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Exosomes are secreted organelles that have the same topology as the cell and bud outward (outward is defined as
away from the cytoplasm) from endosome membranes or endosome-like domains of plasma membrane. Here we
describe an exosomal protein-sorting pathway in Jurkat T cells that selects cargo proteins on the basis of both higher-
order oligomerization (the oligomerization of oligomers) and plasma membrane association, acts on proteins
seemingly without regard to their function, sequence, topology, or mechanism of membrane association, and appears
to operate independently of class E vacuolar protein-sorting (VPS) function. We also show that higher-order
oligomerization is sufficient to target plasma membrane proteins to HIV virus–like particles, that diverse Gag proteins
possess exosomal-sorting information, and that higher-order oligomerization is a primary determinant of HIV Gag
budding/exosomal sorting. In addition, we provide evidence that both the HIV late domain and class E VPS function
promote HIV budding by unexpectedly complex, seemingly indirect mechanisms. These results support the hypothesis
that HIV and other retroviruses are generated by a normal, nonviral pathway of exosome biogenesis.
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Introduction

Exosomes are secreted organelles that have the same
topology as the cell and a diameter of approximately 50–
150 nm, though larger exosomes have also been reported [1–
3]. Exosome content varies considerably, but commonly
includes tetraspanins, integrins, major histocompatibility
complex proteins, cytosolic chaperones, cholesterol, and
glycosphingolipids [2,4]. Many animal cell types secrete
exosomes, and exosome-mediated signaling has been impli-
cated in antigen presentation, morphogenesis, sperm matu-
ration, and cancer–host interactions [2,4–6]. Less is known
about the mechanisms of exosome biogenesis.

Cells can generate exosomes by either of two modes,
immediate or delayed. The immediate mode of exosome
biogenesis occurs at the cell surface and involves outward
vesicle budding (outward is defined as away from the
cytoplasm) from endosome-like domains of the plasma
membrane, domains we refer to as ELDs [3]. In contrast, the
delayed mode of exosome biogenesis begins with outward
vesicle budding at the limiting membrane of endosomes,
generating vesicle-laden endosomes, typically referred to as
multivesicular bodies (MVBs) [2,4]. If an MVB fuses with the
plasma membrane, its internal vesicles are released as
exosomes. However, MVBs can also fuse with lysosomes,
leading to vesicle and cargo destruction [7]. Some cell types,
such as T cells, prefer to make exosomes by the immediate
mode, whereas other cell types, such as macrophages, prefer
to make exosomes via the delayed mode. Interestingly, human
immunodeficiency virus (HIV) particles bud from these two
cell types at the same sites as exosomes, have the same
topology as exosomes, have a similar size as exosomes, and are
enriched in the same molecules as exosomes [3,8–13]. These
and other observations indicate that there might be a
mechanistic relationship between retrovirus budding and
exosome biogenesis [11].

A major step in understanding the biogenesis of any

organelle is to identify and characterize the cis-acting signals
that target proteins to the organelle. Here we show that
higher-order oligomerization and plasma membrane associ-
ation target proteins to sites of exosome budding and into
exosomes. Proteins can be directed into this exosomal
protein sorting pathway by (1) exposing cell surface proteins
to exogenous cross-linking agents (e.g., primary and secon-
dary antibodies), (2) appending plasma membrane anchors to
highly oligomeric cytoplasmic proteins, or (3) adding multiple
homo-oligomerization domains to intracellular acylated
proteins. The class E vacuolar protein-sorting (VPS) proteins
are thought to drive outward vesicle budding [14], but we find
that inhibiting class E VPS function does not block exosome
budding or the oligomerization-induced exosomal protein-
sorting pathway. We also find that retroviral Gag proteins are
sorted to ELDs and exosomes, that exosomal targeting
information directs proteins to sites of HIV Gag budding
and onto HIV virus–like particles (VLPs), that higher-order
oligomerization is a primary determinant of HIV Gag
budding, that p6-deficient HIV can bud independently of
class E VPS function, and that acquisition of exosomal sorting
information is sufficient to induce the budding of a yeast long
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terminal repeat (LTR) retrotransposon. Taken together, these
results support the hypothesis that retroviral budding is a
form of exosome biogenesis [11].

Results

Higher-Order Oligomerization Targets Plasma Membrane
Proteins to ELDs and Exosomes

Jurkat T cells bud exosomes from ELDs [3]. ELDs are often
clustered at a single pole in Jurkat T cells [3], resembling the
surface protein ‘‘caps’’ that form after antibody-induced
oligomerization of leukocyte plasma membrane proteins
[15,16]. To determine whether there is any relationship
between exosomal protein sorting and surface protein
capping, we marked ELDs by pulse-labeling Jurkat T cells
with an exosomal lipid, N-Rh-PE [3], chilled the cells to 4 8C,
then incubated the cells with monoclonal (bivalent) immu-
nogammaglobulin (IgG) antibodies specific for known T cell
plasma membrane proteins, washed the cells, and incubated
the cells with fluorescein isothiocyanate (FITC)-labeled
polyclonal anti-mouse IgG antibodies, all on ice. Half the
cells were fixed immediately, half were incubated at 37 8C for
1–2 h and then fixed, and both were examined by
fluorescence microscopy (Figure 1A–1X). At time 0, the
plasma membrane markers CD43, CD45, and CD59 showed
no significant enrichment at ELDs. In contrast, cells
incubated at 37 8C sorted these antibody–antigen complexes
to ELDs. Similar results were observed for CD4, CD5, CD28,
CD31, CD38, CD55, CD62L, CD98, CD99, and PrP (unpub-
lished data), as well as in cells expressing a different marker
for ELDs, AIP1/VPS31-DsRED (unpublished data) [3].

Surface protein ‘‘capping’’ has been reported to require
the oligomerization of oligomers [15,16], which we refer to as
higher-order oligomerization. To determine whether higher-
order oligomerization was sufficient for targeting CD43 to
ELDs and exosomes, N-Rh-PE–labeled Jurkat T cells were
chilled to 4 8C, incubated with FITC-labeled monoclonal (IgG)
anti-CD43 antibodies (on ice), separated into two equal
fractions, and incubated with either a mock solution or
unlabeled polyclonal rabbit anti-mouse IgG antibodies, all on

ice, followed by incubation overnight at 37 8C. Fluorescence
microscopy of the two cell populations revealed that CD43
was sorted to ELDs only after the addition of polyclonal
secondary antibodies (Figure 1Y–1FF). Thus, higher-order
oligomerization is both necessary and sufficient to target
CD43 to ELDs.
ELDs are sites of exosome budding, and we next tested

whether higher-order oligomerization is sufficient to induce a
protein’s budding/exosomal sorting (we define the term
‘‘budding’’ to mean the secretion of a molecule on sediment-
able vesicles that have the general properties of exosomes/
VLPs). N-Rh-PE–labeled T cells that had been exposed to only
monoclonal anti-CD43 antibodies secreted N-Rh-PE–labeled
exosomes that were mostly lacking the FITC-labeled CD43–
antibody complex. In contrast, exosomes secreted by cells
exposed to both the FITC-labeled monoclonal anti-CD43
antibody and the polyclonal anti-mouse IgG antibodies were
approximately 30-fold more likely to carry detectable levels
of the FITC-labeled CD43–antibody complex (Figure 1GG–
1KK). In paralogous experiments using unlabeled antibodies,
immunoblot analysis of cell and exosome lysates revealed that
higher-order oligomerization induces an approximately 10-
fold increase in the amount of CD43–antibody complex
secreted from the cell in exosomes (Figure 1LL). This increase
in exosomal CD43 did not appear to reflect a general increase
in exosome biogenesis, because the levels of exosomal Lamp1
were unaffected by these manipulations.

