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Article

Higher-order modular regulation of the human
proteome
Georg Kustatscher1,*,† , Martina Hödl2,†,†, Edward Rullmann3,† , Piotr Grabowski3,4 ,

Emmanuel Fiagbedzi1 , Anja Groth2,5,** & Juri Rappsilber1,3,***

Abstract

Operons are transcriptional modules that allow bacteria to adapt
to environmental changes by coordinately expressing the relevant
set of genes. In humans, biological pathways and their regulation
are more complex. If and how human cells coordinate the expres-
sion of entire biological processes is unclear. Here, we capture 31
higher-order co-regulation modules, which we term progulons, by
help of supervised machine-learning on proteomics data. Progu-
lons consist of dozens to hundreds of proteins that together medi-
ate core cellular functions. They are not restricted to physical
interactions or co-localisation. Progulon abundance changes are
primarily controlled at the level of protein synthesis and degrada-
tion. Implemented as a web app at www.proteomehd.net/
progulonFinder, our approach enables the targeted search for
progulons of specific cellular processes. We use it to identify a DNA
replication progulon and reveal multiple new replication factors,
validated by extensive phenotyping of siRNA-induced knockdowns.
Progulons provide a new entry point into the molecular under-
standing of biological processes.
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Introduction

More than 50 years ago, the discovery of the lac operon launched

the field of gene regulation (Jacob & Monod, 1961; Jacob, 2011).

Tightly linked to the discovery of mRNA (Cobb, 2015), the operon

concept provided a model for how genes are turned on and off. It

also demonstrated how organisms adapt to changes in their environ-

ment: not by transforming one enzyme into another as was believed

at the time, but by regulating gene expression (Lewis, 2011;

Loison, 2013). Hundreds of operons have since been mapped in bac-

teria, archaea and in some eukaryotes (Blumenthal, 2004). In the

classical sense, an operon contains a set of adjacent genes involved

in the same metabolic pathway, whose transcription into a polycis-

tronic mRNA is controlled by a shared regulator. It is both a tran-

scriptional unit and a functional module. However, eukaryotic

operons differ from this definition in a crucial aspect. For example,

15% of Caenorhabditis elegans genes are arranged in operons of 2–8

genes, but these tend to be housekeeping genes rather than induc-

ible ones (Morton & Blumenthal, 2011). Moreover, genes in a single

operon do not usually have related functions (Morton & Blumenthal,

2011). Similarly, dicistronic transcripts are “mini-operons” found in

many animals and plants that can have metabolically related func-

tions, but often do not (Blumenthal, 2004; Thimmapuram

et al, 2005). The most striking divergence between co-transcription

and co-function is found in trypanosomes, which transcribe

an entire chromosome into two large polycistronic transcripts

(Mart�ınez-Calvillo et al, 2003). In humans, dicistronic transcripts

are rare, but divergently transcribed (bidirectional) gene pairs

account for more than 10% of protein-coding genes (Trinklein

et al, 2004). Similar to nematode operons, these are co-transcribed

from a shared promoter region (Trinklein et al, 2004), tend to have

housekeeping activities (Lercher et al, 2002; Xu et al, 2012), but are

rarely functionally related (Xu et al, 2012). Indeed, a substantial

proportion of human transcript coexpression does not reflect shared

function, but gene proximity in sequence or 3D structure of the

genome (Batada et al, 2007; Ebisuya et al, 2008; Kustatscher

et al, 2017; Wang et al, 2017), or genetic (Geiger et al, 2010; Stingele

et al, 2012; Khan et al, 2013; Battle et al, 2015) and epigenetic

(Raj et al, 2006; Batada et al, 2007; Gandhi et al, 2011; Grabowski

et al, 2018) variation. Importantly, post-transcriptional and post-
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translational regulation ensures that non-functional mRNA coex-

pression is not propagated to the protein level (Geiger et al, 2010;

Stingele et al, 2012; Khan et al, 2013; Battle et al, 2015; Kustatscher

et al, 2017; Wang et al, 2017; Grabowski et al, 2018). Based on such

observations, it has been suggested that co-transcription in eukary-

otes is not a mechanism for the coordinated regulation of gene mod-

ules, but rather a way to ensure efficient, universal expression of

housekeeping genes (Batada & Hurst, 2007; Morton & Blumenthal,

2011; Wang et al, 2011; Kustatscher et al, 2017). Consequently, it

remains unclear whether human cells adapt to changes in their envi-

ronment by regulating the expression of genuine “functional mod-

ules,” and if so, how we can identify and characterise them.

Here, we address this question by analysing human protein co-

regulation with machine-learning. This strategy differs in two key

points from traditional gene coexpression studies. First, to ensure

we capture functionally relevant expression changes, we analyse

protein rather than mRNA abundances. Second, rather than using

correlation networks, we analyse the data with a supervised

machine-learning approach. Together, this allowed us to capture 31

large co-regulation modules, each consisting of dozens to hundreds

of proteins, which accurately and comprehensively reflect biological

processes regulated in human cells. In reference to bacterial regu-

lons, which are functional but not transcriptional units of regulation

(Maas, 1964), we term these modules progulons (protein regulons).

The modular nature of human protein expression control can be

exploited to identify new proteins contributing to important cellular

processes, as we demonstrate at the example of DNA replication.

Through our website https://www.proteomehd.net/progulonFinder,

biologists can expand the known boundaries of a biological process

of interest, by executing our machine-learning workflow with a sin-

gle click.

Results

Systematic identification of co-regulated protein modules

To find out whether human cells coordinate the expression of func-

tionally related proteins at a larger scale than currently known, we

resorted to our recently reported ProteomeHD, a data matrix docu-

menting the up- or downregulation of 10,323 human proteins in

response to 294 biological perturbations, including treatments with

drugs, growth factors and comparisons of cancer cell lines

(Kustatscher et al, 2019). Protein abundance changes were mea-

sured with high quantitative accuracy using SILAC-labelling mass

spectrometry (Ong et al, 2002). In principle, co-regulation modules

in ProteomeHD could be detected through correlation network anal-

ysis and clustering (Zhang & Horvath, 2005; Wu et al, 2013;

Wilhelm et al, 2014). However, protein expression control in human

cells is very complex and dynamic: proteins may work together in

some conditions or biological processes but not in others, and many

proteins may only respond to a subset of perturbations. In such

complex data, correlation analyses tend to identify only the most

strongly and ubiquitously co-regulated proteins (Monta~no-Gutierrez

et al, 2017). By contrast, we have previously shown that Random

Forests (RF; Breiman, 2001), due to their intrinsic feature selection

and outlier robustness, capture co-regulation patterns in proteomics

data very well (Kustatscher et al, 2014, 2016). As a supervised

machine-learning approach, the RF algorithm creates a classifier

that specifically detects proteins which are co-regulated with a given

set of training proteins. In this way, co-regulation analysis can be

focussed on a specific set of proteins with high accuracy and sensi-

tivity, allowing for a more powerful detection of co-regulated pro-

teins compared with (unsupervised) clustering approaches.

However, the requirement of providing training data means that RFs

cannot detect co-regulation modules de novo, that is without prior

knowledge of at least some components of these modules, even if

training sets can be as small as individual protein complexes

(Monta~no-Gutierrez et al, 2017).

Here, we combine the advantages of clustering and supervised

machine-learning to identify large co-regulation modules (progu-

lons) in a systematic way. For this, we developed a two-stage

approach (Fig 1A). First, we use clustering to detect small, tightly

co-regulated protein modules. Next, we use these clusters as

“seeds,” or training proteins, for the Random Forests algorithm to

detect much larger co-regulation modules.

Clustering identifies small, compact co-regulation modules

We tested three types of clustering approaches for their ability to

identify biologically meaningful clusters in ProteomeHD. Hierarchi-

cal clustering performed relatively poorly. For example, depending

on the cluster calling cut-off, subunits of the ATP synthase complex

were either spread across multiple small clusters or part of a single

big cluster that also contained many unrelated proteins (Appendix

Fig S1). By contrast, we found density-based clustering using

OPTICS (Ankerst et al, 1999) and graph clustering using clusterONE

(Nepusz et al, 2012) to be better suited for ProteomeHD data.

OPTICS and clusterONE produced similar outcomes, despite being

based on different mathematical principles and using different input

formats (whole ProteomeHD protein–protein association matrix and

network of the top 0.5% associations, respectively). For each

OPTICS cluster, we identified the clusterONE cluster with the most

overlapping proteins and discarded proteins that were only assigned

to the cluster by one of the two algorithms. The resulting 72 core

modules contained an average of eight proteins (range: 4–81),

which were identified as clustered by both types of clustering

approaches (Dataset EV1). Many of these small modules correspond

to protein complexes. For example, one consists of 11 ATP synthase

subunits (out of 18).

progulonFinder identifies large co-regulation modules

The 72 core modules detected by clustering were used as “seeds” to

identify larger co-regulation modules by supervised machine-

learning. For this, we developed progulonFinder, a framework for

fully automated RF analysis of ProteomeHD (Appendix Fig S2).

Starting from a list of seed proteins, progulonFinder trains, tests and

averages multiple balanced RF models, performs cross-validation

and outputs the progulon, that is a list of proteins classified as co-

regulated with the seed proteins (see Materials and Methods).

