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Abstract—Previously, we proposed a field-coupling model for
propagation in graded-index multimode fiber (MMF), analogous
to the principal states model for polarization-mode dispersion
(PMD) in single-mode fiber. That model was based on the concept
of first-order principal modes, which have well-defined group
delays that depend on the strength of the mode coupling. That
first-order model predicts a linear relationship between the
intensity waveforms at the MMF input and output. Here, we
extend that model to account for higher order modal dispersion.
The higher-order model predicts several effects analogous to
higher-order PMD: pulse broadening, filling-in between peaks
of the pulse response, depolarization and pattern blurring at the
MMF output, and a nonlinear relationship between input and
output intensity waveforms.

Index Terms—Depolarization, field-coupling model, higher-
order modal dispersion, higher-order principal modes (PMs),
impulse response, multimode fiber (MMF), polarization-mode dis-
persion (PMD), power nonlinearity, principal state of polarization
(PSP), pulse broadening.

1. INTRODUCTION

N a multimode fiber (MMF), different modes generally

propagate with different group delays (GDs), an effect
known as modal dispersion. Fiber imperfections, such as index
inhomogeneity, core ellipticity and eccentricity, and bends,
introduce coupling between modes, an effect known as mode
coupling. Because of mode coupling, even if a light pulse is
launched into a single mode, it tends to couple to other modes,
leading to a superposition of several pulses at the MMF output.
This causes intersymbol interference and a reduction of fiber
bandwidth.

Traditionally, modal dispersion and coupling in MMF have
been described using power-coupling models [1]-[6]. These
models assume that mode coupling causes packets of energy
to hop from one ideal mode to another, while these modes and
their GDs remain unperturbed by the coupling. Power-coupling
models have been used to explain the power distribution among
different modes [1] and its dependence on fiber length [2], [3],
dependence of fiber bandwidth on fiber length [1], narrowing of
delay spread in plastic fibers [4], pulse broadening [4], [5], and
an observed filling-in between peaks of the pulse response [6].
However, power-coupling models fail to explain certain effects,
such as polarization dependence of the pulse response [7].
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By contrast, field-coupling models have been used ex-
tensively to study polarization-mode dispersion (PMD) in
single-mode fiber (SMF) [8]-[11]. A well-known method to
model (or to physically emulate) PMD is to concatenate an
alternating sequence of random birefringent elements and
random polarization rotators [12], [13]. Such a model can
yield Jones matrices with the complex frequency dependence
characteristic of PMD. For many purposes, it is useful to
classify PMD in terms of its order. In first-order PMD, the
phase of the Jones matrix is assumed to vary linearly with
frequency. Eigenvector expansion yields two principal states of
polarization (PSPs), which are mutually orthogonal and corre-
spond to states of polarization and GDs that are independent of
frequency [9]. In higher-order PMD, the Jones matrix and the
PSPs exhibit more complicated frequency dependence. At least
four different approaches have been used to study higher-order
PMD analytically [14]-[17]. They differ in terms of what is
assumed to be known about the Jones matrix and in the way the
frequency dependence is expanded. Ferreira [18] has compared
these various approaches.

A field-coupling model was first applied to MMF in [19],
which generalized the model for first-order PMD in SMF [9].
A GD operator was derived in [19] from the propagation op-
erator. The eigenvectors of the GD operator, called principal
modes (PMs), were shown to be mutually orthogonal, and to
have field patterns and GDs that are independent of frequency to
first order. Like the PSPs in SMF, the PM field patterns and GDs
are dependent upon mode coupling, in contrast to assumptions
of power-coupling models. This field-coupling model was used
to study propagation in graded-index MMF in [20]. While in real
fibers, spatial- and polarization-mode coupling can arise from
many sources, in [20], bends and angular twists were employed
to induce these couplings. An MMF was modeled by concate-
nating numerous short sections, each having random curvature
and random angular orientation. Given a random realization of
the curvatures and angular orientations, the propagation ma-
trix was computed and used to obtain the first-order PMs and
their GDs. The study in [20] explained for the first time the po-
larization dependence of the pulse response [7] and provided
an alternative explanation for the reduced GD spread in highly
perturbed fibers [4]. It also confirmed a linear dependence of
GD spread on MMF length in the low-coupling regime and a
square-root dependence on length in the high-coupling regime.

