
380 Giles, Sun, Chen, Lee and Chen

HIGHER ORDER RECURRENT NETWORKS

& GRAMMATICAL INFERENCE

C. L. Giles·, G. Z. Sun, H. H. Chen, Y. C. Lee, D. Chen
Department of Physics and Astronomy

and
Institute for Advanced Computer Studies

University of Maryland. College Park. MD 20742

* NEC Research Institute
4 Independence Way. Princeton. NJ. 08540

ABSTRACT

A higher order single layer recursive network easily learns to

simulate a deterministic finite state machine and recognize regular

grammars. When an enhanced version of this neural net state machine
is connected through a common error term to an external analog stack
memory, the combination can be interpreted as a neural net pushdown
automata. The neural net finite state machine is given the primitives,

push and POP. and is able to read the top of the stack. Through a
gradient descent learning rule derived from the common error

function, the hybrid network learns to effectively use the stack

actions to manipUlate the stack memory and to learn simple context

free grammars.

INTRODUCTION

Biological networks readily and easily process temporal information; artificial neural

networks should do the same. Recurrent neural network models permit the encoding
and learning of temporal sequences. There are many recurrent neural net models. for ex
ample see [Jordan 1986. Pineda 1987, Williams & Zipser 1988]. Nearly all encode the

current state representation of the models in the activity of the neuron and the next
state is determined by the current state and input. From an automata perspective, this

dynamical structure is a state machine. One formal model of sequences and machines

that generate and recognize them are formal grammars and their respective automata.
These models formalize some of the foundations of computer science. In the Chomsky
hierarchy of formal grammars [Hopcroft & Ullman 1979] the simplest level of com

plexity is defmed by the finite state machine and its regular grammars. (All machines

Higher Order Recurrent Networks and Grammatical Inference 381

and grammars described here are deterministic.} The next level of complexity is de
scribed by pushdown automata and their associated context-free grammars. The push
down automaton is a fmite state machine with the added power to use a stack memory.
Nemal networks should be able to perform the same type of computation and thus
solve such learning problems as grammatical inference [pu 1982] .

Simple grammatical inference is defined as the problem of finding (learning) a grammar
from a fmite set of strings, often called the teaching sample. Recall that a grammar
{phrase-structured} is defined as a 4-tuple (N, V, P, S) where N and V are a nonterm i
na1 and terminal vocabularies, P is a finite set of production rules and S is the start sym
bol. Here grammatical inference is also defined as the learning of the machine that
recognizes the teaching and testing samples. Potential applications of grammatical in
ference include such various areas as pattern recognition, information retrieval, pro
gramming language design, translation and compiling and graphics languages [pu 1982].

There has been a great deal of interest in teaching nemal nets to recognize grammars and

simulate automata [Allen 1989. Jordan 1986. Pollack 1989. Servant-Schreiber et. a1.
1989,Williams & Zipser 1988]. Some important extensions of that work are discussed
here. In particular we construct recurrent higher order nemal net state machines which
have no hidden layers and seem to be at least as powerful as any nemal net multilayer
state machine discussed so far. For example, the learning time and training sample size
are significantly reduced. In addition, we integrate this neural net fmite state machine
with an external stack memory and inform the network through a common objective
function that it has at its disposal the symbol at the top of the stack and the operation
primitives of push and pop. By devising a common error function which integrates the
stack and the nemal net state machine, this hybrid structure learns to effectively use the
stack to recognize context-free grammars. In the interesting work of [Williams &
Zipser 1988] a recurrent net learns only the state machine part of a Turing Machine.
since the associated move, read, write operations for each input string are known and are
given as part of the training set. However, the model we present learns how to manipu

late the push, POP. and read primitives of an external stack memory plus learns the ad
ditional necessary state operations and structure.

HIGHER ORDER RECURRENT NETWORK

The recurrent neural network utilized can be considered as a higher order modification
of the network model developed by [Williams & Zipser 1988]. Recall that in a recur
rent net the activation state S of the neurons at time (t+l) is defined as in a state ma
chine automata:

S(t+ 1) = F (S(t), I(t); W } (1)

where F maps the state S and the input I at time t to the next state. The weight matrix
W forms the mapping and is usually learned. We use a higher order form for this map
ping:

(2)

382 Giles, Sun, Chen, Lee and Chen

where the range of i, j is the number of state neurons and k the number of input neurons;

g is defined as g(x)=l!(l+exp(-x)). In order to use the net for grammatical inference, a

learning rule must be devised. To learn the mapping F and the weight matrix W, given

a sample set of P strings of the grammar, we construct the following error function E :