We designed several stringent filtering criteria to ensure the high

quality of the final list of progulons. This included a requirement for

the cross-validated training data to achieve a ROC curve area above

0.99 and a requirement that at least four of the 10 proteins with the

highest RF scores had to be cross-validated training proteins.
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Finally, we introduced a requirement for progulons to be genuine

co-regulation modules, that is a group of proteins that are not only

co-regulated with the seed proteins but also with each other. This

was achieved by calculating a “connectivity score”: we compare

progulons to a co-regulation network created with all proteins in the

analysis and, using a Fisher’s exact test, calculate a P-value that

reflects if a progulon is enriched for protein pairs that are among the

top 0.5% of co-regulated protein pairs in the overall network. We

then chose the minimum RF score cut-off that creates a significantly

interconnected module (see Materials and Methods). Only 31 of the

72 seed modules produced a progulon that passed all of our quality

control filters (Dataset EV2).

For example, progulonFinder identifies 193 proteins that match

the expression pattern of the 11 ATP synthase subunits (Fig 1B). We

visualise this “ATP synthesis progulon” using t-Distributed Stochas-

tic Neighbour Embedding (t-SNE) (Van Der Maaten & Hinton, 2008),

which displays the expression similarities between the progulon

proteins in two dimensions (Fig 1D). The progulon contains a range

of proteins and protein complexes that are directly or indirectly

associated with ATP synthesis (see below). Another progulon is

seeded by the prefoldin chaperone and shows the ribosome-

associated folding machinery for tubulin and other proteins

(Fig 1E). Finally, a vesicle-trafficking progulon is revealed by a seed

containing the AP3 and exocyst complexes, retrieving additional

complexes involved in endocytic vesicle transport (Fig 1F). The

strength of co-regulation with the seed proteins differs between

progulons (Fig 1D–F, line plots).

On average, progulons consist of 246 proteins, ranging from 13

to 1,143. A total of 3,523 proteins have been assigned to at least one

progulon (Fig 1C). Although the 31 seed groups are nonredundant,

there is some overlap between progulons that were seeded by func-

tionally similar proteins, such as the two progulons seeded by a dif-

ferent set of mRNA processing factors (Appendix Fig S3). However,

even after excluding any overlapping proteins, expression changes

in functionally related progulons can be strongly correlated, for

example for the myosin and actin cytoskeleton progulons (Fig 1G).

Importantly, we find that all progulons are significantly enriched in

Gene Ontology (GO) terms, and most progulons are also enriched

for one or more Reactome pathways and known protein complexes

(Fig 1H).

As a control experiment, progulonFinder was executed using a

set of random seed proteins, matching the real ones in number and

size distribution. None of these random seeds produced a progulon

that passed our quality criteria, suggesting that our quality criteria

were very strict. In addition, for a random grouping of proteins that

matched the progulons in number and size distributions, we found

no significant enrichment in either GO terms, Reactome pathways

or protein complexes (Appendix Fig S3).

Close-up of a well-characterised progulon: ATP Synthesis

Co-regulation in response to biological perturbations indicates a

functional link between proteins, but it does not pinpoint the molec-

ular nature of the link. In fact, we have previously shown that pro-

tein co-regulation captures a wide range of associations, from

physical protein–protein interactions to metabolic and other func-

tional associations (Kustatscher et al, 2019). While this presents a

challenge when following up on the mechanism of novel links, it

allows for a very comprehensive detection of functional interac-

tions. To illustrate this, we annotated the ATP synthesis progulon in

detail, making use of the extensive prior knowledge available for

this biological process (Fig EV1). Most proteins in the progulon have

well-defined roles related to ATP production, including dozens of

proteins that interact with the ATP synthase to form the respirasome

in the inner mitochondrial membrane (Wu et al, 2016; Dataset

EV3). Beyond these physical associations, our data suggest that

many matrix proteins are co-regulated with the ATP synthase to pre-

vent the accumulation of its metabolic inhibitor, a-ketoglutarate
(Chin et al, 2014), and that of reactive oxygen species (Turrens,

2003). Finally, we used the SLC25 transporter family to assess the

specificity of our approach. SLC25 proteins also localise to the inner

mitochondrial membrane but are involved in a variety of distinct

mitochondrial processes. Reassuringly, only a fraction of SLC25 pro-

teins were assigned to the progulon and these have known functions

related to ATP production. For example, SLC25A3 imports inorganic

phosphate (Seifert et al, 2015), an ATP synthase substrate

(Fig EV1).

Progulon expression control: at mRNA or protein level?

In contrast to bacterial and eukaryotic operons, we find no substan-

tial clustering of progulon genes in terms of chromosome location.

The ATP synthase progulon, for example, contains genes from all

human autosomes and the mitochondrial genome (Fig EV2). The

“nucleosome” progulon, which is partially encoded by histone gene

clusters, is an exception (Fig EV2). This raises the question of which

gene expression stage is responsible for coordinating progulon

abundance changes. Are progulons controlled at the mRNA level

◀ Figure 1. Protein co-regulation modules capture comprehensive cellular processes.

A Outline. Clustering identifies small groups of proteins (“seeds”) that are tightly co-regulated in response to perturbations in ProteomeHD. A Random Forest-based
machine-learning workflow, progulonFinder, subsequently captures large protein regulons (progulons) matching the regulatory patterns defined by these seed
proteins.

B Example result for a seed containing 11 subunits of the ATP synthase complex (black circles). progulonFinder returns 193 proteins that are co-regulated with the
ATP synthase (magenta).

C Barchart showing how many proteins have been assigned to how many progulons.
D–F (D) t-SNE map of the ATP synthase progulon, where the distance between proteins indicates how similar their perturbation responses are across ProteomeHD. Dot

size shows strength of co-regulation with the seed proteins (circled). The map is completely data-driven, labels are only added for illustration. Line plot shows up-
and downregulation of the seed proteins (magenta) across 25 representative experiments from ProteomeHD. The top 25 co-regulated progulon proteins are shown
in blue. (E, F) Progulons related to prefoldin-based protein folding and vesicular transport, respectively.

G Overview of the 31 progulons, named after their key biological process. Heatmap shows the average coexpression (Spearman’s rank correlation) between the
proteins in each progulon. Progulons are clustered by expression similarity.

H Number of Gene Ontology terms, Reactome pathways and HuMap complexes enriched in each progulon.
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through coordinated transcription and mRNA degradation—or at

the protein level, via protein synthesis and degradation?

To address this question, we analysed gene expression changes

across 36 breast cancer cell lines that reflect the difference

between breast cancer subtypes. Proteomics (Lapek et al, 2017)

and transcriptomics (Klijn et al, 2015) data for these samples had

been reported previously but were not included in ProteomeHD.

Notably, there are two different aspects of expression control that

are relevant for gene modules: the contribution of mRNA to pro-

tein abundance changes and the coordination of expression

changes (Fig 2A). First, we calculated the Spearman’s correlation

coefficient (rho) between the mRNA and protein abundance

changes of each gene. The median mRNA-to-protein rho is 0.57,

higher than that reported for similar datasets (Fortelny et al, 2017;

Appendix Fig S4A). We then asked if progulons differ from each

other or the rest of the proteome. Indeed, three progulons are sig-

nificantly enriched for high mRNA-to-protein rho (P < 0.001 in

Monte-Carlo permutation tests), indicating that transcription con-

tributes more strongly to their regulation than for the proteome

overall (Fig 2B). These include the actin and myosin cytoskeleton

progulons as well as a tRNA ligase progulon. By contrast, 18

progulons are significantly enriched for low mRNA-to-protein rho

(P = 9.9e�05), suggesting that their regulation is predominantly at

the protein level (Fig 2B; Dataset EV4).

It has been suggested that the relative contribution of transcrip-

tional and post-transcriptional or post-translational regulation

depends on the amplitude of expression changes (Vogel &

Marcotte, 2012). Indeed, we find a strong correlation between the

scale of variation of progulon abundance across the breast cancer

samples and the contribution of mRNA to protein abundance

changes (Appendix Fig S4B and C; Spearman’s rho 0.8).

Next, we assessed the coordination of progulon expression, cor-

relating either mRNA or protein abundance changes for all gene

pairs in a progulon (Fig 2A). In general, progulons that are more

tightly co-regulated at the protein level also tend to have better coor-

dinated mRNA abundances (Fig 2C; Dataset EV4). We then tested at

which stage expression changes are coordinated, expecting that this

directly depends on the principal mechanism by which a progulon

is controlled. For example, progulons with tightly coordinated

mRNA abundances could be transcriptionally controlled, as they

would produce coordinated protein changes without additional

post-transcriptional regulation. Surprisingly, we find that this is not

the case: as the coordination of mRNA or protein expression

changes becomes stronger, the contribution of mRNA to protein

changes becomes weaker (Fig 2D and E, rho �0.45 and �0.51,

respectively). This trend is driven by the ribosome and proteasome

progulons in particular, but persists in weakened form even if these

two progulons are removed (rho �0.36 and �0.46), at least across

this breast cancer cell line dataset. The “ribosome” progulon shows

the strongest mRNA covariation and the strongest protein covaria-

tion of any progulon—but the weakest mRNA-to-protein correlation.

This means that both mRNA and protein abundance changes are

highly coordinated, but independently and differently to each other

(Fig 2F). By contrast, the “Actin cytoskeleton” progulon is more

weakly coordinated at mRNA and protein level but shows one of

the highest mRNA-to-protein correlations (Fig 2G). Moreover, there

is no significant correlation between the amplitude of expression

changes and the extent of progulon coordination (Appendix Fig S4D

and E). Therefore, large expression changes are not a prerequisite

for precise coordination of either mRNA or protein abundances. In

short, we find that the coordination of mRNA abundances is distinct

from the contribution of these mRNAs to the actual up- or downre-

gulation of the progulon proteins. Similarly to progulons, we

observe that also for protein complexes, there is a positive correla-

tion between mRNA and protein coordination, and a weak but sig-

nificant negative correlation between mRNA-to-protein contribution

and mRNA coordination and protein coordination, respectively

(Appendix Fig S4F–H).

