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Abstract 

In earlier work, we used a typed function calculus, 

XML, with dependent types to analyze several as- 

pects of the Standard ML type system. In this pa- 

per, we introduce a refinement of XML with a clear 

compile-time/run-time phase dislinclion, and a di- 

rect compile-time type checking algorithm. The cal- 
culus uses a finer separation of types into universes 

than XML and enforces the phase distinction using a 

nonstandard equational theory for module and signa- 

ture expressions. While unusual from a type-theoretic 

point of view, the nonsta.ndard equationa. theory 

arises naturally from the well-known GrotNhendieck 

construction on an indexed category. 

1 Introduction 

The module system of Standard ML [HMM86] pro- 

vides a convenient mechanism for factoring ML pro- 

grams into separate but interrelated program units. 

The basic constructs are struciures, which are a. form 

of generalized “records” with type, value and struc- 

ture components, and functors, which may be re- 
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garded as parameterized structures or functions from 

structures to structures. The types of structures and 

functors are called signatures. The signature of a 

structure lists the component names and their t,ypes, 

while the signature of a functor also includes the types 

of all parameters. Typically, program units are repre- 

sented as structures that are linked together by func- 

tor application. When two structure pa.ramet,ers of 

a. functor must share a common substructure, this 

is specified using a “sharing” constraint within the 

functor parameter list. III Standard ML as currently 

implemented, there a.re no functors with funct*or pa- 

iameters. Iii this respect, the current language only 

uses “first-order” modules. 

There are two formal analyses of the module 

system, one operational and the other a symac- 

tic tra.nslation leading to a. denotational semantics. 

The structured operational sema.ntics of [HMT87h, 

H MT87a, Tof87] includes a computationa. character- 

iza.tion of the type checker. This gives a precise, 

implementation-independent definition of the Stan- 

da.rd ML language that may be used for a variety 

of purposes. The second formal analysis is a t,ype- 

theoretic description of ML, which lea.ds to a denota- 

tional semantics to the language. The second line 

of work, beginning with [Mac861 and continued in 

[MH88], uses dependent sum types Cx:A.B to explain 

structures and dependent function types II2:A.B for 

functors. In addition t.o providing some insight into 

the functional behavior of the module constructs, 

the XML calculus introduced in [MH88] establishes a 

fra.mework for studying a class of ML-l&e languages. 

Because variants of Standard ML may be considered 

as XML theories, the emphasis of this approa.ch is 

on properties of Standa.rd ML that rema.iu invariant 

under extensions of the la.nguage. In a.ddition, XML 

is most naturally defined with higher-order modules, 

suggesting a useful extension of Standard ML. How- 
ever, some important aspects of Standard ML are not 

accurately reflected in the XML analysis. 



Although ML is designed to allow compile-time 

type checking, it is not clear how to “statically” 

type check versions of XML with certain additional 

type constructors or with higher-order modules. This 

is particularly unfortunate for higher-order modules, 

since these seem useful in supporting separate com- 

pilation or as an alternative to ML’s “sharing” spec- 

ifications [BL84, MacSG]. In this paper, we redesign 

XML so that compile-time type checking is a.n in- 

trinsic part of the type-theoretic framework. Since 

it is difficult to characterize the difference between 

compile-time and run-time precisely, we focus on es- 

tablishing a phase dislin.cfion,, in the terminology of 

[Car88]. However, to give better intuition, we gen- 

erally refer to these phases as compile-time and run- 

lime. The main benefit of our redesign is that type 

checking becomes decidable, even in the presence of 

higher-order functors and arbitrary equational ax- 

ioms between “run-time” expressions. 

The main difficulty with higher-order functors may 

be illustrated by considering an expression e contain- 

ing a “functor” variable F which maps type, int pairs 

(representing structures) to type, inl pairs. Such an 

expression e might occur as the body of a higher-order 

functor, with functor parameter F. In type checking 

e, we might encounter a type expression of the form 

Fst(F[int,q]), f re erring to the type component of the 

structure obtained by applying the functor parameter 

F to structure [int,el]. Since F is a formal para.m- 

eter, we cannot hope to evaluate this type expres- 

sion without performing functor application, which 
we consider a “run-time,” or second phase, operation. 
However, in type checking e, we might need to decide 

whether two such type expressions, say Fst(F[inf,ei]) 

and Fst(F[int,eJ), are equa.1. The natural equality to 
consider involves deciding whether structure compo- 

nents ei and es are equal. However, if these are com- 

plicated integer expression, perhaps containing recur- 

sive functions, then it is impossible to algorithmically 

compare two such expressions for equality, While it 

is possible to simplify type checking using syntactic 

equality of possibly divergent expressions, this is too 

restrictive in practice. 

In this paper, we present a typed calculus XML 

which includes both higher-order modules and a clear 

separation into “phases” which correspond intuitively 

to compile-time a.nd run-time. The new calculus is 

at once a refinement and an extension of XML. The 

universe structure of XML is refined so that the core 

language (i.e., the language without modules) pos- 

sesses a natural phase distinction. Then the lan- 
guage is extended in a systematic way to include de- 

pendent types for representing structures and func- 

tors. In order to preserve the phase distinction a 

non-standard formulation of the rules for dependent 

types is needed. Rather than restrict the syntax of 

structures and functors, as one might initially expect, 

we adopt non-standard equational axioms that allow 

us to simplify each structure or funct,nr into separate 

“compile-time” and “run-time” parts. Referring back 

to the example above, we test whether Fsi(F[int,el]) 

and Fsf(F[inf,ez]) are equal essentially by simplify- 

ing F to a pair of maps, one compile-time and the 

other run-time. This allows us to compute compile- 

time (type) values of these expressions without evai- 

uating run-time expressions el or es. This approach 

follows naturally from the development of [Mog89a], 

which defines the category of modules over any suit- 

able indexed category representing a typed language. 

