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Higher-Order Permanent Scatterers Analysis

Alessandro Ferretti

Tele-Rilevamento Europa S.r.l. (TRE), via Vittoria Colonna 7, 20149 Milano, Italy

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: alessandro.ferretti@treuropa.com

Marco Bianchi

Tele-Rilevamento Europa S.r.l. (TRE), via Vittoria Colonna 7, 20149 Milano, Italy
Email: marco.bianchi@treuropa.com

Claudio Prati

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: prati@elet.polimi.it

Fabio Rocca

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: rocca@elet.polimi.it

Received 25 September 2004; Revised 27 December 2004

The permanent scatterers (PS) technique is a multi-interferogram algorithm for DInSAR analyses developed in the late nineties to
overcome the difficulties related to the conventional approach, namely, phase decorrelation and atmospheric effects. The successful
application of this technology to many geophysical studies is now pushing toward further improvements and optimizations. A
possible strategy to increase the number of radar targets that can be exploited for surface deformation monitoring is the adoption
of parametric super-resolution algorithms that can cope with multiple scattering centres within the same resolution cell. In fact,
since a PS is usually modelled as a single pointwise scatterer dominating the background clutter, radar targets having cross-range
dimension exceeding a few meters can be lost (at least in C-band datasets), due to geometrical decorrelation phenomena induced
in the high normal baseline interferograms of the dataset. In this paper, the mathematical framework related to higher-order SAR
interferometry is presented as well as preliminary results obtained on simulated and real data. It is shown how the PS density can
be increased at the price of a higher computational load.

Keywords and phrases: RADAR remote sensing, synthetic aperture RADAR, interferometric applications, permanent scatterer
analysis.

1. INTRODUCTION

Differential SAR interferometry (DInSAR) is a remote sens-
ing technology capable of measuring possible displacements
of radar targets along the line of sight (LOS) by computing
the difference of the phase values of two SAR scenes gathered
at different times over the same area of interest [1, 2, 3, 4, 5].
As well known, interferometric data can be used to recover
high-resolution topographic profiles (acquiring data pairs
from slightly different looking angles) [6] or to highlight
possible surface deformation phenomena (compensating the

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

phase data for the local topography and the two acquisi-
tion geometries) [1]. Since SAR systems operate in the mi-
crowave domain (typically the operating frequency is within
the 1–10 GHz band), even subcentimetre range variations
generate phase shifts that can be detected by the sensor, thus
providing—at least theoretically—a powerful tool for precise
geodetic surveys over large areas.

During the last decade the availability of an increasing
number of satellite SAR data suitable for interferometric ap-
plications, and in particular the historical archive built by
the ESA missions ERS-1 (1991–2001), ERS-2 (1995), and
Envisat (2001), created major interest in different scientific
communities [7, 8, 9, 10]. First successes in detecting and
measuring surface deformation phenomena from space, re-
lated to volcanic activity [7] or seismic-related events [8],
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were welcome by geophysicists, volcanologists, and seismol-
ogists as a big step toward the development of new early-
warning tools based on remote-sensed data. However, later
studies highlighted also the limits of DInSAR technology, and
dampened somewhat the initial enthusiasm of both the geo-
physical and remote-sensing communities [2, 5]. Problems
related to temporal and geometrical decorrelation (i.e., re-
flectivity changes as a function of time and incidence angle of
the acquisition [11]) as well as atmospheric artefacts (due to
the different tropospheric and ionospheric conditions at the
time of the SAR acquisitions [5]) were encountered in almost
all real-life applications, pushing toward the development of
more sophisticated techniques aimed at getting precise and
reliable displacement information at least on a subset of im-
age pixels [12, 13, 14, 15, 16, 17, 18].

Whenever enough images are available, DInSAR limita-
tions can be overcome by adopting a multi-interferogram
framework. The permanent scatterers (PS) technique [12, 13,
14], developed in the late nineties at Politecnico di Milano,
takes advantage of long temporal series of SAR data, acquired
over the area of interest along the same (nominal) satellite or-
bit, to filter out atmospheric artefacts and to identify a subset
of image pixels where high-precision measurements can be
carried out. These pixels, almost unaffected by temporal and
geometrical decorrelation (usually but not necessarily corre-
sponding to man-made objects), are called permanent scat-
terers (PS) [12, 13]. The technique has been applied success-
fully to a number of applications from subsidence [13] and
volcano monitoring [19] to slow-landslide detection [12, 20]
and is currently used for both research and commercial ac-
tivities.

The PS analysis can be divided into two processing steps.
First the so-called atmospheric phase screen (APS) is es-
timated and removed from every interferogram; this task
can be performed by exploiting the different statistical be-
haviours of the atmospheric and motion phase components
[12, 13, 14]. Then a pixel-by-pixel analysis is carried out,
searching for all PS available in the area of interest and jointly
estimating their elevation (with respect to the local ellipsoid)
and the time series of their LOS displacements.

