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1. Introduction 

In the theory of quasilinear hyperbolic systems, it is a well known result 
that non-differentiable discontinuous solutions develop from arbitrary initial 
data; this motivates the introduction of the so-called "weak solutions"--  
see, e.g., [1, 2]. Explicitly, look at a conservative system of the form 

~f~(U) =f (U) ,  )co = U, (1.1) 

where ct = 0, 1, 2, 3, d~ = ~/Ox ~, x ~ = t, and f~ , f  are N dimensional column 
vectors. If U(x ~) is a piecewise continuous weak solution of (1.1) then the 
generalized Rankine-Hugoniot conditions 

[f']O~ q~ = 0 (1.2) 

hold across the surface of discontinuity ~0(x ~) = 0 [3]; in (1.2) the symbol 
[ �9 ] denotes the jump across the surface of discontinuity. Such a solution is 
usually called a shock wave. 

The purpose of this paper is to show, through an example, that the 
concept of shock wave could be inadequate for the description of fairly 
simple physical systems. Specifically, after a brief review in Sect. 2 and some 
technicalities presented in Sect. 3, we shall calculate the electromagnetic field 
generated by a charged particle which suffers a jump discontinuity in its 
velocity v (Sect. 4). As a result, the electromagnetic field not only jumps 
across a spherical surface expanding at light speed, but also includes a 
f-distribution term whose support is the previous surface. This striking 
situation arises not from crackpot conjectures, but from a hypo thes i s -  
[v] # 0 - -which  is usually assumed in gasdynamics [1] and in the theory of 
electromagnetic pulse, where scattered electrons via Compton effect abruptly 
pass from rest to a speed v # 0 and vice versa [4, 5]. 

The presence of a f-distribution suggests that we call such a solution a 
first order shock wave, zero order shock waves being the usual piecewise 
continuous weak solutions. In general a solution involving the distribution 
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6~,-1), namely the (n - 1)-th derivative of  6, will be called a n- th order 
shock wave. 

Apparently,  the Rankine-Hugoniot  conditions (1.2) lose their meaning 
when the field at hand is a higher order shock wave. Thus we need an 
extended theory capable of  embodying solutions of  this type. Sect. 5 is 
devoted to the deduction of  the compatibility conditions, for a linear system, 
which extend Eq. (1.2) to the case of  first order shock wave, the extension 
to higher orders being straightforward. 

2. Electromagnetic shocks produced by a point charge 

So as to discuss electromagnetic shock wave generation by a moving 
charge, consider a point charge e traveling along the trajectory x = r(t) with 
velocity v = ~; and adopt the notations 

R(x,  t) = x - r ( t ) ,  R = [RI, (2.1) 

R ' v  
= R - -  (2.2) 

C 

As well established in the l i terature--see,  e.g., [ 6 ] - - t he  point charge 
generates an electric field E and a magnetic field H which exhibit the 
familiar splitting into a static and a radiative part  according to the relations 

E3~2(R-?)ex ?)iJ],  23, 

1 
H=-R R x E, (2.4) 

where, as usual, ~ stands for the quanti ty 1/x/~ - v2/c 2. Of course, the r.h.s. 
are to be calculated at the retarded time t', the unique solution to the 
equation 

R(x, r) 
t '  + - -  - t. (2.5) 

C 

Formulae (2.3), (2.4) permit a description of  the electromagnetic field 
even when the velocity v is a continuous function of  t whereas the accelera- 
tion v is not. Suppose that the charge starts f rom rest at x = 0 and that the 
acceleration takes a constant  value a in the time interval (0, t*) and is zero 
elsewhere. Then the acceleration suffers jump discontinuities at the instants 
t = 0 and t = t*. Accordingly, the fields E and H jump at the retarded times 
t '  = 0 and t '  = t*. In this case two shock waves are generated, whose wave 
fronts can easily be determined by (2.5); it turns out that shock fronts are 
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the spheres 

Ixl=ct, ]x-lat*2l=c(t-t*), 
expanding at light speed c. It is a simple matter to specialize Eq. (1.2) to the 
Maxwell equations--see,  e.g., [7 ] - - and  to prove that the electromagnetic 
field (2.3), (2.4) satisfies them whenever [v] ~ 0 and [v] = 0. 