In categorical terms, the category of modules is the 

Grothendieck construction on an indexed category, 

which is proved relatively Cartesian closed when cer- 

tain natural assumptions about the indexed category 

are satisfied. Our XML calculus is a concrete out- 

growth of Moggi’s categorical development, provid- 

ing an explicit lambda notation for the category of 

modules. 

Like XML, AML may be extended with any typed 

constants and corresponding equationa. axioms. In 

contrast to XML, constants and non-logicad AML a.x- 

ioms only affect the “run-time” theory of the language 

and do not interact with type checking. We show 

that XML typing is decidable for any variant of the 

calculus based on any (possibly undecidable) equa- 

tional theory for “run-time” expressions. A similar 

development may be carried out using the compu- 

tational &calculus approach of [Mog89b] in place of 

equational axioms, but we will not go into t1ra.t in this 

paper. 

The paper is organized as follows. In Section 2 we 

introduce the core calculus, XML, which we later ex- 

tend to include modules. AML is essentially the HML 

calculus given in [MogSSa] and cIosely related to the 

Core-XML calculus given in [MH88]. In Section 3 

we introduce Xgid, the full calculus of higher-order 

modules. We prove that Xztd is a definitiona. exten- 

sion of a simpler “structures-only” calculus and use 

this result to establish decidability and compile-time 

type checking for the full calculus of modules. Brief 

concluding remarks appear in Section 4. 

2 Core Calculus 

We begin by giving the definition of the XML core 

ca.lculus, XML, which is essentially the calculus HML 

of [Mog89a]. This calculus captures many of the es- 

sential features of the ML type system, but omits, 
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for the sake of simplicity, ML’s concrete and ab- 

stract types (which could be modeled using existen- 

tial types [MPS8]), recursive types (which can be de- 
scribed through a X ML theory), and record types. We 

also do not consider pattern matching, or computa- 

tional aspecls such as side-effects and exceptions. A 

promising approach toward integrating these features 

is described in [Mog89b]. 

2.1 Syntactic Preliminaries 

There are four basic syntactic classes in XML: 

kinds,constructors,types and terms, The kinds in- 

clude T, the collection of all monotypes, and are 

closed under formation of products and function 

spaces. The constructors, which include monotypes 

such as in& and type constructors such as list, are 

elements of kinds. The types of XML, whose elements 

are terms, include Cartesian products, function spaces 

,and polymorphic types. The terms of the calculus 

correspond to the basic expression forms of ML, but 

are written in an explicitly-typed syntax, following 

[MH88]. It is important to note that our “types” 

correspond roughly to ML’s “type schemes,” the es- 

sential difference being that we require them to be 

closed with respect to quantification over all kinds 

(not just the kind of monotypes) and function spaces. 

These additional closure conditions for type schemes 

are needed to make the the category of modules for 

XML relatively Cartesian closed (i.e., closed under for- 

mation of dependent products and sums). 

The organization of XML is a refinement of the 

type structure of Core-XML[MH88]. The kind T of 

monotypes corresponds directly to the first universe 

171 of Core-XML. However, the second universe, Uz, 

of Care-XML is separated into distinct collections of 

kinds and types. For technical reasons, the cumula- 

tivity of the Core-XML universes is replaced by the 

explicit “injection” of T into the collection of types, 

written using the keyword set. 

2.2 syntax. 

The syntax of AML raw expressions is given in Ta- 

ble 1. The collection of term variables, ran.ged over by 

Z, and the collection of constructor variables, ranged 

over by V, are assumed to be disjoint. The metavari- 

able r ranges over the collection of monotypes (con- 
structors ‘of kind ‘?). Contexts consist of a sequence 

of declarations of the form v:k and z:cr declaring the 

kind or type, respectively, of a constructor or term 

variable. In addition to the context-free syntax, we 
require that no variable be declared more than once 

in a context G so that we may unambiguously regard 

Cp as a partial function with finite domain Dam(@) 

assigning kinds to const,ructor variables and types to 

term variables. 

2.3 Judgement Forms 

There are two classes of judgements in AML, the GOT- 

malion judgements and the equality judgements. The 

formation judgements are used to define the set of 

well-formed AML expressions. With the exception of 

the kind expressions, there is one formation judge- 

ment for each syntactic category. (Every raw kind ex- 

pression is well-formed.) The equality judgements are 

used to axiomatize equivalence of expressions. (There 

is no equality judgement for kinds; kind equivalence 

is just syntactic identity.) The equality judgements 

are divided into two classes, the compile-time equa- 

tions and the run-time equations, reflecting the in- 
tuitive phase distinction: kind a.nd type equivalence 

are compile-time, term equivalence is run-time. The 

judgment forms of XML are summa.rized in Table 2. 

The metavariable F ranges over formation judge- 

ments, Cc ranges over eyua.lity jndgements, and ,7 

ranges over all forms of judgement. We sometimes 

write Q >> cr to sta.nd for an arbitrary judgement 

when we wish t,o make t,he context part explicit. 