A Plasma Membrane Anchor Targets Highly Oligomeric
Cytoplasmic Proteins to ELDs and Exosomes
The hypothesis that higher-order oligomerization is suffi-

cient to target plasma membrane proteins to ELDs and
exosomes has a clear corollary: a plasma membrane anchor
should be sufficient to target highly oligomeric, cytoplasmic
proteins to ELDs and exosomes. To explore this possibility,
we used the yeast protein TyA, which assembles into large
oligomeric structures in the cytoplasm of yeast cells [17,18].
The suitability of TyA for these studies is enhanced by the
fact that it is derived from the Saccharomyces cerevisiae Ty1 LTR
retrotransposon, which accumulates in the cytoplasm, does
not bud from cells, is not infectious, and replicates in an
organism that is devoid of retroviruses.
When expressed in Jurkat T cells, wild-type (WT) TyA

(tagged with green fluorescent protein [GFP] at its C-
terminus) accumulated in the cytoplasm and showed no
enrichment at ELDs (Figure 2A–2D). In contrast, AcylTyA-
GFP, which contains a 10 amino acid–long acylation tag at its
N-terminus (designed to confer myristoylation at Gly2,
palmitoylation at Cys3, and targeting of the protein to the
plasma membrane [19]), co-localized at ELDs with the
exosomal markers N-Rh-PE and surface CD63 (Figure 2E–
2L). A mutant form of AcylTyA-GFP lacking the putative
acylation sites, Acyl(G2A,C3A)TyA-GFP (containing alanine
residues at positions 2 and 3 of the tag), was not sorted to
ELDs and instead accumulated in the cytoplasm of Jurkat T
cells (Figure 2M–2P).
To determine whether the sorting to ELDs correlated with

secretion in exosomes, we collected exosomes from N-Rh-PE–
labeled Jurkat T cells expressing either TyA-GFP or AcylTyA-
GFP, bound them to glass, and examined them by fluores-
cence microscopy. Jurkat T cells failed to secrete TyA-GFP
from the cell in exosomes (Figure 2Q and 2R), but did secrete
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Author Summary

Exosomes are small, secreted organelles with the same topology as
the cell and a similar size and composition as retrovirus particles.
Based on these similarities, we proposed that retroviruses are, at
their most fundamental level, exosomes. Little is known about the
mechanisms of exosome biogenesis. We show here that higher-
order oligomerization and plasma membrane binding are sufficient
to target proteins into both exosomes and HIV virus-like particles.
We also find that the HIV protein Gag, which possesses these
general exosomal sorting elements, requires only these elements to
bud from human cells. Others have proposed that the HIV p6
domain and the host class E vacuolar protein-sorting (VPS)
machinery play direct, essential, and mechanistic roles in HIV
budding. However, we show here that p6-deficient HIV can bud
from cells at normal levels and that both p6-deficient HIV and
exosomes can bud independently of class E VPS function. Thus, it
appears that exosome biogenesis pathways mediate the budding of
HIV from cells, whereas the HIV p6 domain and the class E VPS
machinery promote budding indirectly.



AcylTyA-GFP from the cell in N-Rh-PE–containing exosomes

(Figure 2S and 2T). In a separate experiment, we generated

cell and exosome lysates from Jurkat T cells either mock-

transfected or transfected with plasmids designed to express

HIV Gag-GFP (which is sufficient for budding [20] and buds

from the cell in exosomes [3]), TyA-GFP, AcylTyA-GFP, and

Acyl(G2A,C3A)TyA-GFP, and then subjected these to immu-

noblot analysis. Using a constant ratio of cell lysate:exosome

lysate, we observed that AcylTyA-GFP was selectively secreted

from the cell in exosomes (Figure 2U), as was HIV Gag-GFP.

We further purified exosomes from these cells by sucrose

density flotation gradient centrifugation and assayed frac-

tions across the gradient by immunoblot using antibodies

specific for GFP and for CD63, a known exosomal marker.

AcylTyA-GFP co-fractionated with CD63, providing further

evidence that it was secreted from the cell in exosomes

(Figure 2V). Exosomes collected from these cells were also

subjected to protease protection experiments. AcylTyA-GFP

was degraded far more extensively in the presence of trypsin

and Triton X-100 than when exposed to trypsin alone (Figure

2W), indicating that AcylTyA-GFP was located in the lumen

of the exosomes.

Electron microscopy experiments provided additional

evidence that the acylation tag is sufficient to induce the

budding of TyA. TyA is known to form electron-dense

protein complexes [17,18], and thus, cells expressing an

exosomal form of TyA would be expected to secrete

exosomes that contain an electron-dense lamina under their

membrane. Jurkat T cells normally secrete exosomes that lack

an electron-dense lamina under their membrane [3], and this

was observed for exosomes secreted by cells expressing

unmodified, non-exosomal TyA (Figure 2X and 2Y). In

contrast, cells expressing AcylTyA secreted exosomes that

resembled retroviral VLPs in that they had an electron-dense

lamina under their membrane (Figure 2Z–2GG). These

AcylTyA-containing exosomes varied significantly in size,

from approximately 50-nm diameter to approximately 250-

nm diameter, and were typically of spheroid morphology,

though some possessed short membrane protrusions (Figure

2CC–2EE). AcylTyA-containing exosomes also labeled for N-

Figure 1. Higher-Order Oligomerization Targets Proteins to ELDs

(A–X) N-Rh-PE–labeled Jurkat T cells were incubated with monoclonal antibodies specific for (A–H) CD43, (I–P) CD45, or (Q–X) CD59 and FITC-labeled
polyclonal anti-mouse antibodies, on ice, and then either (A–D, I–L, and Q–T) fixed or (E–H, M–P, and U–X) incubated at 37 8C for 2 h and then fixed.
(Y–LL) Higher-order oligomerization targets CD43 to exosomes. (Y–FF) N-Rh-PE–labeled Jurkat T cells were incubated with FITC-labeled monoclonal
antibodies specific for CD43, then incubated with either (Y–BB) buffer alone or (CC–FF) unlabeled polyclonal rabbit anti-mouse IgG antibodies, all on ice.
Cells were incubated for 24 h at 37 8C and then examined. (GG–KK) Fluorescence microscopy of exosomes from cells treated with (GG and HH) primary
antibodies only or (II and JJ) primary and secondary antibodies. (KK) Numbers of FITC-positive exosomes secreted by cells exposed to (left bar) primary
antibodies only or (right bar) primary and secondary antibodies. Bar indicates 10 lm. (LL) Samples from Jurkat cells incubated with either mouse anti-
CD43 IgG only (18) or with mouse anti-CD43 IgG and anti-mouse IgG (18þ 28) were blotted with anti-mouse antibodies to determine the amount of
CD43 secreted on exosomes, and anti-Lamp1 antibodies to determine the level of exosome secretion. Bar indicates 10 lm.
doi:10.1371/journal.pbio.0050158.g001
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Figure 2. A Plasma Membrane Anchor Targets TyA to ELDs and Exosomes

