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Time series analysis has proven to be a powerful method to characterize several phenomena in bi-
ology, neuroscience and economics, and to understand some of their underlying dynamical features.
Despite a plethora of methods have been proposed for the analysis of multivariate time series, most
of them neglect the effect of non-pairwise interactions on the emerging dynamics. Here, we propose
a novel framework to characterize the temporal evolution of higher-order dependencies within mul-
tivariate time series. Using network analysis and topology, we show that, unlike traditional tools
based on pairwise statistics, our framework robustly differentiates various spatiotemporal regimes
of coupled chaotic maps, including chaotic dynamical phases and various types of synchronization.
Hence, using the higher-order co-fluctuation patterns in simulated dynamical processes as a guide,
we highlight and quantify signatures of higher-order patterns in data from brain functional activ-
ity, financial markets, and epidemics. Overall, our approach sheds new light on the higher-order
organization of multivariate time series, allowing a better characterization of dynamical group de-
pendencies inherent to real-world data.

Keywords: multivariate time series, higher-order dependencies, topological data analysis, complex systems,
network theory

The growing availability of rich, often temporally re-
solved, data coming from many different complex sys-
tems, has led to the possibility of studying in detail their
behaviour and –often– their internal mechanisms. Exam-
ples of such systems include epidemics, social contagion,
as well as financial, brain, and biological signals. All
of these systems are composed by large numbers of ele-
mentary units interacting in heterogeneous fashion with
each other, and –in virtually all cases– displaying emer-
gent properties at the macroscopic level. Due to the cru-
cial importance of the patterns of interactions compos-
ing such systems, it is no surprise that complex networks
emerged as a powerful framework to investigate the struc-
ture and dynamics of such systems [1, 2], and have helped
to characterize several real-world phenomena, including
disease spreading [3], synchronisation [4], diffusion [5],
and opinion formation [6].

Despite being widely considered as the reference model
for many real-world complex systems [7–9], networks are
limited to describing interactions between two units (or
nodes) at a time. This however clashes with the grow-
ing empirical evidence for group interactions in social
systems [10], neuroscience [11–13], ecology [14] and bi-
ology [15]. In all the aforementioned cases, connections
and relationships do not take place only between pairs of
nodes, but also as collective actions of groups of nodes.
By taking into account the higher-order (group) interac-
tions in more refined models, such as hypergraphs and
simplicial complexes [16, 17], several recent studies have
shown that the presence of higher-order interactions can
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have a substantial impact on the dynamics of interacting
systems [18, 19], ranging from alterations of the synchro-
nization [20] and diffusion [21, 22] properties, to new col-
lective dynamics in social [23–25] and evolutionary pro-
cesses [26].

Yet, direct measurements of pairwise or group interac-
tions to inform and constrain such higher-order models
are rarely available. Hence, one must typically rely on
indirect data, commonly extracted from time series of
node activities, under the assumption that the system’s
repertoire of spatiotemporal activity patterns encodes in-
formation about the underlying interactions. Indeed, ex-
amples of these complex patterns are observed in the
neuronal activity of the brain, supporting a wide vari-
ety of motor and cognitive functions [27, 28], in financial
markets, where partially synchronized patterns often re-
flect periods of financial stress [29, 30], but also in the
co-evolution of biological species [31–33].

While the inference of pairwise interactions has a long
history [34], researchers have only recently taken the first
steps towards reconstructing or filtering higher-order in-
teractions [35–38]. In particular, methods relying only
on pairwise statistics might be in principle insufficient
as significant information can be present only in the
joint probability distribution and not in the pairwise
marginals, therefore failing at identifying higher-order
behaviours [39]. To date, it remains unclear to what
degree the information encoded in multivariate time se-
ries stems from independent individual entities or, rather,
from their group interactions. A clear example of this
issue is provided by the conventional “functional connec-
tivity” between two brain regions [40, 41]: a pairwise
connection is drawn irrespective of whether the activities
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of the two regions peaked as a pair, or as part of a larger
group of functionally coherent regions.

Existing proposals to address this issue are mostly lim-
ited in their capacity to describe either the temporality
or the complexity of such higher-order interactions, with
only few exceptions on the topic [42]. For example, a
recent set of information-theoretic methods character-
ized higher-order dependencies in multivariate time se-
ries by quantifying the intrinsic statistical synergy and
redundancy in groups of three or more interacting vari-
ables [43–46]. Moreover, a recent approach [47] at the
interface of network science and random matrix theory
has also proven suitable to unveil the mesoscopic organi-
zation of correlation matrices. Yet, while very powerful,
these methods hardly capture the information about the
dynamics of the system, because they require integration
over time. A recent exception comes from a work in-
troducing a spectral decomposition that resolve the sta-
tistical synergy and redundancy of groups of variables
into different frequency bands, which allows to analyze
locally in time higher-order dependencies [42]. By con-
trast, tools coming from network neuroscience and signal
processing easily deal with the dynamics of multivariate
time series [48–55], but only focus on pairwise statistics
and neglect the effects of higher-order interactions. As
a result, a principled approach to quantify the instanta-
neous dynamics of groups of nodes and possibly infer its
higher-order representation is still missing.

Here, we propose a novel framework to characterize
the instantaneous co-fluctuation patterns of signals at
all orders of interactions (pairs, triangles, etc.), and to
investigate the global topology of such co-fluctuations.
We do this by bridging time series analysis, complex
network theory, and topological data analysis [56]. We
first validate the framework by exploring the rich high-
dimensional dynamics displayed by canonical models of
spatiotemporal chaos. In particular, we demonstrate
that, unlike traditional tools of time-series analysis based
on pairwise statistics [57–59], higher-order measures are
able to reveal the subtleties of different spatiotemporal
regimes at the level of individual frames. We then use
the insights obtained from these synthetic models as a
Rosetta stone to interpret the higher-order structures
reconstructed from time series concerning three diverse
real-world case studies: resting-state brain activity (as
measured by fMRI data), stock option prices, and epi-
demiological incidence of various diseases in the United
States. In all cases, we unveil additional rich higher-
order information that is not captured at the node and
dyadic network level, and highlight distinct topological
dynamical regimes, which in turn yield to instantaneous
classification of the system’s states.
Finally, we show how the inferred dynamical higher-order
structure provides instantaneous topological snapshots of
the spatial configuration of the system, which can be used
as input for further tasks on real datasets, including de-
tecting local integration of brain regions, exploring pe-
riods of financial crisis, or classifying disease type from

spatial spreading patterns.

RESULTS

Topological markers of higher-order structure in
multivariate time series. Simplicial complexes are
well suited as modelling framework to describe the co-
existence of pairwise and higher-order interactions [16].
In its most basic definition, a k-simplex σ is a set of
k + 1 vertices σ = [p0, . . . , pk]. A collection of sim-
plices is a simplicial complex K if for each simplex σ all
its possible subfaces (defined as subsets of σ) are them-
selves contained in σ (see Methods and Ref. [60] for de-
tails). Via this representation it is then easy to distin-
guish between a group interaction among three elements,
which can be represented as a 2-simplex (or “filled” tri-
angle) [p0, p1, p2], and the three pairwise interactions be-
tween the nodes, that is, the collection of 1-simplices
(edges) [p0, p1], [p0, p2], [p1, p2]. The relative importance
of pairwise versus higher-order interactions can be en-
coded in weights over the simplices, resulting in the so-
called weighted simplicial complexes.

We rely on this representation to describe the higher-
order dependencies among multiple time series. Our ap-
proach can be summarised in five main steps: First, i)
we z-score the N original time series (Fig. 1a), and then
ii) we calculate the element-wise product of the z-scored

time series for all the
(
N
k

)
k-order patterns (i.e. edges,

triangles, etc.). Here, the generic elements represent the
instantaneous co-fluctuation magnitude between a (k+1)
group interaction. Then, iii) the resulting new set of
time series encoding the k-order co-fluctuations (which
corresponds to the so-called edge time series [53] in the
case of 1-order co-fluctuation) are then further z-scored
across time, to make products comparable across k-orders
(Fig. 1b). At this point a choice on how to assign signs
to the resulting weights is required in order to distin-
guish fully concordant group interactions (all positive or
negative fluctuations) from discordant ones (a mixture of
positive and negative fluctuations) in a k-order product.
Indeed, these two scenarios might end up having simi-
lar co-fluctuation z-scored values after a k-order prod-
uct (with k ≥ 2), even if they clearly represent different
regimes of group synchronization. Hence, we opted to
assign positive signs to the fully concordant group inter-
actions, and negative signs to the discordant ones. The
rationale behind the concordant mapping is such that any
simultaneous increased (or decreased) activity relative to
baseline − no matter the order of the co-fluctuation −
is always marked as positive, therefore reflecting a syn-
chronous co-activation pattern. This adjustment is par-
ticularly important for the simplicial filtration step, as
detailed below. Next, iv) for each time frame t, we con-
dense all the instantaneous k-order co-fluctuations in a
single mathematical object, i.e. a weighted simplicial
complex Kt(Fig. 1c). Lastly, for each time t, v) we con-
struct a filtration F(Kt) [61], i.e. a sequence of simplicial
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Figure 1. Unveiling the higher-order structure of multivariate time series: Schematic representation. (a) We
start by extracting different co-fluctuation patterns according to their order from the “raw” nodal time series. (b) The generic
element of a k-order co-fluctuation pattern is calculated by z-scoring each time series, and performing an element-wise product
of k + 1 time series. We further z-score each of these group product time series so that the magnitude of the time-resolved
co-fluctuation is comparable across group size (i.e. pairs, triangles, etc.). To distinguish concordant group interactions from
discordant ones, we impose that concordant signs are always positively mapped, while discordant signs are negatively mapped.
(c) For each time frame t, a weighted simplicial complex is constructed by merging together all the k-order co-fluctuations.
(d) Finally, a weight filtration made of all the k-order co-fluctuations allows to identify weighted holes when k-order patterns
are gradually included. For simplicity, we set k = 2 for panels (c, d).

complexes ∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sl ⊂ . . . ⊂ Sn ⊂ Kt by
sorting all the k-order co-fluctuations by their weights
(see Methods for details). The filtration proceeds in a
top down fashion from larger weights to smaller weights
− in the spirit of persistent homology [61–63] − so that
when k-order simplices are gradually included, topologi-
cal holes start to appear in the simplicial complexes of F
and then potentially close (i.e., descending from more co-
herent patterns to less coherent). Yet, to maintain valid
simplicial complexes as each step of the filtration, only
k-order simplices respecting the simplicial closure con-
dition can be included. That is, simplices whose sub-
faces are already contained in the simplicial complex at
the previous step. To preserve this property, whenever
we would add a simplex that does not satisfy this re-
quirement (e.g. a triangle entering the complex before
its edges), we consider it as a simplicial violation, and
exclude it from the filtration. Note that such violating
simplices can be considered as hyper coherent structures,
as their co-fluctations are stronger than those of its sub-
components (see Fig. 1d and Methods for details). Note
further that in this paper we present results when con-
sidering k = 2, so we take into account simplices only
up to triangles. Nevertheless, our framework generalizes
naturally to higher orders (i.e. k ≥ 3).

