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Introduction

The Rab family of small GTP-binding proteins is responsible 

for the spatial and functional organization of intracellular com-

partments and controls vesicular transport between organelles 

in eukaryotic cells (Pereira-Leal and Seabra, 2001; Zerial and 

McBride, 2001; Pfeffer, 2005). The principles of Rab function 

as regulatory GTPases and how they control downstream pro-

cesses through Rab effectors are well understood (Novick and 

Zerial, 1997; Zerial and McBride, 2001). Details are emerging 

on the coordination of the action of Rab GTPases when they 

function within a contiguous organelle (Sonnichsen et al., 2000; 

Barbero et al., 2002; de Renzis et al., 2002). Less is known 

about the higher level organization when a complement of Rabs 

functions within a complex multistage traf� cking pathway.

It has been reported that maturation from early to late en-

dosomes involves a novel process of abrupt, synchronous Rab5–

Rab7 replacement on an entire early endosomal organelle (Rink 

et al., 2005). This process, which is termed Rab conversion, ush-

ers the maturation of an early endosome into a late endosomal 

organelle (Rink et al., 2005). A functionally similar process of 

Rab handover seems to operate within the biosynthetic path-

way in yeast (Ortiz et al., 2002). The events that govern endo-

somal Rab conversion are only beginning to be elucidated (Rink 

et al., 2005). In this context, phagolysosome biogenesis pro-

vides a convenient and morphologically tractable model system 

(Vergne et al., 2005). Maturing phagosomes closely mirror traf-

� cking events observed within the endocytic pathway (Alvarez-

Dominguez et al., 1996; Via et al., 1997; Vieira et al., 2003). 

A phagosome, when it normally matures into a phagolysosome, 

undergoes a transition between the stages marked by Rab5 and 

Rab7 (Desjardins et al., 1994; Via et al., 1997). The switch be-

tween Rab5 and Rab7 on a phagosome correlates with functional 

changes from an organelle with early endosomal characteristics 

to a compartment with lysosomal, degradative properties.

When taken up by the phagocytic cell, Mycobacterium 

 tuberculosis can arrest phagosomal maturation and prevent pha-

golysosome biogenesis (Russell, 2001; Vergne et al., 2004), 

providing an advanced model system to study the role of Rabs 

and their effectors in phagosome maturation. Initially, Rab5 was 
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identi� ed as one of the low molecular weight GTP-binding pro-

teins present on mycobacterial phagosomes (Via et al., 1997), 

leading to the identi� cation of Rab effectors (Fratti et al., 2001) 

involved in mycobacterial phagosome maturation arrest. Rab7 is 

excluded from the M. tuberculosis phagosome (Via et al., 1997), 

indicating that mycobacterial phagosomes do not undergo Rab5–

Rab7 conversion. We report that Rab22a, which is a member of 

the group V Rabs (Pereira-Leal and Seabra, 2001), is a key Rab, 

accumulating on mycobacterial phagosomes and precluding 

their acquisition of Rab7 and maturation into phagolysosomes.

