ

If we consider a mechanical system, the total power
delivered to the system is equal to the the summation
of scalar products of various forces (inputs) acting on
the system and the velocities (outputs) at the points of
application of the respective forces. Similarly, the total
power delivered to an electrical system is equal to the
summation of the products of input voltages across
various branches and the currents (outputs) through
them. Hence the total power delivered to such systems
can be written as a quadratic functional, each term of
which involves a certain derivative of an input variable
and a certain derivative of an output variable. We now
investigate whether a similar property holds for the
derivative of an energy function of a controllable
lossless behaviour which we may call a ‘‘power
function’’. We begin with the following definition.

Definition 9: Consider a behaviour B with an
input/output partition col(u, y) (u2C

1
ðR,Ru

Þ,
y2C

1
ðR,Ry

Þ). u is said to have inconsequential
components if the behaviour Bu ¼ u2C

1
�

ðR,Ru
Þjcolðu, 0Þ 2Bg is not autonomous.

The next lemma gives the condition on the kernel
representation of a behaviour under which its input
does not have inconsequential components.

Lemma 5: Consider a behaviour B with an input/

output partition col(u, y) ðu2C
1
ðR,Ru

Þ,y2C
1
ðR,Ry

ÞÞ.

Let P d
dt

� 
y ¼ Q d

dt

� 
uðP2R

y�y
½��,Q2R

y�u
½��Þ be a

minimal kernel representation of B. u does not have

inconsequential components iff colrank(Q)¼ u.

Proof: Consider the behaviour Bu ¼ kerðQðd=dtÞÞ.
Since Bu is autonomous iff Q has full column rank,

hence u does not have inconsequential inputs iff

colrank(Q)¼ u. œ

The next lemma gives the condition on the image

representation of a controllable behaviour under which

its input does not have inconsequential components.

Lemma 6: Consider a controllable behaviour B with an

input/output partition col(u, y) ðu2C
1
ðR,Ru

Þ,

y2C
1
ðR,Ry

ÞÞ. Let y¼N(d/dt)‘, u¼D(d/dt)‘,
ðN2R

y�u
½��, D2R

u�u
½��Þ be an observable image

representation of B. u does not have inconsequential

components iff colrank(N)¼u.

Proof: Observe that Bu is autonomous iff the

behaviour Bl :¼ kerðNðd=dtÞÞ is autonomous, which

in turn holds iff N has full column rank. Conclude

from this that u does not have inconsequential inputs

iff colrank(N)¼ u. œ

In the next theorem, using the concept of inconsequen-

tial components, we give the condition on the kernel

representation of a controllable lossless system under

which its power function can be written as a QDF,

each term of which involves a certain derivative of an

input variable and a certain derivative of an output

variable.

Theorem 5: Consider a controllable behaviour B which

is lossless with respect to an input/output partition

col(u, y), ðu2C
1
ðR,Ry

Þ, y2C
1
ðR,Ry

ÞÞ of B. There

exists an energy function QE, such that

d

dt
QE colðu, yÞð Þ ¼ R

d

dt

� �
u

� �T

S
d

dt

� �
y

� �
ð20Þ

where R2R
��u
½�� and S2R

��y
½��, iff the following two

conditions hold:

(1) u does not have inconsequential components;
(2) all the invariant polynomials of Q in any minimal

kernel representation of B given by P(d/dt)y¼

Q(d/dt)u are oscillatory.

Proof: (If) Assume that Q has full column rank

and has all its invariant polynomials oscillatory.

Let By ¼ fy2C
1

R,Ry
ð Þjcolð0, yÞ 2Bg. Let QE1

be a

By-canonical energy function for By in the sense of

Definition 5. Since Q has full column rank, y� u.