In summary, for each time t, our framework produces

two different outputs:

1. a list of violating triangles, ∆v = {(i, j, k), wijk},
induced by the simplicial closure condition; these
are 2-simplices (triangles) whose weights co-
fluctuate more than at least one of their corre-
sponding 1-simplices (edges). Intuitively, these tri-
angles reflect higher-order states that cannot be
merely captured by pairwise co-fluctuations. We
then define the hyper coherence indicator, as the
fraction of violating coherent triangles (i.e. violat-
ing triangles with a weight greater than zero) over
all the possible coherent triangles (i.e. triangles
with a weight greater than zero).

2. the simplicial filtration F, a sequence of embedded
simplicial complexes− sorted according to coherent
patterns − starting with the empty complex and
ending with the entire simplicial complex (see right
panel of Fig. 1d). We then compute persistent ho-
mology of F to characterize the persistency of cer-
tain topological features (connected components,
1-dimensional cycles, 3D-cavities, etc.) [63, 64].
Here, we focus on examining the 1D cycles in
the filtration, i.e. the persistent generators of the
first homology group H1, which provide insights
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about where and when higher synchronised regions
emerge. The classical output of persistent homol-
ogy is a barcode (or equivalently, a persistence dia-
gram), which is a compressed summary describing
how long 1D cycles live along F (see SI Fig. S1). We
rely on this object and define the hyper complex-
ity indicator as the Wasserstein distance [65] be-
tween the persistence diagram of H1 and the empty
persistence diagram, corresponding to a space with
trivial H1 homology (see Methods for details). We
obtain in this way a measure of the topological com-
plexity of the landscape of coherent and incoherent
co-fluctuations.

Global and local topological markers classify dif-
ferent dynamical regimes. To gain insights into the
performance of our topological indicators, we show here
that hyper coherence and hyper complexity easily distin-
guish different dynamical regimes generated by canonical
models of spatiotemporal chaos. As a case study, we con-
sider diffusively coupled map lattices (CMLs) [67], which
are high-dimensional dynamical systems defined on dis-
crete time and space, with continuous state variables.
CMLs are broadly used to model complex spatiotemporal
dynamics in several different fields including biology [68],
and finance [69, 70]. In particular, we consider a ring
lattice with N sites, and we assume that the dynamical
evolution of the system of the state xi of each site i is
the result of two different competing dynamics: an inter-
nal chaotic dynamic, and an external diffusive coupling
dynamic among the first nearest-neighbour sites. Their
dynamics can be expressed as

xi(t+ 1) = (1− ε)f [xi(t)] +
ε

2
(f [xi−1 (t)] + f [xi+1(t)])

where i = 1, 2, . . . , N , ε ∈ [0, 1] is the coupling parameter
(or coupling strength), and f(x) is generally a chaotic
map. In all our simulations, we have considered the
logistic map, i.e. f(x) = 1 − 1.75x2. It is now well
established [66, 71] that by changing the values of the
coupling strength ε of the chaotic map, CMLs exhibit a
great variety of spatiotemporal patterns, including dif-
ferent degrees of synchronization and dynamical phases
such as Fully Developed Turbulence (FDT, a phase with
incoherent spatiotemporal chaos and high dimensional
attractors), Pattern Selection (PS, a phase with suppres-
sion of chaos in favour of randomly selected periodic at-
tractor, reflecting quasiperiodic behaviours), and differ-
ent forms of spatiotemporal Intermittency (STI, chaotic
pseudo-phases with low dimensional attractors that in-
terpolate between FDT and PS). Together with the lat-
ter STI class, we also highlight two other different phases
such as Brownian Motion with Defects (BMWD, a phase
where defects exist in the system and fluctuate chaoti-
cally akin to Brownian motion), and Defect Turbulence
(DT, a phase where many defects are generated and tur-
bulently collide together) [72]. It is worth remarking that
the origin of this very rich phase diagram comes from

the interplay between the local tendency towards inho-
mogeneity, which is induced by the chaotic dynamic of
each single state, and the global tendency to homogenise
the system in space, which is induced by the diffusion
dynamic [72].

In Figure 2 we summarize the results of our higher-
order approach when applied to these synthetic multi-
variate series with N = 119 nodes and T = 1200, ob-
tained by concatenating five different dynamical phases
of CMLs with fixed time length L = 240. Namely, from
order to disorder, PS at ε = 0.12, BMWD at ε = 0.08,
STI at ε = 0.3, DT at ε = 0.068, and FDT at ε = 0.05 for
which a transient of 105 time points has been removed.
A sample of such multivariate time-series is reported in
SI Fig. S2, while we study the effect of the z-score in
SI Section S2.2 and SI Fig. S3. Remarkably, the global
hyper coherence indicator reported in Fig. 2a clearly dis-
tinguishes the different dynamical phases of the CMLs,
while also preserving the ranking between ordered and
disordered states. More precisely, it assigns high values
to fully and partially synchronized regimes while, on the
contrary, chaotic or turbulent regimes exhibit lower val-
ues of hyper coherence. While this indicator provides
only global information, refined information can be ob-
tained by projecting the magnitudes of the list of vio-
lating triangles ∆v as a weighted graph (see Methods
for the definition of downward projections). Also in this
case, in fact, the edge weight distribution P (wij) reflects
the nature and the “rank” of the different dynamical
regimes (Fig. 2b). Periodic series, such as PS, convert
into well-peaked distributions, akin to Poisson distribu-
tions. By contrast, as disorder enters in the pseudo-
phases of the multivariate time series, the edge weight
distribution gradually changes its shape, with the limit
case of the FDT chaotic series converging towards a fat-
tailed distribution.

Similar conclusions can be reached when investigating
the temporal evolution of the hyper complexity (Fig. 2c).
We found, however, some notable differences. For com-
plexity, the lowest value is assigned to periodic patterns
(e.g. PS), as these regimes require a low amount of infor-
mation to be described. Contrarily, chaotic states such as
FDT display the highest hyper complexity values. While
also this higher-order indicator is able to differentiate the
different dynamical regimes of CMLs, one might assume
that the hyper coherence and hyper complexity indica-
tors provide equivalent information as indicated by the
strong negative correlation (i.e. Spearman’s rank corre-
lation ρ ≈ −0.95). We will show in the next section that
this is not true in general for real-world multivariate time
series.

Finally, in Fig. 2d we report the edge weight distri-
butions of the persistence homological scaffolds, graphs
constructed from the persistent homology generators of
H1 (see Methods and Ref. [11] for details). These distri-
butions quantify the topological importance of edges in
the co-fluctuation landscape in terms of how persistent
are the homological generators to which they belong. No-
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Figure 2. Global and local higher-order indicators distinguish the dynamical regimes of coupled chaotic maps.
(a) We report the temporal evolution of the hyper coherence indicator for a multivariate time series with N = 119 nodes
and T = 1200, obtained by concatenating five different CML regimes with fixed time length L = 240. Namely, from order to
disorder, Pattern Selection (PS) at ε = 0.12, Brownian motion with Defects (BMWD) at ε = 0.08, Spatiotemporal Intermittency
II (STI) at ε = 0.3, Defect Turbulence (DT) at ε = 0.068, and Fully Developed Turbulence (FDT) at ε = 0.05 [66]. (b) Notably,
when projecting the list of violating triangles ∆v as a weighted graph (see Methods for the definition of downward projections),
the edge weight distribution P (wij) reflects the nature and the “ranking” of the different dynamical regimes from ordered to
disordered. (c) We plot the temporal evolution of the hyper complexity indicator and the (d) distribution of weights P (w̄ij)
of the homological scaffold constructed from the persistent homology generators of H1 [11]. For comparison, we also report
in panels (a,c) the same indicators for a null model obtained when reshuffling without any constraint the multivariate time
series (grey curve). See SI Section S4 for the behaviour of the higher-order indicators in more conservative null models. Shaded
regions and error bars represent standard deviations across 100 independent realizations.

tably, also these distributions change their overall shape
as we move from periodic to chaotic multivariate time se-
ries preserving, also in this case, the rank between order
and disorder.

These results qualitatively confirm that both the global
and local topological information extracted with our ap-
proach well discriminate among the different dynami-
cal regimes. We quantitatively assess the capacity of
our higher-order indicators to differentiate between dy-

namical regimes with the intraclass correlation coeffi-
cient (ICC) [73, 74], a statistical measure commonly
used to determine the agreement between units (or rat-
ings/scores) of different groups. In other words, the ICC
describes how strongly units in the same group resem-
ble each other, so that the stronger the agreement, the
higher its ICC value. In Figure 3, we report the compar-
ison of several approaches when trying to differentiate
the five dynamical regimes of CML. From a theoretical
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standpoint, it is interesting to notice from Figure 3a that
the five CMLs regimes map into distinct hyper coher-
ence distributions mirroring some peculiar features in-
trinsic to each individual spatiotemporal regime. For in-
stance, apart from a well-defined bulk, the STI regime
exhibits a long tail towards lower hyper coherence val-
ues, which captures the rare appearance of short chaotic
bursts arising from the mismatching of the dynamical
phases [66, 75].
We find that both our higher-order measures (in Figure
3 only hyper coherence is shown) have high ICC values
(i.e. approximatively 0.95 and 0.96 for hyper coherence
and hyper complexity, respectively). For a commonly
used temporal low-order measure, the RSS statistic [54],
which accounts for the magnitude of peak amplitude in
all the 1-order co-fluctuations, i.e. the edge time se-
ries (see Methods for a formal definition), we find in-
stead considerably smaller ICC values (ICC ≈ 0.57) as
shown in Figure 3b, implying that the higher-order effects
are dominant. Indeed, our dynamic approach is compa-
rable to “static” higher-order information-theoretic ap-
proaches [43, 45], i.e. for s-information (shown in Fig-
ure 3c) we find ICC ≈ 0.98. However, these quantities
are typically computed on temporal windows, while in
the topological framework presented here it is possible
to have instantaneous information. Finally, as expected,
higher-order measures (both static and dynamic) con-
sistently outperform static lower-order methods based
on Pearson’s correlation, i.e. ICC ≈ 0 and shown in
Figure 3d. As a matter of fact, it appears clear that
only higher-order approaches are able to effectively dis-
tinguish the various spatiotemporal regimes, while lower-
order statistics are not able to capture the subtle differ-
ences between dynamical states. For detailed compar-
isons with other “static” higher-order and pairwise ap-
proaches [41, 47, 54], see also SI Section S3 and SI Fig-
ures S6-S7.

Real-world complex systems exhibit non-trivial
hyper coherence structure. As examples of appli-
cations to the analysis of real-world multivariate time se-
ries, we report the results of the higher-order framework
on fMRI signals from the Human Connectome Project
(HCP) [76], on prices of financial assets in the New York
Stock Exchange (NYSE), and on historical data of sev-
eral infectious diseases in the US [77, 78].

For human brain data, we consider resting-state fMRI
signals of the HCP 100 unrelated subjects, employing a
cortical parcellation of 100 brain regions [79] and 19 sub-
cortical ones as provided by the HCP release [80], for
a total of N = 119 Regions of Interest (ROIs). For fi-
nancial time series, we analyse the daily time evolution
of N = 119 stock prices of some of US companies from
the NYSE over the period 2000–2021. Finally, for the
epidemic dataset, we investigate the weekly number of
cases at the US state-level (N = 50) for chlamydia, gon-
orrhea, influenza, measles, mumps, polio, and pertussis
(see Methods for details on the datasets).

