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Abstract. Sparse grids have turned out to be a very efficient discretiza-
tion scheme that, to some extent, breaks the curse of dimensionality and,
therefore, is especially well-suited for higher dimensional scenarios. Besi-
des the classical sparse grid application, the numerical solution of partial
differential equations, sparse grids have been used for various topics such
as Fourier transform, image compression, numerical quadrature, or data
mining, so far. In this paper, we summarize and assess recent results con-
cerning the application of sparse grids to integrate functions of higher
dimensionality, the focus being on the explicit and adaptive use of higher
order basis polynomials.

1 Introduction

The representation of functions and the discretization of PDE by conventional
methods is limited to time-depending 3 D problems due to storage requirements
and computational cost. The reason is the so-called curse of dimensionality, say-
ing that the cost to represent a function or to compute an approximation with
some prescribed accuracy ε depends exponentially on the problem’s dimensio-
nality d. We, hence, encounter complexities of the order O(ε−αd) with α > 0
depending on the respective approach (i.e. the polynomial degree of the ansatz
functions, e.g.), the function’s smoothness, and on the implementation. With
sparse grids, we circumvent this problem by considering spaces of functions with
bounded mixed derivatives [6], only, which is not a serious restriction due to the
possibility of adaptive mesh refinement. Starting from some suitable 1 D multile-
vel basis on the unit interval [0, 1], we obtain a multilevel basis for Ω := [0, 1]d by
a simple tensor product construction. If the resulting hierarchical basis functions
are arranged by gathering those of a support of size 2 ·hl for level l = (l1, . . . ld),
hlj = 2−lj , j = 1, ..., d, in a hierarchical subspace Wl, we get the multilevel
subspace splitting illustrated for d = 2 in Fig. 1.

Now, for each of the Wl, its cost (in terms of degrees of freedom) and its
benefit (in terms of its contribution to the overall interpolant) can be estimated
and used as input of a cost-benefit optimisation process selecting the most im-
portant subspaces with their respective grid points. This a priori optimisation
leads us to grid patterns and corresponding approximation spaces that consist
of O(N · log(N)d−1) or even O(N) grid points, only, instead of the O(Nd) of

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 394–401, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Higher Order Quadrature on Sparse Grids 395

l 2

W11

W 12

W21
l 1

Fig. 1. Scheme of subspaces for d = 2: Each square represents one hierarchical subspace
Wl with associated grid points and basis functions’ support of size 2 · hl.

a regular full grid (N denoting the maximum number of grid points in one di-
rection). These grids correspond to simplizoidal selections of subspaces Wl in
Fig. 1, and they are known as sparse grids (see Fig. 2). It turns out that the
number of degrees of freedom needed for some prescribed accuracy does (up
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Fig. 2. 2 D regular sparse grid of level 3 and assignment of grid points to subspaces.

to logarithmic factors) no longer depend on d exponentially. This allows either
to treat problems of low dimensionality substantially faster or to tackle higher
dimensional problems. Extensions of the piecewise linear hierarchical basis to
general polynomial degree p as well as interpolets or (pre-)wavelets have been
successfully used as 1 D ingredient for the tensor product (see [4,7]).
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Since its introduction [17], the sparse grid concept has been applied to most
discretization schemes for PDE such as finite elements, finite differences, finite
volumes, spectral methods, and splitting extrapolation [8]. In the FE context,
special attention has been paid to adaptive mesh refinement [1,4] and to fast
solvers [3]. Concerning fields of application, fluid flow was the first focus of sparse
grids. Meanwhile, however, sparse grids are also used for problems from quantum
mechanics, for problems in the context of stochastic differential equations, or for
the discretization of differential forms in the context of the Maxwell equations.
Apart from PDE, sparse grids have been and are applied to a variety of other
problem classes. Among these problems are integral equations, general operator
equations, eigenvalue problems, data mining, and numerical quadrature [10,11,
5], which is the topic of this contribution. For a more detailed introduction to
sparse grids, we refer to the extensive survey in [7] and to the references therein.