Recently, the intensity pulse response of silica MMFs was
measured with high dynamic range [6]. It was found that most
of the energy arrives in the peaks corresponding to GDs of dis-
crete mode groups, but some energy is observed at intermediate
GDs, leading to filling-in of the pulse response. These results
were explained using a power-coupling model, which shows
that the fraction of energy at intermediate GDs increases as the
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mode coupling strength increases. The results in [6] cannot be
explained using the field-coupling model in [20], because in that
first-order model, all of the energy must arrive in one of the
first-order PMs, which have well-defined GDs.

In this paper, we show that the results in [6] can be ex-
plained by extending the field-coupling model of [20] to
include higher-order modal dispersion, which is analogous
to higher-order PMD in SMF. Using the extended model,
we show that to first order in frequency, no filling-in of the
pulse response is observed, while higher-order effects cause a
filling-in that increases with the strength of mode coupling. We
show that to first order, the relationship between the input and
output intensity waveforms is linear, while higher-order effects
cause this relationship to become nonlinear, as in SMF with
chromatic dispersion (CD) or higher-order PMD [17], effects
that cause the phase response to depend on w? and higher
powers of w. Similar to higher-order PMD, which causes
polarization-dependent CD and depolarization, higher-order
modal dispersion causes pulse broadening, depolarization, and
field-pattern blurring at the output of an MMF.

The remainder of this paper is organized as follows. In
Section II, using an exponential expansion of the propagation
operator similar to one used for Jones matrices in SMF [14],
we study the properties of first- and second-order modal dis-
persion. The PMs and their GDs are found up to second order
in frequency. We show that second-order modal dispersion
causes pulse broadening and a nonlinear relationship between
input and output intensity waveforms. In Section III, we present
numerical calculations for a silica MMF considering all orders
of perturbation. We model the fiber as a concatenation of short
sections, each of which is curved and angularly twisted with
respect to adjacent sections. We illustrate some of the prop-
erties of higher-order modal dispersion, including filling-in
of the pulse response, a nonlinear relationship between input
and output intensity waveforms, and output depolarization and
pattern blurring. We present our conclusions in Section I'V.

II. FIRST- AND SECOND-ORDER THEORY

Given a Jones matrix describing PMD in SMF, there are
several different methods for finding the higher-order PSPs
[14]-[17]. Here, given a propagation operator describing an
MMEF, we use an approach similar to [14] to find the first- and
second-order PMs.

A. Propagation Operator Expansion

In this section, in order to study first- and second-order
modal dispersion analytically and gain intuition on its qual-
itative properties, we use an exponential expansion of the
propagation operator. This is analogous to the expansion of
the Jones matrix used to study second-order PMD in SMF
[14]. The exponential expansion is known to have limitations,
e.g., by stopping the expansion at second order, the differential
GD becomes unbounded at large frequency offsets [16], [18].
Nonetheless, the exponential expansion is useful for two rea-
sons. It is consistent with our previous definition of first-order
PMs [19], [20], unlike the Taylor series expansion used in [17].
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Also, the high complexity of the propagation matrix in MMF!
would make it difficult to perform analyses similar to those in
[15] and [16]. In Section III, in order to perform quantitative
study of higher-order modal dispersion, we present numerical
computations considering all orders of perturbation.

Using a modified version of the exponential expansion of
[14], we can write the frequency-perturbed propagation oper-
ator as:

U(wo + Q) = U exp (— jQF(l))

X exp (%QQF(2)> exp (jéQ3F(3)> e (D)

Here, U(©) is the zeroth-order propagation operator calculated
at wg. For a fiber with M modes in two polarizations, F&) (k=
1,2,3,...) are the kth-order M x M characteristic operators of
modal dispersion, which can be found by successively differen-
tiating (1) with respect to 2 and substituting 2 = 0.