In Fig. 4a we report the distributions of hyper

Figure 3. Higher-order approaches perform better in
distinguishing the CML regimes. For the five dynami-
cal regimes, we report the violin plots of the (a) Hyper Co-
herence, (b) RSS [54], (c) S-information [43, 45], and (d)
Person’s correlation distributions. Notably, only higher-order
approaches are able to distinguish the five dynamical regimes
(i.e. ICC > 0.9). Also notice that static approaches can only
be used when having prior knowledge on the position of each
block.

coherence for the five CMLs dynamical regimes and
the three datasets. For comparison, we also plot the
null models obtained by independently reshuffling
synthetic and real-world multivariate time series (see
SI Sections S4 and SI Figures S8-S10 for the behaviour
of the higher-order indicators in more conservative null
models). Several things can be observed when exam-
ining the hyper coherence distributions for real-world
systems. First, these distributions are always statisti-
cally distinct from the corresponding null models (all
p-values < 10−10, with the Kolmogorov-Smirnov test),
yet they also exhibit specific profiles which strongly
differ from each other. If we focus on the epidemic data,
for example, it is already possible to differentiate the
diseases by coarsely comparing the corresponding hyper
coherence distributions. These distributions, in fact,
reflect the unique higher-order spatiotemporal patterns
inherent to the evolution of the disease. For the financial
system, by contrast, we obtain a bimodal distribution
mirroring the dichotomy between financial periods of
crisis and stability. That is, economic crises are typically
characterized by increased (hyper) synchronization,
whereas periods of financial stability seem to unfold in a
more chaotic fashion. Moreover, armed with the CMLs
interpretational benchmarks, we find that, during rest,
the human brain is mostly associated with chaotic states
and few partially synchronized states, in agreement with
studies on resting state brain dynamics [82–85].
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Figure 4. Higher-order indicators for real-world multivariate time series. (a) Violin plots showing the distribution of
hyper coherence for three real-world datasets, namely, resting-state fMRI data (N=119 brain regions), financial prices of 119
assets in NYSE, and the US historical data of several infectious diseases at the US state-level (N=50). The real distributions
are compared against the five CML dynamical regimes, as well as the corresponding null models obtained when independently
reshuffling without any constraint synthetic and real-world multivariate time series (see SI Section S2.3, Fig. S5; SI section S4,
Fig. S8-S10 for more details). Note how the distributions of the three real-world datasets employed exhibit noticeable differences
in their profile, yet always statistically distinct from the corresponding null models. See SI Section S5 and SI Fig. S11 for a
similar analysis with edge-based indicators. (b) Two-dimensional histogram of the different contributions associated with 1D
cycles in the landscape of coherent and decoherent co-fluctuations. Here, the position of each point in the triangle is determined
by the three different contributions associated with the 1D cycles. For example, a point would be at the centre of the triangle
if the hyper complexity indicator splits into three equal contributions of Full Coherence (FC), Coherence Transition (CT), and
Full Decoherence (FD), while a corner position is reserved for points whose mainly contributions come either from FC, CT, or
FD.

Hyper complexity decomposition provides de-
tailed information about dynamical regimes. To
better characterize the evolution of 1D homological gen-
erators in the space of coherent and decoherent co-
fluctuations, we decompose the hyper complexity indi-
cator into three different contributions. That is, as we
track the evolution of 1D cycles along the filtration, we
focus on 1D cycles that are created and closed only by
fully coherent structures, i.e. edges and triangles having
a weight larger than zero, which we denote as a Full Co-
herence (FC) contribution; 1D cycles formed by coherent
structures and closed by the decoherent ones (i.e. edges
and triangles with a weight smaller than zero), which
we denote as a Coherence Transition (CT) contribution;
finally, 1D cycles created only by the fully decoherent
structures, we denote as a Full Decoherence (FD) contri-
bution. Clearly, by construction, the sum of these three
contributions sums up to the total hyper complexity. We
show an illustrative example in SI Fig. S1.

In Fig. 4b we plot the three fractional contributions
to the hyper complexity indicator in a triangular rep-
resentation. In this space, a point is placed on the
bottom-left corner if all the 1D cycles are formed and
closed only by fully coherent structures. Likewise, the
bottom-right corner corresponds to an exclusive contri-
bution from fully decoherent structures, and the top cor-
ner corresponds to a contribution uniquely determined by
the coherence transition. Whenever the hyper coherence
indicator splits into similar FC and FD contributions,
the point is placed between the corresponding corners,
so that its position reflects the relative importance of the
contributions. For example, a point would be at the cen-
tre of the triangle if the hyper complexity indicator is
split into three equal contributions of FC-CT-FD. Note
that such decomposition carries completely different in-
formation with respect to the hyper coherence indicator,
and yet we draw similar analogies to the results just pre-
sented.
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Figure 5. Projection of higher-order measures provides local spatiotemporal information. The nodal strength
extracted from the violating triangles ∆v can be used to track the importance of higher-order structures in time. (a) Brain
map of the nodes involved in higher-order co-fluctuations obtained when isolating the top 15% coherent frames, which are the
ones associated with a more synchronized dynamics during rest. We also show the boxplots reporting the mean coherence
within the Yeo seven canonical functional networks [81], namely, the Visual (VIS), SomatoMotor (SM), Dorsal-Attention (DA),
Ventral-Attention (VA), Limbic (L), FrontoParietal (FP), and Default Mode Network (DMN). (b) The temporal evolution
of the nodal strength of violating triangles ∆v at the level of industrial sectors discriminates crises from periods of financial
stability. (c) The brain map obtained when selecting the 15% low-hyper complexity frames mainly encompasses the Default
Mode Network, as confirmed by its high mean nodal score. (d) The temporal evolution of the nodal strength of the homological
scaffold provides finer details on the downturns of certain economic sectors. Note that, from a topological perspective, the
nodal strength extracted from the homological scaffold provides information about 1D loops in the space of co-fluctuations. (e)
Finally, a planar embedding of the historical data of epidemic outbreaks can be obtained through t-SNE nonlinear dimensionality
reduction when considering as features the higher-order indicators, such as hyper coherence, the three contributes of hyper
complexity, and the average edge violation (see Method for definition). As inset plots, we report the nodal strength of the
violating triangles ∆v at the US-state level when selecting the 15% high-coherent frames. Remarkably, the spatiotemporal
evolution of the outbreaks is different across states and diseases.

Indeed, when examining the different contributions of
the hyper complexity indicator in synthetic signals, we
find that the five CML regimes appear to be separated
in different clusters. Partially synchronized signals are
characterized by a mixture of Fully Coherence and Co-
herence Transition contributions, while chaotic signals
are mainly determined by Fully Coherence and Fully De-
coherence (see Fig. 4b left panel). In comparison, for the
human brain at rest, we find that most of the states are
positioned between chaotic and partially synchronized
regimes. This is in agreement with the results obtained
when considering the hyper coherence indicator, which
provides information of different nature, i.e. it is only
based on the number of simplicial violations.

Real-world applications of higher-order topo-
logical markers

So far, we have mainly focused on the temporal evo-
lution of our global higher-order indicators in synthetic
and real-world multivariate time series. In what fol-

lows, we report some representative applications when
considering higher-order measures on a more local level.
Our goal is to characterize the higher-order states with
the largest level of synchronization in both resting-state
brain data and financial systems. To this end, in the
context of the human brain, we isolated the top 15% co-
herent frames, which are those associated with a more
synchronized dynamical phase. In Fig. 5a we report a
brain map of the most discriminative nodes by project-
ing the magnitudes of the violating triangles ∆v on a
nodal level (see Methods for details and SI Fig. S15 for
comparisons at other peaks percentages). This is equiv-
alent to considering the nodal strength extracted from
the list of violating triangles ∆v. In other words, regions
with the highest absolute value are the ones belonging to
the most coherent higher-order structures. In particular,
we find activity patterns with emphasized synchronized
co-fluctuations mainly reflect sensorimotor areas, which
belong to one of the well-known substrates present in
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the resting-state network [86]. This is confirmed when
considering the histogram reporting the mean coherence
within the seven canonical functional networks [81] (see
also SI Fig. S16 for the effects of higher-order indicators
between the functional networks).

In Fig. 5b we report the temporal evolution of the
nodal strength extracted from the list of violating tri-
angles ∆v, yet aggregated at the level of industrial sec-
tors, for the financial time series. The highest values
capture the onset of the major periods of financial in-
stability (2002, corresponding to the market downturn,
and 2007–2008, corresponding to the great recession that
took place as a consequence of the subprime mortgage
crisis), which are characterized by an increased synchro-
nization of stock prices, which clearly distinguishes them
from the unsynchronized intervals 2002–2007 and 2013-
2018, which in turn corresponds to a more stable period
of the economy.

Similar analyses can be produced by focusing on the
hyper complexity indicator and the nodal strength of the
homological scaffold constructed from the persistent ho-
mology generators of H1 (see Methods for details). In
particular, Fig. 5c depicts the brain map obtained when
isolating the 15% low-hyper complexity frames, which,
as previously shown, are the ones associated with a more
synchronized dynamical phase. Here, the highest abso-
lute values are the ones associated with the Default Mode
Network (DMN), which is known for being the most ac-
tive network during wakeful rest [87, 88].

By contrast, for the financial time series in Fig. 5d, the
temporal evolution of the nodal strength of the homo-
logical scaffold provides fine details on the downturns of
certain economic sectors. For instance, consumer goods,
basic materials, as well as oil and gas, are the main sec-
tors affected by the great recession of 2007.

Finally, by analysing the historical data of epidemic
outbreaks in the US, we show that the temporal evolution
of the higher-order measures (i.e. hyper coherence, the
three contributions of hyper complexity, and the average
edge violations; see Methods for definition) can be used
to classify different infectious diseases. In particular, a
support vector machine (SVM) classifier reports a high
accuracy level, i.e. around 85 %, using a 10-fold cross-
validation setting repeated 50 times (for a comparison
between classifiers see SI Table S2). To provide a more
intuitive representation of this result, we report in Fig. 5e
a planar embedding of the historical data of epidemic
outbreaks obtained using the t-distributed Stochastic
Neighbor Embedding (t-SNE) nonlinear dimensionality
reduction method. Note that nonlinear methods, such
as t-SNE, allow to preserve the “local” structure in the
original high-dimensional space after projection into the
low-dimensional space, which is typically not possible
with linear methods like Principal Component Analysis
(PCA) or Multidimensional Scaling (MDS) [89]. In this
space, we observe that diseases of different kinds cluster
together to a great extent, somehow reflecting the unique
spatiotemporal evolution of the outbreaks, which are in-

deed captured by the SVM classifier. At the same time,
similarities between diseases can be observed. This is the
case for sexually transmitted diseases, such as gonorrhea
and chlamydia, which are mostly overlapping in the pla-
nar embedding. As inset plots, we also report the map at
the US-state level obtained when selecting the 15% high-
coherent frames and considering the nodal strength of the
violating triangles ∆v. We find that the spatiotemporal
evolution of the outbreaks is different across states and
diseases, somehow reflecting the unique “higher-order”
characteristics of the disease.