2.4 Formation Rules 

The syntas of XML IS specified by a set of inference 

rules for deriving form&ion judgements. These re- 

semble rules in [MHSS, MogSSa] and are essentially 
standard. Due to space constraints, they are omit- 

ted from this conference pa.per. We write XML k 7 

to indicate that the formation judgement F is deriv- 

able using these rules. The formation rules may be 

summarized as follows. The constructors and kinds 

form a simply-typed X-ca.lculus (with product and 

unit types) with ba.se kind T, and basic constructors 

1, x,and-+. The collection of types is built from base 

types 1 and set(r), where r is a constructor of kind T, 

using the type constructors x a.nd 3, and quantifi- 

cation over an arbitrary kind. The terms amount to 

an explicitly-typed presentation of t,he ML core ian- 

guage, similar to t,ltat presented in [MHSS]. (The let 

construct is omitted since it is definable here.) 

2.5 Equality rules 

The rules for deriving equational judgements also re- 

semble rules in [MHSS, Mog89a] a.nd are essentia.lly 

standard. We write XML k t’ to indicate that an 

equation I is derivable in accordance with these rules. 
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k E kind :: = 1 1 T 1 ICI x liz 1 ICI - kz 

u E constr ::= Vjll x 14 1 * 1 (Ul,U2) I %(U) I @J:k.u> I u1 wt 
u E type :: = set(u) 1 U] x (32 1 51 -52 1 (Vv:k.u) 
e E term :: = x 1 * 1 (el,ez) 1 K,(e) 1 (Ax:u.e) 1 el e2 1 (hv:k.e) I e[tlj 

Q E context :: = 0 1 a’, v:k I ip, X:(T 

Table 1: XML raw expressions 

5% conlezt (9 is a context 

cp >> u : k u is a constructor of kind k 

@ >> 5 type u is a type 

@,>>e:u e is a term of type U 

<p >> u1 = u2 k ~1 and ~2 are equal constructors of kind k 

+ > 51 = 52 type 51 and CTZ are equal types 

ip >> el = e2 : u er and e2 a.re equal terms of type schema u 

Table 2: X”‘lL judgement forms 

The X”‘L equational rules are formulated so as to en- 

sure that if an equational judgement is derivable, t,hen 

it. is well-formed, meaning that the evident associated 

formation judgements are derivable. For the sake of 

convenience we give a brief summary of the equational 

rules of XA4L 

2.5.1 Compile-Time Equality 

Constructors Equivalence of constructor expres- 

sions is the standard equivalence of terms in the 

simply-typed X-calculus based on the following ax- 

ioms: 

(x P) 
Cp > ul : ICI Cp >> u2 : k2 

Q > ri((Ul, ~2)) = ‘Eli : ki 
(i = 1,2) 

@ >> u : kl x kz 

(- P) 
@ > u1 : kl a, v:kl >> 212 : kz 

+ >> (Av:kl .u2) u1 = [ul/v]uz : k2 

(- ‘7) 
Q >> u : kl t k2 

Q, > (Av:kl.uv) = u : kl -k:! 
(v $J Dom( a)) 

Types The equivalence relation on types includes 

the following axioms expressing the interpretation of 

the basic ML type constructors 

(1 T=) 
@ context 

+ > set(l) = 1 type 

(x T=) 
(P>>q:T @!>>7i:T 

Cp > set(Tr x ~2) = set(rr) x set(r2) type 

(-+T=) 
Qr >> rl : T Cp > r2 : T 

0 >> set(71+72) = set(rr) +set(T2) type 

2.5.2 Run-Time Equality 

Terms There are seven axioms corresponding to 

the reduction rules associated with each of the type 

constructors: 

(1 17) 
Q>>e:l 

@Be=*:1 

0 >> el : 51 @ >> e2 : 52 

@ > 7ri((el, e2)) = ej : 5i 
(i = 1,2) 

fb >> e :51 x52 

(’ ‘) Cp > (7rl(e),a2(e)) = e : 51 X 52 

(“-+ PI 
+ >> el : 51 (P,X:(Tl >>e2 : 52 

@ > (kUl.ea) el = [el/X]Q : 52 

344 



(-+ 77) 
+‘>>e:al-+a2 

<p >> (Xx:ul.ex) = e : (~1 -+u2 (x e Do+v 

(9 >> u : k Q,v:k >> e : u 

(’ ‘) Cp > (hv:k.e)[n] = [u/v]e : [u/v]u 

(’ n) 

<p >> e : (Vv:k.u) 

@ > (hv:k.e[v]) = e : (Vv:k.u) (’ ’ Dam(‘)) 

2.6 Theories -... 

The XML calculus is defined with respect to an ar- 

bitrary theory 7 = (a7,d7) consisting of a well- 

formed context cPr and a set AT of run-time equa- 

tional axioms of the form el = e2 : u with Qc >> ei : u 

derivable for i = 1,2. A theory corresponds to 

the programming language notion of standard pre- 

lude, and might contain declara.tions such as inl : T 

and fiz : Vt:T. set((t -+ t) + t), and a.xioms such 

as expressing the fixed-point property of f;z. For 

7 = (G7 ,dl), we write X ML[7] I- J to indicate that 

the judgement J is derivable in JML, taking the vari- 

ables declared in a’ as basic constructors and terms, 

and taking the equa.tions in Cc7 as non-logical axioms. 

We write X”!‘L[7] Ect J t#o indicate that the judge- 

ment ,7 is deriva.ble from theory ‘7 using only the 

compile-time equational rules‘arid equational axioms 

of 7. 

2.7 Properties of XML 

We will describe the pha.se distinct/on in XML by sepa- 

rating contexts into sets of “compile-time” and “run- 

time” declarations. If @ is a J4A4L context, we let (PC 

be the context obtained by omitting all term vari- 

able declarations from Q and let Qr .be the context 

obtainecl by eliminating all constructor variable dec- 

lara.tions from (5,. The following lemma expresses the 

compile-t,ime t,ype checking property of AntL: 

Lemma 2.1 Let 7 be any theory. Tht?follo,wing im- 

plications hold: 

If x97] l- 

Cp context 

Q >> u : k 

then XML[@‘I,O] tct 

V, @ context 
, ~- , 

I -- *. 