Hence, there exists a unimodular matrix U2R
y�y �½ �,
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such that

Uð�ÞQð�Þ ¼
Q1ð�Þ
0ðy�uÞ�u

� �
,

where Q1 2R
u�u
½�� is such that detðQ1ð�ÞÞ 6¼ 0. Now

consider the behaviour B1 :¼ kerðQ1ðd=dtÞÞ. Since all

the invariant polynomials of Q are oscillatory, B1 is an

autonomous lossless behaviour. Let QE2
be a B1-cano-

nical energy function for B1 in the sense of Definition

5. Consider the energy function QE for B given by

Eð�, �Þ ¼
E2ð�, �Þ 0u�y
0y�u E1ð�, �Þ

� �
:

Define

E01ð�, �Þ :¼
0u�u 0u�y
0y�u E1ð�, �Þ

� �
:

Let the QDF QP1
be such that QP1

B
ðd=dtÞQE0

1
. Let

P1ð�, �Þ ¼
P11ð�, �Þ P12ð�, �Þ
P12ð�, �Þ

T P13ð�, �Þ

� �
,

where P11 2R
u�u
½�, ��, P12 2R

u�y
½�, �� and

P13 2R
y�y
½�, ��. Since QE1

is an energy function

for By, 8 w ¼ colð0, yÞ 2B, QP1
ðwÞ ¼ 0. Hence

P13(�, �)¼ 0y�y. Now 8 w ¼ colðu, 0Þ 2B, QE0
1
ðwÞ ¼ 0

and consequently QP1
ðwÞ ¼ 0. Hence P11(�, �)¼ 0u�u

Define

E02ð�, �Þ :¼
E2ð�, �Þ 0u�y
0y�u 0y�y

� �
:

Consider a QDF QP2
, which is equivalent to ðd=dtÞQE0

2

along B. Let

P2ð�, �Þ ¼
P21ð�, �Þ P22ð�, �Þ
P22ð�, �Þ

T P23ð�, �Þ

� �
,

where P21 2R
u�u
½�, ��, P22 2R

u�y
½�, �� and

P23 2R
y�y
½�, ��. Since QE2

is an energy function for

B1, 8 w ¼ colð0, yÞ 2B, QE 0
2
ðwÞ ¼ 0, and consequently

QP2
ðwÞ ¼ 0. Hence P23(�, �)¼ 0y�y.
Since QE2

is an energy function for Bu,

8 w ¼ colðu, 0Þ 2B, QP2
ðwÞ ¼ 0. Hence P21ð�,�Þ¼0u�u.

It is easy to see that

P1ð�,�Þ þ P2ð�,�Þ ¼
0u�u Zð�,�Þ

Zð�, �ÞT 0y�y

� �
B
ð�þ �ÞEð�,�Þ,

where Z(�, �)¼P12(�, �)þP22(�, �). This implies that

d

dt
QE colðu, yÞð Þ ¼ R

d

dt

� �
u

� �T

S
d

dt

� �
y

� �
,

where R(�)TS(�) is a canonical factorisation of 2Z(�, �).
(Only If ) Assume that u has inconsequential

components. Let Q¼U�V be a Smith form

decomposition of Q. Define u0:¼V(d/dt)u. Let

B
0
¼ fcolðu0, yÞ 2C

1
ðR,Ruþy

Þ ðV1ðd=dtÞu
0, yÞ 2B

�� g,

where V1(�)¼V(�)�1. Since B is lossless with respect

to its input/output partition w¼ col(u, y), B
0 is also

lossless with respect to its input/output partition

w0 ¼ col(u0, y). Define

Rð�Þ :¼ ½�ð�Þ �Uð�Þ�1Pð�Þ �:

Then B
0
¼ kerðRðd=dtÞÞ. Since u has inconsequential

components, we can write

�ð�Þ ¼ Dð�Þ 0y�u1
� �

,

where D2R
y�ðu�u1Þ½��. Consider an energy function

QE 0 for B
0 given by

E0ð�, �Þ ¼
E11ð�, �Þ E12ð�, �Þ E13ð�, �Þ
E12ð�, �Þ

T E22ð�, �Þ E23ð�, �Þ
E13ð�, �Þ

T E23ð�, �Þ
> E33ð�, �Þ

2
4

3
5,

where E33 2R
y�y
½�, ��, E12 2R

ðu�u1Þ�u1 ½�, ��, E13 2

R
ðu�u1Þ�y½�, �� and E23 2R

u1�y½�, ��, E22 2R
u1�u1 ½�, ��

and E11 2R
ðu�u1Þ�ðu�u1Þ½�, ��. It is easy to see that

QE22
> 0. Property (20) implies that the derivative of

the energy function QE is equivalent to another QDF

along the behaviour whose associated two-variable

polynomial P0 has the form

P0ð�, �Þ ¼
0u�u Zð�, �Þ

Zð�, �ÞT 0y�y

� �
, ð21Þ

where 2Z(�, �)¼R(�)TS(�). Let the QDF QP0 be such

that QP 0
B
0

ðd=dtÞQE 0 , where

P0ð�, �Þ ¼
0u�u P2ð�, �Þ

P2ð�, �Þ
T 0u�u

� �
,

where P2 2R
u�y
½�, ��. Since ð� þ �ÞE0ð�, �Þ

B
0

P0ð�, �Þ,

ð� þ �ÞE0ð�, �Þ ¼ Rð�ÞTFð�, �Þ þ Fð�, �ÞTRð�Þ þ P0ð�, �Þ,

where F2R
y�ðyþuÞ

½�, ��. Let the right hand side of the

above equation be denoted by P00(�, �). Let

P00ð�, �Þ ¼
P11ð�, �Þ P12ð�, �Þ P13ð�, �Þ
P12ð�, �Þ

T P22ð�, �Þ P23ð�, �Þ
P13ð�, �Þ

T P23ð�, �Þ
T P33ð�, �Þ

2
4

3
5,

where P33 2R
y�y
½�, ��, P12 2R

ðu�u1Þ�u1 ½�, ��, P13 2

R
ðu�u1Þ�y½�, �� and P23 2R

u1�y½�, ��, P22 2R
u1�u1 ½�, ��

and P11 2R
ðu�u1Þ�ðu�u1Þ½�, ��. Then it can be verified

that P22ð�, �Þ ¼ 0u1�u1 , which is a contradiction as

E22(�, �)4 0. Hence there does not exist a QDF QP0

which is equivalent to the derivative of an energy

function along the behaviour B0, with P1(�, �)¼ 0u�u.

This implies that there does not exist a QDF QP0
which

is equivalent to the derivative of an energy function

along the behaviour B such that Equation (21) holds.
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Now assume that colrank(Q)¼ u, but at least one

of the invariant polynomials of Q is not oscillatory.

Hence, there exists a unimodular matrix U2R
y�y
½��,

such that

Uð�ÞQð�Þ ¼
Q1ð�Þ
0ðy�uÞ�u

� �
,

where Q1 2R
u�u
½�� is such that detðQ1ð�ÞÞ 6¼ 0. Now

consider the behaviour B1 :¼ kerðQ1ðd=dtÞÞ. Since all

invariant polynomials ofQ are not oscillatory,B1 is not

lossless. Consider an energy function QE forB given by

Eð�, �Þ ¼
E1ð�, �Þ E2ð�, �Þ
E2ð�, �Þ

T E3ð�, �Þ

� �
where E1 2R

u�u
½�, ��, E2 2R

u�y
½�, �� and

E3 2R
y�y
½�, ��. Let the QDF QP0

be such that

QP0

B
ðd=dtÞQE. Let

P0ð�, �Þ ¼
P1ð�, �Þ P2ð�, �Þ
P2ð�, �Þ

T P3ð�, �Þ

� �
,

whereP1 2R
u�u
½�, ��,P2 2R

u�y
½�, �� and P32R

y�y
½�,��.

Since B1 is not lossless, there does not exist a positive

QDF QE1
such that ðd=dtÞQE1

B1
0. Hence

QP0
ðwÞ 6¼ 0 8 w ¼ colðu, 0Þ 2B. Thus P1ð�, �Þ 6¼ 0u�u.

It follows that there does not exist a QDF QP0
which

is equivalent to the derivative of an energy function

along the behaviour B such that Equation (21) holds.
œ

Remark 5: We now state a result that is equivalent to

the one stated in Theorem 5 in terms of an observable

image representation of the behaviour. With reference

to the previous Theorem, if instead of a kernel

representation of B, an observable image representa-

tion of the form y¼N(d/dt)‘, u¼D(d/dt)‘
ðN2R

y�u
½��, D2R

u�u
½��Þ is given, then for Equation

(20) to hold, a necessary condition is that N should

have all its invariant polynomials oscillatory.