In order to validate these results, we analysed two addi-

tional datasets with matched mRNA and protein measurements:

a lymphoblastoid cell line panel, in which gene expression dif-

fers due to genetic variation, and mouse tissues, that is devel-

opmentally regulated expression changes. Overall, mRNA and

protein levels correlate less well in these two datasets (median

rho 0.17 and 0.43, respectively). These datasets generally con-

firmed the above conclusions (Appendix Figs S5 and S6). In

these datasets, the negative correlation between coordination

and contribution of expression changes is not significant. Nev-

ertheless, this confirms that these are two separate aspects of

gene regulation that are not directly, positively correlated as

one might have expected.

We also observed that the mean protein rho can differ substan-

tially within progulons when analysed separately for individual pro-

jects that contribute to ProteomeHD (Fig 2H). This suggests that

some of these modules are more strongly co-regulated in certain cell

types and experimental conditions than in others.

Correlated mRNA and protein half-lives in progulons

We tested whether progulon coordination could be linked to mRNA

or protein stability. Average mRNA half-lives (Tani et al, 2012) of

progulons range between 5 and 14 h, shorter than the respective

protein half-lives (McShane et al, 2016) ranging between 21 and

84 h (Dataset EV5). As reported by others (Schwanh€ausser

et al, 2011), we observe that the mRNA and protein half-lives of

individual genes are poorly correlated (Fig EV3A). By contrast, the

average mRNA and protein half-lives of progulons are strongly cor-

related (Fig EV3, rho 0.71, P < 2e�5). RNA processing and DNA rep-

lication progulons tend to have short half-lives, whereas protein-

processing progulons tend to be more stable. In addition, we find

that the coordination of mRNA levels correlates with the coordina-

tion of mRNA half-lives, suggesting that mRNA stability is

relevant for coordinating mRNA abundance changes of progulons

(Fig EV3C). No equivalent, significant relationship exists at the pro-

tein level (Fig EV3D).

Evolutionary conservation

We calculated co-regulation of proteins across mouse tissues

(Geiger et al, 2013) to assess if progulon co-regulation is evolution-

ary conserved. For this, we analysed all protein pairs that are coex-

pressed across ProteomeHD (rho > 0.5). Coexpression of proteins

of the same human progulon is about twice as likely to be con-

served than the coexpression of proteins that have not been

assigned to any progulon, or that have been assigned to different

progulons (Fig 2I).
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A targeted progulon search identifies new DNA replication
proteins

A key advantage that a supervised classification approach has over tra-

ditional gene expression analysis is the possibility to target specific

proteins of interest, simply by choosing them as training proteins. This

opens up a new opportunity for protein function prediction, that is to

directly search for proteins that function in a specific biological pro-

cess. For example, here we identify new factors involved in DNA repli-

cation. For this, we created an open and freely available webtool

(https://www.proteomehd.net/progulonFinder), which executes our

progulonFinder workflow using a list of user-specified proteins as

A

F

G H I

B C

D E

Figure 2. Regulation of progulon expression and coordination.

A Illustration of two different aspects of progulon expression control: The coordination of progulon abundance changes (mRNA—mRNA; protein—protein) and the
contribution of mRNA to protein abundance changes (mRNA-protein).

B Spearman’s correlation coefficients (rho) between mRNA and protein abundance changes across a breast cancer cell line panel. The median rho of all genes in the
dataset is 0.57 (dashed line), but the median rho of genes assigned to different progulons can deviate significantly from that (P-values from permutation testing).
High and low mRNA-to-protein rho indicates regulation predominantly at the mRNA and protein level, respectively.

C Protein coordination (median protein–protein rho) increases with the mRNA coordination (orange regression line). Most progulons are located on the upper side of
the diagonal dashed line, suggesting that they are better coordinated at the protein level.

D, E The mRNA-to-protein contribution is inversely correlated (rho, orange regression line) with both mRNA and protein coordination.
F Fold-changes of the ribosome progulon across the 36 cancer cell lines and the corresponding correlations. It has strong mRNA and protein coordination (rho) (upper

histogram) but poor mRNA-to-protein correlation (rho) (grey histogram).
G Same as (F), but for the “actin cytoskeleton” progulon, which has weak mRNA and protein coordination (rho) but strong mRNA-to-protein correlation (rho).
H Mean protein–protein correlations (rho) for each progulon calculated separately for subsets of ProteomeHD, namely those eight projects consisting of 10 or more

individual experiments each. This plot indicates that progulon coordination can vary between cell lines and conditions.
I Co-regulation of protein pairs in ProteomeHD, defined as rho > 0.5, is about twice as likely to be conserved across mouse tissues for proteins that are part of the

same progulon. (P < 2.2e�16, Fisher’s exact test)
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training data (Fig 3A). In our case, these were 41 well-characterised

core components of the replisome (Alabert & Groth, 2012; Alabert

et al, 2014; Appendix Fig S7). progulonFinder automatically matched

these to the correct protein IDs in ProteomeHD, then created and eval-

uated a series of Random Forest models (for details, see Materials and

Methods and Appendix Fig S2). progulonFinder identified 212 proteins

that behave similar to known replisome components (Dataset EV6) in

being similarly up- or downregulated in response to the 294 perturba-

tions in ProteomeHD. These proteins are heavily enriched in the GO

(Ashburner et al, 2000) term “DNA replication” (Fig 3B). In addition,

many proteins have well-documented roles in the wider process of rep-

lication. This includes DNMT1 and UHRF1, which ensure the faithful

propagation of DNA methylation marks, and numerous DNA repair

proteins required to fix mismatches and other replication errors.

Dozens of proteins in the replisome progulon have not previously

been linked to DNA replication. This progulon therefore has the poten-

tial to substantially expand the known repertoire of factors with repli-

cation associated functions. In principle, any one of the new

A

D

E

F

B C

Figure 3. Prediction of new DNA replication factors through the replisome progulon.

A The online version of progulonFinder allows users to specify seed proteins by pasting a list of proteins of interest.
B We used 41 proteins belonging to the replisome (Alabert et al, 2014) to predict a DNA replication progulon, dashed line indicates score-cutoff. It is heavily enriched in

known DNA replication proteins, but also contains many proteins not previously associated with this process. All proteins shown in grey, proteins annotated as DNA
replication in GO in turquoise, siRNA screen candidates colour-coded as shown in legend.

C t-SNE plot of the DNA replication progulon highlighting the training proteins (circled) and the candidates selected for siRNA screening.
D Three siRNAs were used per candidate in a high content imaging setup.
E Overview of the readouts tested in the siRNA screening, including example images of controls and phenotypes. Assays are designed to capture replication phenotypes

either directly or through their downstream impact on DNA damage and cell cycle profiles. EdU incorporation detects DNA synthesis, antibodies against replication
protein A (RPA) detect exposed single-stranded DNA (ssDNA), antibodies against histone H2A.X phosphorylated at S139 and against p53BP1 detect DNA damage. Cell
cycle distributions were assessed based on high content imaging of EdU incorporation across cell populations. Some assays included the drugs hydroxyurea (HU) or
aphidicolin (Aph) to cause replication stress and trigger phenotypes that might not be visible in unchallenged knockdowns.

F Cumulative siRNA screen score, ranging from 0 to 13. Assays coloured as in (E), candidates coloured as in (B, C). We consider candidates validated with high
confidence if they score in more than half of the assays, and validated with medium confidence if they score in more than a third.
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candidates could be selected for a mechanistic follow-up study to iden-

tify the precise replication step or subprocess to which it may contrib-

ute. However, to estimate the success rate of such endeavours and to

validate our approach in general, we subjected 20 candidates to com-

prehensive profiling of DNA replication phenotypes (Fig 3C). For this,

we conducted multiple RNAi screens scoring 20 different phenotypes

linked to DNA replication, capturing both direct effects on replication

(replication speed, DNA unwinding) and downstream consequences of

erroneous replication, such as DNA damage accumulation and cell

cycle profile changes (Fig 3D and E). Optionally, we challenged cells

with agents causing acute high or permanent low replication stress to

uncover related functions (Fig 3E). For two of our candidates, ATAD2

(Koo et al, 2016; Lazarchuk et al, 2020) and ZMYM3 (Leung

et al, 2017; Shapson-Coe et al, 2019; Lee et al, 2022), existing evidence

suggested possible replication-related functions. In addition, the screen

also included three positive controls (known replication function) and

five proteins that were predicted not to be involved in DNA replication

(low Random Forest (RF) score). We used three siRNAs per candidate

in an immunofluorescence staining and high content imaging set-up

(Fig 3D). Individual assay scores (Appendix Figs S8 and S9) were com-

bined into a single “validation score,” based on which we grouped tar-

gets into high confidence (> ½ maximum score), medium confidence

(> ⅓maximum score) and unvalidated hits (≤ ⅓maximum score).