? I Oc > u1 = u2 type a >> 61 = (72 tYP( 4 
@ >> e : u @,@‘>>e:i -- 

+ >> el = e2 : u Qc,Qr > ei : u 

Since the constructors and kinds form a simply- 

typed X-calculus, it is a routine matter to show 

that equality of well-formed constructors (and, conse- 

quently, types) in XML is decidable. It is then easy to 

show that type checking in XML is decidable. This is a 

well-known property of the polymorphic la.mbda cal- 

culus F,, (c.f. [Gir’ll, Gir72, Rey74, BMM89]), which 

may be seen as an impredicative extension of the XhgL 

calculus. 

Lemma 2.2 There is a straightforward one-pass al- 

gorithm which decides, for an arbitrary well-formed 

theory 7 and formation judgement 3, whether or not 

PL[7] I- 3. 

The main technical accomplishment of this paper 

is to present a full calculus encompassing the module 

expressions of ML which has a compile-time decidable 

type checking problem. 

3 Modules Calculus 

3.1 Overview 

In the XML account of Standard ML modules 

[Ma&G, MHS8] ( see also [NPS88, C+SG, Mar841 for 

related ideas), a structure is an element of a strol~g 

snm type of the form Cx:A.B. For example, a struc- 

ture with one type and one value component is re- 

garded as a pair [T, e] of type S = 2:T.u. Although 

Standard ML structures bind names to their compo- 

nents, component selection in XML is simplified us- 

ing the projections Fst and Snd. Functors are treated 

as elements of dependent function types of the form 

IIz:A.B. For example, a functor mapping structures 

with signature S to structures with the same signa- 

ture would have type IIs:(Et:T.a).(Ct:T.u). In XML, 

functors are therefore written as X-terms mapping 

structures to structures. As discussed in the intro- 

duction, the standard use of dependent types con- 

flicts with compile-time type checking since a type 

expression (which we expect to evalua,te a compile 

time) may depend on an arbitrary (possibly run time) 

expression. For example, if F is a functor variable 

of- signature S -+ S (where S is as above), then 

Fst(F [int, 31) is a.n irreducible type expression in- 

volving a run-time sub-expression. 

In this section we develop a calculus Xgbd of higher- 
order modules with a phase distinction based on the 

categorical analysis of [Mog89a]. We begin with a 

simpler “structures-only” calculus that is primarily 

a technical device used in the proofs. The full cal- 
culus of higher-order modules has a standard syntax 

for dependent strong sums and functions, resembling 
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XML, but a non-sta.ndard equational theory inspired 

by the categorical interpretation of program mod- 

ules [Mog89a]. The calculus also employs a single 

non-standard typing rule for structures that we con- 

jecture is not needed for decidable typing, but which 

allows a more generous (and simple) type-checking al- 

gorithm without invalidating the categorical seman- 

tics. Although inspired by a ca.tegorical construc- 

tion, we prove our main results directly using only 
standard techniques of lambda calculus. The non- 

standard aspects of XEtd calculus are justified by 

showing tha-t this calculus is a definitional extension 

of the “structures-only” ca.lculus, which itself bears 

a straightforward relationship to the core calculus. 

This definitional extension result is used to prove that 

Xtid type equivalence is decidable and that the lan- 

guage therefore has a pra.ctical type checking algo- 

rithm. 

3.2 The Calculus of Structures 

In this section, we extend XML with structures and 

signatures. The resulting calculus, Xzt, has a 
straightforward phase distinction and forms the ba- 

sis for the full calculus of modules. We assume we 

have some set of structure variables that are disjoint 

from the constructor and term va.riables, and use s, s’, 

Sl, . . as metavariables for structure variables. The 

a.dditional synt,a.x of X z,” is given in Table 3. Note 

that contexts are extended to include declarations of 

structure identifiers, but structures are required to 

be in “split” form [u, e]. (A variable s is not a struc- 

ture and t,here is no need for operations to select the 

components of a. structure.) 

The judgement forms of XdWL are extended with two 
additional formation judgements, and two additional 

equality judgements, summarized in Table 4. The 

rules for deriving judgements in Afie are obtained by 

extending the rules of XhfL (taking contexts now in 

the extended sense) with the obvious rules for struc- 
tures in “split” form, in particular the following two 

rules governing the use of structure variables: 

(13 El) 
Q context 
+ > $C k (@(s) = b:W) 

([I Ed 
0 condext 

a > sr : [SF/t+ 
@(s) = [v:k,u]) 

The notion of t.heory and derivability with respect to 

a theory are the same as in X”‘. 

The ca.lculus of structures may be understood in 

terms of a translation into the core calculus, which 

amounts to showing that Azk may be interpreted into 

the category of modules of [MogSSa]. For <p a A$! 

context, define @* to be the AML context obtained by 

replacing all structure variable de&rations s : [v:k, 01 

by the pair of declarations sc : k and sr : [sc/v]u. 

Lemma 3.1 Let 7 be a well-formed XML theory. 

Xff:[?-] l- fD > [v:k,a] sig i;tT XML[7] I- 

W,v:k >> u type, and similarly for signature 

equality. 

Xft[‘ir] l- (P > [u, e] : [v:k,u] i#XML[7] I- @* >> 
u : k and AML[7J I- a* >> e : [u/v]a, and simi- 

larly for structure equality. 

