
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 360, Number 5, May 2008, Pages 2681–2692
S 0002-9947(07)04437-6
Article electronically published on December 20, 2007

HIGHER ORDER PDE’S AND ITERATED PROCESSES

ERKAN NANE

Abstract. We introduce a class of stochastic processes based on symmet-
ric α-stable processes, for α ∈ (0, 2]. These are obtained by taking Markov
processes and replacing the time parameter with the modulus of a symmetric
α-stable process. We call them α-time processes. They generalize Brownian
time processes studied in Allouba and Zheng (2001), Allouba (2002), (2003),
and they introduce new interesting examples. We establish the connection of
α-time processes to some higher order PDE’s for α rational. We also obtain the
PDE connection of subordinate killed Brownian motion in bounded domains
of regular boundary.

1. Introduction

The link between concepts from probability and partial differential equations
(PDE’s) helped solve problems in analysis or find easier and shorter proofs for
well-known results. Researchers have been fascinated by these kinds of links. The
classical well-known connection of a PDE and a stochastic process is the Brownian
motion and heat equation connection. Let Xt ∈ R

n be the Brownian motion started
at x. Then the function

u(t, x) = Ex[f(Xt)]

solves the Cauchy problem

∂

∂t
u(t, x) = ∆u(t, x), t > 0, x ∈ R

n,

u(0, x) = f(x), x ∈ R
n.

In recent years, starting with the articles of Burdzy [4, 5], researchers had interest
in iterated processes in which one changes the time parameter with one-dimensional
Brownian motion; see [1, 3, 4, 5, 6, 9, 10, 12, 16] and references there in. The
connections of iterated Brownian motion (IBM) Zt = X(Yt), where X is a two-sided
Brownian motion and Y is another Brownian motion independent of X, and the
biLaplacian have been found by Allouba and Zheng [1] in (2001) and by DeBlassie
[9] in (2004). They showed that the function

u(t, x) = Ex[f(Zt)]
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solves the Cauchy problem
∂

∂t
u(t, x) =

∆f(x)√
πt

+ ∆2u(t, x), t > 0, x ∈ R
n,

u(0, x) = f(x), x ∈ R
n.

The non-Markovian property of IBM is reflected by the appearance of the initial
function f(x) in the PDE.

The results in the above mentioned articles are a motivation for us to define and
study our processes in this paper. Our aim in this paper is twofold. In the first part
we define α-time processes and study their PDE connection. In the second part,
we study the PDE connection of subordinate killed Brownian motion over bounded
domains of regular boundary.

In analogy with the Brownian time processes (BTP)’s studied in [1, 2], we define
the ‘α-time’ processes and establish the connection of these processes to several
higher order PDE’s. Since the time clock that will replace ordinary time is a
symmetric α-stable process, we first give the general definition for these processes.

The n-dimensional symmetric stable process Xt with index α ∈ (0, 2] is the
process with stationary independent increments whose transition density

pα
t (x, y) = pα(t, x − y), (t, x, y) ∈ (0,∞) × R

n × R
n,

is characterized by the Fourier transform∫
Rn

eiy.ξpα(t, y)dy = exp(−t|ξ|α), t > 0, ξ ∈ R
n.

The process has right continuous paths, and it is rotation and translation invariant.
For α = 2, this is Brownian motion.

We now give the definitions of α-time processes and some other iterated pro-
cesses. Let α ∈ (0, 2]. Let Y (t) be a 1-dimensional α-stable process independent of
the continuous Markov process Xx(t), started at 0, and define the ‘α-time’ process
αTP by Zx

Y (t) := Xx(|Y (t)|). Similarly, we define kEαTP the excursions based
‘α-time’ process Zx,k

Y,c ; from αTP’s by breaking up the path of |Y (t)| into excursion
intervals-maximal intervals (r, s) of time on which |Y (t)| > 0-and, on each such
interval, we pick an independent copy of the Markov process Xx from a finite or an
infinite collection. Let Xx,1(t) · · ·Xx,k(t) be independent copies of Xx(t) starting
from the point x. On each excursion interval of |Y (t)| use one of the k copies chosen
at random. For α = 2, these are the Brownian time processes defined in [1, 2, 3].
When the outer Markov process is a Brownian motion, α = 2 and k = 2, this is the
famous iterated Brownian motion of Burdzy [4]. We will study PDE connection of
these processes extensively in sections 2-3.