Results and discussion

Dynamics of group V Rabs on phagosomes 

analyzed by quantitative four-dimensional 

(4D) confocal microscopy

We investigated the members of the group V Rabs (Pereira-

Leal and Seabra, 2001), Rab5, Rab21, and Rab22a, by live 

microscopy using a previously published approach (Chua and 

Deretic, 2004; Vergne et al., 2005). The entry of a phagocy-

tosed particle was identi� ed as previously described (Chua and 

Deretic, 2004), and live imaging was initiated to record EGFP-

Rab dynamics on nascent and maturing phagosomes con-

taining latex beads (Fig. 1, A–C), followed by quanti� cation 

using ratiometric analysis of intensities comparing phagosome 

and cytosol � uorescence values (Rϕ/c; Fig. 1, G–I; Chua and 

Deretic, 2004; Vergne et al., 2005). The majority of the group 

V Rabs were transiently recruited to latex bead phagosomes 

(Fig. 1, A–C), with Rab5 and Rab21 (Fig. 1, A and B) desorb-

ing from the phagosomes by 10 min after the uptake (Fig. 1, 

G and H), and with Rab22a showing a diminutive initial peak 

(Fig. 1, C and I). Because of a very low-level EGFP-Rab22a 

recruitment to latex bead phagosomes, we wondered whether 

macrophages expressed Rab22a. Rab22a expression was con-

� rmed by RT-PCR (Fig. S1 A, available at http://www.jcb.org/

cgi/content/full/jcb.200603026/DC1). In addition, endogenous 

Figure 1. Dynamics of group V Rabs on 
phagosomes. RAW264.7 transfected with 
EGFP-Rab5WT (A and D), EGFP-Rab21WT (B 
and E), and EGFP-Rab22WT (C and F) were 
allowed to phagocytose Texas red–labeled la-
tex beads or Texas red–labeled live M. tuber-

culosis variant bovis BCG. EGFP-Rab5WT (A), 
EGFP-Rab21WT (B), and EGFP-Rab22aWT 
(C) were transiently recruited to latex bead 
phagosomes and subsequently dissociated. 
EGFP-Rab5WT (D) and EGFP-Rab21WT (E) 
are recruited transiently on mycobacterial 
phagosomes and immediately dissociate. In 
contrast, EGFP-Rab22aWT was retained on 
mycobacterial phagosomes throughout the 
imaging period (F) of 1 h after phagocytosis. 
Left insets correspond to GFP fl uorescence of 
the Rabs and the right insets correspond to the 
fl uorescence of latex beads or mycobacteria. 
All microscopy imaging was performed using 
an UltraView LCI system. (G–I) Temporal quan-
tifi cation of phagosome fl uorescence intensity 
relative to fl uorescence of the cytosol. RΦ/C, ra-
tio between phagosome fl uorescence intensity 
and cytosol fl uorescence intensity. Shown are 
RΦ/C obtained by 4D microscopy and live im-
aging of EGFP-Rab5WT (G), EGFP-Rab21WT 
(H), and EGFP-Rab22aWT (I) harboring latex 
beads (open triangles) and live mycobacteria 
(fi lled squares). The number of phagosomes 
counted are as follows: EGFP-Rab5WT = 35; 
EGFP-Rab21W T = 24; EGFP-Rab22aWT = 47. 
(J) Quantifi cation of EGFP-Rab5WT, EGFP-
Rab21WT, and EGFP-Rab22aWT positivity 
on the latex bead phagosomes (open bars) 
and live mycobacterial phagosomes (fi lled 
bars) during the fi rst 10 min after phagocy-
tosis. *, P = 0.0002. (K) Quantifi cation of 
EGFP-Rab5WT, EGFP-Rab21WT, and EGFP-
Rab22aWT positivity on the latex bead 
phagosomes (open bars) and live mycobac-
terial phagosomes (fi lled bars) 45 min after 
phagocytosis. *, P < 0.0001.
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Rab22a was detected in macrophages by immuno� uorescence 

(Fig. S1 B). Hence, low levels of Rab22a on latex bead phago-

somes cannot be explained by a lack of Rab22a expression in 

macrophages. Thus, the group V Rabs are transiently recruited 

in small amounts to latex bead phagosomes during early time 

points after phagocytosis.

Mycobacterial phagosomes recruit 

and retain copious amounts of Rab22a

We next tested group V Rab dynamics on mycobacterial 

 phagosomes. Rab5 and Rab21 followed similar kinetics on 

both mycobacterial and latex beads phagosomes (Fig. 1, D and 

E, G and H). However, mycobacterial phagosomes displayed a 

marked difference relative to latex bead phagosomes by recruit-

ing and retaining high quantities of Rab22a (Fig. 1, F and I). 