The RNAi screen confirmed a replication-related function with

high confidence for the positive controls and 10 (50%) new candi-

dates (Fig 3F; Dataset EV7). We note that MRGBP was recently

shown to negatively regulate homologous recombination repair

(Rivero et al, 2021) that is required to resolve replication problems

(Carvalho et al, 2014). This group also included one of the low RF

score controls, LGALS3. These controls were selected for a lack of

co-regulation with the replisome, but LGALS3 had previously been

functionally linked to homologous recombination (Carvalho

et al, 2014). This highlights the fact that co-regulation is a good indi-

cator for shared function, but proteins can also share functions with-

out being co-regulated. LGALS3, for example, is a multifunctional

protein that is not only active in the nucleus but also in the cyto-

plasm and as a secreted protein. It is likely that replication-

unrelated functions dominate its overall regulatory pattern,

explaining the low RF score. Five (25%) additional candidates were

validated with medium confidence, including HELLS, which was

recently implicated in replication fork protection (Xu et al, 2021).

The phenotypic evidence did not sufficiently support the remaining

five (25%). The latter includes ZMYM3, indicating that our valida-

tion rate may be a conservative estimate and could be increased by

different validation approaches.

Selective perturbation is not necessary for protein function
prediction

SILAC proteomics enables the accurate quantitation of very small

fold-changes (Ong et al, 2002; Kustatscher et al, 2019), which means

that the indirect, downstream impact of perturbations is often

detectable for a large portion of the proteome. This raises the ques-

tion whether it is necessary to selectively perturb a biological pro-

cess to identify a related progulon. The replisome progulon offers an

opportunity to address this, because 15 of the 294 perturbations in

ProteomeHD are from nascent chromatin capture (NCC) experi-

ments (Alabert et al, 2014; Nakamura et al, 2021). These NCC

samples compare newly replicated chromatin with mature chroma-

tin and were treated with drugs that perturb DNA replication, such

as hydroxyurea and camptothecin. To test how important these data

were for the identification of the replisome progulon, we repeated

our prediction without them. The resulting RF Scores are nearly

identical (R2 0.97, Appendix Fig S10A and Dataset EV6). However,

removing a random set of 15 experiments had a lower impact on the

progulon prediction (R2 0.99, Appendix Fig S10B). Therefore, the

replication-related input experiments contributed more to the repli-

some prediction than others but were not essential for it.

Perturbation diversity is essential

Studying replication intermediates in cells through NCC and iPOND

has been invaluable for identifying novel replication fork compo-

nents (Sirbu et al, 2013; Alabert et al, 2014, 2015; Dungrawala

et al, 2015; Cortez, 2017; Nakamura et al, 2021). We therefore asked

whether we could identify additional replication factors by basing

the machine-learning specifically on the 15 NCC experiments. Using

only these data as progulonFinder input yielded very different

results (Fig EV4A). Only a fifth of the progulon proteins from the

full-scale analysis were still identified, possibly reflecting that the

remaining factors do not function directly at replication forks. Many

previously low-scoring proteins were now classified as co-regulated.

In principle, these could be multifunctional proteins whose

replication-specific activity is obscured by their main function in the

global analysis. To test this possibility, we subjected 21 of them to

our extensive RNAi screens. These included FTO, C1QBP and

CREBBP, for which some prior evidence for a replication-related or

DNA damage-related function was available (Xiang et al, 2017;

Dutto et al, 2018; Bai et al, 2019). Two candidates predicted by the

NCC-only dataset showed a high-confidence replication phenotype,

and 10 showed a medium-confidence phenotype (Fig EV4B;

Dataset EV6). Thus, the validation rate was better for candidates

predicted using all of ProteomeHD compared with those predicted

based on the 15 directly relevant NCC experiments.

One possible explanation for this is that a diverse range of sam-

ples and conditions allows the machine-learning algorithm to distin-

guish better between replication-related and unrelated expression

patterns. To test this, we compared the replication progulon RF

scores of replication factors and mitochondrial proteins in these

experiments (Fig EV4C). Indeed, we found that Random Forests

based on either full-scale or random subsets of ProteomeHD assign

very low replication progulon RF scores to mitochondrial proteins.

By contrast, using only NCC experiments (which are enriched for

freshly replicated chromatin) as input data leads to relatively high

scores for mitochondrial proteins. This indicates that a diverse set of

random perturbations is important to capture the unique regulatory

signature of a biological process in machine-guided predictions.

Discussion

The human proteome contains physical protein modules ranging

from protein complexes to organelles. The proteome also consists of

regulatory modules, but so far these appeared to be limited in size.

In part, this is because conventional protein covariation analysis is

better suited to capture small regulatory modules, for example
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tightly co-regulated protein complex subunits. Challenges associated

with identifying large co-regulation modules include the widespread

multifunctional nature of human proteins (Christoforou et al, 2016),

the varying degree of co-regulation observed for different cellular

processes, and the fact that not all perturbations trigger an equally

characteristic response for every protein. We overcome these issues

through the use of a machine-learning-based workflow, identifying

large protein co-regulation modules that effectively correspond to

entire biological processes. One practical application of these protein

co-regulation modules could be gene set enrichment analysis

(GSEA; Subramanian et al, 2005; Dataset EV8).

The mechanisms of progulon expression control appear to be

progulon-specific, with two contrasting categories emerging from

the analysis of extreme cases. Some progulons, such as the cytoskel-

eton progulons, are characterised by strong mRNA-to-protein corre-

lation, suggesting they are primarily controlled via transcription.

Other progulons show strong mRNA coexpression but weak mRNA-

to-protein correlation, and these may be regulated translationally or

through protein degradation. One possible mechanism by which

such progulons may be controlled is nonexponential protein degra-

dation (NED; McShane et al, 2016). Many NED proteins are protein

complex subunits that are produced in superstochiometric amounts.

These proteins become stabilised by incorporation into the complex,

while any excess subunits are degraded. Future work will determine

whether NED plays a role for progulon regulation.

While we report here on the discovery of progulons, it is difficult

if not impossible to state their exact number or protein composition.

There are both biological and technical reasons for this. Different

cell types, for example, contain a different set of proteins and

require a different set of functionalities. It is therefore expected that

their protein co-regulation modules may be somewhat different, too.

The exact composition of a progulon will also be somewhat depen-

dent on a range of technical factors, such as the choice of algorithms

and parameter settings, input data and seed lists. In this sense, our

current view of progulons is reminiscent of early definitions of pro-

tein families based on multiple sequence alignments: on the one

hand, it is likely that better algorithms and more/better data will in

the future contribute to the discovery of more progulons and affect

their precise composition. On the other hand, the existence of such

modules, and the ability to detect them using an online tool, may

provide a new entry point for the functional characterisation of

understudied human proteins.

Finally, the progulon approach offers a new functional proteo-

mics route to specifically search for proteins functioning in a partic-

ular biological process. We demonstrate that even for a well-studied

process such as DNA replication, new factors can be identified with

high confidence. We expect that our progulonFinder webtool will be

useful to researchers from all areas of cell biology to identify new

factors contributing to cellular processes of their interest.

Material and Methods

General data analysis

Data analysis was performed in R (R Core Team, 2018) and KNIME

(Berthold et al, 2007). The following R packages were used for all

analyses: data.table for fast processing, ggplot2 (Wickham, 2016)

for figure making and viridis for colour schemes. The KNIME exten-

sion for Weka Data Mining Integration (3.7; Frank et al, 2016) was

used for Random Forest predictions.

progulonFinder: Set-up and considerations

The purpose of progulonFinder is to make automated Random For-

est (RF; Breiman, 2001) predictions using ProteomeHD (Kustatscher

et al, 2019) and very small training sets. Its individual steps are

outlined and explained in Appendix Fig S2. Our first goal for progu-

lonFinder was to automate the entire RF machine-learning proce-

dure, in order to make it accessible to biologists without any

computational experience. As a webtool (www.proteomehd.net/

progulonFinder), it requires a user to specify nothing but a list of

proteins of interest. progulonFinder then automatically and ran-

domly selects negative training data, trains and tests the model, per-

forms cross-validation and outputs the scores and a report. In

addition, advanced users can operate it locally as a KNIME work-

flow, that is through a graphical user interface that does not require

programming skills.

Our second goal was to work with very small training sets. We

previously used Random Forests on proteomics data to determine

which proteins belong to mitotic chromosomes (Ohta et al, 2010),

interphase chromatin (Kustatscher et al, 2014) and mitochondria

(Kustatscher et al, 2016). These were more traditional applications

in the sense that we could use hundreds of proteins for each training

class. However, when operating at the scale of cellular processes

and biological pathways, usually only very few well-known proteins

are available for training. We have recently shown that it is possible

to create successful RF models with just seven protein complex sub-

units as positive class, while still using hundreds of unrelated pro-

teins as the negative class (Monta~no-Gutierrez et al, 2017). This

does, however, create a class imbalance problem, which can reduce

prediction accuracy for the minority class, that is our proteins of

interest. To reduce this, progulonFinder creates many different RF

models using balanced training data, for example 10 positive and 10

negative training proteins, and then averages their result. The num-

ber of models depends on the number of proteins of interest

(Appendix Fig S2).

Framework for online version of progulonFinder

The web interface to progulonFinder was written using the Python

Flask microframework. The training sets along with the user-

specified contact data are sent to the University of Edinburgh High

Performance Computing Cluster, where a prediction job is queued

and run when sufficient resources are available. The link with com-

pressed result files is sent to the user-specified email address using

the Mailgun service.