In section 4, we will study subordinate killed Brownian motion, which can be
realized as a composition of Brownian motion killed on the boundary of regular
domain and a subordinator. Let D ⊂ R

n be a bounded domain and let XD
t be

the Brownian motion killed upon exiting D. The subordinate killed Brownian
motion ZD

t is defined as the process obtained by subordinating XD via the α/2-
subordinator Tt. More precisely, let ZD

α = XD(Tt), t > 0. Then ZD
α is a Hunt

process on D. If we use (PD
t )t≥0 to denote the semigroup of XD, then the semigroup

Qα
t of ZD

α is given by

Qα
t f(x) =

∫ ∞

0

PD
s f(x)uα/2

t (s)ds.
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Potential theory of this process has been studied by R. Song and Z. Vodrac̆ek
in [15] over Lipschitz domains and C1,1 domains. In particular, they established
intrinsic ultraconractivity of the semigroup of this process and bounds on the Green
function and the jumping kernel.

R. Song in [14] established sharp bounds on the density, Green function and the
jumping function of subordinate killed Brownian motion. For other properties of
subordinate killed Brownian motion check the references in [14] and [15].

Our proofs follow the main ideas of Allouba and Zheng [1], Allouba [2, 3] and
DeBlassie [8], with some crucial changes (see Lemma 3.1 and Lemma 3.3). Our main
contribution is seeing that Markov processes can be subordinated by symmetric
stable processes to give new interesting types of processes. The new technique in
our proofs is using higher order PDE’s satisfied by transition density of symmetric
α-stable processes for α rational, Lemma 3.2: for example transition density of a
real-valued Cauchy process satisfies wave equation.

The paper is organized as follows. We give the main results and proofs of PDE
connection of α-time processes in §2. We collect some useful lemmas in §3. In §4,
we study the PDE connection of subordinate killed Brownian motion in bounded
domains of regular boundary.

2. α-time processes

The first PDE connection of ‘α-time’ processes is the following. When α = 1,
we call this process a Cauchy-time process (CTP) and denote it by Zx

C(t), for C(t)
a real-valued Cauchy process.

Theorem 2.1. Let Tsf(x) = E[f(Xx(s))] be the semigroup of the continuous
Markov process Xx(t) and let A be its generator. Let α = 1. Let f be a bounded
measurable function in the domain of A, with Dijf bounded and Hölder continuous
for all 1 ≤ i, j ≤ n. If u(t, x) = E[f(Zx,k

C,c(t))] for any k ∈ N, then u solves

∂2

∂t2
u(t, x) = −2Af(x)

πt
− A2u(t, x), t > 0, x ∈ R

n,(2.1)

u(0, x) = f(x), x ∈ R
n,

where the operator A acts on u(t, x) as a function of x with t fixed. In particular,
if Xx(t) is Brownian motion started at x and ∆ is the standard Laplacian, then u
solves

∂2

∂t2
u(t, x) = −2∆f(x)

πt
− ∆2u(t, x), t > 0, x ∈ R

n,(2.2)

u(0, x) = f(x), x ∈ R
n.

Remark 2.1. Notice the effect of the initial function is different than the Brownian
motion heat equation case; it is very similar to the effect of the initial function in
IBM-PDE connection. The appearance of the initial function in the PDE reflects
the non-Markovian property of the iterated processes. This PDE is very similar
to the one in [1, Theorem 0.1] in that this has the same order space derivatives
(i.e. Laplacian and biLaplacian), but on the other hand this has second order time
derivative and the coefficients are different.