Enumeration of Rab5, Rab21, and Rab22a pro� les (Fig. 1, 

J and K) con� rmed that Rab22a was persistently accumulating 

on mycobacterial phagosomes. This was accompanied by dimin-

ishing levels of EGFP-Rab22aWT � uorescence in other parts of 

the cell, a phenomenon that was augmented in macrophages in-

fected with more than one bacillus. EGFP-Rab22aWT–positive 

pro� les were observed to tether and fuse with mycobacterial 

phagosomes, increasing EGFP-Rab22aWT levels on these or-

ganelles (Video 1, available at http://www.jcb.org/cgi/content/

full/jcb.200603026/DC1). These observations were con� rmed 

by immuno� uorescence detection of endogenous Rab22a on 

bacillus Calmette-Guérin (BCG) phagosomes (Fig. S1 B). The 

differential distribution of EGFP-Rab22aWT was not caused by 

phagosome size difference because 3-μm latex beads (Fig. S1 C) 

behaved similarly to the 1-μm beads. Thus, Rab22a is speci� -

cally enriched on phagosomes containing mycobacteria.

Rab22a is an early endocytic Rab 

in macrophages

Rab22a has been implicated in early endosomal and recycling 

pathways in nonphagocytic cells (Kauppi et al., 2002; Weigert 

et al., 2004). We tested Rab22a localization in macrophages 

and found that both EGFP-Rab22aWT and endogenous Rab22a 

overlapped with the early endosomal marker EEA1 (Fig. S1, D 

and E). This is in keeping with the reported early endosomal 

localization of Rab22a in other cells (Kauppi et al., 2002). 

Immuno� uorescence analysis using GM130, syntaxin 6, and 

TGN38 showed that in macrophages Rab22a was not on Golgi 

organelles (Fig. S1 F), and Golgi vesiculation did not occur 

in cells transfected with EGFP-Rab22aQ64L (Fig. S1 F), in 

contrast to a report that the Rab22a mutant vesiculates Golgi in 

CHO cells (Kauppi et al., 2002). The early endosomal localiza-

tion of Rab22a, and the increased fusion of early endosomal or-

ganelles with mycobacterial phagosomes stimulated by Rab14 

(unpublished data), may partially explain Rab22a enrichment 

on BCG phagosomes.

Rab22a affects phagosomal maturation

We examined whether expression of constitutively active 

Rab22a (EGFP-Rab22aQ64L) affected phagosomes harboring 

dead mycobacteria. Heat inactivation of M. tuberculosis inca-

pacitates it to block phagolysosome biogenesis (Armstrong and 

Hart, 1971; Chua and Deretic, 2004; Vergne et al., 2005). The 

constitutively active mutant of Rab22a accumulates on myco-

bacterial phagosomes (Fig. S1 G) in a manner similar to wild-

type Rab22a. Expression of EGFP-Rab22aQ64L inhibited 

maturation of phagosomes containing dead BCG, as follows: 

(a) heat-killed BCG phagosomes showed reduced colocaliza-

tion with the acidotropic dye LysoTracker Blue (Fig. 2, A–F), 

indicating impaired acidi� cation; (b) phagosomes with dead 

BCG showed lower proteolytic activity in macrophages trans-

fected with EGFP-Rab22aQ64L, as indicated by lower staining 

with DQ-Red BSA, which is an endocytic protease substrate 

whose � uorescence dequenches upon proteolysis (Fig. 2, 

G–L); (c) although phagosomes harboring dead mycobacteria 

normally do not retain transferrin receptor (Fig. 3, A–D and Q),

transfection with EGFP-Rab22aQ64L caused signi� cant 

 presence of transferrin receptor on dead mycobacterial phago-

somes (Fig. 3, E–H and Q); (d) A similar effect was observed 

Figure 2. Constitutively active Rab22aQ64L prevents normal maturation 
of phagosomes harboring dead mycobacterial phagosomes. RAW264.7 
cells were transfected with EGFP-Rab22aQ64L and infected with dead my-
cobacteria in the presence of Lysotracker Blue (A–E) or DQ Red BSA (G–K). 
A and G show fl uorescence from GFP. B and H show the fl uorescence of 
dead mycobacteria labeled with Texas red and Alexa Fluor 647, respec-
tively. C and I show the fl uorescence of Lysotracker Blue (blue) and DQ Red 
BSA (red), respectively. D shows the merge image of mycobacteria (red) 
and Lysotracker Blue (blue). J shows the merge image of mycobacteria 
(blue) and DQ Red BSA (red). E and K represent RGB composite images. 
Arrows indicate no colocalization between dead mycobacterial phago-
somes and probes in EGFP-Rab22aQ64L–expressing cells. (F) Quantifi ca-
tion of Lysotracker Blue staining on dead mycobacterial phagosomes in 
control versus EGFP-Rab22aQ64L–expressing cells. P = 0.0001. (L) Quan-
tifi cation of DQ Red BSA staining on dead mycobacterial phagosomes in 
control versus EGFP-Rab22aQ64L–expressing cells. *, P < 0.0001.
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with  another previously mapped (Fratti et al., 2003b) early/