Although the algorithms adopted for the first processing
phase (i.e., APS removal) are rather complex, the mathemat-
ical framework used for the estimation of the unknown pa-
rameters (i.e., PS elevation and motion components) is sim-
ple. All interferograms are generated, after data resampling,
using a common master scene selected within the dataset
available. Each interferogram is characterized by a tempo-
ral and geometrical baseline. The PS is modelled as a domi-
nant pointwise scatterer within its resolution cell, unaffected
by temporal and geometrical decorrelation. Interferometric
phase values can then be easily related to PS elevation (via the
normal baseline of the interferogram) and target displace-
ment (via the temporal baseline) [12].

Due to the adoption of a first-order scattering-centre
model, amplitude data relative to the same image pixel are
not used in the analysis, since they are supposed to be
independent of time and aspect angle of the acquisition.
This simplifies the mathematical framework, since it involves

(wrapped) phase data only and reduces the computational
load. Of course different models, usually polynomial, can be
applied to the displacement time series (phase data), depend-
ing on the application at hand and the number of available
images. A PS is said to be detected whenever the dispersion of
the phase residues with respect to the phase model is below a
certain threshold.

A possible limitation of this strategy is related to the
model adopted for the detection of coherent targets (i.e., tar-
gets unaffected by phase decorrelation). Since baseline dis-
persion of satellite datasets available today is usually greater
than 400 m [14], coherent radar targets having cross-range
dimension greater than a few meters, for C-band sensors
[12], can be lost (i.e., not labelled as PS), even though their
radar signature does not actually change with time, that is,
no temporal decorrelation phenomena affect the target. Re-
flectivity changes as a function of the variations of the look-
ing angle of the SAR acquisition (proportional to the normal
baseline) can then limit the number of measurement points
identified by the conventional PS analysis, especially in unfa-
vorable datasets characterised by high dispersion of the nor-
mal baseline values.

In this paper, a possible generalization of the framework
adopted by the PS approach, and more generally to multi-
interferogram DInSAR analysis, is presented, allowing the
extraction of more information relative to the area of interest.
Instead of considering a single scattering centre, higher-order
models involving two or more scattering centres within the
resolution cell are adopted (super-resolution framework),
thus relaxing the geometrical constraints imposed to the
radar target to behave as a PS. For the sake of simplicity, this
paper will focus on the second-order model (two scattering
centres), although the same mathematical framework, with
minor changes, can be extended to higher-order models.

This approach is somewhat complimentary to the tomo-
graphic formulation presented in [21] using airborne SAR
data. The multibaseline tomographic SAR processing dis-
cussed in [21] is an algorithm to recover a three-dimensional
(3D) image from a set of 2D acquisitions gathered over the
same area from slightly different looking angles, based on the
projection slice theorem and a Fourier analysis. The follow-
ing sections present a procedure aiming at the same goal, but
adopting a parametric model where no data interpolation is
carried out before the estimation of the unknown parame-
ters. It should be noted that the scattering-centre representa-
tion is often used by the radar community, in particular for
radar target identification [22], and it is therefore a rather
natural option in processing microwave images. Moreover,
the superiority of parametric methods for solving layover ef-
fects from complex topography has already been highlighted
in the numerical simulations carried out in [23, 24].

This paper is organized as follows. In Section 2, the math-
ematical framework and the novel model for PS analysis,
along with the notation adopted through the paper, are pre-
sented. Section 3 is devoted to the solution of the inverse
problem related to the estimation of the unknown param-
eters of the scattering centres, outlining a possible strategy
to cope with overfitting problems and model order selection.



Higher-Order PS Analysis 3233

Sections 4 and 5 describe the results obtained using simu-
lated and real data respectively. Finally, Section 6 gives the
conclusions and summarizes ongoing efforts.

2. SIGNAL MODEL

Let N + 1 be the number of SAR images available acquired
over the same area of interest with a common acquisition ge-
ometry. Following the PS approach presented in [12, 13, 14],
data are first coregistered on a unique master and N differ-
ential interferograms between all SAR images and the mas-
ter are computed using a reference digital elevation model
(DEM) of the area (at worst just the WGS84 ellipsoid) and
the satellite state vectors describing the acquisition geome-
try of the multitemporal dataset. For the sake of simplicity,
we will suppose that atmospheric phase components super-
imposed on the data have been successfully removed using
one of the strategies proposed in [12, 13], however similar
considerations hold for phase differences between two nearby
pixels, where the impact of APS is strongly reduced due to its
low-frequency behaviour (the correlation length of the APS
is usually greater than 1-2 km [5]).

2.1. First-order model

According to the hypothesis that a PS can be modelled as a
single dominant target within the SAR resolution cell, the
amplitude value of the signal backscattered by the target is
independent of time and looking angle of the SAR acquisi-
tion, while the phase value φ of the ith interferogram relative
to pixel P in the image can be modeled as

φ
(
P, ti

)
= µ

(
P, ti

)
+Ci

DEMε(P) +η
(
P, ti

)
, i = 1, . . . ,N , (1)

where ti is the temporal baseline of the ith interferogram,
µ(P, ti) is the phase component due to a possible LOS dis-
placement of the PS, η(P, ti) takes into account phase noise
and any atmospheric leakage, ε(P) is the PS elevation with
respect to the reference DEM, and Ci

DEM is proportional to
the normal baseline Bi of the interferogram:

Ci
DEM =

4πBi

λR sin θ
≡

Ai
DEM

sin θ
, (2)

where λ is the wavelength of the sensor (5.6 cm for ESA and
RADARSAT sensors), R is the sensor-to-target distance, and
θ is the local incidence angle of the illuminating radiation.
The Ai

DEM coefficient in the equation above will be used later
on.