Proof. We first consider the process Zx
C . We use the representation

u(t, x) = E[f(Zx
C(t))] = 2

∫ ∞

0

p1
t (0, s)Tsf(x)ds,
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where p1
t (0, s) = t

π(s2+t2) is the transition density of the Cauchy process on R.
Using dominated convergence and the fact that p1

t (0, s) satisfy

(
∂2

∂s2
+

∂2

∂t2
)p1

t (0, s) = 0,

we obtain

∂2

∂t2
E[f(Zx

C(t))] = 2
∫ ∞

0

∂2

∂t2
p1

t (0, s)Tsf(x)ds

= 2
∫ ∞

0

− ∂2

∂s2
p1

t (0, s)Tsf(x)ds.(2.3)

We now integrate by parts twice and observe that boundary terms always vanish
at ∞ (as s → ∞) and we have ∂

∂sp1
t (0, 0) = 0, but p1

t (0, 0) > 0. Thus

∂2

∂t2
E[f(Zx

C(t))] = 2
∫ ∞

0

∂

∂s
p1

t (0, s)
∂

∂s
Tsf(x)ds

= −2p1
t (0, 0)Af(x) − 2

∫ ∞

0

p1
t (0, s)A2Tsf(x)ds.

Taking the application of A2 outside the integral using the conditions on f and
Dijf by Lemma 3.1 we get

∂2

∂t2
u(t, x) = −2p1

t (0, 0)Af(x) − A2u(t, x).

For the other processes, by similar arguments as in Theorem 0.1 in Allouba and
Zheng [1], considering the excursion intervals of |C(t)| we have

E[f(Zx
C(t))] = E[f(Zx,k

C,c(t))].

We provide the argument in Allouba and Zheng for completeness. Let e−(t) be
the |C(t)|-excursion immediately preceding the excursion straddling t, e(t), on the
condition that we pick the jth copy of Xx on e−(t) (uniformly among the k copies
of Xx), using the independence of the process Xx,j on e−(t) from C(t) and from
the following choice of Xx copy on e(t) to get

E[f(Zx,k
C,c(t))] = 2

k∑
j=1

∫ ∞

0

p1
t (0, s)Tsf(x)P [picking the jth copy on e−(t)]ds

=
2
k

k∑
j=1

∫ ∞

0

p1
t (0, s)Tsf(x)ds = 2

∫ ∞

0

p1
t (0, s)Tsf(x)ds

= E[f(Zx
C(t))].(2.4)

This concludes the proof of Theorem 2.1. �

Next, we solve a similar PDE as in [2, Theorem 1.2] which is obtained by run-
ning an ε-scaled CTP and averaging the product of f(Zx,k

εC,c(t)) with the negative
exponential of |C(t)|/ε, for C(t) a real-valued Cauchy process. This looks like the
Feynman-Kac formula when ε = 1. We state this theorem since it is a step towards
the probabilistic study of Linearized Cahn-Hilliard and Kuramoto-Sivashinsky type
PDE’s as in [2].
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Theorem 2.2. Under the same conditions on f as in Theorem 2.1, and for ε > 0,
if

(2.5) uε(t, x) = E

[
f(Zx,k

εC,c(t)) exp
(
−|C(t)|

ε

)]
for any k ∈ N, then uε solves⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2

∂t2 uε(t, x) = − 2
πt

[
εAf(x) − 1

ε f(x)
]
− 1

ε2 uε(t, x)

+2Auε(t, x) − ε2A2uε(t, x), t > 0, x ∈ R
n,

uε(0, x) = f(x) = limt↓0, y→x uε(t, y), x ∈ R
n.

In particular, If the outer process Xx in (2.5) is a Brownian motion, then uε(t, x)
solves⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2

∂t2 uε(t, x) = − 2
πt

[
ε∆f(x) − 1

ε f(x)
]
− 1

ε2 uε(t, x)

+2∆uε(t, x) − ε2∆2uε(t, x), t > 0, x ∈ R
n,

uε(0, x) = f(x) = limt↓0, y→x uε(t, y), x ∈ R
n.

Remark 2.2. This time the initial function affects the PDE differently (i.e. through
both f and Af). We also comment that the last two terms in the PDE (the
bi-Laplacian and the Laplacian of the solution uε) look like those in a linearized
Cahn-Hilliard equation with the correct ε-scaling, but with the opposite sign for ∆.