recycling endocytic marker, syntaxin 13 (Fig. 3, I–P and R); and 

(e) Rab11, a GTPase that controls transferrin receptor (TfR) 

recycling (Ullrich et al., 1996; Ren et al., 1998), accumulated 

on dead mycobacterial phagosomes in cells expressing EGFP-

Rab22aQ64L when compared with control untransfected cells 

(34 ± 5% vs. 14 ± 4% colocalization; P = 0.04; Fig. S1 H), 

indicating that the constitutively active mutant of Rab22a con-

ferred recycling endosomal characteristics upon dead myco-

bacterial phagosomes.

Knockdown of Rab22a overcomes the 

mycobacterial phagosome maturation block

In lieu of experiments with a dominant-negative Rab22a, which 

was found to cause macrophage detachment, we resorted to 

siRNA knockdown of Rab22a and examined its effects on mat-

uration of phagosomes harboring live M. tuberculosis variant 

bovis BCG. Rab22a knockdown (Fig. 4 A) caused a threefold 

increase in the colocalization of live mycobacterial phago-

somes with the most robust late endocytic marker CD63 (Fig. 4, 

B and E; Fratti et al., 2003b), indicating that live mycobacterial 

phagosomes were maturing into phagosomes with late endo-

somal characteristics. Live mycobacterial phagosomes also 

showed a doubling of Vo H+ATPase association with phago-

somes containing live mycobacteria (Fig. 4, C and F; Sturgill-

Koszycki et al., 1994; Fratti et al., 2003b). Rab22a knockdown 

did not cause indiscriminate mixing of endosomal markers 

(Fig. S2, A–C, available at http://www.jcb.org/cgi/content/full/

jcb.200603026/DC1). Furthermore, colocalization of TfR with 

live mycobacterial phagosomes was diminished upon Rab22a 

siRNA knockdown compared with scrambled siRNA control 

(Fig. 4, D and G).

The effects of Rab22a knockdown with SMARTpool 

(Dharmacon) Rab22a siRNA (a combination of four Rab22a-

speci� c siRNA duplexes) was con� rmed using individual 

siRNA duplexes (Fig. S2 D), which also caused an increase in 

live mycobacterial phagosome maturation (Fig. S3, A–D, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200603026/DC1). 

Furthermore, transfection with siRNA against the closely 

 related Rab22b, which is also expressed in macrophages (Fig. 

S2, E and F), did not alter mycobacterial phagosomes (Fig. S3, 

A–D). The effects of Rab22a knockdown on mycobacterial sur-

vival (Fig. S3, E–G) were mild within the period investigated, 

and although a trend was observed, no statistically signi� cant 

differences could be established (Fig. S3, F and G). We con-

clude that Rab22a is necessary to maintain M. tuberculosis 

phagosome maturation block, but that maturation block over-

ride does not automatically translate into direct bacterial elimi-

nation by macrophages, in keeping with the early observations 

by Armstrong and Hart (1975).