Creating seed groups by combining OPTICS and clusterONE
clustering

Seed protein groups were created by clustering ProteomeHD using

the OPTICS (Ankerst et al, 1999) and ClusterONE (Nepusz et al,

2012) clustering algorithms. For both approaches, we used the tree-

Clust (Buttrey & Whitaker, 2015, 2016) dissimilarity measure, which

we have previously found to be an ideal distance metric for isotope-
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labelled proteomics data (Kustatscher et al, 2019). OPTICS was

applied via the dbscan R package (Hahsler et al, 2019). The OPTICS

parameter Xi (cluster calling steepness threshold) was set to 0.0001,

which was found to work well in terms of median cluster size, clus-

ter number and the ability to recover proteins of the ATP synthase

complex. ClusterONE was applied via the Java application available

at https://paccanarolab.org/cluster-one. While OPTICS was applied

to the entire protein–protein association matrix, ClusterONE was

applied only to the top 0.5% of protein pairs with the highest tree-

Clust similarity. The minimal cluster size was set to 4 and the den-

sity threshold to 0.4. The seed groups were created by overlapping

the groups from these two clustering algorithms, keeping only pro-

teins that were assigned to a group by both algorithms. Since the

ClusterONE algorithm creates a partially redundant list of clusters,

only the clusters with the highest overlap to the corresponding

OPTICS clusters were selected. This procedure resulted in the identi-

fication of 72 protein seed groups.

Identifying progulons from seed proteins

The 72 groups of proteins defined by the clustering were then used

as positive training sets to run on an offline version of the progulon-

Finder workflow. Parameters were set to 500 decision trees of

unlimited depth, 1,000 randomly selected negative training proteins,

requiring training data to have a minimum of 45 features (SILAC

ratios in ProteomeHD) and test data a minimum of 30 features. Not

all clusters were successful as training proteins. We expect that for

any successful model, the cross-validated positive training proteins

must score very high, especially since there are so few. We therefore

discarded 30 progulons that yielded an area under the ROC curve

smaller than 0.99 (calculated based on leave-one-out cross-validated

training data). In addition, we introduced the requirement that at

least four of the 10 proteins with the highest RF scores had to be

cross-validated training proteins. This ensures that, for the smallest

training seeds consisting of only four proteins, the entire seed had

to be in the top-scoring proteins. This filter removed another 10 can-

didate progulons.

Finally, we introduced a “connectivity score” to determine the

optimal RF score cut-off used to assign proteins to progulons. The

RF score describes the fraction of trees that voted for a protein to

belong to the positive class (1—co-regulated with positive training

set) or to the negative class (0—co-regulated with the negative train-

ing set). This only takes into account whether proteins are co-

regulated with the training proteins and not whether progulon pro-

teins are co-regulated with each other, that is are forming genuine

interconnected modules. To address this, we calculate a connectiv-

ity P-value, which is used to select the appropriate RF score cut-off

such that the resulting module contains proteins that are signifi-

cantly co-regulated with each other. For this, we compare progulons

to a co-regulation network created with all proteins in the analysis.

Using a Fisher’s exact test, we calculate a P-value that reflects if a

progulon is enriched for protein pairs that are among the top 0.5%

of co-regulated protein pairs in the overall network. This calculation

is performed at a series of RF score cut-offs, going from 0.5 to 1.0 in

0.01 increments. We then chose the minimum RF score cut-off that

creates a significantly interconnected module. For ~ 80% of the

progulons, the default RF score cut-off of 0.5 already creates a mod-

ule with a connectivity P-value < 0.05. For the remaining progulons,

this approach resulted in more stringent cut-offs ranging from 0.51

to 0.57, and one progulon had to be discarded completely, because

no RF score cut-off resulted in a significantly interconnected

module.

In total, this approach yielded 31 progulons (Dataset EV2). They

were manually assigned a short, descriptive name based on their

main function.

t-Distributed Stochastic Neighbour Embedding

To visualise progulons as scatter plots, we used t-Distributed Stochas-

tic Neighbour Embedding (t-SNE; Van Der Maaten & Hinton, 2008)

through the Rtsne (Krijthe, 2015) package for R. We used default

parameters except theta was set to zero to calculate the exact embed-

ding. For the proteins present in a given progulon, a treeClust distance

matrix of ProteomeHD was calculated and this was used as t-SNE

input. The resulting t-SNE coordinates reflect how similar proteins are

in ProteomeHD, for example grouping the subunits of protein com-

plexes together and thus simplifying the visual interpretation. Annota-

tions shown in Fig 1 were made manually using UniProt (The UniProt

Consortium, 2017) and the available literature.

Correlation and functional enrichment analysis

To calculate correlations between proteins, mRNAs and progulons,

we use Spearman’s rank correlation coefficient (rho) through the R

base function. Only pairwise complete observations were used for

correlation analysis, that is missing values were ignored. Statistical

tests such as Fisher’s exact tests and Mann–Whitney significance

tests were calculated with R base functions. The Median Absolute

Deviation, a robust measure of scale, was used to determine the

scale of expression changes. The perm R package was used for per-

mutation testing with 10,000 Monte-Carlo replications.

Enrichment of progulons for Gene Ontology (GO) terms was

tested using the topGO (Alexa & Rahnenfuhrer, 2016) R package.

The three aspects (Biological process, Molecular function, Cellular

component) of GO were downloaded from QuickGO (Binns

et al, 2009) with taxon set to human and qualifier to null. Rather

than the whole proteome, only proteins that were included in this

analysis and had GO annotations were used as the gene “universe”

or background for the topGO analysis. Enrichment of GO terms

among protein co-regulation groups was tested considering GO

graph structure and using Fisher’s exact test.

Enrichment of progulons for Reactome pathways (Fabregat

et al, 2016) was tested using the “lowest level pathways” Unipro-

t2reactome.txt table downloaded from https://reactome.org. The

pathways were filtered for a minimal size of 20. Only proteins that

were included in this analysis and had Reactome annotations were

used as the gene “universe” (background). Contingency tables were

created for each combination of progulons and Reactome pathways

(“In Progulon” or “Not in Progulon” to “In Pathway” or “Not in

Pathway”). Each combination was tested for significant pathway

enrichment within a progulon through Fisher’s exact test and the

resulting P-values were Bonferroni-corrected.

Enrichment of progulons for hu.Map complexes (Drew et al,

2017) was tested using the Protein Complex Map from http://

humap2.proteincomplexes.org/download. Enrichment P-values were

calculated as described for Reacome pathways.
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Genomic location of progulon genes

Human genome annotation (GRCh38.p10) was downloaded from

ENSEMBL (Zerbino et al, 2018), and the enrichment of progulons for

genes from the same chromosome was assessed using a two-sided

Fisher’s exact test. The chromosome icon map with progulon genes

highlighted was created using ENSEMBL’s Karyotype display tool.

mRNA and protein stability and turnover kinetics

mRNA half-lives in HeLa cells (Tani et al, 2012) and protein half-

lives in RPE1 cells (McShane et al, 2016) were reported previously.

Permutation tests were performed using the perm R package and

used 10,000 Monte-Carlo replications.

Evolutionary conservation of progulon-based co-regulation

We compared co-regulated protein pairs, defined as pairs with

rho > 0.5, between ProteomeHD and the mouse tissue dataset,

based on ENSEMBL’s one-to-one ortholog annotation. Co-regulated

pairs were divided into three groups: (a) neither protein has been

assigned to any progulon; (b) pairs where the two co-regulated pro-

teins were assigned to different progulons; and (c) pairs where both

proteins were assigned to the same progulon.

Replisome progulon predictions

For the prediction of the replisome progulon, we used default

parameters as described for progulonFinder above. When using only

the 15 NCC or 15 random input ratios, we changed the number of

required features to 7 for training proteins and to 5 for test proteins.

Dataset EV6 contains information about training protein IDs, feature

counts and RF scores obtained for all or subsets of input experi-

ments. Gene Ontology annotation for DNA replication (GO:0006260)

was obtained from QuickGO (Binns et al, 2009), considering the

qualifiers “part of” and “involved in.”

High-throughput siRNA screening

siRNA screening candidates selected from both ProteomeHD and

NCC-only predictions were collectively run together in the same

experiments. U-2-OS cells were grown in DMEM (Gibco) containing

1% Pen/Strep and 10% FBS (Hyclone). The RFP-PCNA reporter cell

line was derived essentially as described (Mejlvang et al, 2014).

Standard U-2-OS or reporter U-2-OS cells expressing RFP-PCNA were

reversely transfected with a custom siRNA library (silencer select,

Ambion) comprising three independent siRNAs per gene. siRNA con-

trol sequences are available in Dataset EV7. In brief, 1.2 ll siRNA
(500 nM) was added to 15 ll OptiMEM (Invitrogen) to each well of a

96-well plate (Greiner #655090). In addition, a 15 ll OptiMEM/0.3 ll
Lipofectamine RNAiMAX mix was added and incubated for 20 min.

Subsequently, 90 ll of cells was added to give a total cell density of

8,000 cells per well. The final concentration of siRNA was 5 nM.

Cells were generally fixed after 48 h. In drug-challenged set-ups,

cells were incubated for 46 h, followed by hydroxyurea (3 mM,

Sigma-Aldrich) treatment for 2 h; or cells were incubated for 24 h,

followed by aphidicolin (0.4 lM) treatment for 24 h. EdU was incor-

porated 15 and 30 min (without drug treatment and in the presence

of aphidicolin, respectively) at a concentration of 40 lM. Cells were

fixed directly or subjected to pre-extraction with CSK buffer (10 mM

PIPES pH 7, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2)

containing phosphatase inhibitors (1 mM DTT, 10 lg/ml leupeptin,

10 lg/ml pepstatin, 0.1 mM PMSF, 0.2 mM sodium vanadate, 5 mM

sodium fluoride, 10 mM beta-glycerophosphate) and 0.5% Triton for

5 min on ice, 4% paraformaldehyde fixation.