Proof. It is enough to prove the CTP case. Let

(2.6) uε(t, x) = E

[
f(Zx

εC(t)) exp
(
−|C(t)|

ε

)]
and

(2.7) vε(s, x) = E
[
f(Xx(εs)) exp

(
−s

ε

)]
= exp

(
−s

ε

)
Tεsf(x).

We then have

(2.8) uε(t, x) = 2
∫ ∞

0

vε(s, x)p1
t (0, s)ds.

The rest of the proof is similar to the proof of Thereom 1.2 in Allouba [2]. �

The next result gives a Feynman-Kac type formula for CTP’s and connects it to
fourth order PDE’s.

Theorem 2.3. Assume that f, c : R
n → R are bounded, c ≤ 0, and Dijf and Dijc

are bounded and Hölder continuous with exponent 0 < β ≤ 1, for 1 ≤ i, j ≤ n. If
the |Di,jv(s, x)| ≤ KT , for all (s, x) ∈ [0, T ] × R

n, for any time T > 0, for all i, j,
where KT > 0 is a constant depending only on T and

(2.9) v(s, x) = E

[
f(Xx(s)) exp

(∫ s

0

c(Xx(r))dr

)]
where Xx is an n−dimensional Brownian motion starting at x, then

(2.10) u(t, x) = E

[
f(Zx

C(t)) exp

(∫ |C(t)|

0

c(Xx(r))dr

)]
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solves

(2.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂t2 u(t, x) = − 2
πt [∆f(x) + c(x)f(x)]

−
[
∆c(x) + c2(x)

]
u(t, x) − 2∇c(x).∇u(t, x)

−c(x)∆u(t, x) − ∆2u(t, x), t > 0, x ∈ R
n,

u(0, x) = f(x) = limt↓0, y→x u(t, y), x ∈ R
n.

Remark 2.3. Again the effect of the initial function is through ∆ and ∆2. The
effect of the initial function fades away as t → ∞ at a rate of 2/πt.

Proof. Let u and v be defined as in (2.10) and (2.9), respectively. Then

(2.12) u(t, x) = 2
∫ ∞

0

p1
t (0, s)v(s, x)ds.

Since Xx is a Brownian motion starting at x, we have

(2.13)
∂

∂s
v(s, x) = ∆v(s, x) + c(x)v(s, x), in (0,∞) × R

n.

The rest of the proof is similar to the proof of Thereom 1.3 in Allouba [2]. �

Now we define an iterated process motivated by the article of Allouba [3] that
leads to the study of Linearized Kuramoto-Sivashinsky PDE. We call the process an
imaginary-Cauchy-time-Brownian-angle process (ICTBAP). The definition needs
the introduction of complex imaginary number i =

√
−1.

Let f : R
n → R

Bf,X
C (t, x) =

{
f(Xx(iC(t))) exp(iC(t)), C(t) ≥ 0,
f(X−ix(−iC(t))) exp(iC(t)), C(t) < 0.

where Xx is an R
n-valued Brownian motion starting from x ∈ R

n, X−ix is an
independent iRn-valued BM starting at −ix, and both are independent of the inner
R-valued Cauchy process C. We think of the imaginary-time processes {Xx(is), s ≥
0} and {iX−ix(−is), s ≤ 0} as having the same complex Gaussian distribution on
R

n with the corresponding complex distributional density

pn
is(x, y) =

1
(4πis)n/2

e−|x−y|2/4is.

The space derivative terms in the PDE in the following theorem is the same as
in a linearized Kuramoto-Sivashinsky PDE.