Rab22a knockdown leads to Rab7 

conversion on M. tuberculosis phagosomes

A prequel to endosomal maturation into late endosomal/ 

lysosomal organelles is Rab conversion (Rink et al., 2005). This 

term describes a process whereby an organelle synchronously 

sheds off early endosomal Rab(s) and concomitantly receives 

the late endosomal Rab, Rab7 (Rink et al., 2005). The signals 

for this transition are currently unknown (Deretic, 2005). We 

wondered whether Rab conversion applies to phagosomes, and 

whether Rab22a, as a candidate terminal recycling Rab involved 

in cargo and membrane sorting from the early endosome (Mesa 

et al., 2001; Weigert et al., 2004), could supply or contribute 

to such signals. To test this, we examined Rab7 acquisition by 

the mycobacterial phagosome, which was previously shown to 

exclude this critical late endocytic Rab (Via et al., 1997). Unlike 

in cells treated with control scrambled siRNA, Rab7 acquisi-

tion was increased to 80% on live mycobacterial phagosomes 

in macrophages in which Rab22a was knocked down by siRNA 

(Fig. 5). These � ndings are consistent with a functional role for 

Rab22a in mycobacterial phagosome maturation block. More 

generally, the conversion of live mycobacterial phagosomes into 

the Rab7 stage upon Rab22a knockdown suggests that Rab22a 

supplies signals preventing acquisition of Rab7 and preclud-

ing organellar maturation into a late endosomal/lysosomal 

Figure 3. EGFP-Rab22aQ64L confers recycling endosomal characteris-
tics on dead mycobacterial phagosomes. Nontransfected RAW264.7 cells 
(A–D and I–L) and EGFP-Rab22aQ64L–expressing cells (E–H and M–P) 
were infected with dead mycobacteria and immunostained for TfR (A–H) 
and syntaxin 13 (I–P). Anti-TfR antibodies did not stain dead mycobacte-
rial phagosomes (A–D) in control cells, whereas staining can be seen in 
EGFP-Rab22aQ64L–expressing cells (E–H). Anti-syntaxin 13 antibodies 
also did not stain dead mycobacterial phagosomes in control cells (I–L), 
but stained in EGFP-Rab22aQ64L–transfected cells (M–P). (Q) Quantifi ca-
tion of TfR-positive dead mycobacterial phagosomes. *, P = 0.0063. 
(R) Quantifi cation of syntaxin13–positive dead mycobacterial phagosomes. 
*, P < 0.0001.
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 compartment. Thus, Rab22a functions not only as a recycling 

Rab involved in cargo and membrane sorting from the early 

endosome (Mesa et al., 2001; Weigert et al., 2004), but it also 

acts as a coordinator of Rab succession. In keeping with our 

� ndings with phagosomes, there is a lack of endosomal EGF 

degradation in Rab22aQ64L-transfected Hep2 cells (Kauppi 

et al., 2002). In CHO cells, the expression of Rab22aQ64L 

causes endocytic tracers to remain in Rab22a-positive vesicles 

Figure 4. Rab22a knockdown promotes the 
maturation of phagosomes with live mycobac-
teria. RAW264.7 macrophages were trans-
fected with siRNA to Rab22a for 24 h and 
lysates probed for endogenous Rab22a knock-
down via immunoblotting (A). There was no 
observable effect on the levels of TfR by 
Rab22a knockdown (A). RAW264.7 macro-
phages were transfected with siRNA to 
Rab22a for 24 h to provide suffi cient suppres-
sion of Rab22a expression and subsequently 
infected with Texas red–labeled live M. 

 tuberculosis variant bovis BCG for 10 min, fol-
lowed by a 1-h chase period. Although only 
13% of live mycobacterial phagosomes colo-
calize with CD63-positive compartments in 
macrophages transfected with scrambled 
siRNA (B and E), 40% of live mycobacterial 
phagosomes were positive for CD63 colocal-
ization in cells transfected with Rab22a siRNA 
(B and E). Similarly, Rab22a siRNA–mediated 
inhibition enhanced the colocalization of live 
mycobacterial phagosomes with V0-positive 
compartments (C and F) by 2.8-fold when com-
pared with minimal phagosomal colocaliza-
tion in scrambled siRNA–transfected cells 
(C and F). Rab22a siRNA signifi cantly inhib-
ited the colocalization of Texas red–labeled 
live M. tuberculosis variant bovis BCG phago-
somes with TfR (D and G) compared with 
scrambled siRNA (D and G). These results 
demonstrate that Rab22a is essential for myco-
bacterial ability in maintaining an immature 
phagosomal niche.