E = L E 2 = L (T - S (L)) 2 (3)
r r 01"

where the sum is over P samples. The error function is evaluated at the end of a present

ed sequence of length ~ and So is the activity of the output neuron. For a recurrent net,

the output neuron is a designated member of the state neurons. The target value of any

pattern is 1 for a legal string and 0 for an illegal one. U sing a gradient descent proce

dure, we minimize the error E function for only the rth pattern. The weight update rule

becomes

(4)

where" is the learning rate. Using eq. (2), dSo(tp) / dWijk is easily calculated using

the recursion relationship and the choice of an initial value for aSi(t = O)/aWijk'

aSI(t+l)/aWijk = hI (Sl(t+l)) (~li Sit) Ik(t) + 1: Wlmn In(t) aSm(t)taWijk } (5)

where h(x) = dg/dx. Note that this requires dSi(t) / dWijk be updated as each element

of each string is presented and to have a known initial value. Given an adequate network

topology, the above neural net state machine should be capable of learning any regular

grammar of arbitrary string length or a more complex grammar of finite length.

FINITE STATE MACHINE SIMULATION

In order to see how such a net performs, we trained the net on a regular grammar, the du

al parity grammar. An arbitrary length string of O's and 1 's has dual parity if the

string contains an even number of O's and an even number of 1 's. The network architec

ture was 3 input neurons and either 3, 4, or 5 state neurons with fully connected second

order interconnection weights. The string vocabulary O,l,e (end symbol) used a unary

representation. The initial training set consisted of 30 positive and negative strings of

increasing sting length up to length 4. After including in the training all strings up to

length 10 which resulted in misclassification(about 30 strings), the neural net state ma

chine perfectly recognized on all strings up to length 20. Total training time was usual

ly 500 epochs or less.

By looking closely at the dynamics of learning, it was discovered that for different in

puts the states of the network tended to cluster around three values plus the initial

state. These four states can be considered as possible states of an actual fmite state ma

chine and the movement between these states as a function of input can be interpreted as

the state transitions of a state machine. Constructing a state machine yields a perfect

four state machine which will recognize any dual parity grammar. Using minimization

procedures [pu 1982], the extraneous state transitions can be reduced to the minimal 4-

Higher Order Recurrent Networks and Grammatical Inference 383

state machine. The extracted state machine is shown in Fig. 1. However, for more com
plicated grammars and different initial conditions, it might be difficult to extract the
fmite state machine. When different initial weights were chosen, different extraneous
transition diagrams with more states resulted. What is interesting is that the neural
net finite state machine learned this simple grammar perfectly. A first order net can al
so learn this problem; the higher order net learns it much faster. It is easy to prove that
there are fmite sate machines that cannot be represented by fust order, single layer re
current nets [Minsky 1967]. For further discussion of higher order state machines, see
[Liu, et. al. 1990].

o

I 1 I 1

FIGURE 1: A learned four state machine; state 1 is both the start

and the final state.

NEURAL NET PUSHDOWN AUTOMATA

In order to easily learn more complex deterministic grammars, the neural net must

somehow develop and/or learn to use some type of memory, the simplest being a stack
memory. Two approaches easily come to mind. Teach the additional weight structure in
a multilayer neural network to serve as memory [Pollack 1989] or teach the neural net
to use an external memory source. The latter is appealing because it is well known
from formal language theory that a finite stack machine requires significantly fewer re
sources than a fmite state machine for bounded problems such as recognizing a finite
length context-free grammar. To teach a neural net to use a stack memory poses at least

three problems: 1) how to construct the stack memory, 2) how to couple the stack mem

ory to the neural net state machine, and 3) how to formulate the objective function such

that its optimization will yield effective learning rules.

Most slraight-forward is formulating the objective function so that the stack is cou

pled to the neural net state machine. The most stringent condition for a pushdown au

tomata to accept a context-free grammar is that the pushdown automata be in a final
state and the stack be empty. Thus, the error function of eq. (3) above is modified to in
clude both final state and stack length terms:

384 Giles, Sun, Chen, Lee and Chen

(6)

where L(Y is the final stack length at time)" i.e. the time at which the last symbol of

the string is presented. Therefore, for legal strings E = 0, if the pushdown automata is

in a final state and the stack is empty.