AZk[I] I- a > a ig XML[7”j I- 0” >> a, for 

any judgement (Y other than of the four forms 
considered in items 1. and 2. above. 

It is an immediate consequence of this lemma and 

the decidability of X ML type equivalence that X2: 

type equivalence is decidable. This will be impor- 

tant for the decidability of type checking in the full 

modules calculus. 

3.3 The Calculus of Modules 

The relative Cartesian closure of Moggi’s category of 

modules implies that higher-order functors are defin- 

able in X2:. This may seem surprising, since X$t 

is a rather minimal ca.lculus of structures, with noth- 

ing syntactically resembling lambda abstraction over 

structures. The key idea in understanding this phe- 

nomenon is to regard all modules as “mixed-phase” 

entities, consisting of a compile-time part and a run- 

time part. For basic structures of the form [u, e], the 

partitioning is clear: U, a constructor, may be evalu- 

ated at compile-time, while e, a term, is left until run- 

time . For more complex module expressions such as 

functors, the separa.tion requires further explanation. 

Consider the signature S = [v:T, set(v)], and let 

F:S + S be a functor. Since this functor lies within 

the first-order fragment of XML, we may rely on Stan- 

dard ML for intuition. The functor F takes a struc- 

ture of signature S as argument, and returns a struc- 

ture, also of signature S. On the face of it, F might 

compute the type .component of the result as a func- 

tion of both the type and term component of the ar- 

gument. However; no such computation is possible in 

ML since there are no primitives for building types 

from terms. Thus we may regard F as consisting 
of two parts, the compile-time part, which computes 

the type component of the result as a function of the 

type component of the argument, and the run-time 

part, which computes the term component of the re- 

sult as a function of both the type and term com- 
ponent of the argument. (Since we are working in 
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k E kind :: = . . . 

21 E conslr :: = . . . 1 s‘ 

u E 2ype :: = . . . 

E iem 

i Esig 

::= ___ 1 sr 

:: = [v:k,o] 

M E mod :: = [u,e] 

Q E conle22 :: = . . . ) Q, s:S 

Table 3: X2: raw expressions 

a >> s sig S is a signature 

@>>M:S A4 is a structure of signature S 

@ >> S1 = S2 sig Sr and S2 are equal signatures 

Cp >> Mr = Mz : S Mi and A42 are equal modules of signature S 

Table 4: X2,! judgement forms 

a typed framework with explicit polymorphism, the 

term component may contain type information that 

depends on the compile-time functor argument,) For 

a more concrete example, suppose I is the identit,y 

functor Xs:S.s. Separated into compile time and run 

time parts, I becomes the structure 

[AsC:T.sC, AsC:T.~sr:set(sC).sr] 

of signature 

[f:T--+T, Vs’;T. set(sc+fsC)]. 

In other words, I may be represented by the structure 

consisting of the identity constructor on types, and 

the polymorphic identity on terms. (A technical side 

comment is that the structure corresponding to I has 

more than one signature, as we shall see.) 

With functors represented by structures, functor 

application becomes a form of “structure a.pplica.- 

tion.” In keeping with the above discussion, structure 

application is computed by applying the first compo- 

nent of the functor to the first component of the ar- 
gument, and the second component of the functor to 

both components of the argument. More precisely, if 

[u, e] is a structure of signature [f:k’ - k,Vv’:k’.r’ - 

if v’I44 t and [u’, e’] is a structure of signa.ture 

[v’:k’, 0’1, then the application [u, e] [u’, e’] is defined 

to be the structure [uu’, cue’] of signature [v:k, 01. As 

we shall see below, the appropriate typing conditions 

are satisfied whenever the first. structure is the im- 

age of a functor under the translation sketched in the 

next paragraph. Moreover, both type correctness and 
equality are preserved under the translation. 

Although X$f,” already “ha.9 higher-order mod- 

ules, the syntax for representing them forces the 

user to explicitly decompose every functor into dis- 

tinct compile-time and run-time parts, even for the 

first-order functors of Standard ML. This is syn- 

tactically cumbersome. In keeping with the syntas 

of Standard ML, and practical programming con- 

siderations; we will consider a more natural nota- 

tion based, on [Ma&G, MH88]. However, our calcu- 

lus will nonetheless respect the phase distinction in- 

herent in representing functors as structures. This 

is achieved by employing a non-standard equational 

theory t1~a.t; when used during type checking, makes 

explicit the underlying- “split” interpretation of mod- 

ule expressions, and hence eliminates apparent phase 

viol&ions. For example, if A is a functor of signa- 

ture [t:T> set(ini)]-+[t:T, 11, then the type expression 

u = Fsl(A [in2,3]) is equal, using the non-standard 

rules, to Fs$(A) int, which is free of run-time subex- 

pressions. As a result, if e is a term of type (T, then 
t.lie application 

is type-correct, whereas in the absence of the non- 

standard equations this would not be so (assuming 

3 # 5 : inl). 

The raw syntax of Xz& is an extension of that of 

XklL; the extensions are given in Table 5. The judge- 

ment forms are the same as for AZ,&, and are asiom- 
a.tized by standard structure and functor rules, as in 

[MHS8]. The Xgid calculus is parametric in a the- 
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k E kind :: = , . , 

U E constr :: = . / F&(M) 

u E type :: = 

e E ierm :: = . . . 1 Sad(M) 

S Esig :: = [v:k,cr] ] 1 ] (Cs:S&) ] (IIs:Sl.Sz) 
M E mod :: = s I [u, 4 I * I WI, Mz) I ri(M) I (Xs:S.M) I Ml MZ 
Cp E contezt :: = . . ( Q,s:S 

Table 5: XKid raw expressions 

ory, defined as in XML (i.e., we do not admit module 

constants, or axioms governing module expressions.) 