DISCUSSION

Inferring the dynamics of higher-order structures in
multivariate time series is of utmost importance in many
complex systems, from epidemiological, to financial, to
biological systems. However, direct higher-order network
measurements are often inaccessible [18]. As a matter
of fact, the vast majority of complex spatiotemporal ac-
tivity patterns commonly found in many biological, so-
cial, and financial systems are typically recorded on a
nodal level, rather than directly measured at the level of
edges or groups. The higher-order approach introduced
in this work provides the first powerful and alternative
method to dynamically reconstruct higher-order interac-
tions from multivariate time series.

As a starting benchmark, we have first validated our
method against signals whose underlying dynamics is well
known. In particular, differently from various lower-order
statistics [47, 54], the global higher-order indicators pre-
sented in this work are able to robustly separate several
dynamical phases in high-dimensional coupled chaotic
maps, which appear to be distinguishable only through
methods based on higher-order statistics [43] (see Fig. 3
and SI Figures S6, S7). This provides further empiri-
cal evidence on the need of higher-order approaches for
identifying higher-order behaviours [39]. On a more local
level, i.e. when projecting the list of hyper coherent tri-
angles as a weighted graph, the graph weight distribution
reflects the global dynamic of the multivariate time series:
synchronized periodic series convert into well-peaked dis-
tributions, while chaotic series convert into fat-tailed dis-
tributions. Armed with these theoretical foundations, we
then applied our framework to real-world multivariate
time series, specifically resting-state fMRI signals from
100 unrelated human subjects, prices of financial assets
in the New York Stock Exchange, and historical data
from 7 different epidemic outbreaks.

We found that, during rest, the human brain higher-
order dynamics mainly oscillates between fully developed
turbulence and partial synchronization. This is in agree-
ment with recent studies supporting that the human
brain operates in a turbulent regime [82, 90], at the edge
of criticality [91], which seems to confer significant in-
formation processing advantages [92]. Moreover, when
analysing brain states on a finer scale, we found two no-
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table aspects. On the one hand, the maximally coherent
higher-order structures reflect sensorimotor areas, which
belong to one of the well-known substrates present in
the resting-state brain network architecture [86]. These
regions are known to play a major role in deciphering
— over very fast time scales [55] — inputs that con-
stantly change due to the external environment [83]. On
the other hand, when examining the hyper complexity
marker at its lowest points, we found that the nodal
projection coarsely captures the Default-Mode Network
(DMN), which is known to integrate high and low-order
information in human brain networks [87, 88]. Hence, our
two proposed markers provide complementary insights,
which are not trivially deducible from an edge-wise ap-
proach (see SI Section S5 and SI Figures S12, S13), on
how the brain network segregates and integrates higher-
order information over time: hyper synchronous, less in-
tegrated, as measured by the number of simplicial vio-
lations, for sensorimotor regions; more integrated within
the system, as measured in terms of “proper” higher-
order simplices, for the DMN, whose brain dynamics acts
mainly inward, in a constant state of internal exploration
through the integration of low and higher-order dynam-
ics [55, 93], at the “edge of instability” [84].

In the context of financial time series, instead, we pro-
vided evidence that the magnitude of higher-order struc-
tures efficiently discriminate crises from periods of finan-
cial stability, which cannot be obtained from different
null models (see SI Section S4.2). In particular, max-
imally coherent higher-order structures strongly emerge
in correspondence of major financial crises, mirroring the
increase of synchronous co-activation patterns (i.e. stock
prices tend to move to the same direction, therefore in-
creasing their level of synchronization). While this is not
new in the literature [30, 72, 94], we stress that, unlike
our method, most of these approaches rely on correlation
matrices estimated over sliding time-windows [29], there-
fore neglecting the information that one might want to
capture at the level of individual frames (e.g. in high-
frequency trading [95]). When examining the hyper com-
plexity indicator at its lowest points, topological markers
capture refined information regarding the different role
of industrial sectors during crises, revealing strong vari-
ations in time and high heterogeneity across different in-
dustries [96], suggesting their potential to identify the
building up of systemic risk [97, 98].

Finally, when analysing historical data of epidemic out-
breaks in the US, we have shown that the temporal evolu-
tion of our higher-order measures can be used to classify,
to a great extent, diseases of different kind. In particular,
a planar embedding of diseases revealed the presence of
interesting clusters based on their unique spatiotemporal
pattern. While this result is interesting per se across dis-
ciplines [99–102], our higher-order markers may provide
new tools for the quest of epidemic outbreak predictabil-
ity [77, 103, 104], despite its limitation when increasing
forecast length [77, 105].

Taken together, here we have developed a new flex-

ible tool to provide framewise estimates (therefore
circumventing the limitations of sliding window ap-
proaches [106, 107]) of higher-order structures in mul-
tivariate time-series. We believe that our framework can
be effectively used in all situations where the dynam-
ics of signals is poorly understood or unknown, paving
the way to further applications in the fields of biology,
fluid dynamics, social sciences, or clinical neuroscience.
In particular, the higher-order indicators and the corre-
sponding lower-order projections can also provide topo-
logical Polaroids, that is, instantaneous topological snap-
shots of the spatial configuration of the system under
study. Overall, our approach suggests that investigat-
ing the higher-order structure of multivariate time series
might provide new insights compared to standard meth-
ods, allowing to better characterize group dependencies
inherent to real-world data.

METHODS

Higher-order topology of multivariate time series —
Let us consider a N -dimensional real valued time series
{x(t)}Ni=1 with T time points, where the generic time
series xi = [xi(1), xi(2), . . . , xi(T )] is usually measured
empirically or extracted from a N -dimensional determin-
istic/stochastic dynamical system. It is well established
that it is possible to construct correlation matrices by es-
timating the statistical dependency between every pair of
time series [41, 57]. Here, the magnitude of that depen-
dency is usually interpreted as a measure of how strongly
(or weakly) those two time series are related to each
other. Following the edge-centric approach proposed in
Ref. [53], however, it is possible to estimate the instan-
taneous co-fluctuation magnitude between a pair of time
series xi and xj −once they have been z-scored− by es-
timating their element-wise product. That is, for every
pair of time series, a new time series encodes the magni-
tude of co-fluctuation between those signals resolved at
every moment in time. We generalise such a concept to
the case of higher-order interactions, i.e. triangles, tetra-
hedron, etc. We first z-score each original time series xi,

such that zi = xi−µ[xi]
σ[xi]

, where µ[•] and σ[•] are the time-

averaged mean and standard deviation. We can then
calculate the generic element at time t of the z-scored
k-order co-fluctuations between (k + 1) time series as

ξ0...k(t) =

∏k
p=0 zp(t)− µ

[∏k
p=0 zp

]
σ
[∏k

p=0 zp

] ,

where also in this case µ[•] and σ[•] are the time-averaged
mean and SD functions. In order to differentiate concor-
dant group interactions from discordant ones in a k-order
product, concordant signs are always positively mapped,



11

while discordant signs are negatively mapped. Formally,

sign [ξ0...k(t)] := (−1)sgn[(k+1)−|∑k
0 sgn[zi(t)]|],

where sgn[•] is the signum function of a real number. In
other words, the weight w0...k(t) at time t of the k-order
co-fluctuations is defined as:

w0...k(t) = sign[ξ0...k(t)]|ξ0...k(t)|

If we compute all the possible products up to order k,
this will result in

(
N
k

)
different co-fluctuation time series

for each order k.
For each time t, we condense all the different k-order

co-fluctuations into a weighted simplicial complex Kt.
Formally, a (d − 1)-dimensional simplex σ is defined as
the set of d vertices, i.e. σ = [p0, p1, . . . , pd−1]. A col-
lection of simplices is a simplicial complex K if for each
simplex σ all its possible subfaces (defined as subsets of
σ) are themselves contained in K [60]. Weighted sim-
plicial complexes are simplicial complexes with assigned
values (called weights) on the simplices.

For simplicity, in this work we only consider co-
fluctuations of dimension up to k = 2, so that triangles
represent the only higher-order structures in the weighted
simplicial complex K, and weights on the simplices, i.e.
wij and wijk, represent the magnitude of edges and tri-
angles co-fluctuations.

Note finally that, in order to compare our approach
with the edge-based approach, we employed the Root
Sum Square (RSS) of the edge-time series Ref. [54], which
can be used as a direct proxy of the amplitude of the
collective co-fluctuations of the edge time series. In other
words, we compute the amplitude of the edge time series
as the root sum of squared co-fluctations, i.e. RSS(t) =√∑

i,j>i eij(t)
2, where the vector eij = zi zj is the 1-

order co-fluctuation (i.e. the edge time series) obtained
as a product of the z-scores of the original time series.

Hyper coherence and hyper complexity — To anal-
yse the structure of the weighted simplicial complex Kt
across multiple scales, we consider a topological data
analysis approach [56], which has been shown to un-
veil new dynamical properties of different complex sys-
tems [108–111]. In particular, we rely on persistent ho-
mology, which is a recent technique in computational
topology that has been largely used for the analysis of
high dimensional datasets [64, 112] and in disparate ap-
plications [113–115]. The central idea is the construc-
tion of a sequence of successive simplicial complexes,
which approximates with increasing precision the original
weighted simplicial complex. This sequence of simplicial
complexes, i.e. ∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sl ⊂ . . . ⊂ Sn, is
such that Si ⊂ Sj whenever i < j and is called a filtra-
tion. In our case, we construct a filtration building upon
these steps:

• Sort the weights of the links and triangles in a de-
creasing order: the parameter εl ∈ R scans the se-

quence. Equivalently, εl is the parameter that keeps
track of the actual weight as we gradually scroll the
list of weights.

• At each step l, remove all the triangles that do
not satisfy the simplicial closure condition, i.e.
∃!(i, j) : wij < wijk. Such triangles are con-
sidered as a violation and inserted, along with
the corresponding weights, in the list of violations
∆v = {(i, j, k), wijk}. The remaining links and tri-
angles with a weight larger than εl belong to the
simplicial complex Sl

We then define the hyper coherence indicator, as the frac-
tion of violating coherent triangles (i.e. violating trian-
gles with a weight greater than zero) over all the possible
coherent triangles (i.e. triangles with a weight greater
than zero). Notice also that when identifying each vi-
olating triangle (i.e by checking whether the triangle is
entering the complex before its edges), we can keep track
of the number of its edges ev ∈ [0, 2] that are already
in the complex. We can then define the average edge vi-
olation indicator as the total number of those edges ev
averaged over all the violating triangles.

Persistent homology studies the changes of the topo-
logical structure along the filtration {Sl} and provides a
natural measure of robustness for the topological features
emerging across different scales. In particular, it is possi-
ble to keep track of these topological changes by looking
at each k-dimensional cycle in the homology group Hk.
In our case, we focus on the 1-dimensional holes (i.e.
loops), therefore analysing the homology group H1. More
precisely, at each step of the filtration process, a genera-
tor g uniquely identifies a 1-dimensional cycle by its con-
stituting elements. The importance of the 1-dimensional
hole g is encoded in the form of “time-stamps” recording
its birth bg and death dg along the filtration {Sl} [11].
These two time-stamps can be combined to define the
persistence πg = dg − bg of the one-dimensional cycle,
which gives a notion of its importance in terms of its
lifespan.