Figure 5. Rab7 acquisition by phagosomes 
is dependent on Rab22a. Rab22a knockdown 
in RAW264.7 macrophages led to increased 
late endosomal GTPase Rab7 recruitment to 
live mycobacterial phagosomes (D–F and G) 
compared with macrophages transfected with 
scrambled siRNA (A–C and G).
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(Mesa et al., 2005). We propose that Rab22a is a central regulator 

of the transition to late endocytic organelles by signaling “all 

clear” and allowing the leftover sorting endosomal or phago-

somal organelle to transit from an early compartment to a deg-

radative organelle controlled by Rab7.

Materials and methods

Cell culture and preparation of Texas red–labeled latex beads 
and M. tuberculosis variant bovis BCG
RAW264.7 macrophages and M. tuberculosis variant bovis BCG 
were maintained as previously described (Chua and Deretic, 2004). 
Mycobacteria were heat killed by incubation at 90°C for 5 min before 
labeling. Both live and dead mycobacteria were labeled with 0.5 mg/ml 
Texas red–succinimidyl ester and prepared as previously described 
(Chua and Deretic, 2004). Dead mycobacteria were also labeled 
with 0.25 mg/ml Alexa Fluor 647–succinimidyl ester in PBS for 1 h. 
Streptavidin-conjugated 1-μm polystyrene beads (Sigma-Aldrich) were 
 labeled and prepared as previously described (Chua and Deretic, 2004). 
3-μm polystyrene beads were opsonized in DME supplemented with 10% 
FBS before use.

Plasmids and transfection
The plasmids pEGFP-Rab21WT, pEGFP-Rab22aWT, and pEGFP-
Rab22aQ64L were obtained from J. Donaldson (National Institutes of 
Health, Bethesda, MD), pEGFP-hRab5WT was obtained from P. Stahl 
(Washington University, St. Louis, MO), and pEGFP-Rab7WT was obtained 
from A. Wandinger-Ness (University of New Mexico, Albuquerque, NM). 
For transfection, 5 × 106 RAW264.7 cells were resuspended in a nucleo-
porator buffer supplied by the manufacturer (Amaxa Biosystems) with 5 μg 
of plasmid DNA. Cells were nucleoporated according to the manufactur-
er’s protocol and allowed to express the construct for 24 h before the imag-
ing experiments.

Antibodies and endocytic tracers
Rabbit polyclonal antibody to Rab22a was obtained from J. Donaldson, 
and polyclonal antibody to syntaxin 13 was obtained from R. Scheller 
(Genentech, South San Francisco, CA). Rabbit polyclonal antibodies to 
transferrin receptor and CD63 were purchased from Santa Cruz Bio-
technology, Inc. Antibody to V0 was used as previously described (Fratti 
et al., 2003a,b). Mouse monoclonal antibody to transferrin receptor was 
purchased from Zymed Laboratories. Monoclonal antibodies against 
GAPDH, GM130, and TGN38 were obtained from Abcam. Lysotracker 
Blue, DQ Red BSA, and secondary antibodies conjugated to Alexa Fluor 
488, 568, and 647 were purchased from Invitrogen. The acidotropic 
dye Lysotracker Blue was diluted in DME (1:10,000) and preloaded into 
macrophages for 2 h. DQ Red BSA was preloaded at 10 μg/ml for 3 h 
before infection. Cells were subsequently fi xed and viewed using immuno-
fl uorescence microscopy.