The formation rules of A$$d are essentially the 

standard rules for dependent strong sums and depen- 

dent function types. The equational rules include t,he 

expected rules for dependent types, together with t,he 

non-standard rules summarized in Table 6. 

Beside the non-standard equational rules (and “or- 

thogonal” to them), there is a.)so a non-standard typ- 

ing rules for structures: 

Q >> M : [v:k, o] 

a, v:k > u’ type 

@ > Snd M : [Fst M/v]o’ 

@ > M : [v:k, CT’] 

The non-standard typing rule is consistent with the 

interpretation in the category of modules [MogSSa], 

but (we conjecture that) without it the main propcr- 

ties of X^,aL,, namely the compile-time type checking 

theorem and the decidability of typing judgements, 

would still hold. The reason for ha.ving such rule 

is mainly pra.gmatic: to have a. simple type check- 

ing algorithm (see Definition 3.9). Moreover, this 

additional typing rule captures a. particularly uatu- 

ral property of C-types (once uniqueness of type has 

been a.ba.ndoned), namely that a structure M should 

be identified with its expansion [Fst M, Snd A/r]. A 

typical example of typing judgement derivable by 

the non-standard typing rule is s:[v:t,a] >> s : 

[v:k, [Fst s/z+]. 

3.4 Translation of A:$ into At:: 

The non-standard equationa. theory used in the def- 

inition of ,!zkd is justified by proving that ?I:&, is a 
definitional extension of X2:, in a sense t,o be made 

precise below. This definitional extension result will 

then play an important role in establishing the decid- 

ability and compile-time type checking property of 
AML mod’ 

We begin by giving a tra,nslation _b from raw XKfd 

expressions into raw A$& expressions. This transla- 

tion is defined by induction on the structure of AEfd 

expressions. Apart from the cases given in Table 7, 

the translation is defined to commute with the expres- 

sion constructors. For the basis we associate with ev- 

ery module variable s a constructor variable s‘ and a 

term variable sr in X 2,“. For convenience in defining 

the tra.nslation we fix a constructor variable v tha.t 

may occur in expressions of X2:, but not in expres- 

sions of X$bd. Signatures of Aztd will be translated 

to X2: signatures of the form [v:k,a]. The transla- 

tion is extended “declaration-wise” to contexts: ab 

is obta.ined from (P by replacing declarations of the 
form X:CT by x:gb, a.nd decla.rations of the form s:S 

by s:Sb Note that the translation leaves XML expres- 

sions fixed; consequently, the translation need not be 

extended to theories. 

Lemma 3.2 (Substitutivity) The translation -b 

commutes with substitution. 

1~1 particvlnr if Mb = Lute], then ([M/S]-)b = 

[u, e/SC, ~3’](-~). 

Theorem 3.3 (! interpretation) Let 7 be a well- 

formed theory, and let 3 be a $ftd judgement. If 
A$~~[71 t ,7, then Astr ML[7] t gb. 

Conversely, AZ;4 is essentially a sub-calculus of 

JKtd, differing only in the treatment of structure vari- 

ables. To make this precise, define the embedding -e 

of Xz,c raw expressions into A,MoLh raw expressions by’ 

replacing all occurrences of sc by Fit(s), and all oc- 

currences of sr by Snd(s). 

Theorem 3.4 (-e interpretation) Let 7 be a 

,well-formed theory, and let J’ be a X2,” judgement. 

If A$,?[71 t J, then Azfd[7] t Je. 

Theorem 3.5 (Definitional extension) Let 7 be 

a well-formed theory, 

l For any formation judgement 3 of A$,“, if 

A$![71 t 3, then (3e)b is syntactically equal 

to 3, modulo the names of bound vam’ables. 
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Non-standard equational rules for signatures 

(1 >I 
53 conte2d 

0 > 1 = [v:l, l] sig 

a, vl:kl >> 01 type Cp, vl:kl, vz:kz >> CT:! type 

(’ ‘) Cp >> (Cs:[vl:kl,ul].[vz:ka, [Fst(s)/v&~z]) = [ k k [ / ] v: 1 x 2, 8121 Vl Ul x KlzI, 7r221/tJ1, w&72] sig [ 

(’ ‘) 

0, vl:kl > ul type @,vl:kl, vz:kz >> (32 type 

+ >> (IIs:[v1:kl, ul].[vz:k2, [Fst(s)/v&7-& = [v:kl + kz, (Vvl:kl.ul -+[v w/v&2)] sig 

Non-standard equational rules for modules 

(1 I >> 
Q, context 

cp 29 * = [*, *] [v:l, l] 

@, vl:kl >> VI type (Q,zII:~I, vz:kz > (~2 type 

Q >> u1 : kl @ >> el : [UI/VI]UI 

@ >> 242 : k2 

@ I >) * >> ([w, el], [u2, e2.j) = 

@ >> e:! : [UI, UZ/~I, ~~$72 

[( W,UZ), (el,ez)] : [v:b x k 2 XlV (~1 u1 x [qv, 7r2V/V1) L;2]4 , [ /, 1 

(C El >> 

(C E2 >> 

(JJ E 4 

9, vl:kl >> ~1 type @, vl:kl, vz:kz >> (12 type 

0 > u : kl x k2 Q >> e : [xlzl/vJvl X[R~U, 7r2u/v1,v4u~ 

<P>> 7rl[u,e] = [ K~U, ale] : [vl :kl, 011 

a., vl;kl >> u1 type a’, vl:kl, v2:kz > U-J type 

@ > u : kl x k2 Cp >> e : [~F~u/~I]vI x [7r1’11, K~U/VI,I~U~ 

Qp > w[u, e] = [wu, me] : [wkz, [7r14+721 

a, wl:kl > ‘~1 type @, q:kl, vz:kx >> u2 type 

@,q:kl > u : k2 @‘, vl:k~, z:ul > e : [u/v~]u~ 

Cp >> (Xs:[vl:kl, vl].[Fst s, Snd s/211, z][u, e]) = [ (Xvl:kl.21), Avl:k1.Xx:ul.e) : 