(A–P) Fluorescence microscopy of (A–D) Jurkat T cells expressing TyA-GFP, fixed and stained with antibodies to detect surface CD63; (E–H) N-Rh-PE–
labeled Jurkat T cells expressing AcylTyA-GFP; (I–L) Jurkat T cells expressing AcylTyA-GFP, fixed and stained with antibodies to detect surface CD63; (M–
P) Jurkat T cells expressing Acyl(G2A,C3A)TyA-GFP, fixed and stained with antibodies to detect surface CD63. Bar indicates 10 lm.
(Q–T) Fluorescence microscopy of exosomes secreted by N-Rh-PE–labeled Jurkat T cells expressing (Q and R) TyA-GFP or (S and T) AcylTyA-GFP. White
circles mark exosomes that contain both N-Rh-PE and AcylTyA-GFP.
(U) Anti-GFP immunoblot of exosomes (exo) and cell lysates (cell) prepared from Jurkat T cells (mock) and Jurkat T cells expressing HIV Gag-GFP, TyA-
GFP, AcylTyA-GFP, or Acyl(G2A,C3A)TyA-GFP.
(V) Exosomes secreted by Jurkat T cells expressing AcylTyA-GFP were purified by sucrose density centrifugation, fractions were collected from the
bottom of the gradient, and equal amounts of each fraction were examined by immunoblot using antibodies specific for (upper panel) GFP and (lower
panel) the exosomal marker CD63. Fractions 1–12 were of the densities 1.34, 1.33, 1.33, 1.32, 1.24, 1.20, 1.16, 1.13, 1.11, 1.10, and 1.09 g/ml, respectively.
(W) Anti-GFP immunoblot of exosomes collected from Jurkat T cells expressing AcylTyA-GFP and incubated with different amounts of trypsin in the
absence or presence of 0.1% Triton X-100.
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Rh-PE, shown here using 6-nm immunogold (Figure 2FF and
2GG).

Retroviral Gag Proteins Are Exosomal Cargoes
Like the exosomal cargoes described above, the Gag

proteins of the Orthoretroviridae (true retroviruses) are
known to bind the plasma membrane and assemble into
higher-order oligomeric complexes [21]. Therefore, if higher-
order oligomerization and plasma membrane binding are
sufficient for exosomal targeting, orthoretroviral Gag pro-
teins should be sorted to ELDs and exosomes. Equine
infectious anemia virus (EIAV), human T-cell lymphotropic
virus-1 (HTLV-1), murine leukemia virus (MLV), Rous
sarcoma virus (RSV), Mason-Pfizer monkey virus (MPMV),
and human endogenous retrovirus-K (HERV-K) represent
five major families of the Orthoretroviridae. The Gag protein
from each of these viruses was expressed in Jurkat T cells as a
C-terminally GFP-tagged protein, and in each case, the Gag-
GFP protein was sorted to ELDs. This is shown here by their
co-localization with surface CD63, one exosomal marker
(Figure 3), as well as by their co-localization with the ELD/
exosome markers N-Rh-PE and AIP1-DsRED (unpublished
data). As a negative control, we followed the sorting of the
Gag protein from simian foamy virus (SFV), a representative
of the Spumaviridae. The Spumaviridae are the viruses most
closely related to the Orthoretroviridae, but SFV budding is
mediated by its envelope protein rather than its Gag protein
[21]. SFV Gag-GFP was not sorted to ELDs (Figure 3CC–FF).

To determine whether these Gag proteins were secreted
from the cell in exosomes, exosomes were collected from
Jurkat T cells that had been pulse labeled with N-Rh-PE and
transfected with expression vectors for each Gag protein.
Two days later, exosomes were collected, bound to glass, and
visualized by fluorescence microscopy. Mock-transfected cells
secreted exosomes that lacked GFP, as expected (Figure 4A
and 4B). In contrast, Jurkat T cells secreted each of the
orthoretroviral Gag proteins in discrete particles, nearly all of
which were also labeled with the exosomal lipid N-Rh-PE
(Figure 4C–4N). SFV Gag-GFP could not be detected in
exosomes (Figure 4O and 4P). Immunoblot analysis con-
firmed these observations (Figure 4Q).

Higher-Order Oligomerization Targets a Plasma
Membrane Protein to HIV VLPs

If retroviral budding is a form of exosome biogenesis, then
higher-order oligomerization and plasma membrane binding
should target proteins to HIV VLPs (the Gag-containing
vesicles secreted by Gag-expressing cells). To test this
prediction, we expressed HIV Gag-DsRED in Jurkat T cells
and exposed these cells to FITC-labeled monoclonal anti-
CD43 antibodies. The sample was then split in half, incubated
with either mock solution or polyclonal anti-mouse IgG
antibodies, incubated overnight at 37 8C, and examined by
fluorescence microscopy. For cells exposed to only primary
anti-CD43 IgG, the FITC-labeled antibody–CD43 complex
showed little if any co-localization with HIV Gag-DsRED at
ELDs (Figure 5A–5D). In contrast, the higher-order oligome-

rization of CD43 induced by adding polyclonal anti-mouse
IgG antibodies caused the co-localization of CD43–antibody
complexes with HIV Gag-DsRED at ELDs (Figure 5E–5H).
Moreover, the Gag-DsRED-expressing cells that were exposed
to both the FITC-labeled anti-CD43 IgG and polyclonal anti-
mouse IgG antibodies secreted significant numbers of Gag-
DsRED-containing VLPs that also carried FITC-labeled
CD43–antibody complexes (Figure 5I–5K).
To test these conclusions in greater detail, we performed

similar experiments on N-Rh-PE–labeled Jurkat T cells that
expressed untagged, full-length HIV Gag. Using 6-nm
immunogold to detect N-Rh-PE, 18-nm immunogold to
detect CD43, and the electron-dense Gag core to detect sites
of VLP budding and VLPs, we quantified the amount of CD43
present on budding VLPs following CD43 dimerization
(monoclonal antibodies only) or higher-order oligomeriza-
tion. In cells exposed to only primary anti-CD43 antibodies,
the levels of CD43–antibody complexes on emerging HIV
VLPs were relatively low (Figure 5L; CD43-gold detected on 7/
110 Gag-containing vesicles, with an average of 0.10 6 0.04
gold grains/Gag-containing vesicle (6 standard error)). In
contrast, higher-order oligomerization of CD43 caused a
nearly 10-fold increase in the amount of CD43–antibody
complexes on budding HIV VLPs (Figure 5M; CD43-gold
detected on 70/119 Gag-containing vesicles, with an average
of 0.94 6 0.09 gold grains/Gag-containing vesicle). The
greater labeling for N-Rh-PE than CD43 is likely due to the
generally better labeling for small immunogold conjugates as
well as the addition of a significant quantity of N-Rh-PE to
the cells.

Higher-Order Oligomerization Drives the Budding of HIV
Gag
The oligomerization-induced sorting of plasma membrane

proteins to ELDs, exosomes, and VLPs led us to examine the
sorting information in HIV Gag, the key budding factor in
HIV. HIV Gag clearly has the expected properties of an
exosomal cargo in that it assembles into highly oligomeric
core particles of greater than 100 mDa (up to 5,000
polypeptides/core), is anchored in the inner leaflet of the
plasma membrane via an N-terminal myristoyl moiety [22–
24], and is sorted to ELDs and exosomes by Jurkat T cells [3].
Moreover, it is known that the budding of HIV Gag and virus
is blocked by mutations that prevent its anchoring in the
plasma membrane [24] or disrupt either of its two major
oligomerization domains [25–30], which are located in its
capsid (CA) and nucleocapsid (NC) domains, respectively
(Figure 6A). On the other hand, the prevailing hypothesis is
that Gag and virus budding is driven by (1) the actions of its
late domain, the PTAP sequence located in the Gag p6
domain (Figure 6A), and (2) the specific architecture of the
homo-oligomeric Gag core complex, which is thought to
promote budding by deforming the cell membrane [31]. This
hypothesis is supported by several lines of evidence, most
notably (1) reduced budding of HIV late domain mutants (in
certain cell types), (2) physical interaction between the late
domain motif (and other p6 sequences) with certain class E