Time series analysis of the first term in (1) should reflect
target motion. To simplify the notation, but without loss of
generality, in the following a constant-velocity model will be
adopted (a uniform strain rate hypothesis is often used in
geophysical modelling):

µ
(
P, ti

)
=

4π

λ
v(P)ti = Ci

vv(P), (3)
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Figure 1: Geometrical schematization of the problem under study.
An N-sensor array receives signal from two (or more) sources. B
and x are cross-range coplanar axes normal to the azimuth direction
(see also Figure 2).

where v(P) is the velocity of the scattering centre within the
resolution cell.

From the above considerations, we can finally write the
model of the interferometric phase of each interferogram:

φ
(
P, ti

)
= Ci

vv(P) +Ci
DEMε(P) +η

(
P, ti

)
, i = 1, . . . ,N. (4)

As discussed in [12, 13], the two unknown parameters v and
ε can be estimated jointly maximizing the (first-order) phase
coherence function:

γI(P) =
1

N

∣∣∣∣∣
N∑

i=1

e jφdata,ie− jφmodel,i

∣∣∣∣∣, (5)

where φmodel,i is computed according to (4). Coherence val-
ues range from 0 to 1 as a function of the dispersion of the
phase residues with respect to the model (η). From (5) it is
clear that no use of the amplitude data is present in the esti-
mation of v and ε in standard PS analysis.

2.2. Second-order model

We will now discuss the case of two dominant scatterers
within the same resolution cell. This yields a second-order
model, first outlined in [25]. The mathematical framework
can be made very similar to that adopted in direction of ar-
rival (DOA) analyses (see [23, 24, 26] and references therein).
The multibaseline dataset relative to pixel P can be viewed as
a snapshot of a nonuniform array composed of N sensors
(Figures 1 and 2).

Here X , x, and RM are coplanar axes belonging to a plane
normal to the satellite trajectories (related to the azimuth di-
rection) and passing through the resolution cell under study.
M is the position of the master acquisition, Si is the projec-
tion of the ith slave pass on the X-axis. Bi is then the corre-
sponding normal baseline. Point P0 represents the reference
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Figure 2: SAR acquisition geometry. M is the master antenna, S the
slave. Parallel baseline components do not impact the mathematical
modelling for phase variations. P0 represents the reference DEM for
the pixel under analysis. P is the dominant scattering-centre within
the resolution cell.

topography (i.e., reference DEM). The complex signal re-
ceived by the ith sensor can be modeled as

si = z1e
j(4π/λ)r(Bi,ti,x1) + z2e

j(4π/λ)r(Bi,ti,x2), (6)

where the dependency of the range coordinate on the normal
baseline Bi, the temporal baseline ti, and the cross-range po-
sition xk of scatterer k has been highlighted, and z1 and z2 are
the complex reflectivities of the two scattering centres.

For the sake of simplicity, in this paper we will suppose
that all scatterers within the same resolution cell are affected by
the same displacement. In particular, considering the constant
velocity model, we will suppose

v1 = v2 = v. (7)

From Figure 1 it is easy to verify that

rki = r
(
Bi, ti, xk

)
=

√
R2
M +

(
Bi − xk

)2

∼= RM +

(
Bi − xk

)2

2RM
, k = 1, 2,

(8)

where the approximation is valid for satellite sensors (typi-
cally RM > 800 km and |B| < 2 km). In particular, for the
master acquisition, we have

rkM ∼= RM +
x2
k

2RM
, k = 1, 2. (9)

If now we define the differential interferogram as

yi ≡
sMs

∗
i∣∣sM
∣∣ e− j(4π/λ)(RM−Ri) (10)

(where s∗ is the complex conjugate of s), the absolute value
of the interferogram equals the amplitude of the slave image
and it is easy to demonstrate (see the appendix) that (2), (6),
(8), (9), and (10), jointly with hypothesis (7), lead to the ex-
pression

yi = β1e
j(Ai

DEMx1−Ci
vv) + β2e

j(Ai
DEMx2−Ci

vv), i = 1, . . . ,N , (11)

where

β1 =

∣∣z1

∣∣2
+ z2z

∗
1 e

j(4π/λ)(x2
2−x

2
1/RM)

∣∣sM|
,

β2 =

∣∣z2

∣∣2
+ z1z

∗
2 e

j(4π/λ)(x2
1−x

2
2/RM)

∣∣sM
∣∣ .