[v:kl+ kz, (Vvl:kl.ul -+[.~~v~/v~]u~)] 

@, vl:kl > u1 type Q,vl:kl, vq:kz >> u2 type 

Q > ul : kl @ > el : [UI/VI]UI 

<p >> u : kl--+ k2 + >> e : (Vvl:kl.ul -+[vv~/v~]u~) 

@ 22 [u, e] [ICI, eJ = [u ~1, e[ul] ell : [vz:hz, [141/v11~2] 

Table 6: Non-standmd equations 
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expression translalion 

Fs:sz(M) u 

Snd(M) e 

I s IsC. dl 

induction hypotheses 

where Mb = [u,e] 

where Mb = [~,e] ----- 

i”:“, u] ‘- b:;, i;i4~bl 

(Cs:S1 .Sz) [=I(& x kp), ([R~v/v]u~ X[KIV, RZV/&, v]u2)] where 5’: = [v:ki, ci] 
(rkS1 .S2) [v:( ICI - kz), vsc:t1 .[sC/v]q -+[v sC/v]a2] where Sib = [v&,ai] 

* I*. *l 

(M1,M2) i(k:u2), (el,e2)1 where M: = [u;, ei] 

7TiM [xiu, Tie] where Mb = [u,e] 

(Xs:S.M) [(XsC:k.u), (Asc:k.Asr:[sc/v]g.e)J where Sb = [v:Ic, V] and Mb = [u, e]- 

_ Ml M2 b17-42, el b21 e21 where Mi = [ui, ei] 

Table 7: Translation of X$td into X$,6 

l If X$$7l t- @ >> M : S, then the following 

equality judgements are derivable in AEid[7]: 

- +p, >> @(s) = (a(~)‘)~ sig, for all s E 

Dam(@), where + 3 a,, s:@(s), P (and 

similarly fort and v in Dam(@)) 

- 4 >> S = (Sb)e sig 

- Q > M = (Mb)” : S 

(an.d similarly for the other formation judge- 

ments.) 

Corollary 3.6 (Conservative extension) Let 7 

be an arbitrary well-formed theory. For any A$! 
judgement J, X r;l,J771 I- Je @ qf,Lp-1 I- 3. 

3.5 Compile-Time Type Checking for 

FL mod 

The compile-time equational theory of XE$ and X5: 

is det,ermined using a restricted equational proof sys- 

tem, defined as follows. 

Definitiou 3.7 (Compile-time calculus) 

Compile-time provability in XKtd and A$,! is defined 

by disallowing the use of all /I and 97 rules for ierm 

eq7liualence, and all 0 and 11 rules for module equiv- 
alence, apart from those related to =basic” signatu,r.es 

fv:k, u]. 

Let us designate the P and 7 axioms for terms of XML 

hy Bq, then the full XEtd calculus may be recovered 
by working in the theory (0,/37), since the p and ?I 

a.xioms for modules are derivable in such a theory. 

It may be easily verified that the variants of Theo- 

rems 3.3, 3.4 and 3.5 obtained by considering compile- 

time derivability hold. 

Theorem 3.8 (Compile-time type checking) 

Given any well-formed theory ‘T = (a7, A7), the fol- 

lowing implications hold: 

If AE$[T] t- then $f$[@,0] I-,t 

Cp context Cp context 

Cp > u type @ > u type 

@ >> S sig Cp >> S sig 

a,>>tb:k @>>u:k 

@>>e:a 0 >> e : u 

@>M:S @>M:S 

3.6 Decidability of xttd 

The decidability of Xzfd is proved by giving au algo- 

rit,hm that “flattens” structures and signatures dur- 

ing type checking. As a result, checking signature 

equivalence is reduced to checking type equivalence 

in X2:, and this is, a.s we have already argued, decid- 

able. The main complication in the algorithm stems 

from the failure of unicity of types. For example, the 

structure [int, 31 has both of the inequivalent signa- 

tures [t:T, set(t)] and [i:T, ini]. Our approach is to 

compute the “most specific” signature for a structure 

(in the foregoing exa.mple this would be the second) 
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which will always have the form [v:lc, u] where v does 

not occur free in CT. As a notational convenience, 

we will usually omit explicit designation of the non- 

occurring variable, and write such signatures in the 

form [:rC,cr]. The algorithm defined below takes as 

input a raw context G and, for instance, a raw mod- 

ule expression M of Xgtd and produces one of the 

following results: 

Theorem 3.11 (Completeness) Let 7 be cll~y 

well-formed theory. The following implicutions hold: 

then TqIJ I- & X$,“[7] tct 

l The context CDb and Mb EE [~,e]:[:k,a], meaning 

that (9 B- M : [%,a] is derivable in X$td. 

l An error, meaning that @ context is not derivable 

in JI~:~ or that 0 >> M : S is not derivable in 

X$td for any S. 