(X–GG) Immunoelectron microscopy of N-Rh-PE–labeled Jurkat T cells expressing (X and Y) Acyl(G2A,C3A)TyA or (Z–GG) AcylTyA. Black arrows denote
electron-dense lamina under the membrane of exosomes secreted by cells expressing AcylTyA, white arrows denote exosome protrusions. (FF and GG)
Six-nanometer immunogold is directed against rhodamine of N-Rh-PE. Bar indicates 100 nm.
doi:10.1371/journal.pbio.0050158.g002

PLoS Biology | www.plosbiology.org June 2007 | Volume 5 | Issue 6 | e1581271

Retroviruses Are Trojan Exosomes



PLoS Biology | www.plosbiology.org June 2007 | Volume 5 | Issue 6 | e1581272

Retroviruses Are Trojan Exosomes



Figure 3. Jurkat T Cells Selectively Sort Orthoretroviral Gag Proteins to ELDs

Fluorescence microscopy of Jurkat T cells (A–D) untransfected (mock) and (E–FF) transfected with plasmids designed to express GFP-tagged Gag
proteins from (E–H) EIAV, (I–L) HTLV-1, (M–P) MLV, (Q–T) RSV, (U–X) MPMV, (Y–BB) HERV-K, and (CC–FF) SFV, each stained for surface CD63. Bar indicates
10 lm.
doi:10.1371/journal.pbio.0050158.g003

Figure 4. Jurkat T Cells Selectively Sort Orthoretroviral Gag Proteins to Exosomes

(A–P) Fluorescence microscopy of exosomes secreted by N-Rh-PE–labeled Jurkat T cells (A and B) untransfected (mock) or transfected with plasmids
that express GFP-tagged Gag proteins from (C and D) EIAV, (E and F) HTLV-1, (G and H) MLV, (I and J) RSV, (K and L) MPMV, (M and N) HERV-K, or (O and
P) SFV. White circles denote vesicles containing the Gag-GFP protein, almost all of which co-localize with the exosomal marker N-Rh-PE.
(Q) Anti-GFP immunoblots of (upper panel) exosomes (exo) and (lower panel) cell lysates (cell) (using the same exosome:cell ratio for all samples) from
mock-transfected (mock) Jurkat T cells and Jurkat T cells expressing GFP-tagged Gag proteins from HIV, EIAV, HTLV-1, MLV, RSV, MPMV, HERV-K, and
SFV. Bar indicates 10 lm.
doi:10.1371/journal.pbio.0050158.g004
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VPS proteins, and (3) reduced HIV budding in cells with

impaired class E VPS function [14,31–37].

To identify the budding/exosomal sorting information in

HIV Gag, we followed the sorting and secretion of full-length

and mutant Gag proteins by Jurkat T cells (human T cells are

a primary in vivo host for HIV). HIV Gag-GFP, which buds

from cells in a manner similar to that of WT Gag [20], was

sorted to ELDs and exosomes (Figure 6B–6I, 6R, 6S, and 6V),

as we reported previously [3]. HIV Gag(p49)-GFP lacks the

entire p6 domain, including the late domain PTAP motif.

HIV Gag(p49)-GFP was also sorted to ELDs (Figure 6J–6Q)

and secreted from the cell in exosomes (Figure 6T–6V), and at

levels similar to that of full-length HIV Gag-GFP. Thus,

neither the HIV late domain nor the entire p6 domain were

required for HIV Gag budding/exosomal sorting by Jurkat T

cells.

We next tested whether higher-order oligomerization was a

primary determinant of HIV Gag budding. HIV Gag contains

two major oligomerization domains, one in CA and one in

NC, and it is already known that loss of either NC or CA

blocks Gag budding [25–30]. HIV Gag(p41)-GFP lacks all NC,

p1, and p6 sequences, and thus, lacks the interaction domain

of NC but still retains one major oligomerization domain, in

the C-terminal half of CA (Figure 7A). HIV Gag(p41)-GFP was

not sorted to ELDs (Figure 7B–7E) and was not secreted from

the cell in exosomes (Figure 7N, lane 2). However, HIV

Gag(p41)-GFP could be redirected to ELDs by addition of a

heterologous dimerization domain (a synthetic leucine zipper

[LZ]): HIV Gag(p41)-LZ-GFP, was sorted to ELDs and secreted

from the cell in exosomes (Figure 7F–7I and 7N–7P) as well as

HIV Gag-GFP. Thus, the primary budding/exosomal sorting

signal in the NC-p1-p6 region of HIV Gag appears to be the

oligomerization domain in NC (also known as the I domain

[20]), not the HIV late domain motif, at least in Jurkat T cells.

This conclusion is supported by the inability of the p6

domain to rescue the budding/exosomal sorting defects

caused by loss of NC-p1-p6 (Figure 7J–7N).

One concern in these experiments is that p6-independent

budding of HIV Gag might be an experimental artifact caused

by overexpression of HIV Gag. This does not appear to be the

case, because control experiments demonstrated that the

expression system that we used in our experiments actually

drives lower levels of Gag expression in Jurkat T cells than an

HIV provirus (Figure 7Q).

We next followed the sorting and secretion of a Gag

protein that lacks both of its oligomerization domains. HIV

Gag(p39*) is unable to oligomerize or bud from cells, has a

point mutation in the CA oligomerization domain (W184A),

and lacks all p2, NC, p1, and p6 sequences [26]. As expected,

HIV Gag(p39*)-GFP was neither enriched at ELDs nor

Figure 5. Higher-Order Oligomerization Targets CD43 to HIV VLPs

(A–H) Jurkat T cells expressing HIV Gag-DsRed were labeled with FITC-conjugated mouse anti-CD43 antibodies and either (A–D) buffer or (E–H)
polyclonal rabbit anti-mouse IgG antibodies, grown for 24 h at 37 8C, and examined by fluorescence microscopy of. Bar indicates 10 lm.
(I–K) Fluorescence microscopy of exosomes secreted by cells expressing HIV Gag-DsRED and incubated with FITC-primary and secondary antibodies to
CD43. White circles mark exosomes that contain both CD43-antibody complexes and HIV Gag-DsRED.
(L and M) Immunoelectron microscopy of N-Rh-PE–labeled Jurkat T cells expressing untagged, full-length HIV Gag, incubated with primary and
secondary antibodies to CD43 and then either (L) fixed or (M) incubated at 37 8C for 2 h and then fixed. Samples were then incubated with immunogold
to detect (6 nm) N-Rh-PE and (18 nm) CD43. Bar indicates 100 nm.
doi:10.1371/journal.pbio.0050158.g005
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Figure 6. HIV Gag Is Sorted to ELDs and Exosomes Independently of Its p6 Domain

(A) Line diagram of HIV Gag showing the relative positions and lengths of its MA (matrix), CA (capsid), p2, NC (nucleocapsid), p1, and p6 domains, as
well as the absence of p6 from HIV Gag(p49)-GFP.
(B–Q) Fluorescence micrographs of Jurkat T cells expressing (B–I) HIV Gag-GFP and (J–Q) HIV Gag(p49)-GFP, that had either been (B–E and J–M)
incubated previously with the exosomal lipid N-Rh-PE or (F–I and N–Q) co-transfected with a plasmid that expresses AIP1-DsRED.
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secreted from the cell in exosomes (Figure 8B–8E and 8V,
lane 2). Adding just one oligomerization domain to this
protein failed to rescue its exosomal sorting, because neither
HIV Gag(p39*)-LZ-GFP nor HIV Gag(p39*)-LZ-DsREDmo-
nomer was sorted to ELDs or exosomes (Figure 8F–8M and
8V, lanes 3 and 4). However, addition of two independent
oligomerization domains to HIV Gag(p39*) was sufficient to
target HIV Gag(p39*) to ELDs and exosomes. Specifically, we
observed that HIV Gag(p39*)-LZ-DsRED, which contains
both an oligomeric form of DsRED [38,39] and the dimer-
inducing leucine zipper, was sorted to ELDs (Figure 8N–8Q)
and secreted from the cell in exosomes (Figure 8V, lane 5, 8W,
and 8X) to a similar extent as HIV Gag-DsRED (Figure 8R–8U
and 8V). Native gel electrophoresis confirmed that HIV
Gag(p39*)-LZ-DsRED exists in a higher oligomeric state than
Gag(p39*)-LZ-DsREDm (Figure 8Y).