Immunocytochemistry and microscopy

EdU visualisation was performed using Click-iTTM EdU Alexa Fluor�
Azide 647 (Invitrogen) according to the manufacturer’s instructions.

For subsequent immunostaining of endogenous proteins, cells were

blocked with PBS containing 5% BSA and 0.1% Tween-20 for 1 h

and incubated with primary antibody overnight at 4 degrees. After

washing three times with PBS containing 5% BSA and 0.1% Tween-

20, fluorophore-coupled secondary antibody was applied for 45 min.

DAPI (Sigma) was added to this mix at a final concentration of 1 lg/
ml and incubated for another 20 min. Cells were washed three times

in PBS. The following primary antibodies were used: mouse anti-

RPA/p34 (Thermo Scientific, MA1-26418, 1:400), rabbit anti-H2A.X

S139 phosphorylation (Cell Signaling Technology, #2577, 1:500) and

rabbit anti-p53BP1 (Novus Biologicals, NB100-904, 1:1,000). Second-

ary antibodies were conjugated with fluorescence labels Alexa488,

Alexa568 or Alexa647 (Thermo Fisher Scientific, 1:1,000).

Thirty-six images per well were acquired with a motorised IX83

wide-field microscope (Olympus) with PlanSApo 20×/0.75 NA dry

objective (> 3,000 nuclei per well). Images were then analysed by

the ScanR image analysis software (Olympus). Single-cell data was

further processed and combined in the data visualisation software

Spotfire (Tibco).

Data analysis and scoring

We performed a standard of three independent biological replicates

per assay, except in +Aph conditions (six replicates). Due to the biased

nature of the library, we normalised for plate-to-plate variability based

on the negative control siRNAs instead of the plate median. We com-

bined the normalised data from replicates and scored candidates based

on their activity as positive “hits” if at least two of three siRNA were

above a given threshold in respect to negative control wells. This

threshold was set individually per readout based on variability of the

assay as measured by the standard deviation (SD) of the negative con-

trol wells across plates and replicates. Thresholds were defined as 3×

SD for SD ≤ 0.05 (low variability); 2× SD for 0.05 < SD ≤ 0.13

(medium variability); 1× SD for SD > 0.13 (high variability).

For comparison, we evaluated the probability of a gene “hit” based

on the collective activities of three siRNAs per gene using the statistical

method redundant siRNA activity (RSA) analysis (König et al, 2007).

Again, we normalised for plate-to-plate variability based on the nega-

tive control siRNAs instead of the plate median. Candidates with a

combined P-fisher value < 0.1 were positively scored. In the set-up

with six biological replicates, we only included candidates that were

scoring with at least a single siRNA in five replicates. The SD and RSA

scoring method yielded similar results (Appendix Fig S9). The SD-

based method was used for all analyses in this manuscript.

Scoring in one readout (up- or downregulation) was counted as “+1”

for the cumulative siRNA score. Consequently, the replication
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phenotypes contributed a maximum of 5 points (EdU, EdU + Aph,

RPA, RPA + HU and RPA + Aph) and the DNA damage phenotypes a

maximum of 4 (53BP1, cH2A.X, cH2A.X + HU and cH2A.X + Aph).

For cell cycle readouts, changes in G1, S and/or G2M populations were

scored individually. Since differences in one cell cycle phase occur at

the expense of other phases, a maximum of “+1” was counted per

experimental condition assessed. This should assure a balanced contri-

bution of the process “cell cycle” to the cumulative siRNA score. There

were four experimental conditions assessed (EdU- and PCNA- based

readouts without replication stress, PCNA-based readout with HU, and

EdU-based readout with Aph), leading to a maximum cumulative score

of 4 for the process cell cycle. In total, this scoring system leads to a

maximum cumulative score of 13.

GSEA compatible data formatting

The progulon list was formatted to fit the GSEA compatibility

requirements as tab-separated GMX and GMT data tables (https://

www.gsea-msigdb.org/gsea/index.jsp). Their compatibility was suc-

cessfully tested on GSEA version 4.2.3.

Analysed datasets

All proteomics and transcriptomics data used for this manuscript were

previously published by us and others. This includes proteomics

(Lapek et al, 2017) and transcriptomics (Klijn et al, 2015) data for

breast cancer cell lines, which were obtained by Lapek et al (2017).

Proteomics (Battle et al, 2015) and transcriptomics (Pickrell et al,

2010) data for lymphoblastoid cell lines were also described and are

available in matched and preprocessed form as Dataset EV1 in ref

(Kustatscher et al, 2017). We previously reported the re-processing of

a number of transcriptomics studies and their matching with proteo-

mics (Geiger et al, 2013) data to analyse expression changes across

mouse tissues (Grabowski et al, 2018). The matched dataset is avail-

able as supplementary file S1 in ref (Grabowski et al, 2018).

Data availability

R scripts and KNIME workflows required to reproduce the results of

this manuscript are available in GitHub, together with their corre-

sponding input files (https://github.com/Rappsilber-Laboratory/

progulons_v2).

Expanded View for this article is available online.
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Figure EV1. Outline of the ATP synthase progulon.

Drawing of ATP synthase related biological processes, colour-coded according to how strongly each protein is co-regulated with the ATP synthase. This includes almost every
protein of the electron transport chain (complexes I-IV) and the fatty acid b-oxidation (FAO) pathway except its rate-limiting enzyme CPT1. This suggests that up- or
downregulation of the ATP synthase is generally accompanied by a corresponding change in the pathways building up the proton gradient. About 60% of proteins in this
progulon have a known function that is clearly linked to ATP synthesis and these are shown here. See Dataset EV3 for a full protein list. The protein that most closely matches
the ATP synthase expression pattern, DLST, is part of the TCA cycle in the mitochondrial matrix. As a subunit of the a-ketoglutarate dehydrogenase, DLST depletes the
endogenous ATP synthase inhibitor a-ketoglutarate (a-KG) (Chin et al, 2014). Three other top hits either metabolise (GLUD1, BCAT2) or export a-KG (OGCP). By contrast,
isocitrate dehydrogenase, which generates a-KG, is a notable absence among the TCA cycle enzymes, suggesting that part of the biological significance of this progulon may
be to prevent metabolic inhibition of ATP synthesis. A third function of the progulon may be to reduce the impact of reactive oxygen species (ROS), which are by-products of
ATP synthesis. For example, among the strongest co-regulation partners of the ATP synthase are the two most ROS-sensitive enzymes of the TCA cycle, DLST and aconitase,
both of which can be readily inactivated by oxidative damage. Coordinating their expression with the respirasome may be a way to ensure flux through the cycle even in the
presence of oxidative stress. Other high-scoring proteins include the antioxidant peroxiredoxin III and PEX11B, which creates peroxisome-mitochondria connections thought
to alleviate oxidative stress on mitochondria (Kustatscher et al, 2019). Control proteins that localise to the inner membrane but are not directly related to ATP synthesis are
absent from the progulon. This includes the MICOS complex, the protein import machinery and the bulk of the SLC25 transporter family (some SLC25 proteins have ATP
synthesis-related functions, for example PiC-A imports the substrate inorganic phosphate).

A B Figure EV2. Progulons are not linked to gene
position.

A Human chromosomes showing the location of
the genes involved in the ATP synthase (red) and
Nucleosome (blue) progulons. HIST1 and HIST2
are two histone gene clusters on chromosomes 1
and 6, respectively.

B Except for this nucleosome progulon, progulons
are not strongly enriched for genes from the
same chromosome. A dashed line indicates the
5.3% of gene pairs that would be expected to be
on the same chromosome by random chance; P-
values are from a two-sided Fisher’s exact test.
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A B

C D

Figure EV3. mRNA and protein half-lives of pr-
ogulons.

A The mRNA and protein half-lives of individual
genes are correlated only very weakly.

B The average half-life of all proteins and mRNAs
of a progulon show a strong and significant cor-
relation. This is even though mRNA half-lives
were measured in HeLa cells (Tani et al, 2012)
and protein half-lives in RPE1 cells (McShane
et al, 2016). Note that proteins are longer lived
than mRNAs.

C The coordination of mRNA half-lives within
progulons correlates with the degree of coordi-
nation of mRNA expression changes across the
breast cancer cell line panel.

D No equivalent significant relationship is
observed on the protein level.

Molecular Systems Biology Georg Kustatscher et al
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A

C

B

Figure EV4. Replisome progulon predictions using only NCC data.

A Replisome progulon prediction using only the 15 Nascent Chromatin Capture (NCC) (Alabert et al, 2014) experiments in ProteomeHD, compared to the full set of 294
perturbations. Only proteins that are part of both predictions are shown (some proteins were not detected in NCC experiments, whereas others were only detected
in NCC data and therefore did not make the cut-off to be included in the ProteomeHD-wide search). Twenty-one candidates predicted exclusively by focussing on
NCC experiments (orange; dashed lines show score cut-off 0.55) as well as seven candidates predicted by NCC and ProteomeHD (red; upper right corner) were
subjected to the high content siRNA screens, which were performed together with the candidates from full ProteomeHD-based predictions and the appropriate assay
controls (see also Fig 3).

B Results of the NCC-based screen shown as in Fig 3F. Asterisks mark two genes that are not plotted in (A) because they were only included in the NCC-only search.
Positive controls (green), low-RF-score controls (blue) and seven candidates that were predicted by both approaches (red) are also shown in Fig 3F.