2 Hierarchical Lagrangian Polynomials

In [4], the piecewise linear hierarchical basis was generalized to hierarchical ba-
ses of (piecewise) arbitrary polynomial degree. The main idea of the so-called
hierarchical Lagrangian interpolation is to hold to (globally) C0 functions and
elements with one degree of freedom, only, but to define local basis polynomials

Fig. 3. Ancestors (solid) used for quartic hierarchical Lagrangian interpolation and
descendants (dotted) of two grid points.

of higher degree as well as local interpolants by using interpolation conditions in
a sufficient number of hierarchical ancestors of the respective grid point outside
the local element, as illustrated in Fig. 3. That is, we use conditions outside
the local support to define the basis polynomials, but we, afterwards, omit the
polynomials’ parts outside their respective support according to Fig. 1. Depen-
ding on the relative position of the ancestor points taken into account, different
basis polynomials are obtained. Fig. 4 illustrates this construction principle as
well as the resulting four different basis polynomials for the quartic case p = 4.
Hence, hierarchical Lagrangian interpolation provides a straightforward access
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Fig. 4. Basis polynomials for p = 4: construction via hierarchical Lagrangian interpo-
lation (left) and used restriction to the respective hierarchical support (right).

to higher order approximation without investing more than one degree of free-
dom per element. Actually, using such 1 D polynomial bases of degree p in the
tensor product leads to accuracies of O(p) [4].

3 Numerical Quadrature on Sparse Grids

Due to the roots of sparse grids going back to Archimedes’ quadrature of a
parabola and to work of Smolyak [16], quadrature has always been a hot topic
in sparse grid research. Starting with the explicit use of the piecewise linear
functions to calculate integrals [2], two principal strategies have been pursued.
The first approach is based upon the direct application of Smolyak’s formula

Q(d)
n f :=

(
n∑

i=0

(
Q

(1)
i − Q

(1)
i−1

)
⊗ Q

(d−1)
n−i

)
f , (1)

where Q
(d)
n denotes a d-dimensional quadrature formula, to standard 1 D rules

Q
(1)
n such as the Newton-Cotes or Clenshaw-Curtis rules, the Gauss formulas [15],

or the incremental Gauss-Patterson rules [10]. Recently, in [11] a generalization
of the conventional sparse grid approach which is able to assess the dimensions
adaptively according to their importance was developed.

The second approach does not start from 1 D rules as input for Smolyak’s
formula (1), but, basically, computes a sparse grid interpolant of the integrand
and accumulates all occurring basis functions’ contributions to the integral. To
tackle large values of d and to mimic the increased degree of accuracy of Gaussian
quadrature, the Lagrangian basis from the previous section has to be modified.
Actually, the basis used in [5] does without boundary points, introducing the
grid points’ positions as degrees of freedom, themselves (see Fig. 5 for the 1 D
case). In the following numerical examples of Sect. 4, the non-equidistant grids
and bases (shown in the right part of Fig. 5 for 1 D and resulting from these for
larger d) will be used, leading us to the so-called piecewise Gauss quadrature.
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Fig. 5. Hierarchical polynomial bases according to [5]: equidistant (left) and piecewise
Gauss version (right), both without boundary points.

A comparison of both approaches reveals the pros and cons of either method.
The direct application of (1) allows to use 1 D quadrature rules of arbitrary global
accuracy, such as the hierarchical Gauss-Kronrod or Gauss-Patterson rules (cf.
[10]), whereas the piecewise Gauss quadrature only allows for locally higher order,
due to the underlying hierarchical Lagrangian approach. On the other hand,
in the Smolyak formula, there are no possibilities of a local grid adaptation,
which is, in contrast to that, straightforward with piecewise Gauss quadrature.
It is not clear how important local mesh refinement may be in the really high
dimensional case of, say, d � 20, where, anyway, only a very small number
of steps of refinement is feasible. However, since most of those scenarios are
characterized by big differences in the dimensions’ importance, some kind of
dimension adaptivity as studied in [11] and in work in progress [12] in the sequel
of [5] will be essential for efficiently tackling such problems.

4 Numerical Results

Next, we apply both sparse gird approaches of Sect. 3 to typical problems of mo-
derate to high d, and we compare the results with standard techniques normally
used in these scenarios, such as Monte Carlo quadrature or quasi Monte Carlo
quadrature [14], also known as quadrature based on low-discrepancy sequences.