Creating a Synthetic Exosomal Cargo
The simplest conclusion from these results is that higher-

order oligomerization, rather than any specific sequences in
HIV Gag, is a primary determinant of HIV Gag budding/
exosomal sorting. Such a conclusion, however, fails to
account for the fact that other sequences in HIV Gag(p39*)
might contribute to Gag budding, such as those that bind AP-
3 [40], perhaps phosphatidylinositol-4,5-bisphosphate [41],
etc. To address the possibility that these provide a unique and
essential foundation for HIV Gag budding/exosomal sorting,
we removed all Gag sequences from HIV Gag(p39*)-LZ-
DsREDmonomer and HIV Gag(p39*)-LZ-DsRED, and re-
placed them with a plasma membrane anchor (NH2-
MGCINSKRKD-COOH [19]). The first of these proteins,
Acyl-LZ-DsREDmonomer, showed little or no enrichment at
ELDs and was a poor exosomal cargo (Figure 9A–9D, 9I, 9J,
and 9M). In contrast, Acyl-LZ-DsRED was efficiently secreted
from the cell in exosomes (Figure 9E–9H, 9K, 9L, and 9M).
These results demonstrate two important points: first, that
higher-order oligomerization and plasma membrane binding
are sufficient to target a protein to exosomes, and second,
that it is possible to generate a synthetic exosomal cargo
based on this principle.

Relevance to HIV Virus Budding
The p6-independent, oligomerization-induced budding/

exosomal secretion of HIV Gag is, from a virological
perspective, most important if it also informs our under-
standing of HIV virus budding. To address this issue, we
followed the budding of control and p6-deficient HIV viruses
from human cells. It is well established that loss of p6 severely
reduces HIV budding from human kidney-derived 293T cells
[32,35,36], and we therefore used these cells to assess the role
of HIV p6 in HIV virus budding. 293T cells were transfected
with a control HIV provirus, NL4.3DEnv::GFPkdel (an Env-
deleted, but otherwise replication-competent, variant of the
HIV provirus NL4.3 [42]), and these cells budded significant
levels of virus into the medium (Figure 10A, left lanes). As
expected from the literature, 293T cells transfected with a p6-
deficient provirus, NL4.3DEnv::GFPkdel/p6L1ter, budded far

less virus (Figure 10A, middle lanes). (The p6L1ter mutant
selectively abrogates p6 expression [35].)

At first glance, these results seem to indicate that the p6-
independent budding of HIV Gag might not be very
informative for the mechanism of HIV virus budding.
However, the HIV provirus expresses several additional
proteins, and these have the potential to influence the
exosomal sorting of HIV Gag. In particular, HIV protease
(PR) is a known inhibitor of HIV budding [43] and a predicted
destroyer of exosomal sorting information in HIV Gag (PR
cleaves Gag between its matrix [MA], CA, and NC domains
[22]). Moreover, Huang et al [44] reported more than a decade
ago that loss of the HIV late domain did not impair the
budding of a PR-deficient HIV mutant. To test whether the
budding defect of HIV late domain mutants is an indirect
effect and caused primarily by HIV PR activity, we followed
the budding of a p6-deficient, PR-deficient HIV provirus,
NL4.3DEnv::GFPkdel/p6L1ter/PRD25A, which has both the
p6L1ter mutation and an inactivating mutation [D25A] in
PR. This p6-deficient, PR-deficient HIV virus showed no
budding defect in 293T cells (Figure 10A, right lanes).
Consistent with these results, we observed that the HIV
protease inhibitor saquinavir suppressed the budding defect
of p6-deficient HIV in 293T cells (Figure 10B). Previous
reports have demonstrated that HIV budding is unaffected by
PR inhibitors or PR mutations [24,44,45].

These results indicate that the p6 domain, although it plays
an important role in HIV virus budding from 293T cells, is
unlikely to play a direct, mechanistically essential role in the
budding process. This general conclusion is also supported by
studies of HIV budding in human T cells. Demirov et al. [35]
previously demonstrated that loss of p6, or the HIV late
domain alone, ‘‘had little or no effect on particle release’’

from any of several human T cell lines and from primary
human leukocytes (peripheral blood mononuclear cells). We
repeated these experiments in our own strain of Jurkat T cells
and obtained similar results: our control and p6-deficient
HIV viruses showed no significant difference in HIV budding
from Jurkat T cells (Figure 10C). Taken together, these results
indicate that the p6-independent budding of HIV Gag we
observed earlier (Figures 6–8) has high relevance for HIV
virus budding.

Class E VPS Function, Exosome Biogenesis, and HIV
Budding
The class E VPS proteins are thought to play direct roles in

trafficking cargoes to MVBs, the formation of outward
budding vesicles, and retrovirus budding [14,31,32]. However,
recent studies have demonstrated that inhibition of class E
VPS function does not block MVB biogenesis in animal cells
[46–48]. To determine whether class E VPS function is
required for exosome biogenesis, we took advantage of the
fact that expression of an ATPase-defective form of VPS4B
impairs class E VPS function [32,37,49]. Specifically, we
generated a Jurkat T cell line that expressed DsRED-VPS4B/
K180Q from a tetracycline-inducible promoter. The tetracy-

(R–U) Fluorescence micrographs of exosomes collected from N-Rh-PE–labeled Jurkat T cells expressing either (R and S) HIV Gag-GFP or (T and U) HIV
Gag(p49)-GFP. White circles mark exosomes that contain both N-Rh-PE and Gag-GFP or Gag(p49)-GFP.
(V) Anti-Gag immunoblot of exosomes (exo) and cell lysates (cell) from Jurkat T cells expressing either (left lanes) HIV Gag-GFP or (right lanes) HIV
Gag(p49)-GFP. The same ratio of exosome lysate:cell lysate was used for both samples. Bar indicate 10 lm.
doi:10.1371/journal.pbio.0050158.g006
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Figure 7. A Synthetic Leucine Zipper Can Suppress the Gag Budding Defect Caused by Loss of NC-p1-p6

(A) Line diagram of full-length HIV Gag and mutant Gag-GFP proteins.
(B–M) Fluorescence micrographs of N-Rh-PE–labeled Jurkat T cells expressing (B–E) HIV Gag(p41)-GFP, (F–I) HIV Gag(p41)-LZ-GFP, or (J–M) HIV Gag(p41)-
p6-GFP.
(N) Anti-Gag immunoblot of exosome and cell lysates of Jurkat T cells expressing (left lanes) full-length HIV Gag-GFP, (center left lanes) HIV Gag(p41)-
GFP, (center right lanes) HIV Gag(p41)-LZ-GFP, and (right lanes) HIV Gag(p41)-p6-GFP, all loaded at the same ratio of exosome:cell lysate.
(O and P) Fluorescence micrographs of exosomes secreted by N-Rh-PE–labeled Jurkat T cells expressing HIV Gag(p41)-LZ-GFP. White circles mark
exosomes that contain both N-Rh-PE and Gag(p41)-LZ-GFP.
(Q) Budding of p6-deficient Gag proteins is not an overexpression artifact. Jurkat T cells were transfected twice separately with (left two lanes) pcDNA3/
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cline-inducible expression of DsRED-VPS4B/K180Q is evi-

dent here in the fluorescence micrograph of two cells, one an
uninduced cell that had been labeled with the plasma

membrane marker PKH-67 (green) and fixed, the other a
cell that had been exposed to 10 lg/ml tetracycline overnight,

and then fixed (Figure 11A–11C).