The eigenvectors and eigenvalues of F(*) are called the
frequency-independent kth-order input PMs Pi(k) and their
GDs Ti(k). We can write (1) in a more useful form [14] by
observing that if A is a nonsingular matrix with eigenvalues
ar(k = 1,2,..., M), then e* and A have the same eigenvec-
tors, and the eigenvalues of e? are e™* . Hence,

U(wo + Q) = U© ‘P(1)> QW)
x <P(1)‘ ‘P@‘) @ (@) P(Z)‘ @
where Q®) is a diagonal matrix with Q'
exp(—(1/E) G ) fori = 1,..., M2
B. First-Order Modal Dispersion
To first order in €2, we can write the propagation operator as
UMD (wo+ Q) = {(0) g—iQF® 3)

where the GD operator F'(!) is given by

PO — (U(m) 19U

o0 @

Q=0

We consider an input field with intensity (instantaneous power)
waveform S, (%)

Ein(t) = \/Sin(t)]a)e’0? 3)

1A Jones matrix can be described by only two complex parameters, making it
possible to obtain simple closed-form solutions for the state of polarization and
elements of Jones matrix [17]. The propagation matrix of an MMF, however, is
described by M parameters, where M is the number of modes in two polariza-
tions, making it difficult to obtain closed-form expressions for the modes and
for elements of the propagation matrix.

2We use Heisenberg notation for the matrix of PMs: |P(*))

[Py |PU7Y]. We define a “ket-bra” product as: |[P){(P| =
>, | Pi){P:|. We also define a “bra-ket” product of two operators as:
(P Fr) (Pr]| Par)
(PlIP) = :
(Pum || P1) (Pum | Pur)
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where |a) is the launched field pattern in an arbitrary basis (e.g.,
the basis of ideal modes) and (a | a) = 1. We assume that the
spatial pattern does not change as we modulate the intensity by
Sin(t). The output field of this first-order system can be written
as

o

out

(t) = FTL {Uw) ‘p(1>> QW ()

x (POIFT{y/Su(}a) } ' ©)

where FT{ } denotes the Fourier transform operator.
We can rearrange (6) into a more familiar form knowing that
PMs are independent of frequency

E(l)

out

(t) = U© ‘p<1>> Fr-1

fevorri/sm (0

where (P(1||a) is the input-mode pattern projected onto the
basis of PMs and U©|PM) is a matrix of the output PMs,
which transforms the output field pattern back to the basis for
which |a) is defined. Defining the operator

Jel ot (1)

D) = FT~! {Qu)

QFT(VS, (0} et (8)
the first-order output intensity waveform can be written as
2
Stalt) = [ES2®)]
— (a { P(1>> DO (#)H DD (1) <P<1> ‘} la). (9)

The superscript H denotes the Hermitian conjugate. We can
write the elements of the operator D) () as

AP ) = P FT (/S (@)} e i et

=4/ Sin (t—’T(l)) elwot, fori=1,...,. M
which gives
DD ()HE DM (1)
Sin (t — 7_1(1)) 0
= . (10$)
0 Sin (t TJ(\}))

Hence, the output intensity waveform (9) can be written in the
form

d 2
s = [EQ0[ = S p®] s (1-57)  an
k=1
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where p) = (P()|a). The output waveform (11) consists
of copies of the nonnegative input waveform, delayed by the
first-order GDs T,E,l) and scaled by nonnegative gains |,uk1)|2
which satisfy ) |MS | = 1. Thus, to first order in frequency,
the system described by U (wg + Q) exhibits a linear relation-
ship between input and output intensity waveforms. If we let the
input consist of an isolated short pulse, we can interpret (11) as
the first-order intensity pulse response of the MMF. This pulse
response consists of a set of scaled pulses delayed by discrete
GDs. It exhibits no filling-in between these discrete pulses.

C. Second-Order Modal Dispersion

To second order in €2, the propagation operator U is given by

1
Uy +9) = U exp (2D exp (5921@@))
(12)

where the second-order GD operator F(?) can be found as
-1 92U 2
F@ (U(o>) oY ( F(1>)
J o0z |, , "

Up to second order, the output field is found to be

13)

Q=0

B () =U© [P0 ..
< FT-! {Q(n(g) <p<1>‘ ‘p(2>>
% Q@ (Q)FT{\/Sn( }}eﬂ'wot...

x <P(2)‘ la) (14)

Defining the second-order PM propagator, which converts the
output to the basis of first-order PMs