As a first example, we study a simple transport problem from computational
physics (see [13] for details), described by the integral equation

y(x) = x +
∫ 1

x

γy(z)dz , (2)

for which the exact solution is known. Think of a particle travelling through a
1 D (z) slab of length one. In each step, the particle covers a distance which is
uniformly distributed on [0, 1]. This may cause it to exit the slab; otherwise, it
may be absorbed with probability 1−γ. The function y(x) denotes the probabi-
lity for some particle at current position x to leave the slab. The solution of the
integral equation (2) can also be represented as an infinite dimensional integral,
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y(x) =
∫

[0,1]∞

∞∑
n=0

Fn(x, z)dz , (3)

where the vector z contains the leap lengths and where Fn denotes the probability
for the particle to leave the slab after exactly n steps. Fn, basically, is a product
of two Heaviside functions, such that the overall integrand has a discontinuity
along the diagonal (see Fig. 6), which is kind of a worst case for a regular
sparse grid, of course. Concerning dimensionality, since higher dimensions do
not contribute considerably to the integral, the sum can be truncated. Fig. 6
(right) shows numerical results for y(0) with γ = 0.5 in twenty dimensions. The
performance of the adaptive sparse grid lies within the range of the standard
Monte Carlo method, but can not compete with quasi Monte Carlo. At least,
our adaptivity rescues Monte Carlo performance in this worst case scenario.
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Fig. 6. The discontinuous integrand
∑∞

n=0 Fn(0, z) in the first two dimensions (left)
and results for numerical quadrature taking into account twenty dimensions according
to standard Monte Carlo, quasi-Monte Carlo, and piecewise Gauss quadrature (right).

Much better results can be obtained by changing the formulation once more.
Fn(x, z) in (3) can be replaced by a polynomial F ∗

n(x, z) describing the contribu-
tion of each jump, which, then, results in a smooth integrand. Now, the sparse
grid properties can be exploited. Results for d = 20 are shown in Fig. 7. While
quasi Monte Carlo gains about two digits of accuracy, the sparse grid gains eight.
With 30000 evaluated points, the adaptive sparse grid outperforms quasi Monte
Carlo by about four digits. Fig. 7 also gives the convergence behaviour if we
further reduce dimensionality up to eight. The non-adaptive Gauss-Patterson
on sparse grids according to [10] beats quasi Monte Carlo, but not the adaptive
sparse grid. Hence, in spite of the smooth integrand, the different importance of
the involved directions requires some adaptive strategy.

As a second example, we consider a problem from computational finance, a
so-called collateralized mortgage obligation or CMO problem (see [9] for details).
There, the present value (PV ) of some security is defined as the expectation value
over random variables involved in the interest rate fluctuations, each dimension
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Fig. 7. Results for the smooth integrand in 20 (left) and 8 dimensions (right).

representing one month. After suitable transformations, PV can be written as

PV =
∫

[0,1]d
v(G(x1), · · · , G(xd)) dx1 · · · dxd , (4)

where d ≥ 120, typically. A more efficient way to compute (4) was suggested in
[9], where the authors reduced the effective number of dimensions by representing
the interest rate fluctuations as a Brownian motion b(t). Here, a future value
b(t + ∆t) can be generated from the current value b(t) by a random jump:

b(t + ∆t) = b(t) +
√

∆t ξt+∆t , (5)

where ξt denotes some random noise. Using the so-called Brownian bridge (BB)
discretization, where b(t + ∆t) is computed from both a past and a future value
of b, most of the involved functions’ variation can be put into the dimensions
defining the first few values of b. In a first scenario with d = 256, we compare the
adaptive piecewise Gauss and the Gauss-Patterson rule. Fig. 8 (left) shows how
the BB formulation improves the performance of adaptive schemes. To make
this accessible to Gauss-Patterson, too, a higher order formula is used in the 30
most important directions, found by some setup run up to level two (cf. [10]).
The piecewise Gauss rule can find these important directions itself, but shows
drawbacks where no use of adaptivity can be made, i.e. at the very beginning of
the process and without the BB construction. Although the piecewise Gauss grid
performs best for more than 106 points, there is no doubt that some dimension
adaptivity as suggested in [11] will lead to further improved results. In our second
CMO scenario (d = 360), we compare our approach with published results for
Sobol’s quasi Monte Carlo method. The right part of Fig. 8 shows that the
adaptive sparse grid can not keep pace for the investigated sample sizes. An
increasing downward slope can be expected with even more function evaluations.
However, for such large d, the logarithmic factors in the standard (L2-based)
sparse grids’ complexity cause problems. A remedy might be the energy-based
sparse grids discussed in [6], doing without the logarithmic factors.

Finally, note that aspects of implementation are crucial for a memory- and
runtime-efficient maintaining and processing of adaptive sparse grids, see [10,5].
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Fig. 8. The CMO problem for d = 256 (left), with and without the Brownian bridge,
and for d = 360 with Brownian bridge (right, comparison with (quasi) Monte Carlo).
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