C Boxplot showing RF scores of proteins related to DNA replication, mitochondrial proteins and the remaining proteins. NCC data were either included, left out or used
exclusively for the replisome progulon prediction. In addition, 15 random experiments were used exclusively for replisome progulon prediction, and that was
repeated three times using different randomly selected experiments. Lower and upper hinges correspond to the first and third quartiles, and lower and upper
whiskers extend to the smallest or largest value no further than 1.5 interquartile ranges (IQR) from the hinge. The notches towards the medians (central band)
extend 1.58 * IQR/square root (n). This gives a roughly 95% confidence interval for comparing medians.

Georg Kustatscher et al Molecular Systems Biology

� 2023 The Authors Molecular Systems Biology e9503 | 2023 EV3
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Appendix Figure S1: Weighted correlation network analysis (WGCNA) on ProteomeHD dataset, (A) dendrogram and hierarchical clustering of ProteomeHD treeClust 
distances at WGCNA specific setting Deepsplit = 4. (B) WGCNA inbuilt GO enrichment showing the top 10 enriched terms of exemplary modules covering protein 
localisation (pink), RNA splicing (blue), ribosome biogenesis (green), ATP synthase proton transport (purple) and ATP synthesis electron transport (orange). (C) Position 
of Respirasome (ATP synthase and Complex I-IV) proteins within the dendrogram (Complex I: 32/33 in Orange Module, ATP Synthase: 11/18 in pink Module, other 
single proteins belong mainly to close proximity modules)  (D) Distribution of Respirasome proteins (subdivided into Complex I to IV and ATP synthase) across all 
Deepsplit settings. Higher Deepsplit yields smaller but more modules whereas lower Deepsplit yields bigger but fewer modules. (E) coverage of Respirasome proteins 
within the orange WGCNA module (most enriched for Respirasome) across all Deepsplit settings. Increasing the module size (decreasing Deepsplit parameter) unifies 
a majority of Respirasome IDs in one module, however also introduces a large number of non associated IDs (F) Distribution of cytosolic ribosome proteins
(GO:0022626) across all Deepsplit settings and (G) the coverage of cytosolic ribosome proteins within the most enriched for cytosolic ribosome WGCNA module 
(bottom) shows high consistency across parameter variation. In general D and E show that WGCNA needs parameter tuning to find a balance between precision and 
completeness with constraints on either side.
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Appendix Figure S2. Outline of the progulonFinder workflow
ProgulonFinder is a workflow to make semi-automated Random Forest predictions based on ProteomeHD. The online version uses only a 
list of proteins as input, the offline version also allows manual parameter adjustments. Both versions break down into the following steps:

1 User specifies proteins of interest, i.e. a list of of Uniprot IDs. Limited to min. 5, max. 50 in the online version.

2 Find which of these proteins (and which actual isoforms) are detected in ProteomeHD and assign them a “positive class” training label. To 
increase robustness, no training labels are assigned to any protein quantified in less than 45 experiments (15% of ProteomeHD).

3 Randomly select "negative" training proteins from the remaining entries in ProteomeHD, equal in number to the matched positive training
proteins. In this way, the size of the training classes will be balanced (see also step 6).

4
These training proteins are used to train a Random Forest model. Then all remaining (non-training) proteins are run through that model 
and the probability for each of them to belong to the “positive” (1) or “negative” (0) class is recorded. Only proteins which were observed in
at least 30 (10%) experiments in ProteomeHD are scored.

5
Leave-one-out cross-validation of training proteins. This is used for performance evaluation and to provide unbiased scores for the training 
proteins. Multiple Random Forests are created, each without one of the positive and one of the negative training proteins. These models 
are then used to score the left-out training proteins.

Scores of test proteins and cross-validated scores of training proteins are combined and saved. Then steps 3 - 5 are repeated until a total 
of ~1,000 different negative training proteins have been used. This repetition is necessary to provide reliable predictions for such small sets
of positive training proteins without creating a class imbalance issue. See Methods sections for more details.

For example, a user may upload a list of 10 proteins, 7 of which are found in ProteomeHD. This is the positive training set. From the remain-
ing proteins in ProteomeHD, 7 are randomly drawn as negative training set. A Random Forest is built with these 14 training proteins and used
to score all other proteins. In parallel, 7 additional Random Forests are built, each omitting one positive and one negative training protein, 
which are then scored by these models. This entire process is repeated 143 times, each time using 7 different negative training proteins
(in total, the 7 positive training proteins are therefore compared to 7 x 143 = 1,001 random negative training proteins).

6

Score training proteins
(cross-validation)
1. Built multiple RF models, from each omit
    1 positive and 1 negative training protein
2. Use each model to score the
    left-out training proteins

ProteomeHD
Co-regulation

database

Assign negative
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Draw randomly from
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n            = n         negative positive

Assign positive
training data
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2
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9

Average Random Forest scores and their standard deviation are calculated. The standard deviation gives an indication of how robust the
score is towards selecting different negative training proteins at random.

To evaluate the performance, cross-validated scores of training proteins are used to generate a ROC curve. 

Final Random Forest scores are written out, together with a PDF report containing a plot and a methods summary to be used in any 
publications arising from this tool.
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Appendix Figure S3. (A) Progulon Overlap and (B) GO enrichment for the 31 progulons and 31 control groups.

The latter consist of randomly generated groups of proteins with the same size distribution as the real progulons. (A) Although the 31 seed groups are 
non-redundant, there is some overlap between progulons that were seeded by functionally similar proteins, such as the two progulons seeded by a 
different set of mRNA processing factors or different subunits of complex I of the electron transport chain (ETC). The percentage overlap is given relative 
to the bigger of the two progulons in each pair. (B) There was no GO term enrichment for randomly generated modules with identical sizes to progulons 
when applying the same p-value cut-off. Note the left panel (real progulons) is identical to the left-most panel in Fig 1, it is re-produced here for 
comparison with the random control groups.
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(A-E) For Progulons: (A) Distribution of mRNA - mRNA and protein - protein correlation coefficients (left) as well as mRNA - to - protein 
correlations (right) for the breast cancer cell line data. The median mRNA - to - protein correlation is 0.57. (B) Progulons with higher mRNA 
variation also have higher protein variation. Expression variation between breast cancer samples was determined using a robust measure of 
scale, the median absolute deviation (MAD). The dots show the median of the MADs of the proteins (or mRNAs) in each progulon. (C) The 
contribution of mRNA to protein abundance changes, estimated by the correlation between the two, correlates strongly with scale of protein 
variation. This indicates that larger expression changes generally require more transcriptional regulation. (D) In contrast, the degree of 
coordination of mRNA abundance changes is independent of the scale of expression changes. (E) Same as (D) but for protein levels. 
(F-H) For Humap2 protein complexes: (F) Protein coordination increases with the mRNA coordination (rho, orange regression line). The majority 
of Humap2 protein complexes are located on the upper side of the diagonal dashed line, suggesting that they are better coordinated on the 
protein level. (G, H) The mRNA-to-protein contribution is inversely correlated (rho, orange regression line) with both mRNA and protein 
coordination.

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
e

d
ia

n
 p

ro
te

in
 c

o
e
x
p

re
s
s
io

n
 [
rh

o
]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
R

N
A

 t
o

 p
ro

te
in

 c
o

rr
e

la
tio

n
 [
rh

o
]

rho 0.4

p < 8e-170

rho -0.34

p < 5.1e-115

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

median mRNA coexpression [rho]

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

protein coexpression [rho]

F

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
R

N
A

 t
o

 p
ro

te
in

 c
o

rr
e

la
tio

n
 [
rh

o
]

rho -0.1

p < 1.5e-11

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

mRNA coexpression [rho]

G H
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Appendix Figure S5. mRNA and protein abundance changes across lymphoblastoid cell lines (LCLs)

This figure reports the analysis of the LCL dataset, equivalent to the analysis of the breast cancer dataset discussed in the main text and 
shown in Figure 2 and Appendix Figure S4. (A) Distribution of mRNA - mRNA and protein - protein correlation coefficients (left) as well as 
mRNA - to - protein correlations (right) for the LCL dataset. The median mRNA - to - protein correlation is 0.17. (B) Expression variation 
between lymphoblastoid cell lines was determined using the median absolute deviation (MAD), a measure of scale that is used as a robust 
alternative to the standard deviation. The dots show the median of the MADs of the proteins (or mRNAs) in each progulon. Progulons with 
higher mRNA variation also have higher protein variation. (C) The contribution of mRNA to protein abundance changes, estimated by the 
correlation between the two, correlates strongly with the extent of protein variation. (D) In contrast, the degree of coordination of mRNA 
abundance changes is independent of the scale of expression changes. (E) Same as (D) but for protein levels. (F) The median mRNA-to-
protein correlation in the dataset is 0.17, but the median rho of genes assigned to different progulons can deviate significantly from that (p-
values from permutation testing). (G) Protein coordination increases with the mRNA coordination (orange regression line), but most progulons 
are much better coordinated at the protein level, i.e. they are on the upper side of diagonal, which is indicated by a dashed line. (H) The 
mRNA-to-protein contribution is not correlated with mRNA coordination. (I) Same as (H) but for protein levels.

mRNA - mRNA
protein - protein
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Appendix Figure S6. mRNA and protein abundance changes across mouse tissues
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protein - protein