Example 2: Consider a behaviour Bm whose external

variables are the generalised position vector q2R
q and

generalised force vector F2R
q of a second order

undamped mechanical system given by the equation

M
d2q

dt2
þ Kq ¼ F ð22Þ

where M, K2R
q�q denote generalised mass and

stiffness matrices respectively. Bm can be represented

in kernel form as Bm ¼ kerðRmðd=dtÞÞ, where

Rmð�Þ ¼ ½ ðM�2 þ KÞ �Iq �:

If q and F are considered as output and input respectively,

then it easy to see that the behaviour is controllable and

lossless. Also from Theorem 5, it follows that there exists

an energy function QE, such that

d

dt
QE colðq,FÞð Þ ¼ M

d

dt

� �
F

� �T

S
d

dt

� �
q

� �
,

where M, S2R
��q
½��. Indeed the power delivered to

the second order mechanical system given by Equation

(22) is FT(dq/dt), which implies that M(�)¼ Iq and

S(�)¼ �Iq.

Example 3: Consider a behaviour Be whose external

variables are the voltage V across and the current I

through a one-port lossless electrical network given by

the equation

d
d

dt

� �
V ¼ n

d

dt

� �
I

where n, d2R½��. It is well known that Z defined by

Zð�Þ :¼ nð�Þ=dð�Þ is lossless positive real and hence both

n and d are oscillatory. Hence by Theorem 5, there

exists an energy function QE, such that

d

dt
QE colðV, IÞð Þ ¼ M

d

dt

� �
V

� �T

S
d

dt

� �
I

� �

where M, S2R
�
½��. Indeed the power delivered to the

one-port electrical network is equal to VI which implies

that M(�)¼S(�)¼ 1.

6. Conclusion

In this article, the main focus has been to give a

characterisation for higher order linear lossless systems

as opposed to the characterisation for first order

systems using state space method (see Weiss et al.

(2001), Weiss and Tucsnak (2003) and Malinen et al.

(2006)). Using the material covered in this paper, one

can easily implement a computer program wherein the

input is a higher order description of a scalar

oscillatory system and the outputs are its energy

functions and the kinetic and potential energy compo-

nents of a given energy function for the system. Given

a multivariable oscillatory system, using the material in

this paper, one can implement a program to compute

an energy function for the system. Similarly one can

also implement a computer program for open lossless

systems wherein the inputs are either a kernel or an

image description of a controllable system and a given

input/output partition of the system and the outputs of

the program are the following:

. whether the system is lossless with respect to

the given input/output partition or not;
. if the answer to the previous question is yes,

then an energy function for the system;
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. whether the power delivered to the system is of
the form mentioned in Equation (20).
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Appendix

Proof of Proposition 2: Define nð�Þ :¼ r0ð�2Þ and dð�Þ :¼
�r00ð�2Þ and

Sð�Þ :¼
nð�Þ � dð�Þ

nð�Þ þ dð�Þ
:

We have

1� Sð�ÞSð��Þ ¼ 2
nð�Þdð��Þ þ nð��Þdð�Þ

ðnð�Þ þ dð�ÞÞðnð��Þ þ dð��ÞÞ

	 

1� Sðj!Þ

�� ��2 ¼ 0 8!2R:

Now since r is Hurwitz, S is analytic in the right half plane.
Since jSðj!Þj ¼ 1 8!2R, by maximum modulus theorem, it
follows that jSðlÞj < 1 for Re(l)4 0, i.e.,

jnðlÞ � dðlÞj5jnðlÞ þ dðlÞj for ReðlÞ > 0: ð23Þ

Assume that n has a zero l1 in the open right half plane. Then
it follows from inequality (23), that jdðl1Þj5jdðl1Þj, which is
not true. Hence by contradiction, it follows that both n and d
have no roots in the open right half plane. Since both n and d
are even, this implies that they have no roots in the open left
half plane as well. From inequality (23), it follows that

jnðlÞ � dðlÞj25jnðlÞ þ dðlÞj2 for ReðlÞ > 0:

Consequently, for Re(l)4 0, we have

nðlÞdð�lÞ þ nð�lÞdðlÞ > 0: ð24Þ

Dividing the inequality (24) by jdðlÞj2, we get

Re
nðlÞ
dðlÞ

� �
> 0 for ReðlÞ > 0:

Define Z(�) :¼ n(�)/d(�). We assume that Z has a pole of
order n at a point l0 on the imaginary axis. Close to l0, Z has
a Laurent series expansion of the form

Zð�Þ ¼
Xn
k¼0

ak

ð� � l0Þ
k
þ
X1
k¼0

bkð� � l0Þ
k: ð25Þ

In polar form, we may write an ¼ K1e
j	1 and

� � l0 ¼ K2e
j	2 . Thus the real part of the dominant term of

the expansion (25) is

Re
an

ð� � l0Þ
n

	 

¼

K1

Kn
2

cosð	1 � n	2Þ

This is required to be positive for ��/2� 	2��/2. This is
possible only if n¼ 1 and 	1¼ 0, i.e., an is real and positive
and multiplicity of the pole is one. This implies that d is
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oscillatory. A similar argument for Y(�)¼ (Z(�))�1 shows
that n is also oscillatory.

Alternate proof for the Only if part of Theorem 1: Assume
that B has the kernel representation r(d/dt)w¼ 0. Let
r(�)¼ re(�)p(�) where re is the maximal even polynomial
factor of r. If p(�) is not a constant and p(�) 6¼ a�, where a2R,
then it has at least one root, say l2Rnf0g or two roots, say l,
�l2CnR. From the proof of Proposition 1, depending on
whether p(�) is divisible by � or not, any two-variable
polynomial inducing conserved QDF over B can either have
the form

�1ð�, �Þ ¼
rð�Þp1ð�Þfeð�Þ þ rð�Þp1ð�Þfeð�Þ

� þ �
,

where p1(�)¼ p(�)/� and fe is an even function, or the form

�2ð�, �Þ ¼
rð�Þpð�Þfoð�Þ þ rð�Þpð�Þfoð�Þ

� þ �
,

where fo(�) is an odd function. It can be seen that both �1 and
�2 are divisible by (�� l)(�� l) if l2R and divisible by
ð� � lÞð� � �lÞð�� lÞð�� �lÞ if l2CnR. Hence along the
trajectory wðtÞ ¼ elt þ e

�lt 2B, the QDFs induced by �1 and
�2 are equal to zero. This implies that B does not have a
positive conserved QDF. This eliminates all scalar systems
except those for which the kernel representation is
r(d/dt)w¼ 0, such that either r(�) is even, or r(�)¼ �re(�),
where re(�) is an even function. We now consider two cases.

. Case 1: r is even. Define r0(�2):¼ r(�). In this case,
from the proof of proposition 1, any conserved
quantity for B has its associated two-variable
polynomial of the form

�ð�, �Þ ¼
�r0ð�2Þr00ð�2Þ þ �r0ð�2Þr00ð�2Þ

� þ �
,

where r00 has degree less than that of r0. Assume that
Q�4 0. Define r1(�):¼ r0(�2)þ �r00(�2) and
B
0 :¼ kerðr1ðd=dtÞÞ. Let _�ð�, �Þ denote the two-

variable polynomial that induces the derivative of
Q�. Then

_�ð�, �Þ ¼ ð� þ �Þ�ð�, �Þ ¼ r1ð�Þr
00ð�2Þ þ r1ð�Þr

00ð�2Þ

� 2��r00ð�2Þr00ð�2Þ

Hence Q _�
B
0

Q�1
, where

�1ð�, �Þ ¼ �2��r
00ð�2Þr00ð�2Þ:

This implies that Q _�<
B
0

0. Hence Q� is a Lyapunov
function for B0, which implies that B0 is asympto-
tically stable or that r1 is Hurwitz. From
Proposition 2, it follows that r is oscillatory.

. Case 2: r is odd. The proof for this case is very
similar to the one for Case 1.
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