(12)

It is worth noting that

∣∣β1

∣∣2
=
∣∣z1

∣∣2
,

∣∣β2

∣∣2
=
∣∣z2

∣∣2
. (13)

Moreover, since x = ε/ sin θ (Figure 2), system (11) can also
be written as

yi = β1e
j(Ci

DEMε1−Ci
vv) + β2e

j(Ci
DEMε2−Ci

vv). (14)

Equations (11) and (12) show that, by introducing a second-
order model for the scattering and a constant velocity model
for target displacement, data can be modelled as the sum of
two complex sinusoids characterized by 5 unknown parame-
ters (3 real and 2 complex variables) to be estimated by the
dataset available: v, x1, x2, β1, β2.

2.3. Higher-order models

The generalization to higher-order models is straightfor-
ward. In general, for a scattering model of order K , where
xk is the position of the kth target on the x-axis in Figure 1
(k = 1, . . . ,K), we can generalize expression (11) as follows:

yi = e− jCi
vv

[ K∑
m=1

βme
jAi

DEM
xk

]
, (15)

where

βm =
1∣∣sM
∣∣

K∑

l=1

zlz
∗
me

j(4π/λ)(x2
l −x

2
m/2RM). (16)

Again, the data can be modelled as a sum of K complex si-
nusoids of unknown amplitudes and frequencies. As already
mentioned, in the following sections we will focus on the
second-order model, but extension to higher-order analyses
does not impact the mathematical framework.
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3. INVERSE PROBLEM SOLUTION

As discussed in the previous section, the adoption of a
second-order model for PS analysis introduces three further
unknown parameters with respect to the standard approach,
even considering scatterers affected by the same displace-
ment. In order to estimate v, x1, x2, β1, β2, the nonlinear
model (11) needs to be inverted on a pixel-by-pixel basis.
Although most of the procedures used in DOA problems re-
quire uniform array [23, 24, 26, 27, 28], many algorithms can
be applied to solve this problem. Here we adopt the nonlin-
ear least squares method (NLSM) presented in [27], since it
turned out to be robust and effective for the problem under
study. However, future research efforts will address the se-
lection of the best inversion algorithm for real data, taking
into account accuracy, precision, robustness performance, as
well as the related computational load. Let θ be a p × 1 vec-
tor of unknown parameters, x(θ) the model (N-dimensional
nonlinear function of the parameters vector), and y the data
vector. As is well known, the object function used in NLSM
is

J =
[

y − x(θ)
]H[

y − x(θ)
]
. (17)

For the problem under study we have

x(m) =
n∑

k=1

αke
j(ωkm+ϕk). (18)

In order to recover the unknown pulse frequencies {ωk} ∈

[−π,π], amplitudes {αk}, and initial phases {ϕk} starting
from the observed data y, the following cost function has to
be minimized:

J =
N∑

i=1

∣∣∣∣∣yi −
n∑

k=1

αke
j(ωk i+ϕk)

∣∣∣∣∣
2

. (19)

We now introduce the following notation [27]:

βk = αke
jϕk ,

β =
[
β1 · · ·βn

]T
,

(20)

B =




e jω1 · · · e jωn

...
...

e jNω1 · · · e jNωn



. (21)

The model is then linear in β and nonlinear in ω:

x = Bβ, (22)

and the cost function is now

J = (Y− Bβ)H(Y− Bβ), (23)

where Y = [y(1) · · · y(N)]T . B is a Vandermonde matrix
that fulfils the following rank property:

rank(B) = n if N ≥ n, ωk �= ωp for k �= p. (24)

If conditions (24) are met, the matrix (BHB)−1 exists and
(23) yields

J =
[
β −

(
BHB

)−1
BHY

]H[
BHB

][
β−

(
BHB

)−1
BHY

]

+ YHY− YHB
(

BHB
)−1

BHY.
(25)

For each choice of ω = [ω1, . . . ,ωn]T in B (with ωk �=

ωp for k �= p) a vector β that cancels the first term of (25)
can be found. Vectors β and ω minimizing expression (25)
are therefore,

ω̂ = argmax
ω

[
YHB

(
BHB

)−1
BHY

]
, (26)

β̂ =
(

BHB
)−1

BHY |ω=ω̂ . (27)

The application of the NLSM to system (11) leads to the fol-
lowing cost function:

J =
N∑

i=1

∣∣∣∣∣yi −
2∑

k=1

βke
jωki

∣∣∣∣∣
2

, (28)

where βk is defined by (12), ωki = Ci
DEMεk +Ci

vv, and N is the
number of data available. B is then an (N × 2) matrix:

B =




e j(C
1
DEMε1−C1

vv) e j(C
1
DEMε2−Ci

vv)

...
...

e j(C
N
DEMε1−CN

v v) e j(C
N
DEMε2−CN

v v)


 . (29)

For each matrix B expression (26) must be evaluated and
the values (ε̂1, ε̂2, v̂) maximizing it are the solution. Figure 3
shows an example of target function to be maximized in (26):
local maxima are present (the problem is strongly nonlinear),
but whenever the signal-to-noise ratio (SNR) is high enough
and the underlying model fits the data, the global maximum
is well pronounced.