This figure reports the analysis of the mjouse tissue dataset, equivalent to the analysis of the breast cancer dataset discussed in the main text 
and shown in Figure 2 and Appendix Figure S4. (A) Distribution of mRNA - mRNA and protein - protein correlation coefficients (left) as well as 
mRNA - to - protein correlations (right) for the LCL dataset. The median mRNA - to - protein correlation is 0.43. (B) Expression variation 
between lymphoblastoid cell lines was determined using the median absolute deviation (MAD), a measure of scale that is used as a robust 
alternative to the standard deviation. The dots show the median of the MADs of the proteins (or mRNAs) in each progulon. Progulons with 
higher mRNA variation also have higher protein variation. (C) The contribution of mRNA to protein abundance changes, estimated by the 
correlation between the two, correlates with the extent of protein variation. (D) In contrast, the degree of coordination of mRNA abundance 
changes is independent of the scale of expression changes. (E) Same as (D) but for protein levels. (F) The median mRNA-to-protein 
correlation in the dataset is 0.43, but the median rho of genes assigned to different progulons can deviate significantly from that (p-values from 
permutation testing). (G) Protein coordination increases with the mRNA coordination (orange regression line), but most progulons are better 
coordinated at the protein level, i.e. they are on the upper side of diagonal, which is indicated by a dashed line. (H) The mRNA-to-protein 
contribution is not correlated with mRNA coordination. (I) Same as (H) but for protein levels.
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Appendix Figure S7. Proteins used as training set to predict DNA replication factors

These 41 replisome proteins were used to predict the replisome progulon. The basic structure of the replisome is shown on the right (modified
from Alabert and Groth, Nat Rev Mol Cell Biol, 2012). 
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Appendix Figure S8: Up- and downregulation of all siRNA screening candidates in all assays

Positive scores reflect upregulation, negative scores reflect downregulation. EdU incorporation detects DNA synthesis, antibodies 
against replication protein A (RPA) detect exposed single-stranded DNA (ssDNA), antibodies against histone H2A.X phosphorylated
at S139 and against p53BP1 detect DNA damage. Cell cycle distributions were assessed based on high content imaging of EdU 
incorporation across cell populations. Some assays included the drugs hydroxyurea (HU) or aphidicolin (Aph) to cause replication 
stress and trigger phenotypes that might not be visible in unchallenged knock-downs.
Scoring in one readout (up- or downregulation) was counted as “+1” for the cumulative siRNA score. Consequently, the replication 
phenotypes contributed a maximum of 5 points (EdU, EdU + Aph, RPA, RPA + HU, RPA + Aph) and the DNA damage phenotypes a 
maximum of 4 (53BP1, γH2A.X, γH2A.X + HU, γH2A.X + Aph). For cell cycle readouts, changes in G1, S and/or G2M populations 
were scored individually. Since differences in one cell cycle phase occur at the expense of other phases, a maximum of  “+1” was 
counted per experimental condition assessed. This should assure a balanced contribution of the process “cell cycle” to the 
cumulative siRNA score. There were four experimental conditions assessed (EdU- and PCNA- based readouts without replication 
stress, PCNA-based readout with HU, and EdU-based readout with Aph), leading to a maximum cumulative score of 4 for the 
process cell cycle. In total, this scoring system leads to a maximum cumulative score of 13.

ZN
F7

06

A
S
F1
A
+B

C
D
C
45

LG
A
LS
3

FO
X

P
4

N
U

D
T9

A
TA

D
2

G
TF

3C
5

N
O

B
1

G
LR

X
5

FA
M

53
C

FA
R

1

M
TX
2

H
E

LL
S

FT
O

H
P

D
L

FA
S

TK
D

3

G
TF

2I

R
IO

K
2

M
R

G
B

P
M

A
P

3K
3

C
R

E
B

B
P

IR
F2

B
P

1

P
E

T1
12

FA
M

10
7B

A
P

P

ZN
F1

21

G
C

S
H

C
D

C
A

7L

D
U

T

VA
P
B

C
LP

X

G
AT

A
D

2A

ZM
Y

M
3

B
LV
R
A

A
C

O
X

1

G
P

X
1

TH
N

S
L1

D
N

A
JA

3

TA
LD

O
1

AT
A

D
2B

PA
R

K
7

E
M
L2

C
E

N
P

M

C
1Q

B
P

C
N

N
3

FA
M

19
2A

C
8o

rf5
9

ZN
F7

06

A
S
F1
A
+B

C
D
C
45

LG
A
LS
3

FO
X

P
4

N
U

D
T9

A
TA

D
2

G
TF

3C
5

N
O

B
1

G
LR

X
5

FA
M

53
C

FA
R

1

M
TX
2

H
E

LL
S

FT
O

H
P

D
L

FA
S

TK
D

3

G
TF

2I

R
IO

K
2

M
R

G
B

P
M

A
P

3K
3

C
R

E
B

B
P

IR
F2

B
P

1

P
E

T1
12

FA
M

10
7B

A
P

P

ZN
F1

21

G
C

S
H

C
D

C
A

7L

D
U

T

VA
P
B

C
LP

X

G
AT

A
D

2A

ZM
Y

M
3

B
LV
R
A

A
C

O
X

1

G
P

X
1

TH
N

S
L1

D
N

A
JA

3

TA
LD

O
1

AT
A

D
2B

PA
R

K
7

E
M
L2

C
E

N
P

M

C
1Q

B
P

C
N

N
3

FA
M

19
2A

C
8o

rf5
9

 17444292, 0, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/m

sb.20209503 by N
es, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



V
A
P
B

LG
A
LS
3

B
LV
R
A

E
M
L2

M
T
X
2

A
S
F
1A
+
B

C
D
C
45

VA
P
B

LG
A
LS
3

B
LV
R
A

E
M
L2

M
TX
2

A
S
F1
A
+B

C
D
C
45

co
m

b
in

e
d
 s

iR
N

A
 s

cr
e
e
n
 s

co
re

 (
S

D
−

b
a
se

d
)

co
m

b
in

e
d
 s

iR
N

A
 s

cr
e
e
n
 s

co
re

 (
R

S
A

−
b
a
se

d
)

Scoring based on Standard DeviationA

max score

Scoring based on RSAB

1/2 max

1/3 max

0

1

2

3

4

5

6

7

8

9

10

11

12

13

A
S

F
1
A

+
B

*

C
D

C
4
5

*

Z
N

F
7

0
6

*

F
A

M
5

3
C

*

G
L
R

X
5

*

N
O

B
1
*

A
TA

D
2
*

F
A

R
1
*

F
O

X
P

4
*

G
T

F
2
I*

G
T

F
3
C

5

L
G

A
L
S

3

M
R

G
B

P

N
U

D
T

9
*

R
IO

K
2
*

A
P

P

C
D

C
A

7
L

F
A

S
T

K
D

3

F
T

O

G
C

S
H

H
E

L
L
S

H
P

D
L

M
A

P
3
K

3

M
T

X
2

Z
N

F
1

2
1

C
R

E
B

B
P

D
U

T

F
A

M
1

0
7
B

IR
F

2
B

P
1

P
E

T
1
1
2

T
H

N
S

L
1

A
C

O
X

1

B
LV

R
A

G
A
TA

D
2
A

G
P

X
1

Z
M

Y
M

3

A
TA

D
2
B

C
L

P
X

D
N

A
JA

3

P
A

R
K

7

TA
L

D
O

1

V
A

P
B

C
1

Q
B

P

C
E

N
P

M

C
N

N
3

E
M

L
2

C
8

o
rf

5
9

F
A

M
1

9
2
A

0

1

2

3

4

5

6

7

8

9

10

11

12

13

A
S

F
1
A

+
B

*

A
TA

D
2
*

C
D

C
4
5
*

F
A

M
5
3
C

*

N
U

D
T

9
*

A
P

P

F
A

R
1
*

F
O

X
P

4
*

N
O

B
1
*

R
IO

K
2
*

G
L
R

X
5
*

G
T

F
2
I*

H
P

D
L

Z
M

Y
M

3

Z
N

F
7
0
6
*

B
LV

R
A

C
8
o
rf

5
9

C
R

E
B

B
P

G
C

S
H

G
P

X
1

G
T

F
3
C

5

L
G

A
L
S

3

Z
N

F
1
2
1

A
C

O
X

1

C
D

C
A

7
L

E
M

L
2

F
A

M
1
0
7
B

G
A
TA

D
2
A

H
E

L
L
S

M
A

P
3
K

3

P
E

T
1
1
2

TA
L
D

O
1

T
H

N
S

L
1

V
A

P
B

D
U

T

F
T

O

IR
F

2
B

P
1

M
R

G
B

P

M
T

X
2

A
TA

D
2
B

F
A

M
1
9
2
A

F
A

S
T

K
D

3

C
1
Q

B
P

C
E

N
P

M

C
L
P

X

C
N

N
3

D
N

A
JA

3

P
A

R
K

7

max score

1/2 max

1/3 max

Type of candidate

candidates from full ProteomeHD
positive controls
low RF score controls
additional candidates based
only on NCC experiments

Cell cycle

DNA damage

Replication

Type of readout

Appendix Figure S9: High degree of validation overlap between two independent statistical scoring methods

Cumulative screening score as determined based on standard deviation (A) and RSA (B). Asterisks incidate proteins that 
scored above the high-confidence threshold with both methods. The SD method was used for the main figures and 
analysis. See methods section for details about how these scores were calculated.
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A B

Appendix Figure S10.  Removing NCC data from ProteomeHD has a minor effect on the replisome progulon prediction
(A) Omitting the 15 NCC experiments from ProteomeHD has a minor effect on the replisome Random Forest scores. Green, blue and magenta 
proteins are positive and negative controls and siRNA screen candidates as shown in Fig 3. (B) However, removing a set of 15 random exp-
eriments from ProteomeHD has even less of an effect. This experiment was repeated three times and each time the impact was less than when
removing the 15 NCC ratios. 
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