Exosomes collected from cells incubated with or without
tetracycline had similar levels of the exosomal markers CD63

and CD82 (Figure 11D and 11E), indicating that inhibition of
class E VPS function did not block exosome budding or the

secretion of these proteins from the cell in exosomes. Class E
VPS function is, however, required for cell growth and

viability, and addition of tetracycline prevented cell growth
(Figure 11F). Exosomes secreted by cells expressing DsRED-

VPS4B/K180Q had the size and spheroid morphology
expected of exosomes, though they did seem prone to

clustering (Figure 11G and 11H).

We next tested whether class E VPS proteins play the direct
and essential role in retrovirus budding that is currently

favored [14,31]. To explore this issue, we used a system
established by Sundquist and colleagues for studying the role

of class E VPS function in HIV budding [32,37,49]. This
involves co-transfection of human cells with (1) plasmids

designed to express WT or ATPase-defective forms of the
AAA ATPase VPS4B (DsRED-VPS4B/K180Q and DsRED-

VPS4B/E235Q) and (2) HIV proviruses or HIV Gag expression
vectors, then measuring the amount of Gag released from the

cells in sedimentable particles. Using the same VPS4B-
expressing plasmids as Sundquist and colleagues, we too

observed that inhibiting class E VPS function impaired the
budding of HIV virus, in this case the budding of

NL4.3DEnv::GFPkdel from Jurkat T cells (Figure 12A).
However, inhibiting class E VPS function had no detectable

effect on the budding of the p6-deficient HIV virus

NL4.3DEnv::GFPkdel/p6L1ter/PRD25A from Jurkat T cells (Fig-
ure 12B).

Discussion

Targeting signals are the elements in a protein that are
sufficient, and not merely necessary, to direct it to its proper

location. Here we presented several lines of evidence that
higher-order oligomerization and membrane binding are

sufficient to target proteins to exosomes. Specifically, we

observed that (1) addition of both monoclonal mouse IgG to
CD43 and polyclonal anti-mouse IgG antibodies were

sufficient to induce the sorting of CD43 to ELDs and
exosomes, (2) addition of a plasma membrane anchor was

sufficient to target the highly oligomeric cytosolic protein
TyA to ELDs and exosomes, (3) a synthetic cargo comprised

of a plasma membrane anchor and two heterologous
oligomerization domains (Acyl-LZ-DsRED) was sorted to

exosomes, (4) highly oligomeric, plasma membrane-associated
retroviral Gag proteins (from EIAV, HTLV-1, RSV, MLV,

MPMV, and HERV-K) were all sorted to ELDs and exosomes,
and (5) a pair of heterologous oligomerization domains was

necessary and sufficient to target HIV Gag to ELDs and
exosomes.
The finding that higher-order oligomerization is sufficient

to target plasma membrane proteins to exosomes is con-
sistent with the known composition of exosomes. Many
common exosomal cargoes are known to be components of
highly oligomeric, membrane-associated protein complexes,
including tetraspanins [50], retroviral Gag proteins [3,12],
amyloidogenic proteins [51], and even the class E VPS
proteins themselves [52,53]. Our results are also consistent
with the results of Vidal et al. [54], who demonstrated that
exogenous antibodies enhanced the exosomal sorting of two
normally exosomal transmembrane proteins (the transferrin
receptor and acetylcholinesterase) from maturing reticulo-
cytes.
The exosomal protein-sorting pathway described here

appears to show little or no dependence on the protein’s
sequence, function, or topology in the plasma membrane. As
such, it represents an unusual variation on the general
paradigm of protein sorting in which organellar proteins
possess relatively short targeting signals [55]. It is unclear how
higher-order oligomerization per se could generate a unique
peptide-based signal that would be recognized by the
presumptive exosomal protein sorting machinery. Therefore,
we prefer an indirect hypothesis of cargo selection. For
example, higher-order oligomerization of membrane pro-
teins might induce their desolvation, and this might be the
cue for cargo selection. An indirect mechanism predicts
significant variability in the types of oligomerization do-
mains, membrane anchors, and cargo proteins that are
compatible with exosomal cargo selection, as well as
significant interplay between protein expression level, inter-
subunit affinity, and membrane affinity in determining a
protein’s exosomal sorting.
As for the mechanism of exosome biogenesis, we expected

that class E VPS proteins would play an essential role. This
expectation was based on the prevailing hypothesis that class
E VPS proteins sort proteins to sites of outward vesicle
budding at endosomal membranes, catalyze the biogenesis of
outward budding vesicles, and mediate the budding of HIV
and other retroviruses [14,31]. However, we found that
inhibition of class E VPS function had no demonstrable
effect on exosome budding or the vesicular secretion of two
known exosomal markers, CD63 and CD82, even while it
blocked cell growth. These results indicate that class E VPS
function is not a direct, mechanistic, and essential step in
exosome biogenesis. These results are consistent with studies
of MVB biogenesis in animal cells that have shown that
inhibiting class E VPS function does not block MVB
biogenesis or the sorting of nonubiquitylated cargoes to
MVBs, though it can impair the sorting of some cargoes to
MVBs [46–48].

Implications for Retroviral Biogenesis
Our data indicate that protein sorting to retroviral VLPs

and viruses is mediated by the same signals that target
proteins to exosomes. Our first evidence for this was the

HIVGag(p41)-LZ-GFP, (middle two lanes) pcDNA3/HIVGag-GFP, or (right two lanes) the HIV provirus NL4.3DEnv::GFPkdel. Two days later, the cells were
lysed, and equal amounts of each lysate were processed for immunoblot using antibodies specific for (upper panel) HIV Gag, and (lower panel) Hsp90
(loading control). Bar indicates 10 lm.
doi:10.1371/journal.pbio.0050158.g007
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finding that higher-order oligomerization of CD43 is suffi-
cient to induce its trafficking to HIV Gag VLPs. Other
parallels between exosomal protein sorting and protein
trafficking to VLPs/viruses include the sorting of diverse
Gag proteins to ELDs and exosomes, the oligomerization-
induced sorting of Gag to ELDs and exosomes, the ability to
remove p6 without affecting release of HIV Gag VLPs or
release of PR-deficient HIV virus, the fact that adding a
plasma membrane anchor was sufficient to induce the
budding of TyA (the Gag-like structural protein of a yeast
LTR retrotransposon), and the fact that all budding-com-
petent proteins were sorted to ELDs and secreted from the
cell in exosomes, whether of viral origin or not. An exosomal
origin of HIV is also consistent with many prior observations
[11], including the secretion of amyloidogenic, exosomal
proteins on retrovirus particles [56] and the interactions
between HTLV-1 Gag and the exosomal proteins CD81 and
CD82 [57].
The primary significance of these observations is that they