Once we have estimated deformation rate and elevations
of the scatterers, we can estimate β̂1 and β̂2 via (27). The es-

timated values v̂, ε̂1, ε̂2, β̂1, β̂2 can then be used to build

ŷi = β̂1e
j(Ci

DEM ε̂1−Ci
v v̂) + β̂2e

j(Ci
DEM ε̂2−Ci

v v̂), i = 1, . . . ,N , (30)

and to define the “second-order phase coherence,” natural
extension of the first-order coherence (5):

γII(P) =
1

N

∣∣∣∣∣
N∑

i=1

e jφdata,ie− j∠ ŷi

∣∣∣∣, (31)

where ∠ ŷi is the phase value of expression (30). Similarly to
γI , the accent in (31) is posed on the dispersion of the phase
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Figure 3: Example of target function to be maximized in (26). For
visualization purposes, the velocity parameter is fixed to the opti-
mum value while ε1 and ε2 vary in the range [−50, 50] meters. This
is a real data example, referring to the dataset analysed in Section 5.
The two maxima (the function is symmetric) are easily detectable.

residues rather than the LMS error between the complex data
vector and the model. This is not unreasonable whenever the
final target of the analysis is the extraction of precise displace-
ment time series (related to phase data) rather than the char-
acterization of local reflectivity. Of course, since the compu-
tational load of this optimization is proportional to the vol-
ume of the three-dimensional parameter space in which the
unknowns v, ε1, ε2 can vary (plausibility region), the number
of operations per pixel is much higher than in conventional
PS analysis, where a portion of a two-dimensional space is
spanned by the estimation algorithm [12, 13].

The solution ε̂1 = ε̂2 causes the product BHB to be a sin-
gular matrix and expression (26) will diverge. Thus, the case
of a single scatterer will not be solved by the second-order
model as two coinciding scattering centres but the first-order
scatterer will be split into a dominant scatterer and a second
very low-reflectivity centre. This yields an overblown solu-
tion which causes

γII(P) < γI(P). (32)

The pixel will consequently be considered a first-order scat-
terer.

3.1. Model order selection

Common to all parametric analyses, model order selection
(MOS) is a key step that should be carefully studied before
accepting the results of the estimation. Indeed, although the
condition γII > γI is generally satisfied, this does not neces-
sarily imply that the second order is a better model for the
data.

As well known, one of the most difficult and critical issues
facing sensor arrays systems is the detection of the number
of sources impinging on the array [26]. Problems of model

order selection are usually faced based on the Akaike infor-
mation criteria [29] or the Rissanen minimum description
length criteria [30].

It should be noted that a simple MOS strategy such as
the computation of the periodogram for each pixel, looking
for the number of maxima, would not be successful, due to
resolution limits. In fact, two nearby scattering centres (just
a few meters apart) are not detectable by nonparametric ap-
proaches.

By limiting the analysis on first- and second-order mod-
els only (the estimation is to be carried out on millions of
pixels in a typical SAR scene and so the computational bur-
den is a key issue for applications), the problem can be cast
as a hypothesis testing procedure. In fact, we can formulate
two mutually exclusive options for the scattering mechanism:

H0: resolution cell P contains one scattering-centre,
H1: resolution cell P contains two (or more)

scattering-centres.

In other words, after first- and second-order analysis, we have
to establish whether or not H1 can be accepted, fixing a confi-
dence level for the decision. In general, in order to limit over-
fitting, H1 hypothesis should be accepted (or analogously H0

should be rejected) only if the probability that the data vec-
tor comes from a single scattering centre is below a certain
threshold THR, that is, if

Pr
(
H0 | data

)
< THR =⇒ H1. (33)

The key issue is then the definition of the rejection region. In-
tuitively, one should accept H1 only “if it is worth,” for exam-
ple, if the dispersion of the phase residues is significantly re-
duced adopting a more complex model, or—equivalently—
if the gain in phase coherence is high enough. Although an
analytical analysis is very complex, a possible solution can be
achieved using a Monte Carlo approach, discussed in the next
section.

4. NUMERICAL SIMULATION

First- and second-order estimation algorithms were tested
first on simulated numerical data at different levels of signal-
to-noise ratio (SNR). The simulation allows one to better
appreciate the limits related to the first-order model. Two
data vectors are reported in Figures 3 and 4. In both cases
two motionless scattering centres are considered (v = 0 and
H1 = true). The baseline distribution used in the simula-
tion resembles that of the real dataset available, described in
Section 5. No noise is present in these examples, so the data
satisfy (11), (12), and (13).