2@() = (PO]|P@) QP@FT{VSu(®} (5
(14) can be written as
ESa(t) = U |P0)
x FT~! {Q<1>(Q)Z<2>(Q)} giwot <P a). (16)

In (16), the input pattern is first projected into the basis of
second-order PMs. Then, these PMs are acted on by the oper-
ator Z(®(€), so that each term is scaled by the second-order
filter Q(?(Q2), and then the filtered second-order PMs are trans-
formed by (P()||P(?)) from the basis of second-order PMs to
the basis of first-order PMs. As a result of this transformation,
Z®)(Q) is not a diagonal matrix, neither in terms of | P™)), nor
in terms of |P(?)), and there is mixing between the different
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First-Order

> Filter | P(z)> < pw I
")

Second-Order System

Fig. 1.

first-order PMs. Finally, the results are scaled by the first-order
filter Q(V)(Q). This is illustrated in Fig. 1.3
Defining

DA (t) = FT {Q<1>(Q)Z<2>(Q)} eiwnt

2D (-+D) o 22 (1)

7 (1= +47) )

ejwot

) .
Zih (1
A7)

we can write the output intensity waveform up to second order
as
(2)

out

‘ E2) (1)

out ‘

= (al { p(2)> D(2)(t)HD(2)(t) <p(2)’} |a)

(18)
Theorem 2-1: To second order, the output intensity waveform
exhibits pulse broadening.

Proof: Defining the vector of the input projected onto the
second-order PMs (2 = (P()||a), we find the output of the
second-order system projected onto the first-order PMs to be
(see Fig. 1)

ASITS) < p@

0= (r0]r)
FT{y/Su(t) }exp(é 2

x . (19)

FT{\/Sin( }exp (% )) /Lg\?
Defining
K11 k1M
o= T
KM1 KM M

we can write (19) as
Z™)(0) <p(2)‘ la)

v | FT{V Si(t) e exp (%9273@)) p$?
=1 FT{\/Sin( }/iM]exp (%QQTJ(Z))

3Fig. 1 would correspond more perfectly to (16) if drawn from right to left,
but it is drawn here in the more familiar left-to-right form.

(20)

)

Filter
")

_—

First-Order System

Representation of MMF in terms of zeroth-, first- and second-order systems.

which shows that the output of the second-order system is the
summation of M scaled and filtered copies of the input .S, (¢).
Referring to Fig. 1, we see that the output field Eéu)t( t) is the re-
sult of (20) passing through the first-order system, which delays
each term by the corresponding first-order GDs. As a result, at
each first-order GD, we see a superposition of M pulses, which
represent pulse broadening H

The pulse broadening caused by second-order modal disper-
sion is analogous to the polarization-dependent CD caused by
second-order PMD [14].

Theorem 2-2: To second order, the input and output intensity
waveforms, S;,(t) and Séu)t( t), are not related linearly.

Proof: Consider two input intensity waveforms, Sj,-1 (%)
and Si,-2(t), and their sum, Sip-3(t) = Sin-1(t) + Sin-2(t). As-
sume that the normalized input pattern |a) does not change as
the source is intensity-modulated. We would like to compute
the corresponding output intensity waveforms to second order,
s% 1(1): S5iyca(8) and S35 (1), and show that Si)o(t) #

S (1) + 82, (t). It is sufficient to prove nonlinearity for
the system Dt ( )HD(Q)(t). Also, since time shifts of con-
stituent pulses do not affect linearity, it is sufficient to show that
Z@)()H Z2)(t) is nonlinear. By definition, the PMs are inde-
pendent of frequency. Hence, converting (15) to the time do-
main, for inputs k£ = 1,2, 3, we can write

22t = (PO |P@)

xFT’l{ Q(Q FT{\/T}} Q1)

where the inverse Fourier transform is applied to each ele-

ment of the diagonal operator Q(z) YET{\/Sin-r(t)}. Since
|P*)Y(P®)| = I, and since the PMs are mutually orthogonal,

we find

220721 = F17 { QD QF (S}
<ET {QP(QFT{VSur(D}} . (22)

As Z,E,Z)(t)HZ,EQ)(t) is diagonal, it is described by the M ele-
ments

2
\/ in- k |

M (23)

|q; (1)