reveal retrovirus budding to be a manifestation of a normal,
cell-encoded exosome biogenesis pathway. This has impor-
tant implications for the targeting of viral and nonviral
proteins to sites of retrovirus budding and onto retrovirus
particles, the identification and characterization of retrovirus
budding factors (and exosome biogenesis factors), and
potentially for the targeting of antiretroviral agents to sites
of budding and onto retroviral particles. An exosomal
mechanism of retrovirus budding is also likely relevant to
the evolutionary relationships between retroviruses and LTR
retrotransposons [11]. For example, the ability to target TyA
to ELDs and exosomes merely by adding an acylation tag
indicates that acquisition of exosomal sorting information
might be a critical step in the evolution of retroviruses from
LTR retrotransposons, and that loss of membrane binding
might mediate the reverse transition. This notion is consis-
tent with the ability to convert the mouse LTR retrotrans-
poson MusD from an intracellular, noninfectious transposon
into a budding, infectious retrovirus merely by appending a
retroviral MA domain to the N-terminus of its Gag-like
protein [58].
The intracellular trafficking of HIV Gag has been studied

closely. Some have concluded that retrovirus assembly initiates
at endosomes and then proceeds to completion either there or
at the plasma membrane [8,10,59–61], whereas others report
that retrovirus assembly initiates at the plasma membrane and
proceeds to budding either there or at endosomes [62]. To us,
these pathways are all consistent with an exosomal origin for
HIV, for they are each compatible with the fact that exosome
budding can occur at either ELDs or endosomes. Specifically,
it appears that exosomes can bud from either endosomes or
from ELDs, and that ELDs might form by lateral sorting in the
plasma membrane as well as by endosome–plasma membrane
fusion. Our results also have some relevance for exosome
morphogenesis. The varied sizes and shapes of AcylTyA-

Figure 8. Higher-Order Oligomerization Targets HIV Gag to ELDs and

Exosomes

(A) Line diagram of full-length HIV Gag and mutant Gag-GFP proteins.
(B–I) Fluorescence micrographs of N-Rh-PE–labeled Jurkat T cells
expressing (B–E) HIV Gag(p39*)-GFP or (F–I) HIV Gag(p39*)-LZ-GFP.
(J–U) Fluorescence micrographs of N-F-PE–labeled Jurkat T cells
expressing (J–M) HIV Gag(p39*)-LZ-DsREDmonomer, (N–Q) HIV
Gag(p39*)-LZ-DsRED, or (R–U) HIV Gag-DsRED.
(V) Anti-Gag immunoblot of exosome (exo) and cell lysates (cell) of Jurkat
T cells expressing (lane 1) full-length HIV Gag-GFP, (lane 2) HIV
Gag(p39*)-GFP, (lane 3) HIV Gag(p39*)-LZ-GFP, (lane 4) HIV Gag(p39*)-
LZ-DsREDmonomer, (lane 5) HIV Gag(p39*)-LZ-DsRED, or (lane 6) HIV
Gag-DsRED, all loaded at the same ratio of exosome:cell lysate.

(W and X) Fluorescence micrographs of exosomes secreted by N-F-PE–
labeled Jurkat T cells expressing HIV Gag(p39*)-LZ-DsRED. White circles
mark exosomes that contain both N-F-PE and Gag(p39*)-LZ-DsRED.
(Y) Anti-Gag immunoblot of native cell lysates generated from Jurkat T
cells expressing (left lane) HIV Gag(p39*)-LZ-DsREDmonomer or (right
lane) HIV Gag(p39*)-LZ-DsRED, separated by native gel electrophoresis.
Bar indicates 10 lm.
doi:10.1371/journal.pbio.0050158.g008
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Figure 9. Vesicular Secretion of a Synthetic Exosomal Cargo

(A–H) Fluorescence micrographs of N-F-PE–labeled Jurkat T cells expressing (A–D) Acyl-LZ-DsREDmonomer or (E–H) Acyl-LZ-DsRED.
(I–L) Fluorescence micrographs of exosomes secreted by N-F-PE–labeled Jurkat T cells expressing (I and J) Acyl-LZ-DsREDmonomer or (K and L) Acyl-LZ-
DsRED. White circles mark exosomes that contain both N-F-PE and Acyl-LZ-DsRED. Bar indicates 10 lm.
(M) Anti-DsRED immunoblot of exosome and cell lysates of Jurkat T cells expressing (left lanes) Acyl-LZ-DsREDmonomer or (right lanes) Acyl-LZ-DsRED
(equal ratios of exosome lysate:cell lysate).
doi:10.1371/journal.pbio.0050158.g009

Figure 10. HIV Virus Can Bud from Cells Independently of Its p6 Domain

(A) Anti-HIV Gag immunoblots of cell (cell) and exosome (exo) lysates (constant exosome:cell ratio) of 293T cells transfected with equal amounts of (left
lanes) pNL4.3DEnv::GFPkdel, (middle lanes) pNL4.3DEnv::GFPkdel/p6L1ter, and (right lanes) pNL4.3DEnv::GFPkdel/p6L1ter/PRD25A.
(B) Anti-HIV Gag immunoblots of exosomes secreted by 293T cells transfected with equal amounts of (left lane) pNL4.3DEnv::GFPkdel or (middle and
right lanes) pNL4.3DEnv::GFPkdel/p6L1ter , incubated in the (middle lane) absence or (right lane) presence of 7.5-lm HIV protease inhibitor.
(C) Anti-HIV Gag immunoblots of cell and exosome lysates from Jurkat T cells transfected with equal amounts of (left lanes) pNL4.3DEnv::GFPkdel and
(right lanes) pNL4.3DEnv::GFPkdel/p6L1ter.
doi:10.1371/journal.pbio.0050158.g010
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containing exosomes indicate that these characteristics are
not under strict mechanistic control. This suggests a model of
exosome morphogenesis in which vesicle size and shape are
mediated by the cargoes themselves. This would be consistent
with the highly uniform morphology of retrovirus particles
[13], as well as the pronounced effects that certain Gag and PR
mutations can have on virus morphology [24].

An exosomal model of retrovirus budding also offers new
insights into why HIV budding is promoted by the HIV late

domain. The most parsimonious interpretation of the data is
that the late domain promotes virus budding indirectly. As
for how, one possibility is that the late domain negatively

regulates HIV PR until after budding, thereby ensuring the
oligomerization-induced sorting of HIV Gag to exosomes.
This hypothesis is supported by additional observations in the

literature, such as the inhibitory effect of PR activity on
budding [43] and the premature cleavage of the HIV Gag-Pol
polyprotein in the context of an HIV late domain mutant

Figure 11. Impairing Class E VPS Function Does Not Block Exosome Budding

(A–C) Fluorescence micrographs of T-rex/DsRED-VPS4B/K180Q cells that had been (left cell) grown in the absence of tetracycline, labeled with the green
plasma membrane dye PKH-67, and fixed, or (right cell) incubated overnight with tetracycline and fixed. Following fixation, the two cell populations
were mixed and images were collected for (A) PKH-67 fluorescence, (B) DsRED-VPS4B/K180Q fluorescence, and (C) phase contrast, which was merged
with the two fluorescent images. Bar indicates 10 lm.
(D and E) Immunoblots of exosome (exo) and cell lysates generated from T-rex/DsRED-VPS4B/K180Q cells incubated with (þtet) or without (�tet)
tetracycline overnight, blotted with antibodies specific for (D) CD63 and (E) CD82.
(F) Growth curve (cell density [104 cells/ml] vs. time in hours) of T-rex/DsRED-VPS4B/K180Q cells in the (red circles) absence or (black squares) presence
of tetracycline.
(G and H) Immunoelectron micrographs of exosomes secreted by K562 cells expressing DsRED-VPS4B/K180Q, labeled with immunogold for the
exosomal protein CD63. Bar indicates 100 nm.
doi:10.1371/journal.pbio.0050158.g011

Figure 12. Removal of p6 Allows HIV to Bud Independently of Class E VPS Function

Jurkat T cells were co-transfected the HIV proviruses (A) pNL4.3DEnv::GFPkdel or (B) pNL4.3DEnv::GFPkdel/p6L1ter/PRD25A, and plasmids designed to
express (left lanes) no VPS4B protein (�), (center left lanes) DsRED-VPS4B (WT), (center right lanes) DsRED-VPS4B/K180Q (K180Q), or (right lanes) DsRED-
VPS4B/E235Q (E235Q). Two days later, the cells and exosomes were collected, separated by SDS-PAGE (constant ratio of cells:exosomes in all
experiments), and processed for immunoblot using antibodies specific for (upper and middle panels) HIV Gag and (lower panel) DsRED.
doi:10.1371/journal.pbio.0050158.g012
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[63]. The direct and indirect interactions between the HIV
late domain and the class E VPS machinery indicate that they
act together. Our data support this notion insofar as they
show that class E VPS function appears to promote HIV
budding via an indirect mechanism.