Theorem 2.4. Let f ∈ C2
c (Rn; R) with Dijf Hölder continuous with exponent

0 < β ≤ 1, for all 1 ≤ i, j ≤ n. Let

v(s, x) = exp(is)
∫

Rn

f(y)
1

(4πis)n/2
e−|x−y|/4isdy,

u(t, x) =
∫ 0

−∞
v(s, x)p1

t (0, s)ds +
∫ ∞

0

v(s, x)p1
t (0, s)ds,

where
p1

t (0, s) =
t

π(s2 + t2)
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is the transition density of the inner (one-dimensional) Cauchy process. Then
u(t, x) solves⎧⎨

⎩
∂2

∂t2 u(t, x) = ∆2u(t, x) + 2∆u(t, x) + u(t, x), t > 0, x ∈ R
n,

u(0, x) = f(x), x ∈ R
n.

Proof. We comment that

v(s, x) = E[f(Xx(is)) exp(is)]

and
u(t, x) = E[Bf,X

C (t, x)].

The proof is the same as in [3] except that the start point p1
t (0, s) satisfies

(
∂2

∂s2
+

∂2

∂t2
)p1

t (0, s) = 0,

which explains the sign change from Theorem 1.1 in [3]. We can differentiate under
the integral by Lemma 2.1 in [3] and Lemma 3.1. The rest of the proof is similar
to the proof of Thereom 1.1 in Allouba [3]. �

For α 	= 1, the PDE is more complicated since kernels of symmetric α-stable
processes satisfy a higher order PDE. We also have to assume that we can integrate
under the integral as much as we need in the case where the outer process is BM (or
in general we can take the operator out of the integral). This is valid for α = 1/m,
m = 2, 3, · · · , by Lemma 3.3 below.

Theorem 2.5. Let α ∈ (0, 2) be rational α = l/m, where l and m are relatively
prime. Let Tsf(x) = E[f(Xx(s))] be the semigroup of the continuous Markov
process Xx(t) and let A be its generator. Let f be a bounded measurable function
in the domain of A, with Dγf bounded and Hölder continuous for all multi-index γ

such that |γ| = 2l. If u(t, x) = E[f(Zx,k
Y,c (t))] for any k ∈ N, then u solves the PDE

(−1)l+1 ∂2m

∂t2m
u(t, x) = −2

l∑
i=1

(
∂2l−2i

∂s2l−2i
pα

t (0, s)|s=0

)
A2i−1f(x)

− A2lu(t, x), t > 0, x ∈ R
n,

u(0, x) = f(x), x ∈ R
n,

where the operator A acts on u(t, x) as a function of x with t fixed. In particular,
if Xx(t) is Brownian motion started at x and ∆ is the standard Laplacian, then u
solves

(−1)l+1 ∂2m

∂t2m
u(t, x) = −2

l∑
i=1

(
∂2l−2i

∂s2l−2i
pα

t (0, s)|s=0

)
∆2i−1f(x)

− ∆2lu(t, x), t > 0, x ∈ R
n,

u(0, x) = f(x), x ∈ R
n.

Proof. We use the representation

u(t, x) = E[f(Zx
Y (t))] = 2

∫ ∞

0

pα
t (0, s)Tsf(x)ds
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and the fact that the transition density of the process Y (t) satisfies[
(

∂2

∂s2
)l + (−1)l+1(

∂2m

∂t2m
)
]

pα
t (0, s) = 0, (t, x) ∈ (0,∞) × R

n,

from Lemma 3.2. Then, we use integration by parts, as many as needed, to pass
the s derivatives to Tsf(x) from pα

t (0, s). The boundary terms are all zero at ∞
(as s goes to ∞). Also, all the odd s derivatives of pα

t (0, s) at 0 are zero. �

3. Useful lemmas

We start with a result that is useful in taking the derivative under the integral.
With the following lemma we can now establish similar results to the ones in [1]
and [2].

Lemma 3.1. Let Xx be an n−dimensional Brownian motion starting at x, and
let f, g : R

n → R be bounded and measurable such that Dijf and Dijg are Hölder
continuous, with exponent 0 < β ≤ 1, for 1 ≤ i, j ≤ n. Let

u1(t, x) =
∫ ∞

0

E[f(Xx(s))]p1
t (0, s)ds,

u2(t, x) =
∫ t

0

∫ ∞

0

E[g(Xx(s))]p1
t (0, s)dsdr.