Rab siRNA knockdowns and immunoblotting
Rab22a and Rab22b knockdowns were achieved by using siGENOME 
SMARTpool reagent (Dharmacon) specifi c for Mus musculus Rab22a and 
Rab22b (Dharmacon). All effects of Rab siRNAs were compared with 
 siCONTROL Nontargeting siRNA pool (Dharmacon), which is labeled as 
scrambled siRNA in fi gures. RAW264.7 cells were transfected with 1.5 μg 
siRNA by nucleoporation. Immunoblotting (30 μg of total protein) was per-
formed as previously described (Fratti et al., 2003a,b). GAPDH immuno-
blotting was used as a loading control. Rab22a single siRNA duplexes used 
individually were as follows: duplex 1, sense (C A G C A G C C A U C A U C A U C-
G U U U A U U ) and antisense (5′-P U A A A C G A U G A U G A U G G C U G C U G U U ); 
duplex 2, sense (G G G A A C A A G U G C G A U C U U A U U ) and antisense (5′-P U A-
A G A U C G C A C U U G U U C C C U U ); duplex 3, sense (G A G A U U A G U C G A A-
G A A U U C U U ) and antisense (5′-P G A A U U C U U C G A A G A A U U C U U ); and 
duplex 4, sense (G G A U A C G G G U G U G G G U A A A U U ) and antisense 
(5′-P U U U A C C C A C A C C C G U A U C C U U ).

Immunofl uorescence laser scanning confocal microscopy
Imaging of 1-μm-thick optical sections was performed using an Axiovert 
200M microscope with an Axioscope 63× oil objective and LSM 5 Pascal 
or LSM 510 META systems (Carl Zeiss MicroImaging, Inc.). At least 200 
phagosomes from three independent experiments were analyzed for colo-
calization studies.

4D confocal microscopy
A rotating disk confocal microscope (UltraView; PerkinElmer) that affords 
low photocytotoxicity and low photobleaching was applied for 4D imag-
ing, as previously described (Chua and Deretic, 2004; Vergne et al., 
2005). For ratiometric quantitative analysis (Chua and Deretic, 2004; 
Vergne et al., 2005) of a volume over time, z sections were collapsed into 
a single projection according to the published procedure (Gerlich et al., 
2001). Transfected RAW264.7 cells were synchronously infected by cen-
trifugation of bacteria or beads onto macrophages adherent to coverslips 
at 1,000 rpm for 5 min. Coverslips were mounted into a perfusion cham-
ber (Harvard Apparatus) set at 37°C. Identifi cation of mycobacterial entry 
and image acquisition was performed as previously described (Chua and 
Deretic, 2004). To measure RΦ/C, fl uorescence intensity of the phagosomal 
membrane was divided by background cytosolic fl uorescence.

Mycobacterial survival assay
RAW264.7 macrophages were seeded at 2.0 × 105 cells/well in 12-well 
plates after transfection with either siGENOME SMARTpool Rab22a siRNA 
or scrambled siRNA. Cells were incubated for 24 h. Macrophages were 
infected with live M. tuberculosis variant bovis BCG or live M. tuberculosis 
H37Rv (preincubated for 30 min at 37°C in DME), at a nominal multiplicity 
of infection of 10, followed by four washes using complete DME. Macro-
phages were hypotonically lysed using cold sterile water after a 2, 4, or 
24 h chase period. Mycobacteria were plated for colony forming units on 
Middlebrook 7H11 agar (Difco) and incubated at 37°C for 2.5 wk. Bacte-
rial viability was expressed as percentage of survival relative to scrambled 
siRNA control. Experiments were performed in triplicate.

Statistical analysis
Results are from experiments performed in triplicate. All statistical analyses 
were calculated using Fisher’s protected least signifi cant difference post 
hoc test (analysis of variance, ANOVA) (SuperANOVA 1.11; Abacus 
 Concepts). P values of ≤0.05 were considered signifi cant.

Online supplemental material
Fig. S1 shows that endogenous Rab22a and EGFP-Rab22aQ64L in mac-
rophages is recruited to mycobacterial phagosomes and that Rab22a co-
localizes with early endosomes, but not Golgi organelles. Fig. S2 shows 
an analysis of Rab22a knockdown effects on early and late endosomes, 
characterization of single duplex Rab22a siRNA knockdowns, and expres-
sion of Rab22b. Fig. S3 shows the effects of single-duplex siRNA Rab22a 
knockdown on mycobacterial phagosomal maturation and Rab22a knock-
down on intracellular survival of mycobacteria. Video 1 shows an EGFP-
Rab22aWT–transfected macrophage infected with live Texas red–labeled 
M. tuberculosis variant bovis BCG.
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