First we notice that whenever two identical scatterers
(i.e., z1 = z2) are present (Figure 4), the first-order model
discussed in Section 2.1 can fit the data almost perfectly. In
fact, apart from a modulation of the amplitude values as a
function of the normal baseline, phase values are identical to
that originated by a single point scatterer positioned in the
“electromagnetic barycentre” of the structure under study.
This can be generalized to the K-scatterer model. A mirror,
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Figure 4: Simulated interferometric data (second order). Parame-
ters: v = 0, x1 = 15 m, x2 = −4 m, and |z1| = |z2|. While amplitude
data show significant variations, phase values can be fitted using a
first-order model.

or in general a homogeneous flat (with respect to the illu-
minating wavelength) surface can be well described by the
model used in conventional PS analysis and SAR interferom-
etry (at least limiting the analysis to phase values). On the
contrary, whenever the energy backscattered by the radar tar-
gets within the resolution cell is not exactly the same (and
none of them dominates the scenario), a distortion of the lin-
ear phase trend is introduced and the first-order model may
fail to model the data correctly (Figure 5). The phase distor-
tion is a function of the normal baseline distribution of the
dataset, the distance between the two scattering centres, and
the ratio of the two reflectivity amplitudes.

In general, working on real data, higher-order scattering
models should better describe the reflectivity of the image
pixels, however their effectiveness depends very much on the
distribution of the baseline values, the extension of the reso-
lution cell, and the characteristics of the area of interest.

4.1. Monte Carlo determination of the rejection region

Apart from testing the implementation of the two algo-
rithms for data analysis, numerical simulations were used
to determine the rejection region for model order selection
(Section 3.1).

As already mentioned, a reasonable criteria is to accept
H1 (i.e., the double-scatterer model) only if the dispersion of
the phase residues is significantly reduced passing from the
first- to the second-order model, that is, running the NLSM
on the data. For Gaussian distribution of the phase residues,
it can be demonstrated that [14]

γq = e−σ
2
q /2, q = I , II , (34)

where σI and σII are the dispersion of the phase residues with
respect to the model adopted. Therefore, the rejection region
can be determined using either (σI , σII) or (γI , γII).
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Figure 5: Simulated interferometric data (second order). Parame-
ters: v = 0, x1 = 15 m, x2 = −4 m, and |z1| �= |z2|. The distortion of
the phase values with respect to a data vector generated by a single
dominant scatterer (or a homogeneous flat surface) is evident.

A possible operational procedure is then the following.
For each of Q different SNR levels, 10M realizations of the
data vector (sampled at the baseline values of the dataset un-
der study) are created considering a single scattering centre
(H0 = true). The values of (σI , σII) are then estimated for
each realization and a scatterogram is generated. The rejec-
tion region at confidence level 10−M can then be determined
on the (σI , σII)-plane by delimiting the cluster of points of
the simulation by means of a suitable curve that fits best the
edge of the cluster. In Figure 6 the scatterogram obtained af-
ter 120 000 realizations (Q = 12, M = 4) of the data vector
is reported. Since—in general—we are interested in the de-
tection of radar targets characterized by low phase dispersion
(the PS), we can also impose

σII < THR. (35)

It should be pointed out that the rejection region depends
on (1) the number of data available, (2) the distribution of
normal baseline values, (3) the parameter space spanned by
the estimation algorithms; thus this procedure should be run
every time a new dataset has to be processed.

5. REAL DATA ANALYSIS

The algorithms described in the previous sections have been
applied to a set of 82 SAR scenes acquired by the ERS-1 and
ERS-2 satellites (operated by the European Space Agency) be-
tween 1992 and 2003 over Milano, Italy (Frame 2691-Track
208). See in Figure 8 the incoherent average of the SAR data
of the area. The distribution of the geometrical and temporal
baseline of the acquisitions is reported in Figure 7 where it is
possible to appreciate that most of the interferograms have
actually baseline values lower than ∼ 500 m. The processed
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Figure 6: Numerical determination of the rejection region for hy-
pothesis testing. 120 000 realizations (Q = 12, M = 4) of the data-
vector have been generated and both first- and second-order esti-
mation algorithms have been applied. σI and σII indicate the stan-
dard deviation of the phase residues after the application of the first-
and second-order estimation algorithms, respectively. The white
area specifies the rejection region where H0 hypothesis should be
rejected.
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Figure 7: Distribution of the geometrical and temporal baseline of
the interferometric dataset (SAR data: ESA-ERS. Frame 2691-Track
208).

area is a cut out of the whole scene about 40 km2 wide and
it is not affected by significant surface deformation phenom-
ena, apart from terrain subsidence at low rates (< 3 mm/yr)
in some suburbs of the city. The constant velocity model is
then suitable for the PS analysis. The density of buildings and
man-made structures is extremely high, allowing one to get
meaningful statistical parameters for PS characterization in
urban areas.

Azimuth

R
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Figure 8: Incoherent average of the SAR data available over Milano.
Eighty-two images acquired by the ESA-ERS sensors have been pro-
cessed (Frame 2691-Track 208). The area is heavily urbanized.
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Figure 9: Scatterogram obtained by processing the Milano dataset
superimposed on that obtained from the numerical simulation
(Figure 5).