Then ∆2u1(t, x) and ∆2u2(t, x) are finite and

∆2u1(t, x) =
∫ ∞

0

∆2E[f(Xx(s))]p1
t (0, s)ds,

∆2u2(t, x) =
∫ t

0

∫ ∞

0

∆2E[g(Xx(s))]p1
t (0, s)dsdr.

Proof. The proof follows from the proof of Lemma 2.1 in [2] with only changing the
density of time process

p1
t (0, s) =

t

π(s2 + t2)
,

which is the transition density of the real-valued Cauchy process. Our results follow
from the facts ∫ ∞

0

p1
t (0, s)s1−β/2ds =

∫ ∞

0

t

π(s2 + t2)s1−β/2
ds < ∞

and ∫ t

0

∫ ∞

0

p1
r(0, s)/s1−β/2dsdr =

∫ t

0

∫ ∞

0

r

π(s2 + r2)s1−β/2
dsdr < ∞.

�
For α ∈ (0, 2) and α 	= 1, we have the following lemma from DeBlassie [8,

Theorem 1.1].

Lemma 3.2. Let α = l/m with l, m relatively prime. The transition density
pα

t (x, y) of the α-stable process satisfies the PDE for y fixed

(∆l + (−1)l+1 ∂2m

∂t2m
)pα

t (x, y) = 0, (t, x) ∈ (0,∞) × R
n.

The next lemma allows us to take the bi-Laplacian out of the integral in Theorem
2.5 for some values of the index of the symmetric stable process.
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Lemma 3.3. Let Xx be an n−dimensional Brownian motion starting at x, and let
f : R

n → R be bounded and measurable such that Dijf is Hölder continuous, with
exponent 0 < β ≤ 1, for 1 ≤ i, j ≤ n. Let α = 1/m, m = 2, 3, · · · , and

u(t, x) =
∫ ∞

0

E[f(Xx(s))]pα
t (0, s)ds.

Then ∆2u(t, x) is finite and

∆2u(t, x) =
∫ ∞

0

∆2E[f(Xx(s))]pα
t (0, s)ds.

Proof. The proof follows similarly to the proof of Lemma 3.1, by showing that∫ ∞

0

pα
t (0, s)s1−β/2ds =

∫ ∞

0

∫ ∞

0

pl(0, s)uα/2
t (l)

s1−β/2
dlds < ∞.

Above we use the fact that

pα
t (0, s) =

∫ ∞

0

pl(0, s)uα/2
t (l)dl,

where pl(0, s) is the density of real-valued Brownian motion, and u
α/2
t (l) is the

density of the α/2 subordinator (see [8] for this representation and the bounds for
integrals of u

α/2
t (l)). �

4. Subordinate killed Brownian motion

Let D ⊂ R
n be a bounded domain and let XD

t be the Brownian motion killed
upon exiting D. The subordinate killed Brownian motion ZD

t is defined as the
process obtained by subordinating XD via the α/2-subordinator Tt. More precisely,
let ZD

α = XD(Tt), t > 0. Then ZD
α is a Hunt process on D. If we use (PD

t )t≥0 to
denote the semigroup of XD, then the semigroup Qα

t of ZD
α is given by

Qα
t f(x) =

∫ ∞

0

PD
s f(x)uα/2

t (s)ds.

The following theorem establishes the PDE connection of subordinate killed
Brownian motion.

Theorem 4.1. Let 0 < α = k
m < 2 where k, m are relatively prime integers. Let

f : D → R be a bounded function. Then u(t, x) = Qα
t f(x) solves the following

PDE: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆ku(t, x) + (−1)k+1 ∂2m

∂t2m u(t, x) = 0, (t, x) ∈ (0,∞) × D,

u(0, x) = f(x), x ∈ D,

u(t, x) = 0, x ∈ ∂D.

To prove Theorem 4.1, we need a passing derivative under the integral lemmas.