Definition 3.9 (Type-checking algorithm) The 

type-checking algorithm TC is given by a determin- 

istic set of inference rules to derive judgements of the 

following form: 

input output 

91 --+) Qb context 

Q >> e -++ Qb > eb : u 

a! >> A4 ---H ab >> Mb : [:k,u] 

In the last three cases TC not only computes the 

translation, but also a kind/type/signature. A sample 

of the inference rules that constitute the algorithm is 

given in Table 8. 

TC is parametric in a theory 7, and we write 

Tq7] for the instance of the algorithm in which 

the constants declared in cP7 are regarded as vari- 

ables. More precisely, Q! - Qb context in Tq’T] iff 

#I, + --H <p7, Ob context in TC. 

Theorem 3.10 (Soundness) Let 7 be a well- 

formed theo y. ‘The following implications hold: 

If TPI t- then X Em t-ct 
Cp + Ob context Cp context 

‘@2-u.--Hb 2-u’ type @ >> u type 

Cp > S - cpb > Sb sig 42 > S sig 

@ >> u + ab >> ub : k @>>u:k 

0 >> e - ab > eb : u @B-e::’ 

CP >> M ---H @b >> [u, e] : [:k, u] + > M : [:k, u’] 

Q >> u type @ >> u - Qb >> ub type 

@ >> S sig 0 >> S - Qb >> Sb sig 

+>>u:k a, >> u - ab >> ub : k 

Q?>>e:a 0 >> u - @ 
b 

>> u 
b 

type 

Cp >> e - Qb > eb : CT’ 

ab >> ub = u’ type 

+>M:S Cp >> S - Qb >> [v:k, u] sig 

Q >> M --H @ >> [u, e] : [:k, u’] 

ipb > IS’ = {u/vJa type 

_ If v%fP-l t‘ct then TC$T] t & XzF[?-] kct 

Cp > ul = ~2 type @ >> ui 4-k Q, 6 >> ai type 

Qb > uQ1 = 0; type 

0 > S1 = S2 sig 0 >> S; - cpb > Si sig 

eb >> S\ = Si sig 

(9 >> u1 = ug : k <p >> ui - Qb >> ui : k 

ab > ~“1 = 11; : k 

Q >> el = e2 : u Cp >> u -.Gb > ub type 

I 

@ >> ei 4-t ab >> ei : ui 

Qb >> ub = ui type 
i@b >> eb, = ei : Ub 

@>>M1=M2:SI @B-S + 

I.- 

-l 

Qb >> [pi, ei] : [:k, ui] 

Gb >> u1 = u2 : k 

Gb 23 u = [ui/v]ui type 

Qb > el s e2 : u 

Theorem 3.12 (Decidahility) It 

is decidable whether a raw type-checking judgemenf 

lhs --H rhs is derivable using the inference rules in 

Definition 3.9. 

Corollary 3.13 Given any zoell-formed theory 7, 

th.e derivability of formation judgements in Xttd[7] 

is decidable and does not depend on pun-time axioms 

nor the axiom.s in 7. 

4 Conclusion 

Although the relatively stra.ightforward ML-like func- 

tion calculus XML of [MH88] illustrates some impor- 

tant properties of ML-like languages, it does uot pro- 

vide an adequate basis for the design of a. compile- 

time type checker. Similar problems arise in other 

programming language models based on dependent 
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(Q, s:S) 

([I w) 

([I 0 

(II El) 

([I E2) 

h’T) 

(1 1) 

cp > s - cpb > Sb sig 
Cp, s:S --+ Qb, s:Sb context 

(s 4 DomW 

+, v:k >> u - ab, v:k >> rb type 

a > [l&u] - ab > [WC, ub] : sig 

dp >> u - ab > ub : k Q, >> e - ab >>eb : u 

@ >> [u, e] - Qb >> [u, e] : [:k, CT] 

@ >> M --++ Qb >> [u, e] : [:k, o] 

Q >> Fst(M) - Gb >> u : k 

+ > M + Gb >> [u, e] : [:k, a] 

Q > L&d(M) -++ + b >e: u 

0 --+ Qb context 

cp >> s --n ab >> [sc, sr] : [:k, [s”/v]cT] (@b(s) = “:k’al) 

+ context - 5Bb context 

a > * - ab > [*,*I: [:lJl 

(22 Ei) 
Q, >> ri M - Bb >> [riu, xie] : [:ki, gi] 

m I) @',s:Sl > M - Gb, s:[v:kl,rrJ >> [u, e] : [:kz, ~23 

@ >> (Xs:SpM) --++ Qb >> [(Asc:k~.~~),(AsC:k~.Xsr:[sc/v]a~.e)] : 

[:kl-+k2,VsC:k1.[sC/v]u1~~2] 

@ >> Jv -+ Gb >> [u,e] : [:kl + k7,Vw:kl.al --m2] 

Table 8: Type checking algorithm (selected rules) 
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types. To address this pragmatic issue, we have devel- 

oped an alternate form of the XML calculus in which 

there is a clear compile-time/run-time distinction. 

Essentially, our technique is to add equational ax- 

ioms that allow us to decompose structures and func- 

tors into separate compile-time and run-time compo- 

nents. While the phase distinction in XML reduces 

to the syntactic difference between types and their 

elements, the general technique seems applica.ble to 
other forms of phase distinction. 

The basis for our development is the “category 

of modules” over an indexed category, which is an 

instance of the Grothedieck construction. General 

properties of the category of modules are explained 

in the companion paper [Mog89a]. In the specific case 

of XML, our non-standard equational axioms lead to 

a calculus which bears a natural relationship to the 

category of modules. In future work, it would be 

interesting to explore the exact connection between 

our calculus and the categorical construction, and to 

develop phase distinctions.for languages whose type 

expressions may contain “run-time” suhexpressions 

in more complicated ways. 
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