Now consider how the stack can be connected to the neural net state machine. Recall

that for a pushdown automata [pu 1982], the state transition mapping of eq. (I) includes

an additional argument, the symbol R(t) read from the top of the stack and an additional

stack action mapping. An obvious approach to connecting the stack to the neural net is to

let the activity level of certain neurons represent the symbol at the top of the stack and

others represent the action on the stack. The pushdown automata has an additional stack

action of reading or writing to the top of the stack based on the current state, input, and

top stack symbol. One interpretation of these mappings would be extensions of eq. (2):

Si(t+l) = g(1: WSijk Slt) Vk(t)} (7)

~(t+l) = f(1: Waijk Slt) Vk(t)} (8)

Tee

FIGURE 2:. Single layer higher order recursive neural network that is connected

to a stack memory. A represents action neurons connected to the stack; R represents

memory buffer neurons which read the top of the stack. The activation proceeds up

ward from states, input, and stack top at time t to states and action at time t+ 1.

The recursion replaces the states in the bottom layer with the states in the top layer.

where Aj(t) are output neurons controlling the action of the stack; Vk(t) is either the

input neuron value Ik(t) or the connected stack memory neuron value Rk(t), dependent

on the index k; and f=2g-1. The current values Slt), Ik(t), and Rk(t) are all fully con

nected through 2nd order weights with no hidden neurons. The mappings of eqs. (7) and

(8) define the recursive network and can be implemented concurrently and in parallel.

Let A(t=O) & R(t=O)= O. The neuron state values range continuously from 0 to 1 while

the neuron action values range from -I to I. The neural network part of the architecture

Higher Order Recurrent Networks and Grammatical Inference 385

is depicted in Fig. 2. The number of read neurons is equal to the coding representation of

the stack. For most applications, one action neuron suffices.

In order to use the gradient descent learning rule described in eq. (4), the stack length

must have continuous values. (Other types of leaming algorithms may not require a

continuous stack.) We now explain how a continuous stack is used and connected to the

action and read neurons. Interpret the stack actions as follows: push (A>O), pop (A<O),

no action (A=O). For simplicity, only the current input symbol is pushed ; then the

number of input and stack memory neurons are equal. (If the input symbol is a, then

only AD of that value is pushed into the stack) T he stack consists of a summation of ana

log symbols. By definition, all symbols up in unit depth one are in the read neuron R at

time too If A<O (POp), a depth of IAI of all symbols in that depth is removed from the

stack. In the next time step what remains in R is a unit length from the current stack

top. An attempt to pop an empty stack occurs if not enough remains in the stack to pop

depth IAI. Further description of this operation with examples can be found in [Sun, et.

al.1990). Since the action operation A removes or adds to the stac~ the stack length at
time t+l is L(t+l) = L(t) + A(t), where L(t=O) = O.

With the recursion relations, stack construction, and error function defined, the leam

ing algorithms may be derived from eqs. (4) & (6)

AWijk =11 Er (dSt(y/awijk - dL(~)/dWij' (9)

The derivative terms may be derived from the recurrent relations eqs. (7) & (8) and the

stack length equation. They are

aSl(t+l)/aWijk = hI Sl(t+l) (~il Slt) Vk(t) + 1:: Wlmn V n(t) aSm(t)!aWijk +

1:: Wlmn Sm(t) aRn(t)!aWijk } (10)

and

(11)

Since the change dRk(t)/dWijk must contain information about past changes in action

A, we have

aRk(t)/awijk = 1:: aRk(t)/aA(t) aA(t)!awijk == AR aA(t)/awijk (12)

where AR = 0,1, or -1 and depends on the top and bottom symbols read in R(t). This ~p

proximation assumes that the read changes are only effected by actions which occurred

in the recent past. The change in action with respect to the weights is defined by a recur

sion derived from eq. (8) and has the same form as eq. (10). For the case of popping an

empty stack, the weight change increases the stack length for a legal string; otherwise

nothing happens. It appears that all these derivatives are necessary to adequately inte

grate the neural net to the continuous stack memory.