Lemma 4.1. Let u(t, x) be as in Theorem 4.1; then

∆ku(t, x) =
∫ ∞

0

∆k
xPD

s f(x)uα/2
t (s)ds.
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Proof. We know that

∆kPD
s f(x) =

∞∑
l=1

(−λl)ke−sλlϕl(x)
∫

D

ϕl(y)dy.

Now

∆ku(t, x) =
∫ ∞

0

∆kPD
s f(x)uα/2

t (s)ds

=
∞∑

l=1

(−λl)kϕl(x)
∫

D

ϕl(y)dy

∫ ∞

0

e−sλlu
α/2
t (s)ds

=
∞∑

l=1

(−λl)ke−t(λl)
α/2

ϕl(x)
∫

D

ϕl(y)dy,(4.1)

where (4.1) follows because the Laplace transform of the density of Tt is∫ ∞

0

e−sλu
α/2
t (s)ds = e−tλα/2

, for λ > 0.

This last series is absolutely and uniformly convergent. Indeed let δ > 0; since
pD

s (x, y) ≤ (4πs)−n/2, for all s > 0 we see that

|e−sλlϕl(x)| = |
∫

D

pD
s (x, y)ϕl(y)dy|

≤ (4πs)−n/2||ϕl||2(vol(D))1/2

= (4πs)−n/2(vol(D))1/2.

Taking s = 1/λl gives that

|ϕl(x)| ≤ e(4π)−n/2λ
n/2
l [vol(D)]1/2,

for all x ∈ D. Now since the volume of the domain D is finite, there exists C > 0
such that

∞∑
l=1

(−λl)ke−t(λl)
α/2

ϕl(x)
∫

D

ϕl(y)dy ≤ C

∞∑
l=1

e−δλ
α/2
l /2,

for all (t, x) ∈ [0,∞)×D and since the last series is convergent by Weyl’s asymptotic
lemma (see [7]) we have cn,Dln/2 ≤ λl where cn,D is a constant that depends on n
and the volume of the domain D. �

Lemma 4.2. Suppose f is bounded. Set u(t, x) = Qα
t f(x). Then for any integer

q ≥ 0,

(4.2)
∂q

∂tq
u(t, x) =

∫
D

∫ ∞

0

f(y)pD
s (x, y)

∂q

∂tq
u

α/2
t (s)dsdy.

Proof. The proof is the same as in Lemma 2.1 in [8] almost word for word except
we use the fact that

∫
D

pD
s (x, y)dy = 1. �

The next lemma is Lemma 3.1 in [8]; we give it for completeness.

Lemma 4.3. Let α = k/m. For s and t,(
∂k

∂sk
− ∂2m

∂t2m

)
u

α/2
t (s) = 0.
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Proof of Theorem 4.1. We first apply Lemma 4.1, then integration by parts repeat-
edly, and appealing equations (2.7)-(2.10) in [8], we see the boundary terms are all
0:

∆ku(t, x) =
∫

D

∫ ∞

0

f(y)∆k
xpD

s (x, y)uα/2
t (s)dsdy

=
∫

D

∫ ∞

0

f(y)
[

∂k

∂sk
pD

s (x, y)
]

u
α/2
t (s)dsdy

=
∫

D

−f(y)
∫ ∞

0

[
∂k−1

∂sk−1
pD

s (x, y)
]

∂

∂s
u

α/2
t (s)dsdy

= · · · = (−1)k

∫
D

∫ ∞

0

f(y)pD
s (x, y)

∂k

∂sk
u

α/2
t (s)dsdy.

By Lemma 4.2,

∂q

∂tq
u(t, x) =

∫
D

∫ ∞

0

f(y)pD
s (x, y)

∂q

∂tq
u

α/2
t (s)dsdy.

So we get

∆ku(t, x) + (−1)k+1 ∂2m

∂t2m
u(t, x) =

∫
D

∫ ∞

0

f(y)
[
(−1)k ∂

∂sk
u

α/2
t (s)

+ (−1)k+1 ∂2m

∂t2m
u

α/2
t (s)

]
pD

s (x, y)dsdy

= 0, by Lemma 4.3.

Now using dominated convergence theorem, we see that the boundary conditions
are satisfied. �
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