Following the algorithm outlined in the previous sec-
tions, we applied both first- and second-order analysis tools
for data analysis. In order to limit the computational load,
second-order model was used only if γI(P) < 0.8 (since oth-
erwise the pixel was already labelled as PS) and first-order
results (i.e., deformation rate v̂I , elevation ε̂I , and the first-
order coherence γ̂I) were used to define the portion of the
parameter space to be spanned by the NLSM. More precisely,
whenever γI(P) > 0.6,

vII = vI + α1, α1 ∈ [−0.75, 0.75], ∆v = 0.25 mm/yr,

εII ,1 = εI + α2, α2 ∈ [−20, 20], ∆ε1 = 0.5 m,

εII ,2 = εI + α3, α3 ∈ [−20, 20], ∆ε2 = 0.5 m,

(36)

where ∆ is the sampling step used in the scanning.
The results obtained at the end of the analysis are re-

ported in Figure 9, where (σI , σII) pairs have been super-
imposed on the rejection region obtained via numerical
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Figure 10: Double-scatterer position (triangular symbols) and sin-
gle PS (circular symbol) superimposed on an orthophoto of Milano.

simulation. 38 549 double scatterers were identified (falling
in H1) out of 254 226 pixels analysed (15%). It should be
pointed out that since the standard analysis allowed the de-
tection of about 200 000 pixels exhibiting γ̂I > 0.8 and the
increase in PS density by applying the second-order model
was about 20%.

After data processing, double-scatterers positions were
estimated (using standard geocoding algorithms) and super-
imposed on an orthophoto of the area of interest. Two ex-
amples are reported in Figures 10 and 11, where the position
of the dominant scatterer estimated by the first order analy-
sis (circular symbol) has been superimposed to the positions
of the two scattering-centres estimated by the second-order
model (triangular symbol). In general, all the positions of
the scattering-centres turned out to fall within the shape of
building and other structures, but of course more in depth
analyses should assess the precision of the estimated param-
eters.

The improvement in data modelling due to the introduc-
tion of the second-order model can be appreciated in Figures
12 and 13, where the comparison of the two displacement
time series relative to scatterers depicted in Figures 10 and 11
is reported.

6. CONCLUSIONS

In this paper we have described a possible strategy to improve
the performance of the PS technique, using the same multi-
interferogram framework and adopting more complex mod-
els for the scattering mechanism within the SAR resolution
cell. The preliminary results reported here should be consid-
ered only as a first contribution toward a full exploitation of
multibaseline satellite datasets characterized by high normal
baseline values for surface deformation monitoring.

An important issue to be further studied is the statistical
distribution of the cross-range dimension of the PS, both in
urban and nonurban areas. In fact, the increase in PS density

Figure 11: Double-scatterer position (triangular symbols) and sin-
gle PS (circular symbol) superimposed on an orthophoto of Milano.

(20%), although not negligible, could not completely change
the scenario obtained by means of the standard PS analysis, at
least in the dataset used in this paper (to a certain extent, this
justifies the success of the analysis presented in [12, 13]). In-
deed, since the statistical distribution of the normal baseline
values of a typical satellite dataset is far from uniform [14]
(within the satellite dead-band), the application of the sim-
ple first-order model can be extremely effective. Preliminary
results seem to suggest that this kind of algorithms, due to the
increased computational load, should be applied only when-
ever it is mandatory to extract as much information as pos-
sible, pushing the technology to its theoretical limits, or—in
general—when the first-order PS distribution is not enough
for the application at hand.

Future research activities will be also devoted to the ap-
plication of higher-order models to nonurban areas, assess-
ing the possibility to resolve layover areas (at least where tem-
poral decorrelation is low enough) and the implementation
of a more general K-order analysis tool, carefully selecting
the best algorithm for the estimation of the unknown param-
eters.

Finally, further efforts should be devoted to precision as-
sessment, trying to cross-validate, using independent data
and possible in situ surveys, the parameters estimated from
the multibaseline datasets. Even considering higher-order
models, the mathematical framework related to a single mas-
ter image, that is, the generation of all interferogram with re-
spect to the same master acquisition, seems to be extremely
effective also to get quantitative estimation of precision and
accuracy of the unknown geophysical parameters that can be
recovered.

APPENDIX

FORMULATION OF THE SECOND-ORDER MODEL

As mentioned in Section 2.2, the case of two dominant scat-
terers within the same resolution cell has a mathematical
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Figure 12: Comparison of the displacement time series estimated
by applying (a) first- and (b) second-order models for the PS
(double-scatterer) highlighted in Figure 9. γI = 0.62, γII = 0.87.

framework similar to the one used in the direction-of-arrival
analysis [23, 24, 26].

Adopting the first Born approximation (and considering
valid the superposition of the effects), the signal received by
the ith sensor (i = 1, . . . ,N) can be written as

si = z
j(4π/λ)r1i

1 e jC
i
vv + z

j(4π/λ)r2i

2 e jC
i
vv, (A.1)

rki being the target-sensor distance, zk the complex reflectiv-
ity of the kth scattering centre (k = 1, 2), and Ci

v = 4πti/λ.
where ti is the ith the temporal baseline.

From Figure 1, the approximated target-sensor distance
rki reads

rki = r
(
Bi, ti, xk

)
=

√
R2
M +

(
Bi − xk

)2

∼= RM +

(
Bi − xk

)2

2RM
, k = 1, 2.