It should be noted that our data do not exclude the
possibility of more complex retrovirus budding mechanisms.
For example, it is formally possible that the p6 domain and
class E VPS proteins play direct, mechanistic, and essential
roles in delivering HIV Gag to exosomes in some other cell
types, or perhaps in a non-exosomal mechanism of budding.
However, this last alternative offers no explanation for why
HIV budding occurs at the same sites as exosome biogenesis
or why HIV particles are enriched in exosomal markers
[3,8,9,11,12,56,64–66].

Materials and Methods

Reagents and antibodies. Commercial sources were used for the
acquisition of N-Rh-PE, N-F-PE (Avanti Polar Lipids, http://www.
avantilipids.com), PKH-67 (Sigma, http://www.sigmaaldrich.com), HIV
protease inhibitor saquinavir (Moravek,http://www.moravek.com),
and antibodies (Santa Cruz Biotechnology, http://www.scbt.com;
Chemicon International, http://www.chemicon.com; Pharmingen,
http://www.bdbiosciences.com; Abcam, http://www.abcam.com; and
Jackson ImmunoResearch Laboratories, http://www.jacksonimmuno.
com). Rabbit anti-HIV Gag p24 antibodies were from James Hildreth
(Meharry Medical College, Nashville, Tennessee).

Plasmids. HIV Gag-GFP and AIP1/VPS31-DsRED were described
previously [3], the WT and mutant VPS4B expression vectors were
from Wes Sundquist (University of Utah), pNL4.3DEnv::GFPkdel was
from Robert Siliciano (Johns Hopkins University), and pDsRed-
monomer-N1 was from Clontech (http://www.clontech.com). HIV Gag
mutants were amplified using primers designed to append an Asp718
site (GGTACC) immediately upstream of the start codon and a
BamHI site (GGATCC) at the 39 end of the open reading frame (ORF).
Following cleavage with Asp718 and BamHI, each PCR product was
inserted between the Asp718 and BamHI sites of pcDNA3-GFP,
pcDNA3-DsRed, or pcDNA3-DsREDm, in each case generating a
continuous ORF encoding an in-frame fusion between the Gag ORF
and the fluorescent protein ORF. To generate ORFs encoding LZ
fusions, a fragment encoding NH2-LQRMKQLEDKVEELLSKNYH-
LENEVTRLKKLVGE-COOH was inserted between the Gag and
fluorescent protein ORFs. Protein sequences for EIAV Gag, HTLV-
1 Gag, MLV Gag, RSV Gag, MPMV-Gag, HERV-K Gag, SFV Gag, and
TyA were used to design and synthesize human codon-optimized
ORFs with Asp718 and BamHI sites flanking the ORF and inserted
between the Asp718 and BamHI sites of pcDNA3-GFP. AcylTyA-GFP
and Acyl(G2A,C3A)TyA-GFP were generated by amplifying the TyA
ORF with primers designed to append codons for NH2-
MGCINSKRKD-COOH or the G2A,C3A mutant version to the 59
end of the ORF, which was also cloned upstream of and in frame with
the GFP ORF in pcDNA3-GFP. Plasmids pNL4.3DEnv::GFPkdel/
p6L1ter and pNL4.3DEnv::GFPkdel/p6L1ter/PRD25A were generated by
amplifying the ApaI-SbfI fragment of pNL4.3DEnv::GFPkdel with
primers designed to introduce the p6L1ter mutation (change of
nucleotides 2188–2190 from CTT to TGA) or both the p6L1ter

mutation and the D25A mutation of protease (change of nucleotides
2379–2381 from GAT to GCC) and then inserting these fragments

into pNL4.3DEnv::GFPkdel. All experiments were performed with
sequence-confirmed plasmids.

Cell culture, lipid labeling, transfection, and microscopy. Jurkat
cells and K562 cells (James Hildreth, Meharry Medical College,
Nashville, Tennessee) were maintained in serum-free Aim V medium
(GIBCO BRL, http://www.invitrogen.com), and our derivative of the
Tet-on Jurkat T cell line (Trex; Invitrogen, http://www.invitrogen.
com) was maintained in RPMI/10% fetal calf serum, with induction in
1 lg/ml tetracycline. Cells were pulse labeled with N-Rh-PE, N-F-PE,
or PKH-67 as described [3]. Surface proteins were oligomerized by
incubating cells with mouse monoclonal antibodies (1:100) for 45
min, washing four times with 13 PBS, incubating with secondary
antibodies (1:100) for 35 min, washing three more times with 13PBS,
all at 4 8C. Cells were then either fixed or incubated at 37 8C for the
time indicated and then fixed. Cells were transfected by mixing 1 3

107 cells with 5–10 lg of plasmid DNA (2:1 ratio for co-transfections)
at room temperature for 15 min, followed by electroporation at 300
V, 24 X, 800 lF. Images were collected and processed as described [3].
Immunogold surface labeling of cells was performed as described
[3,67]. All images showing co-localization of proteins at ELDs were
from experiments in which co-localization was detected in the
majority of relevant cells, with the sole exception being the
experiments with Acyl-LZ-DsRED and RSV Gag-GFP, in which co-
localization was detected in approximately 10% of relevant cells.

Exosome isolation, protease protection, and immunoblots. Exo-
somes were collected, analyzed by immunoblot and fluorescence
microscopy, and purified by density gradient as described [3]. Protease
protection experiments were performed by incubating exosomes with
trypsin in the presence or absence of 0.1% Triton X-100. For native
gel electrophoresis, cells were lysed in 50 mM Tris HCl (pH 7.5), 150
mM NaCl, 1 mM EDTA, 1% Triton X-100, 13 protease inhibitor
cocktail (Boerhinger-Ingelheim, http://www.boehringer-ingelheim.
com), rotated at 4 8C for 2 h, clarified by centrifugation at 15,0003g
for 15 min, separated by electrophoresis through 4%–20% gradient
native gels (Invitrogen), and processed for immunoblot.

Supporting Information
Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
bers for the protein sequences discussed in this paper are as follows:
EIAV Gag (M16575), HERV-K Gag (Y17833), HTLV-1 Gag (D13784),
MLV Gag (J02255), MPMV-Gag (M12349), RSV Gag (J02342), SFV Gag
(U04327), and TyA (M18706). The GenBank accession numbers for
the human codon-optimized ORFs are as follows: EIAV Gag
(DQ421317), HERV-K Gag (DQ421322), HTLV-1 Gag (DQ421318),
MLV Gag (DQ421319), MPMV Gag (DQ421321), RSV Gag
(DQ421320), SFV Gag (DQ866825), and TyA (DQ421323).
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