(Z2w"z0wm) =
forj=1,...,
where qj(-z)(Q) = exp(l/ZQQTJ@)) are the elements of the

second-order filter Q(*)(Q). In the absence of higher-order
modal dispersion, these filters are impulses, ¢;(t) = C - 6(¢)
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Fig. 2. Multimode fiber modeling. The fiber is divided into sections, each with
random curvature and random orientation with respect to the previous section.

and the system is linear, as discussed earlier. But for a general
filter ¢;(t), the inequality next holds*

’ (2) \/ in- 1 ‘ ‘q(Q) V 1n 2 ’
2
7é ’(112) \/Sm 1 + SLn 2( )‘ (24)

Hence, in general, 7 £2)(t)H Z ,9) (t) does not exhibit a linear

input—output relationship. We conclude that the MMF does not

exhibit a linear relationship between input and output intensity
waveforms

2 2

2] # e

out- 1 ‘

2
+ | ES)

out 3( ) ;é Sé?ﬁ-l( ) + S(()uzc 2( )

III. MODELING OF ALL-ORDER SYSTEM

Here, we confirm the analytical results of Section II and study
modal dispersion beyond second order by performing numerical
computations using our previously proposed model [20], which
is modified here to incorporate higher-order effects.

A. MMF Modeling

Following [20], we model an MMF as a concatenation of
many curved sections, as shown in Fig. 2. Each section lies
in a plane, with the plane of one section rotated with respect
to the previous section. The curvature in each section leads to
both spatial-mode coupling and birefringence. The concatena-
tion of many curved sections leads to polarization-dependent
spatial-mode coupling. In our model, we do not assume any
mechanism for mode-dependent loss.

Modal propagation is described by the propagation matrix
for the entire fiber, Usotai(w). In deriving an expression for
Utotal(w), we work with local normal modes [21]; thus, in
each short section, we work in the basis of the ideal modes of
an unperturbed fiber, with coordinate axes aligned along the
plane of that particular section. Propagation in the sth section is
affected by spatial-, but not by polarization-mode coupling, and
is represented by a propagation matrix U;(w). At the junction
between sections ¢ and ¢ + 1, the local axes are rotated by an

4Equation (24) is easily proven by counterexample, e.g., by letting $;,-1 (*)
and s;,-2(t) be adjacent but nonoverlapping rectangular pulses.
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angle 6,;. Two effects must be considered here. First, a polariza-
tion-rotation matrix R; accounts for the polarization coupling
due to axis rotation [20]. Second, the spatial-mode patterns that
were defined along the previous axes must be expanded along
the new axes to account for a new ideal mode basis. This is
described by a spatial-mode projection matrix M; [20]. It is
easy to show that [M;, R;] = 0, which means that the order in
which the two matrices are applied does not matter. Thus, for a
total of IV sections, we find the overall propagation matrix to be

N

= [[ M:R:Ui(w).

=1

Utotal (25)

B. Numerical Results

Simulations have been done for a 50-pum-core graded-index
silica MMF of total length L = 1000 m. The fiber has a numer-
ical aperture (NA) = 0.19. At the wavelength A = 1550 nm,
there are 55 propagating modes in each polarization. The refrac-
tive index at the center of the fiber is ng = 1.444 at A = 1550
nm. Away from this wavelength, ng is computed using the Sell-
meier equation [22], [23]. The frequency derivative of the index,
dng/dw, is also computed using the Sellmeier equation. Bire-
fringence, defined as the difference between refractive indexes
seen by z- and y-polarized waves, is assumed to be induced by
stress due to curvature [25]

6i(am)2

2ko (26)

Ny — Ny =
where ¢ is a birefringence scale factor, « is the curvature of a
fiber section, and Cj/kq is referred to as strain-optical coeffi-
cient. For an SMF, C;/ky = 0.0878 n> [23], and we should set
6 = 1. In MMF, birefringence and spatial-mode coupling do not
necessarily have the same physical origins. In our model, both
effects are induced by curvature; hence, in order to yield suf-
ficient polarization-dependent spatial-mode coupling, the bire-
fringence scale factor is set to § = 8000.5 The fiber is divided
into 10* sections, each 1 m long. Each section is rotated with
respect to the previous one by an independent, identically dis-
tributed (i.i.d.) angle #, whose probability density function (pdf)
is normal with variance 03 = (.36 rad?. The curvature of each
section is an i.i.d. random variable «;, whose pdf is the positive
side of a normal pdf, and has variance U,%. As a,% is increased, the
model transitions from the low- to the medium- to the high-cou-
pling regime.6