A typical way to visualize the results of persistent ho-
mology group H1 is through multiset points in the two-
dimensional persistence diagram. In this diagram, each
point (bg, dg) represents a one-dimensional hole g that
appears across the filtration. As a consequence, this dia-
gram is a compressed summary describing how long 1D
cycles live along the filtration and can be used as a proxy
of the “complexity” of the underlying space. In fact,
the sum of the persistences of the homological genera-
tors of Hk can be seen as the distance of the topologi-
cal space from the trivial space (i.e. the space without
k + 1-dimensional holes). In our case, we define the hy-
per complexity indicator as the Wasserstein distance [65]
between the persistence diagram of H1 and the empty
persistence diagram, corresponding to a space with triv-
ial H1 homology. Finally, note that in SI Section S2.2
and SI Fig. S4, we briefly investigate the presence of 1D
cycles and 3D-cavities in the context of CML when ex-
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tending our framework to 4-body interactions.

Homological scaffold and lower-order projections —
To obtain a finer description of the topological fea-

tures present in the persistent diagram, we consider the
persistence homological scaffold as proposed in Ref. [11].
In a nutshell, this object is a weighted network com-
posed of all the cycle paths corresponding to generators
gi weighted by their persistence πgi . In other words,
if an edge e belongs to multiple 1-dimensional cycles
g0, g1, . . . , gs, its weight w̄πe is defined as the sum of the
generators’ persistence, i.e.:

w̄πe =
∑

gi|e∈gi

πgi

The information provided by the homological scaffold al-
low us to decipher the role that different links have re-
garding the homological properties of the system. A large
total persistence w̄πe for a link e implies that such link
acts as a locally strong bridge in the space of coherent
and decoherent co-fluctuations [11].

Lastly, to analyse the information provided by the list
of violations ∆v on an edge/node level, we rely on down-
ward projections. That is, for each edge (i, j) we assign
a weight wij equal to the average sum of the weights of
triangles defined by that edge, i.e. triangles of the form
(i, j, •) with a weight wij•, and the average is computed
over the number of triangles nij• defined by that edge.
Similarly, we define the nodal strength wi of node i as
the average sum of weights of the triangles connected to
node i. In the case of the homological scaffold, since it
is a weighted network, the node strength w̄i of node i is
defined, in the classical way [8, 116], as the sum of the
weights of edges connected to the node i.

Real-world dataset — We analysed three datasets be-
longing to different domains. Specifically, we considered
fMRI resting-state data from The Human Connectome
Project (HCP, http://www.humanconnectome.org/), the
stock prices of the NYSE financial market obtained from
the Yahoo! finance API [117], and the historical data of
several infectious diseases in the US [77, 78].

The fMRI dataset used in this work consists of resting-
state data from 100 unrelated subjects (54 females, 46
males, mean age= 29.1 ± 3.7 years) as provided at the
HCP 900 subjects data release Van Essen et al. [76, 118].
We added some extra steps to the HCP minimal prepro-
cessing pipeline [80, 119]: First, we applied a standard
general linear model regression that included detrending
and removal of quadratic trends; removal of motion re-
gressors and their first derivatives; removal of white mat-
ter, cerebrospinal fluid signals, and their first derivatives;

and global signal regression (and its derivative). Second,
we bandpass-filtered the time series in the range of 0.01
to 0.15 Hz. Last, the voxel-wise fMRI time series were
averaged into the N = 100 corresponding brain nodes of
the Schaefer cortical atlas [79] and then z-scored. For
completeness, 19 sub-cortical regions were added, as pro-
vided by the HCP release [80]. The interested reader can
refer to Ref. [55] for details on these steps.

The financial dataset used in this study was obtained
from the Yahoo! finance historical data API (via the
Python library yfinance [117]). We have collected the
daily prices of 119 US companies in the NYSE from
Yahoo! finance in the period from January 1, 2000 to
November 30, 2021.

We considered the weekly historical data at the US
state-level of several infectious diseases including chlamy-
dia, gonorrhea, influenza, measles, polio, and pertussis.
This dataset was previously used in Ref. [77] and is freely
available.

Limitations — One of the main limitations of our
approach concerns the time complexity. Indeed, if we
consider co-fluctuation patterns up to the order k, the
resulting time complexity scales as O(Nk). Moreover,
at the current stage, our framework does not allow to
investigate the causality effect between two subsequent
time frames (i.e. how much previous time points af-
fect the next ones in terms of the proposed topological
markers). Notice also that our dynamical higher-order
approach, as many of other existing pairwise dynamical
methods [48, 49, 54], can be heavily affected by noisy
fluctuations in the time series. However, this issue can
be smoothed out by analyzing statistics averaged over
multiple time frames, as we have done in this work. Fur-
thermore, the higher-order brain maps reported in Fig-
ure 5 appear to be robust after accounting for the pres-
ence of head motion volumes in the fMRI data (see also
SI Fig. 14). Finally, we stress that our framework, with
the exception of the hyper complexity indicator, mainly
detect coherent synchronous patterns while it mostly ig-
nores the effect of decoherent patterns, which are known
to be important in the overall dynamics of a system. Fu-
ture work should explore alternative approaches that deal
in a more explicit way with decoherent patterns present
in the data.

Data availability — The data used for this analy-
sis will be available on Zenodo upon acceptance of the
manuscript.

Code availability — The python code used in this
work will be made available upon acceptance of the
manuscript on AS EPFL webpage, as well as a main-
tained version on E.A.’s GitHub page (https://github.
com/eamico).

[1] R. Albert and A.-L. Barabási, “Statistical mechanics of
complex networks,” Reviews of Modern Physics 74, 47–
97 (2002).

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. U. Hwang, “Complex networks: Structure and dynam-
ics,” Physics Reports 424, 175–308 (2006).

http://www.humanconnectome.org/
https://github.com/eamico
https://github.com/eamico
http://dx.doi.org/10/cb5h4c
http://dx.doi.org/10/cb5h4c
http://dx.doi.org/10/cjpbxz


13

[3] R. Pastor-Satorras, C. Castellano, P. Van Mieghem,
and A. Vespignani, “Epidemic processes in complex net-
works,” Reviews of Modern Physics 87, 925–979 (2015).

[4] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno,
and C. Zhou, “Synchronization in complex networks,”
Physics Reports 469, 93–153 (2008).

[5] A. Barrat, M. Barthelemy, and A. Vespignani, Dynami-
cal Processes on Complex Networks (Cambridge Univer-
sity Press, 2008).

[6] D. J. Watts and P. S. Dodds, “Influentials, Networks,
and Public Opinion Formation,” Journal of Consumer
Research 34, 441–458 (2007).

[7] A.-L. Barabási, Network Science (Cambridge University
Press, 2016).

[8] V. Latora, V. Nicosia, and G. Russo, Complex Networks:
Principles, Methods and Applications (Cambridge Uni-
versity Press, 2017).

[9] M. Newman, Networks (Oxford University Press, 2018).
[10] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-

order organization of complex networks,” Science 353,
163–166 (2016).

[11] G. Petri, P. Expert, F. E. Turkheimer, R. L. Carhart-
Harris, D. Nutt, P. Hellyer, and F. Vaccarino, “Homo-
logical scaffolds of brain functional networks,” Journal of
the Royal Society Interface 10, 186–198 (2014).

[12] C. Giusti, E. Pastalkova, C. Curto, and V. Itskov,
“Clique topology reveals intrinsic geometric structure
in neural correlations,” Proceedings of the National
Academy of Sciences 112, 13455–13460 (2015).

[13] A. E. Sizemore, C. Giusti, A. Kahn, J. M. Vettel, R. F.
Betzel, and D. S. Bassett, “Cliques and cavities in the
human connectome,” Journal of Computational Neuro-
science 44, 115–145 (2018).

[14] J. Grilli, G. Barabás, M. J. Michalska-Smith, and
S. Allesina, “Higher-order interactions stabilize dynam-
ics in competitive network models,” Nature 548, 210–213
(2017).

[15] A. Sanchez-Gorostiaga, D. Bajić, M. L. Osborne, J. F.
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S1. FILTRATION AND PERSISTENT HOMOLOGY

In the main text, we introduced the simplicial filtration F(Kt) as one of the main steps of our higher-order framework.
More precisely, for each time t, this object represents a sequence of embedded simplicial complexes, sorted according
to coherent patterns, starting with the empty complex and ending with the entire simplicial complex Kt, i.e. ∅ =
S0 ⊂ S1 ⊂ . . . ⊂ Sl ⊂ . . . ⊂ Sn ⊂ Kt. We then considered the persistent homology of F to characterize the persistency
of 1D cycles in the filtration, i.e. the persistent generators of the first homology group H1, which provide insights
about where and when higher synchronised regions emerge.

In Fig. S1 we report a schematic representation of the persistent homology computation and the corresponding
definition of the hyper complexity contributes considered in this work. In particular, Fig. S1a reports an illustrative
example of a simplicial filtration in two-dimensions. The outputs of persistent homology are barcodes, which represent
a compressed description of the homological features of a space (see Fig. S1b). Each bar corresponds to a specific
topological feature, which can be identified in terms of a “time-stamp” recording the birth wb and death wd of that
feature along the filtration. In the main text, we characterized the evolution of 1D cycles along such a filtration —
the blue bars in Fig. S1b — by relying on persistence diagrams, which provide an equivalent description of bar codes.
In this 2-dimensional plot, each 1D cycle is represented by a point with coordinates (wb, wd) (see Fig. S1c).

Furthermore, we defined the hyper complexity indicator as the Wasserstein distance [1] between the persistence
diagram of H1 and the empty persistence diagram, corresponding to a space with trivial H1 homology. However, to
better characterize the evolution of 1D cycles in the space of coherent and decoherent co-fluctuations, we decompose
the hyper complexity indicator into three different contributions. That is, as we track the evolution of 1D cycles
along the filtration, we focus on 1D cycles that are created and closed only by fully coherent structures, i.e. edges
and triangles having a weight larger than zero, which we renamed as a Full Coherence (FC) contribution; 1D cycles
formed by coherent structures and closed by the decoherent ones (i.e. edges and triangles with a weight smaller than
zero), which we renamed as a Coherence Transition (CT) contribution; 1D cycles created only by the fully decoherent
structures, renamed as a Full Decoherence (FD) contribution.