PUSHDOWN AUTOMATA SIMULATIONS

To test this theoretical development, we trained the neural net pushdown automaton on

386 Giles, Sun, Chen, Lee and Chen

two context-free grammars, 1 nOn and the parenthesis grammar (balanced strings of

parentheses), For the parenthesis grammar, the net architecture consisted of a 2nd order

fully interconnected single layer net with 3 state neurons, 3 input neurons, and 2 action

neurons (one for push & one for pop). In 20 epochs with fifty positive and negative

training samples of increasing length up to length eight , the network learned how to be

a perfect pushdown automaton. We concluded this after testing on all strings up to

length 20 and through a similar analysis of emergent state-stack values. Using a

similar clustering analysis and heuristic reduction approach, the minimal pushdown

automaton emerges. It should be noted that for this pushdown automaton, the state

machine does very little and is easily learned Fig. 3 shows the pushdown automaton

that emerged; the 3-tuple represents (input symbol, stack symbol, action of push or

pop), The 1 non was also successfully trained with a small training set and a few

hundred epochs of learning. This should be compared to the more computationally

intense learning of layered networks [Allen 1989]. A minimal pushdown automaton

was also derived, For further details of the learning and emergent pushdown automata,

see [Sun, etal. 1990].

(O,cp,-I) (O,cp,-I)

(e,I,.)

(1,1,1)

(0,1,-1)

(1,cp,l)

FIGURE 3: Learned neural network pushdown automaton for parenthesis

balance checker where the numerical results for states (1), (2), (3), and (4)

are (1,0,0), (.9,.2,.2), (.89,.17,.48) and (.79,.25,.70). State (1) is the start

state. State (3) is a legal end state. Before feeding the end symbol, a legal

string must end at state (2) with empty stack.

CONCLUSIONS

This work presents a different approach to incorporating and using memory in a neural

network. A recurrent higher order net learned to effectively employ an external stack

Higher Order Recurrent Networks and Grammatical Inference 387

memory to learn simple context-free grammars. However, to do so required the cre

ation of a continuous stack structure. Since it was possible to reduce the neural network

to the ideal pushdown automaton, the neural network can be said to have "perfectly"

learned these simple grammars. Though the simulations appear very promising, many

questions remain. Besides extending the simulations to more complex grammars, there

are questions of how well such architectures will scale for "real" problems. What be

came evident was the power of the higher order network; again demonstrating its sp~

of learning and sparseness of training sets. Will the same be true for more complex

problems is a question for further work.

REFERENCES

R.A. Allen, Adaptive Training for Connectionist State Machines, ACM Computer
Conference, Louisville, p.428, (1989).

D. Angluin & C.H. Smith, Inductive Inference: Theory and Methods, ACM Computing
Surveys. Vol. 15, No.3, p. 237, (1983).

K.S. Fu, Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood

Cliffs, NJ. (1982).

J.E. Hopcroft & J.D. Ullman, Introduction to Automata Theory. Languages. and Com
putation. Addison Wesley, Reading, Ma. (1979).

M.I. Jordan, Attractor Dynamics and Parallelism in a Connectionist Sequential Ma
chine, Proceedings of the Eigtht Conference of the Cognitive Science Society. Amherst,

Ma, p. 531 (1986).

Y.D. Liu, G.Z. Sun, H.H. Chen, Y.C. Lee, C.L. Giles, Grammatical Inference and Neu

ral Network State Machines, Proceedings of the International Joint Conference on Neu
ral Networks, M. Caudill (ed), Lawerence Erlbaum, Hillsdale, NJ., vol 1. p.285

(1990).

ML. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood,

NJ., p. 55 (1967).

FJ. Pineda, Generalization of Backpropagation to Recurrent Neural Networks, Phys.
Rev. Lett., vol 18, p. 2229 (1987).

J.B. Pollack, Implications of Recursive Distributed Representations, Advances in Neu
ral Information Systems 1, D.S. Touretzky (ed), Morgan Kaufmann, San Mateo, Ca, p.

527 (1989).

D. Servan-Schreiber, A. Cleeremans & J L. McClelland, Encoding Sequential Structure

in Simple Recurrent Networks, Advances in Neural Information Systems 1, D.S.

Touretzky (ed), Morgan Kaufmann, San Mateo, Ca, p. 643 (1989).

GZ. Sun, H.H. Chen, C.L. Giles, Y.C. Lee, D. Chen, Connectionist Pushdown Autom

ata that Learn Context-free Grammars, Proceedings of the International Joint Confer
ence on Neural Networks. M. Caudill (ed), Lawerence Erlbaum, Hillsdale, N.J., vol

1. p.577 (1990).

R.I. Williams & D. Zipser, A Learning Algorithm for Continually Running Fully Re

current Neural Networks, Institute for Cognitive Science Report 8805, U. of CA, San

Diego, La Jolla, Ca 92093, (1988).