Similar to the experiments of [6], the input intensity wave-
form is a Gaussian pulse having a full-width at half-maximum
of 10 ps, and the input electric field profile is a Gaussian mode
of mode-field radius 8 pm, which is launched with a specified
offset. In order to best reproduce the results in [6], the MMF re-
fractive index exponent is chosen to be o = 1.84.

Given an input intensity waveform, its square-root yields
the input electric field waveform, which is Fourier-trans-
formed to obtain the frequency components. In order to study

all-order modal dispersion, the component at frequency w
SFor a typical curvature value K = 1 m~', we obtain a birefringence n, —
n, & 7 X 107, which is physically reasonable.

Typical silica fibers correspond to the low-coupling regime [7], while typ-
ical plastic fibers correspond to the high-coupling regime [4]. We exclusively
consider index profile parameters corresponding to silica fibers for the sake of
consistency. Nonetheless, the case of high coupling is intended to qualitatively
represent plastic fibers.

Authorized licensed use limited to: Stanford University. Downloaded on November 6, 2009 at 18:32 from IEEE Xplore. Restrictions apply.
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Intensity response (arbitrary units)
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Fig.3. Intensity pulse response in (a) low-coupling regime, o2 = 1.0 m~2 and
(b) medium-coupling regime, 2 = 1.7 m~2. The pulse response is computed
using three different methods. U(w): all-order propagation matrix, U(1) (w):
first-order propagation matrix, and F'(!) : first-order PM model [20].

is propagated using the all-order propagation matrix U(w).
The propagated frequency components are summed up and
inverse-Fourier-transformed to yield the output electric field
waveform, whose squared magnitude yields the output intensity
waveform. In order to study first-order modal dispersion, the
first-order propagation matrix U (1)(w), calculated using (4)
and (5), is used instead of U (w). The output intensity waveform
is also computed using the first-order PM model of [20], to
facilitate comparison of our results to that model.

In order to study filling-in between peaks of the MMF
intensity pulse response, we launched the input signal with
an offset of 10.5 pm, similar to [6]. Fig. 3(a) shows intensity
pulse responses computed for a curvature variance o> = 1.0
m~2, corresponding to the low-coupling regime. The pulse
response is computed using three different methods. U(w) and
UM (w) denote use of the all-order and first-order propagation
matrices, respectively, while F’ (1) denotes use of the first-order
PM model [20]. We observe that neither the first-order PM
model F) nor the first-order propagation matrix U()(w)
produces filling-in between the peaks,” while the all-order
propagation matrix U(w) produces an asymmetric filling-in
similar to that observed in [6]. In Fig. 3(b), we have increased
the curvature variance to 02 = 1.7 m~2, corresponding to the
medium-coupling regime. As the mode coupling strength is

In the case of the first-order propagation matrix U(!)(w), the apparent
filling-in, which is orders of magnitude less than that of all-order system, is
caused by numerical errors in the calculation of F(1) that appear in the phase
of UM ().
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Fig. 4. Linearity test for: (a) first-order system, medium-coupling regime,
o2 = 1.7 m2, (b) all-order system, low-coupling regime, 02 = 1.0 m~2,

and (c) all-order system, medium-coupling regime, 02 = 1.7 m—2.