In Fig. S1d, the three fractional contributions of the hyper complexity indicator are reported in a triangular
representation.
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Figure S1. Pictorial representation of persistent homology computation and definition of hyper complexity
contributes. (a) Example of a simplicial filtration in two-dimensions. (b) Barcodes describe the lifetime of different topological
features across multiple scales. Here, green bars identify the persistence of various connected components (describing H0),
progressively merging into each other until only one survives, whereas blue bars describe the lifetime of 1-dimensional cycles
(describing H1). Hence, each bar corresponds to a specific topological feature, which can be identified in terms of a “time-
stamp” recording the birth wb and death wd of that feature along the filtration. (c) Persistence diagrams provide an equivalent
description of barcodes. For example, if we focus only on H1, each 1D cycle is represented in the 2-dimensional plot by a point
with coordinates (wb, wd). In this work, we further distinguish the nature of 1D cycles depending on the corresponding time-
stamps, i.e. whether 1D cycles are created and closed before/after w∗ = 0, therefore reflecting pure coherent (resp. incoherent)
structures. (d) The hyper complexity indicator, defined as the Wasserstein distance [1] between the persistence diagram of
H1 and the empty persistence diagram, can be then decomposed into three different contributes according to the nature of 1D
cycles and plotted in a triangular representation.
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S2. GLOBAL BEHAVIOUR OF COUPLED MAP LATTICE (CML)

In the main text, we considered N = 119 diffusively coupled fully chaotic maps to generate synthetic multivariate
time series with different dynamical regimes. In Fig. S2a we report a sample of such time series in three different
lattice sites, showing the general behaviour of the five different dynamical states. Moreover, the space-amplitude
plot [2, 3] reported in Fig. S2b, which depicts the temporal evolution of xi(t) at each lattice site i, clearly shows the
overall behaviour of the five dynamical regimes.
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Figure S2. Sample of the coupled map lattice (a) We report a sample of the time series considered in the main text and
generated by N = 119 diffusively coupled fully chaotic maps at different values of the coupling strength ε. Namely, from ordered
to disordered systems: Pattern Selection (PS) at ε = 0.12, Brownian motion with Defects (BMWD) at ε = 0.08, Spatiotemporal
Intermittency II (STI) at ε = 0.3, Defect Turbulence (DT) at ε = 0.068, and Fully Developed Turbulence (FDT) at ε = 0.05.
(b) The space-amplitude plot, reporting the temporal evolution of xi(t) at each lattice site i, clearly reflects the different global
behaviour of the five dynamical regimes.

S2.1. Effect of z-scores and signs assignment in CML time series

In one of the main steps of the simplicial framework described in the main text, we rely on the z-score for each group
product time series to allow comparison across k-orders and to create proper simplicial filtrations. After that, a choice
on how to assign signs to the resulting weights is required in order to distinguish fully concordant group interactions
(all positive or negative fluctuations) from discordant ones (a mixture of positive and negative fluctuations) in a
k-order product. In order to distinguish fully concordant group interactions (all positive or negative fluctuations)
from discordant ones (a mixture of positive and negative fluctuations) in a k-order product, we assign positive signs
to the fully concordant group interactions, and negative signs to the discordant ones. However, this way of assigning
signs means that the baseline score might be slightly altered and, as a result, the concordance might be harder to
achieve for a triangle than for an edge.
In Figure S3, we analyse the impact of z-score and signs assignment in edges and triangles distributions for the coupled
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map lattice dynamical states. In particular, the z-scores and signs assignment for triangles produce a negative offset
with respect to that of edges. This phenomenon does not have a deep impact in the hyper coherence indicator, since
it is defined as the fraction of violating coherent triangles (i.e. violating triangles with a weight greater than zero)
over all the possible coherent triangles (i.e. triangles with a weight greater than zero). By contrast, the negative offset
of the triangle weight distribution over the edges one might have an impact in the hyper complexity indicator. This
is due to the fact that this indicator is constructed by considering the ensemble of both edges and triangles weight
distribution. However, the effect on hyper complexity is a shift in the contributions from the fully coherent to the
other two contributions, rather than a restructuring of the whole simplicial filtration. In this sense, the effect is a
biasing one.

Figure S3. Impact of z-score and signs assignment in edge and triangles distributions for the coupled map
lattice. For each of the five CML dynamical states, we report the distribution of weights of edges (a-e) and triangles with
(f-j) and without the sign assignment (k-o), respectively. Notice that the z-scores and signs assignment produce a negative
offset for triangles with respect to that of edges. While this phenomenon does not have a deep impact in the hyper coherence
indicator for the way such a measure is constructed, the hyper complexity indicator might be shifted by such offset. It is
also worth remarking that when sign remapping is not performed, it is not possible to identify a triangle with a synchronous
co-activation pattern from its weight, given that decoherent triangles might end up having the same weights as fully coherent
ones. Error bars represent standard deviations over 240 time points.

S2.2. Impact of 3D-cavities

In this section we briefly investigate the presence of 3D-cavities (i.e. the generators of the homology group H2)
when including in the analysis all the interactions up to 4-body interactions. Indeed, in the main text, we mainly
focused on analyzing 1D cycles (i.e. the generators of the homology group H1) of the simplicial filtration F(Kt) that
we generate at each time t, while we explicitly did not consider 3D-cavities. This is because we limited our analysis
up to 3-body interactions (i.e. up to triangles), and 3D-cavities do not add meaningful information. As a matter of
fact, if only 3-body interactions are present, then all the 3D-cavities have an infinite persistence due to the absence
of 4-body interactions that close cavities. In other words, without 4-body interactions, 3D-cavities will have a birth
in the filtration but not a death. Nevertheless, the presence of cavities in the simplicial filtration F(Kt) might add
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important information when characterizing the higher-order structure of a multivariate time series, as shown when
analysing the human connectome data [4].
Figure S4 reports the persistence diagrams for the homology groups H1, H2 obtained in the context of Coupled Map
Lattices with N = 50 nodes when extending our framework to 4-body interactions. Remarkably, we find that the
persistence diagram for H2 is diverse for the five dynamical regimes and, as a results, it might be used together with
H1 to further differentiate the CML dynamical regimes.

Figure S4. 2D histograms for the H1 and H2 generators in Coupled Map Lattices. We report, for each dynamical
state of the Coupled Map Lattice with N = 50, the persistence diagram for the homology groups H1 and H2. Interestingly, the
H2 persistence diagram is different between the CML dynamical regimes and, as a result, it might help to further differentiate
the five dynamical states when considered in synergy with H1. Results are obtained considering 10 independent realization
and 240 time points for each block in analogy with the results reported in the main text. The dynamical states are: Pattern
Selection (PS) at ε = 0.12, Brownian motion with Defects (BMWD) at ε = 0.08, Spatiotemporal Intermittency II (STI) at
ε = 0.3, Defect Turbulence (DT) at ε = 0.068, and Fully Developed Turbulence (FDT) at ε = 0.05.

S2.3. Higher-order approach on Gaussian multivariate time series

In this section we show the Hyper Coherence distribution obtained when considering a N -dimensional Gaussian
multivariate time series, where each of the time series is sampled from a normal distribution N (0, 1) with zero mean
and unit variance.
We report in Figure S5 the violin plots reporting the hyper coherence distribution computed from resting-state fMRI
data, the corresponding null model obtained when independently reshuffling the time series, and from Gaussian
multivariate time series. It is interesting to notice how the null model of the resting-state fMRI leads to a hyper
coherence distribution that is statistically equivalent to the one obtained when analysing Gaussian multivariate time
series (p-value < 10−10 with the Kolmogorov-Smirnov test). This is due to the fact that, even though each BOLD
signal is not Gaussian per se, the entire ensemble can be considered as Gaussian. As a result, the simple shuffling
procedure destroys all the temporal dependencies and the resulting co-fluctuations of the multivariate signals tend to
a Gaussian distribution.
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Figure S5. Hyper coherence distribution computed from resting-state fMRI data and Gaussian multivariate
time series. Violin plots showing the distribution of Hyper Coherence for the resting-state fMRI data (N=119 brain regions),
the corresponding null model obtained when independently reshuffling the time series, and for a multivariate time series, where
each of the time series is sampled from a normal distribution N (0, 1). The null model of the resting-state fMRI data leads to a
distribution of Hyper Coherence that is statistically equivalent to the one obtained when analysing Gaussian multivariate time
series (p-value < 10−10 with the Kolmogorov-Smirnov test).
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S3. COMPARISON OF TIME SERIES APPROACHES TO DISTINGUISH THE CML REGIMES

In this section, we provide a detailed investigation of the ability of different indicators to differentiate the five
regimes generated by N = 119 diffusively coupled fully chaotic maps, extensively considered in the main text. The
multivariate time series consists of N = 119 nodes and T = 1200, obtained by concatenating five different CML
regimes with fixed time length L = 240.
We first compare our higher-order measures with the lower-order dynamical indicator originally proposed in Ref. [5].
This is the Root Sum Square (RSS) of the edge-time series, which was recently used to identify important “events”
in fMRI signals [5, 6], and it is a direct proxy of the amplitude of the collective co-fluctuations of the edge time
series. In other words, we compute the amplitude of the edge time series as the root sum of squared co-fluctations,

i.e. RSS(t) =
√∑

i,j>i eij(t)
2. Here, the vector eij = zi zj is the edge time series obtained as a product of the

z-scores of the original time series. We then assess the performance of several other “static” approaches, namely, (i)
the information-theoretic approaches introduced in Refs. [7, 8] accounting for higher-order interactions, (ii) the dyadic
method at the interface of network science and random matrix theory [9], and (iii) the classical approach based on
Pearson’s correlation coefficient [10].

Top panels of Figure S6 depict the violin plots of the distribution of RSS and of the three higher-order measures
for the five regimes of the CMLs. Surprisingly, the RSS distributions of certain dynamical states (BMWD, DT, and
FDT) are highly similar to each other, somehow mirroring the inability to capture the subtleties of these regimes.
By contrast, the higher-order measures seem to differentiate the dynamical states in a qualitatively better way. As a
matter of fact, the ability to distinguish the different dynamical regimes is quantitatively confirmed by the ICC values
associated with each metric and reported in the bottom panels. In particular, we have RSS with an ICC ≈ 0.57,
hyper coherence with ICC ≈ 0.95, hyper complexity with ICC ≈ 0.96, and average edge violation with ICC ≈ 0.91.
For the sake of completeness, for each dynamical measure we also report an ICC matrix encoding the ICC values

Figure S6. Comparison of different dynamical metrics. (a-d) Violin plots showing the distribution of RSS (Root Sum
Square) and three higher-order measures for the five different dynamical regimes generated by the diffusively coupled chaotic
maps. Remarkably, the RSS statistic, which only captures the effect of lower-order structures (i.e. the edges), is not able
to well-separate the five dynamical regimes. By contrast, the higher-order metrics introduced in this work distinguish the
different regimes. (e-h) The performance of each indicator is quantitatively measured by the ICC values computed either
considering the five distributions or between all the possible pairs. When considering all the five distributions, we find RSS
with an ICC ≈ 0.57, hyper coherence with ICC ≈ 0.95, hyper complexity with ICC ≈ 0.96, and average edge violation with
ICC ≈ 0.91. Results are averaged over 100 independent realizations.
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between all the possible pairwise comparison of dynamical regimes.

Lastly, for each of the five CML regimes, we independently compute diverse “static” higher-order and pairwise
measures [7–10], aggregating the results across 100 independent realizations. In other words, after isolating each
dynamical state by selecting the precise intervals of size T = 240, we compute the selected measure on that interval.
This is necessary, since such measures are not dynamic (i.e. they are not defined on a single frame), but instead they
require a time-window to be computed.