(A.2)

Moreover, hypothesis (7) remarks that all the scatterers
within the same resolution cell are supposed to be affected
by the same displacement:

v1 = v2 = v. (A.3)

The backscattered signal acquired by the master acquisition
and the ith slave acquisition yields to the computation of the
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Figure 13: Comparison of the displacement time series estimated
by applying (a) first- and (b) second-order models for the PS
(double-scatterer) highlighted in Figure 12. γI = 0.66, γII = 0.90.

ith interferogram Yi (divided by the amplitude of the master
scene) as

Yi =
sMs

∗
i∣∣sM
∣∣

=
e− jCi

vv∣∣sM
∣∣
[∣∣z1

∣∣2
e j(4π/λ)((Bnix1/RM)−(B2

ni
/2RM))

+ z1z
∗
2 e

j(4π/λ)((x2
1/2RM)−(x2

2/2RM)+(Bni x2/RM)−(B2
ni
/2RM))

+ z∗1 z2e
j(4π/λ)((x2

2/2RM)−(x2
1/2RM)+(Bni x1/RM)−(B2

ni
/2RM))

+
∣∣z2

∣∣2
e j(4π/λ)((Bnix2/RM)−(B2

ni
/2RM))

]
.

(A.4)

The ith differential interferogram (computed using the a pri-
ori elevation x = 0—Figure 2) is then obtained by the fol-
lowing expression:

yi ≡
sMs

∗
i∣∣sM
∣∣ e− j(4π/λ)(RM−Ri) = Yie

− j(4π/λ)(RM−Ri), (A.5)

with

Ri =
√
R2
M + B2

ni
∼= RM +

B2
ni

2RM
, (A.6)
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where the approximation is valid for satellite sensors (RM >
800 km and |B| < 2 km).

By substitution of (A.4) and (A.6) in (A.5) and using
relation (2),

yi = e− jCi
vve jA

i
DEMx1

[∣∣z1

∣∣2
+ z2z

∗
1 e

j(4π/λ)(x2
2−x

2
1/2RM)

∣∣sM
∣∣

]

+ e− jCi
vve jA

i
DEMx2

[∣∣z2

∣∣2
+ z1z

∗
2 e

j(4π/λ)(x2
1−x

2
2/2RM)

∣∣sM
∣∣

]
.

(A.7)

Now we define the complex expressions β1 and β2 as follows:

β1 =

∣∣z1

∣∣2
+ z2z

∗
1 e

j(4π/λ)(x2
2−x

2
1/RM)

∣∣sM
∣∣ ,

β2 =

∣∣z2

∣∣2
+ z1z

∗
2 e

j(4π/λ)(x2
1−x

2
2/RM)

∣∣sM
∣∣ .

(A.8)

Using now (A.8) in (A.7) we finally obtain the definition of
the second-order model of the differentials:

yi = β1e
j(Ai

DEMx1−Ci
vv) + β2e

j(Ai
DEMx2−Ci

vv)

= β1e
j(Ci

DEMε1−Ci
vv) + β2e

j(Ci
DEMε2−Ci

vv), i = 1, . . . ,N ,

(A.9)

where x = ε/ sin θ and Ai
DEM = Ci

DEM sin θ.
Starting from (A.8) and computing expressions (A.1) and

(A.2) for the master acquisition (CM
v = 0, with tM = 0, and

BM = 0), it can be demonstrated that

∣∣β1

∣∣2
=

∣∣z1

∣∣2(∣∣z1

∣∣2
+
∣∣z2

∣∣2
+ 2
∣∣z1

∣∣∣∣z2

∣∣ cos ξ
)

∣∣z1

∣∣2
+
∣∣z2

∣∣2
+ 2
∣∣z1

∣∣∣∣z2

∣∣ cos ξ
=
∣∣z1

∣∣2
,

(A.10)

where ξ = (4π/λ)(x2
2−x2

1/2RM) +∆ψ, with ∆ψ the difference
between the two scatterers reflectivity phases. Similarly, for
β2,

∣∣β2

∣∣2
=

∣∣z2

∣∣2(∣∣z2

∣∣2
+
∣∣z1

∣∣2
+ 2
∣∣z1

∣∣∣∣z2

∣∣ cos ξ)∣∣z2

∣∣2
+
∣∣z1

∣∣2
+ 2
∣∣z1

∣∣∣∣z2

∣∣ cos ξ
=
∣∣z2

∣∣2
.

(A.11)

Equations (A.8) and (A.9) correspond to the second-order
model described in Section 2.2 through (12) and (14).
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	1. INTRODUCTION
	2. SIGNAL MODEL
	2.1. First-ordermodel
	2.2. Second-order model
	2.3. Higher-order models

	3. INVERSE PROBLEM SOLUTION
	3.1. Model order selection

	4. NUMERICAL SIMULATION
	4.1. Monte Carlo determination of the rejection region

	5. REAL DATA ANALYSIS
	6. CONCLUSIONS
	APPENDIX: FORMULATION OF THE SECOND-ORDER MODEL
	ACKNOWLEDGMENTS
	REFERENCES