increased the filling-in produced by the all-order propagation

rix U. w) beco re pronounced
n or P St Sy MRES ROAITNERF Intensity response of

MMEF, we have performed simulations analogous to the
proof of Theorem 2-2. Input intensity waveforms Si,-1(t)
and Si,-2(t) are 10-ps-wide Gaussian pulses that are offset
by a 30 ps delay. The sum of these two input waveforms
is Sin-3(t) = Sin-1(t) + Sin-2(t). Signals are launched
with an offset of 10.5 pym. The corresponding output inten-
sity waveforms are Sout-1(t), Sout-2(¢), and Sous-3(t), and
Sout-1(t) + Sout-2(t) is compared to Sout-3(¢). In Fig. 4(a),
we consider the medium-coupling regime, 02 = 1.7 m~2,
and compute the output waveforms using only the first-order
propagation matrix U (w) (hence the superscripts (1)). We
observe that S(()t)t_g(t) R~ Séi)t_l(t) + Séi)tq(t)’ confirming
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Fig. 5. Time-average output intensity pattern for a 10-ps Gaussian pulse
launched with 6.4-pm offset into a 1-km fiber with 02 = 1.9 m~2: (a)

first-order system and (b) all-order system.

S,4/S,

1 -1
S,/IS, = S/S, S//S)
(a) (b)

Fig. 6. Time-average output polarization for a 10-ps Gaussian pulse launched
with 2.4 gm offset into a 1-km fiber with o2 = 0.48 m~2: (a) first-order system
and (b) all-order system.

linearity of the first-order response, as predicted in Section II-A.
In Fig. 4(b) and (c), we consider the low- and medium-coupling
regimes, 02 = 1.0 m~2 and 02 = 1.7 m~2, and compute
the outputs using the all-order propagation matrix U(w). In
both cases, we see that Sout-3(t) # Sout-1(t) + Sout-2(t),
demonstrating the nonlinear intensity response of MMF caused
by higher-order modal dispersion. Comparing Fig. 4(b) and
(c), we see that the nonlinearity becomes more pronounced as
the mode-coupling strength is increased, since the nonlinearity
arises from “mode-dependent CD,” which is analogous to
polarization-dependent CD in SMF with higher-order PMD
[17]. We emphasize that the nonlinear intensity response is not
a consequence of the particular multisection model used for
our numerical calculations; it is a general property of systems
in which the field-propagation operator phase response exhibits
higher-order frequency dependence.

It is known that in SMF, higher-order PMD leads to depolar-
ization [24]. Our simulations show that in MMF, higher-order
modal dispersion causes analogous effects, which are blurring
of the output intensity pattern and depolarization of the output.
Fig. 5. shows time-average output intensity patterns for a 10-ps
Gaussian pulse that has been launched with 6.4-pm offset, in
the medium-coupling regime, 0> = 1.9 m~2. Fig. 5(a) uses the
first-order propagation matrix U")(w), while Fig. 5(b) uses the
all-order U (w). Comparing these two, we see that higher-order
modal dispersion causes output pattern blurring. Fig. 6 shows
the time-average output Stokes parameters for a 10-ps Gaussian
pulse that has been launched with 2.4-pm offset, in the low-cou-
pling regime, 02 = 0.48 m~2. Fig. 6(a) uses the first-order
propagation matrix U/ (") (w), and the output is nearly fully po-
larized.8 Fig. 6(b) uses the all-order U (w), and the output is de-
polarized significantly.

81t was demonstrated in [20] that even first-order modal dispersion in the low-
coupling regime can cause some depolarization.
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IV. CONCLUSION

We have studied higher-order modal dispersion in MMF.
Through analysis, we showed that to first order in frequency,
the input and output intensity waveforms are related linearly,
and the intensity pulse response consists of discrete peaks. We
also showed that to second order, the input—output intensity
response is nonlinear, and the intensity pulse response exhibits
pulse broadening, effects analogous to SMF with higher-order
PMD. We have performed numerical simulations modeling an
MMF as a concatenation of short sections, each having random
curvature and random angular orientation. The model includes
both spatial- and polarization-mode couplings, and allows us
to study all-order modal dispersion. Through simulation, we
confirmed the results of our first- and second-order analyses.
We demonstrated that higher-order modal dispersion leads to a
nonlinear input—output intensity response, and causes filling-in
between peaks in the intensity pulse response. Higher order
modal dispersion also causes pattern blurring and depolar-
ization of the output, which are analogous to depolarization
in SMF with higher-order PMD. While experiments have
confirmed the filling-in of the intensity pulse response [6],
further experiments may help quantify the nonlinearity of the
input—output intensity response. Inclusion of this nonlinear
response may lead to refined modeling of high-speed links in
MMF.
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