Figure S7 reports the results of our analyses for the different approaches. Remarkably, several of the information-
theoretic measures introduced by Rosas and colleagues [7] [see Figs. S7(a-d)] are able to differentiate in a quantitative

Figure S7. Comparison between approaches for distinguishing the CML regimes. (a-f) For the five dynamical
regimes generated by the diffusively coupled chaotic maps, we report the violin plots showing the distribution of “static”
higher-order measures [7], and “static” pairwise measures, namely, the Pearson’s correlation coefficient ρ and filtered ρ obtained
by considering the approach based on random matrix theory [9]. Remarkably, only higher-order measures are able to separate
the five dynamical regimes. (g-l) We report the ICC values associated with each metric, either computed considering the
five distributions or between all the possible pairs, thus demonstrating that higher-order measures outperform statistics based
on pairwise correlations. (m-r) We repeat the same analysis but considering the Jensen-Shannon (JS) divergence to measure
distances between distributions, leading to the same conclusions of the ICC approach.
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way the different CML dynamical states, as confirmed by the high ICC values reported in panels S7(g-j)1. By
contrast, approaches only based on pairwise statistical dependencies [see Figs. S7(e-f)], such as “connectome” analyses
based on Pearson’s correlation ρ or the filtered ρ relying on random matrix theory [9], fail at differentiating the five
dynamical regimes [see Figs. S7(k-l)]. To confirm the quantitative analyses provided by the ICC metric, we repeat an
analogous analysis but considering the Jensen-Shannon (JS) divergence to measure distances between distributions
[see Figs. S7(m-r)].

1 The code for these analyses has been adapted from Ref. [8].
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S4. IMPACT OF DIFFERENT NULL MODELS

S4.1. CML synthetic multivariate time series

After having demonstrated that standard metrics to assess two-body similarity of time series, such as RSS, pearson
correlation, or more refined approaches based on random matrix theory [9], fail to distinguish the CML dynamical
regimes, we now shift the focus to investigating the impact of alternative null models [11–13]. Indeed, the null
reported in Figs. 2-3 of the main text — obtained by independently shuffling the time series — might be in principle
too simplistic to detect regime-specific features of the co-fluctuations in the CML case. This is because the empirical
signal of the co-fluctuations in each dynamical regime is compared to products of node-level signals at different times
and for different regimes. As a consequence, we test the global behaviour of our two higher-order indicators when
considering two alternative null models, namely, the (i) block null model, and the (ii) phase randomization null model.
The first null model, hereafter denoted as block null model, is constructed such that the shuffling of each dynamical
regimes of the CML is performed separately for each region (i.e. the blocks consisting of 240 time points). In this
way, we are ensuring that the dynamical regimes are not mixed during the reshuffling, and we can therefore detect
regime-specific features of the co-fluctuations.
The second null model, hereafter denoted as phase randomization null model, is a conventional approach [11] to
generate surrogate time series preserving the empirical power spectra, while randomizing the temporal dependencies.
More specifically, such time series are generated by transforming the CML time series to the frequency domain via
Fourier transform, shuffling the phase coefficients, and then taking the inverse transform to the time domain [13].

We first aim at replicating the panels of Fig. 2(a,c) of the main text when considering the two alternative null
models. In particular, Figure S8 summarizes the results of our higher-order approach when applied to the two
surrogate multivariate series. We find that the distributions of hyper coherence in the block null model become less
distinguishable from each other, while keeping certain regime-specific features of the co-fluctuations. Furthermore,
the block null model does not preserve any more the ranking between order (i.e. the PS regime) and disorder (i.e. the
Spatiotemporal Chaos), see Fig. S8(a). In addition, the distributions of hyper complexity in the block null model are
mostly identical to each other for the five blocks, so that it is clear that there are some intrinsic topological properties
that are only present in the CML multivariate time series [see Fig. S8(b)]. When considering the phase randomization
null model, we find a flat behaviour for both the hyper coherence and hyper complexity distributions, see Fig. S8(c-d).

As done in previous sections, to quantitatively test the ability to distinguish the different CML dynamical states
in the null models, we rely again on the ICC values, which are either computed considering the five distributions or
between all the possible pairs of regimes. We report in Figure S9 the distributions of hyper coherence and hyper
complexity for the actual CML time series and for all the different surrogates time series.
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Figure S8. Global behaviour of our higher-order indicators for two alternative null models. (a-b) We report the
behaviour of the two higher-order indicators, as in Fig. 2 of the main text, respectively computed for the original CML and
for the surrogate time series generated by the block null model, which shuffles independently each block of 240 time points.
Remarkably, the resulting blocks of hyper coherence in this null model become less distinguishable from each other, while
keeping certain regime-specific features of the co-fluctuations. However, the ranking from ordered to disordered states is now
lost. In addition, the blocks of hyper complexity cannot be separated in the block null model, somehow supporting the intuition
that this topological-based measure is more fine-grained than the hyper coherence. (c-d) The same analyses are repeated when
considering the phase randomization null model, which preserves the power spectra of the CML time series.
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Figure S9. Comparison of null models in Coupled Map Lattice. (a-d) We report the distribution of hyper coherence for
the classical CML time series and for the three null models considered in this work, namely, the simple null model considered
in the main text, the block null model, and the phase randomization null model. (e-h) Both the global and pairwise analysis
of the ICC metric reveal that only the block null model is able to partly separate the CML regimes, hence keeping certain
regime-specific features of the co-fluctuations, while breaking the order-disorder gradient present in the real Hyper Coherence
distributions. (i-l) When repeating the analyses of panels (a-d) for the distribution of hyper complexity, we find that the
distributions of hyper complexity in the null models are mostly identical to each other for the five blocks, so that it is clear
that there are some intrinsic topological properties that are only present in the CML multivariate time series. (m-p) Global
and pairwise analysis of the ICC metric provide a quantitative way of assessing the similarities between each regimes in the
different null models.



30

S4.2. Block null model in financial time series

Here, we assess whether the results of hyper coherence of the financial time series presented in the main text can
be trivially obtained by analysing block null models which account for different global trends, including upwards and
downwards ones. As a matter of fact, in the considered time span of 21 years (2000-2021) the market experienced
different global trends. Therefore, when considering a simple null model, as the one described in the main text, which
independently reshuffles each stock price in the whole window, we might neglect the importance of different financial
trends. In order to assess this potential confound, we consider three different block null models with respectively 3,
6, and 9 temporal blocks, and test whether the findings on financial time series in the main text could not be simply
deduced from more sophisticated null models. The blocks are selected in order to capture the major financial trends
of the last 21 years and to consider crises as midpoints of equally spaced time windows.

In Figure S10 we report the distributions of hyper coherence for the financial dataset along with the four null models
obtained by independently reshuffling the real-world multivariate time series over the whole time window of 21 years,
or restricting the shuffling over 3, 6, or 9 temporal blocks, respectively. It is interesting to notice that null models
with finer information about the global financial trends seem to increasingly approximate the distribution of hyper
coherence of the empirical dataset, despite some notable differences are present even in the finer model consisting of
9 temporal blocks. For example, the distribution of the 9 blocks null model is almost 4-modal, while it is bi-modal in
the empirical case, and the two distribution are statistically different, i.e. p < 10−10 after the Kolmogorov-Smirnov
test. Finally, for the sake of completeness, we report the list of periods considered for the block null models in
Figure S10(b).

Figure S10. Distribution of hyper coherence for different block null models. (a) Violin plots showing the distribution
of hyper coherence for the financial prices of 119 assets in NYSE spanning a period from 01/2000 to 06/2021. We also report
the corresponding null models obtained when independently reshuffling the empirical time series over the whole time window
of 21 years (i.e. Simple Null), or restricting the shuffling over 3, 6, or 9 blocks, respectively. Even when considering the null
model obtained with 9 blocks (dark grey curve), the hyper coherence distribution is distinct from the one obtained for the
empirical multivariate time series (red curve). (b) We report the periods considered for the various null models, which include
finer information about the global financial trends. For instance, the 3 block null model spans three different periods, namely,
01/2000− 01/2007, 01/2007− 01/2011, and 01/2011− 06/2021.
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S5. EDGE-BASED INDICATORS IN REAL-WORLD SYSTEMS

In this section we investigate the impact of edge-based statistics in the context of real-world multivariate time series
when compared to the higher-order approach presented in the main text. More specifically, we first analyse the RSS
distributions for the three types of real-world systems considered in this work. Subsequently, we aim at reproducing
some of the results of Fig. 5 of the main paper by relying on metrics derived from RSS or, more in general, from
measures based on edge signals. Our final goal is to compare several different group-order representations in the
context of the real-world systems considered in this study.

As global analysis, we report in Figure S11 the distributions of RSS for the three real-world datasets. For the
sake of comparison, we also plot the null models obtained by independently reshuffling the real-world multivariate
time series. We first notice that, in contrast with the results reported in the main text, these distributions are not
always statistically distinct from the corresponding null models, as evident when looking at the distributions of the
epidemic data (e.g. p < 0.001 for Gonorrhea with the Kolmogorov-Smirnov test). Moreover, when examining the
RSS distribution of resting-state brain and of financial systems, it is not possible to extract insights on the nature
of different temporal dynamics present in the system (e.g. we cannot discriminate crises from periods of financial
stability).

Figure S11. RSS distribution for the empirical time series. Violin plots showing the distribution of RSS for the three
real-world datasets considered in the main text, namely, resting-state fMRI data (N=119 brain regions), financial prices of 119
assets in NYSE in the period 2000-2021, and the US historical data of several infectious diseases at the US state-level (N=50).
While for the brain and financial systems the empirical RSS distributions are different from the corresponding null models
(obtained by independently reshuffling each time series), the RSS distributions for the epidemic time series are very similar to
the ones obtained when considering the corresponding null models (p < 0.001 for Gonorrhea, with the Kolmogorov-Smirnov
test).

Once we established that global edge-wise measures such as RSS provide moderate information on the empirical
systems, we now shift the focus on investigating the impact of different group-order representations on a more local
level. In particular, we performed several analyses on the empirical time series by projecting the magnitudes of
higher- and lower-order approaches on nodal level and compare the overall results. Yet, we remind that any lower-
order projection might lead to a moderate/high reduction of the total amount of information and therefore such
representations might be potentially misleading if not carefully analysed.

Figure S12 summarizes the results of our comparisons for the brain data. Here, we mapped the node strength
extracted from the violating triangles ∆v, the homological scaffold, and the edges time series onto the cortical surface
and found various patterns of co-fluctuations. In particular, we first observe that brain patterns uncovered by the
15% top hyper coherent frames provide quite similar brain configurations as the ones constructed from both top- and
bottom-RSS edge-wise representations. By contrast, all the other representations based on higher-order measures
provide different brain activity patterns, with the nodal strength of the homological scaffold from the 15% bottom
hyper complexity frames mostly encompassing the Default Mode Network (DMN), see Fig. S12(d).
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Figure S12. Impact of different group-order representations in brain patterns. Node strength extracted from the
violating triangles ∆v, homological scaffold, and edge time series can be used to track the importance of group-order structures.
(a-b) We report the brain map of the nodes involved in higher-order co-fluctuations obtained when isolating the 15% high- and
low- coherent frames, respectively. (c-d) We report the brain map of the nodes involved in homological scaffold obtained when
isolating the 15% high- and low- complexity frames. To compare different group-order representations, we also performed a
similar analysis as panels (a-d), yet considering the nodal strength extracted from the edge-wise representation. In particular,
(e-f) we map onto the cortical surface the nodal strength extracted directly from the 1-order co-fluctations (i.e. the edge time
series), computed from the 15% high- and low-amplitude frames, which have been selected using the RSS statistics. Despite
losing part of the information by projecting each group-order representation on a nodal level, we observe that the brain patterns
uncovered by top- and low- peaks of the higher-order approach provide different brain configurations compared to edge-wise
representation, with the only exception being the top hyper coherence frames (see Fig. S13 for all the correlations of activity
patterns). Results are averaged over all 100 HCP subjects and scans.

Yet, the analyses presented so far provide only a qualitative comparison between the approaches. We therefore
quantitatively investigate the spatial patterns identified on both resting-state brain data and financial systems by the
various methods and compare them considering nodal projections.
For clarity, we first provide in Table S1 a summary description of each method, while we report in Figure S13
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Method Description
↑ ∆v

(↓ ∆v)
The top (bottom) 15% of hyper-coherent frames are selected using the Hyper Coher-
ence indicator. For only those frames, we compute the average spatial distributions
by projecting the list of violating triangles ∆v on a nodal level.

↑ HC
(↓ HC)

The top (bottom) 15% of the hyper-complexity frames are selected using the Hyper
Complexity indicator. For only those frames, we compute the average nodal strength
from the homological scaffold, which is obtained from the persistent homology gener-
ators of H1 [14].

↑ eFC
(↓ eFC)

The top (bottom) 15% of the amplitude frames are selected using the RSS measure.
From those frames, we then compute the edge functional connectivity matrix [15] and
report the nodal strength obtained from such a matrix.

↑ eTS
(↓ eTS)

The top (bottom) 15% of the amplitude frames are selected using the RSS measure.
For those frames, we then compute the average activity of the 1-order co-fluctuation
(i.e. the edge time series) and report the nodal strength.

↑ nodal
(↓ nodal) The top (bottom) 15% of the frames are selected using a RSS-like statistic but com-

puted on the raw signal. For those frames, we then compute the average activity
pattern to obtain nodal maps.

Table S1. Summary of the different approaches. We provide a short description of the methods considered in this study
to construct spatial maps from multivariate time series. We remind also that ∆v and HC are higher-order measures, eFC and
eTS are edge-wise statistics, while nodal corresponds to spatial measures based on the original nodal signal.

the matrices encoding all the possible Pearson’s correlations between the various spatial distributions for both the
brain data and financial data. In particular, by analysing Figure S13(a), we confirm in a quantitative way that the
spatial patterns uncovered by the 15% top-peaks of the higher-order approach using the hyper coherence (i.e. ↑ ∆v)
provide brain patterns which are very similar to the ones constructed from both top- and bottom-RSS edge-wise
representations. Therefore, at least in brain resting data, such representation might lead to similar results as the one
obtained using edges. By contrast, the other higher-order approaches provide patterns that are not entirely deducible
from an edge-wise approach and, as such, they might provide new insights into brain dynamics. However, when
analysing the same correlation matrix for financial systems [Figure S13(b)], we surprisingly find a rather different
picture. In this case, the spatial pattern of the top 15% hyper coherent frames (i.e. ↑ ∆v) is very dissimilar from all
those obtained using edge approaches (i.e. ρ ≈ 0), while the other higher-order approaches still provide patterns that
are not captured by any edge-wise approach. This confirms our intuition that various real-world systems might be
affected, in varied ways, by group-interactions at different instants in time.

Finally, by analysing the historical data of epidemic outbreaks in the US, we show that the temporal evolution of
the RSS measure cannot be effectively used to classify different infectious diseases. Indeed, with a Random Forest
classifier we obtain an accuracy level of around 67% using a 10-fold cross-validation setting repeated 50 times. See
Section S7 S7.3 for a comparison with classification based on higher-order information.
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Figure S13. Correlations between group-order representations of brain and financial patterns. We report the
Pearson’s correlation coefficient ρ obtained when comparing the nodal projections for (a) brain and (b) financial systems.
Here we have that ∆v and HC are higher-order measures, eFC and eTS are edge-wise statistics, while nodal corresponds to
measures based on the nodal signal. ↑ (↓) correspond to the 15% top- (respectively bottom-) peaks of the selected measures.
For the sake of clarity, in Table S1 we reported a short description of the methods. Interestingly, while the spatial patterns
uncover by the 15% top-peaks of the higher-order approach using the hyper coherence (i.e. ↑ ∆v) provide brain patterns very
similar to the ones constructed from both top- and bottom-RSS edge-wise representations, all the other three higher-order
approaches provide patterns that are not entirely deducible from an edge-wise approach. However, in financial systems we have
an opposite view, so that the patterns obtained from the top 15% hyper coherent frames (i.e. ↑ ∆v) is now very dissimilar from
all the ones obtained using edge approaches (i.e. ρ ≈ 0).
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S6. EFFECT OF NOISY FLUCTUATIONS IN BRAIN DATA

As mentioned in the main text, one of the limitations of our higher-order approach working on single-frame timescales
is that it might be affected by noisy fluctuations in the time series, as many of other existing methods [5, 16, 17].
However, in practice, this problem can be smoothed out by analyzing the statistics of multiple time frames. In this
section we confirm that, even in presence of noisy fluctuations in brain data (i.e., head movement), the resulting
spatial distribution of the hyper coherence appear to be robust and stable. More precisely, similarly to Ref. [18], we
considered frames (i.e. fMRI volumes) affected by head motion if the relative Root Mean Square (RMS) between
frames was greater than 0.2, i.e. RMS > 0.2.
Figure S14 reports the nodal spatial distributions obtained from the violating triangles ∆v using the top- and bottom
15% hyper coherent frames when analysing the fMRI resting-state data in presence and absence of fMRI volumes
containing high head motion. Notably, we obtain a Pearson’s correlation coefficient ρ ≈ 0.999 when comparing the
resulting brain maps in presence and absence of fMRI volumes affected by head motion.

Figure S14. Effect of head motion in brain maps. We report the nodal spatial distributions obtained from the violating
triangles ∆v using the top- and bottom 15% hyper coherent frames when analysing the fMRI resting-state data in (a-b)
presence and (c-d) absence of fMRI volumes containing noisy fluctuations (head motion). When comparing the resulting brain
maps we obtain a Pearson’s correlation coefficient of ρ ≈ 0.999.
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S7. LOCAL HIGHER-ORDER INDICATORS IN REAL-WORLD SYSTEMS

S7.1. Role of thresholds in brain maps

In the main text, we have shown that the nodal strength obtained when projecting either the magnitudes of the
violating triangles ∆v or the homological scaffold on a nodal level might provide interesting information about the
group co-fluctuations of certain brain regions. In particular, since our goal was to characterize the higher-order
states with the largest level of synchronization, we isolated only the 15% high-coherent (resp. low-complex) frames.
Yet, in principle, a different percentage of selected peaks might translate into a distinct brain activation maps As a
consequence, in Fig. S15 we report the same brain maps as shown in the main text, yet we vary the percentage of
peaks selected.

Figure S15. Brain maps with different percentage of peaks. The nodal strength extracted from either the violating
triangles ∆v or the homological scaffold can be used to track the importance of higher-order structures in time. (a) Brain
maps of the nodes involved in higher-order co-fluctuations obtained when respectively isolating the 5, 10, 15% high-coherent
frames, which are those associated with a more synchronized dynamical phase. Interestingly, brain maps are highly consistent
across different values of thresholds. From a topological perspective, the nodal strength extracted from the homological scaffold
provides information about 1D loops in the space of co-fluctuations. (b) Brain maps obtained when respectively selecting the
5, 10, 15% low-hyper complexity frames reveal the consistent activation of the Default Mode Network. Indeed, also in this
case, the brain maps are mostly the same for different threshold values.

S7.2. Higher-order indicators in the brain’s functional networks

In this section, we consider the local higher-order indicators introduced in the main text to analyze the brain at
the level of the 7 functional Yeo networks [19] and subcortical regions. In particular, we project the normalized
magnitude of the violating triangles ∆v extracted from the 15% top hyper coherent frames and of the homological
scaffold extracted from the 15% low hyper complexity frames at the nodal and edge level. This provides us with
information about the most prominent functional networks when isolating a certain percentage of frames both at the
level of nodes and edges. Figure S16(a) reports the mean hyper coherence within- and between- the 7 functional
Networks plus subcortical regions, namely, the Visual (VIS), SomatoMotor (SM), Dorsal-Attention (DA), Ventral-
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Attention (VA), Limbic (L), FrontoParietal (FP), Default Mode Network (DMN), and subcortical regions (SUBC).
While the top boxplots (also shown in the main text) report the mean hyper coherence within the 7 functional
Networks, the entries of the matrix encode the mean hyper coherence within- and between- the 7 functional networks
and subcortical regions obtained when projecting ∆v at the level of their interacting edges. Notably, hyper coherent
interactions (i.e. the triangles) are mainly overrepresented in sensorimotor areas. By contrast, when analysing the
mean persistence of 1D holes considering the homological scaffold, we find that such loops are highly concentrated
around the DMN and FP areas, as shown in Fig. S16(b), mirroring the importance of such areas in integrating high
and low-order systems.

Figure S16. Mean within- and between higher-order indicators in the seven functional networks. For the two
local higher-order indicators considered in the main text, namely, (a) the list of violating triangles ∆v and (b) the homological
scaffold, we report the mean nodal strength and average edge strength within- and between- the 7 functional Networks and
subcortical regions, namely, the Visual (VIS), SomatoMotor (SM), Dorsal-Attention (DA), Ventral-Attention (VA), Limbic
(L), FrontoParietal (FP), Default Mode Network (DMN), and subcortical regions (SUBC). When analysing the list of violating
triangles ∆v, we find that activity patterns with emphasized synchronized co-fluctuations mainly reflect sensorimotor areas,
whereas the persistence of 1D holes obtained from homological scaffold are situated around the DMN and FP areas.

S7.3. Comparison of classifiers for the US historical data

In the main text, we reported the average accuracy score when considering the Support Vector Machine (SVM)
method applied to the classification problem of the US historical data of several infectious diseases at the US state-level.

In particular, we have considered the following set of features for the classification task: hyper coherence, the three
different contributes of hyper complexity, and the average edge violation. In Table S2, we report the scores of several
classifiers obtained when considering a 10-fold cross-validation repeated 50 times with different training-test data
partitions. The classifiers considered are: Gaussian naive Bayes (Gaussian NB), SVM using a Gaussian radial basis
function as kernel (RBF SVM), Decision Tree, random decision forest (Random Forest), and k-nearest neighbors
algorithm (k-NN, with k=5). Remarkably, the RBF SVM method, together with Random Forest, leads the pack with
the highest accuracy of 0.85. All the analysis reported were obtained using the scikit-learn 1.0.2 python library.
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Classifier Avg. accuracy F1 weighted score
Gaussian NB 0.47 0.43
RBF SVM 0.85 0.85

Decision Tree 0.81 0.81
Random Forest 0.85 0.85

k-NN 0.83 0.83

Table S2. Comparison of classifier scores. We report the average accuracy and F1 weighted scores for the classification of
the US historical data of several infectious diseases at the US state-level. We consider hyper coherence, avg. edge violations,
and the three different contributes of hyper complexity as features for our classification task. The classifiers considered are:
Gaussian naive Bayes (Gaussian NB), SVM using a Gaussian radial basis function as kernel (RBF SVM), Decision Tree, random
decision forest (Random Forest), and k-nearest neighbors algorithm (k-NN, with k=5).
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