Troubles arise when t*--.0. In this limiting case the two shock fronts 
merge together and it is the velocity itself that becomes discontinuous. Then 
the acceleration is not defined (in the sense of  the function theory) and eqs 
(2.3), (2.4) cannot be used to discuss this problem. To examine properly this 
case, we have recourse to the distribution theory which allows us to solve 
the wave equation for the electromagnetic potentials �9 and A and, from 
them, to calculate E and H. As a result, however, we cannot avoid that a 
distribution concentrated on the shock front contributes to the electromag- 
netic field itself. 

3. Discontinuous solutions to the wave equation 

The present task is that of solving the inhomogeneous wave equation for 
the electromagnetic potentials by allowing the source term to jump in 
consequence of  the discontinuity of  the charge velocity. On a more general 
ground, we first establish the conditions that two solutions of the wave 
equation, possibly relative to different source terms, can be pieced together. 

Mathematically, we suppose that ~k0 and ~kl are solutions of the differen- 
tial equations 

[~00  ~--" SO, [~01 = Sl, (3.1) 

where So, sl denote the source terms and the symbol [] stands for the 
D'Alembert  operator 

1 c ~2 
[] = V 2 

c 2 &2" 

Requiring that the two solutions can be cut and pasted together across a 
surface q~(x ~) = 0 is tantamount  to imposing that the discontinuous function 

= ~0 + ~, Y(q~) is a solution of  the equation 

•0 = So + Sl r(q,) ,  (3 .2)  

Y being the unit step function. On appealing to the formula [8] 

OY(tp) = O~or'(~o) djpr(q~), 
t?xz 
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a straightforward calculation shows that 

~O = DOo + @O, Y(q~) 

( 2 631Pl 63q9 ) 
+ 2riP1 �9 Vq~ C 2 63t 63t + ~k~Dtp 6(~p) 

1 {&o~2q , + j ,  

In view of (3.1), substitution into (3.2) yields the condition 

( 263~,63~o ) 
2V~bl �9 V~o c 2 63t 63t + 01 [~q~ 6(q)) 

1"63(0 2 , 

Exploitation of (3.3) relies on the following. 

(3.3) 

Lemma. For every g(x ~') and h(x~), equation 

g(xO6(~p) + h(x~')6'(tp) = 0 
holds true if and only if conditions 

Oh 
h = O ,  g 63~o-0 

are verified on the surface q~(x,) = O. 

Proof: The result is an immediate consequence of the familiar relation 
h3"=h(O)6"-h'(O)6 and of the fact that equation a6+b6"=O, with 
a, b ~ •, admits the unique solution a = 0 and b = 0. I 

Consequently, relation (3.3) turns out to be equivalent to the sought 
conditions on qq and q~, namely 

O, [(Vq)) 2 -  1 ( ~ V 1  ~5 \ -~ - j  j = 0, (3.4) 

2 63~01 63q~ 
2V~l "Vtp c 2 63t 63t 

63 [~,((Vq02 1 &P 2 
=0,  

(3.5) 

which must hold on the surface tp(x ~) = 0. 
Drawing the general implications of (3.4), (3.5) seems to be a 

formidable task. Here we content ourselves to bring to the reader's attention 
the following sufficient condition, suggested by physical arguments, 

(a V 
(V~~ 2 - ~5 \-~-1 = 0, everywhere, (3.6) 
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which, in turn, makes (3.5) into the form 

2 0~,1 0tp 
2V~1 �9 Vq~ c 2 ~3t Ot + ~kl [] ~p = 0, on r ~) = 0. (3.7) 

This peculiar choice relies on the observation that Eq. (3.6) coincides with 
the eikonal equation satisfied by every surface traveling at light speed c (see, 
e.g., [9]); hence such a condition does not seem restrictive at all when 
dealing with electromagnetic waves in vacuum. 

4. First order shock waves 

Consider the electromagnetic field generated by a charged particle, 
which starts from rest and abruptly takes the constant velocity v # O; 
precisely, suppose that the point charge moves according to the law 
r ( t )  = v t Y ( t / t o ) ,  to being a reference time. It seems natural to assume that the 
relevant electromagnetic potentials �9 and A can be obtained by piecing 
together the (retarded) potentials relative to a rest charge with those relative 
to a charge moving with velocity v; in formulae 

= (I)o - (Or - ~0) Y(tp), (4.1) 

A = Av Y(q~), (4.2) 

where the quantities 

e e 
(l)o=T~, (1)v=-,Q (4.3) 

e v  
Av = - -  (4.4) 

C~' 

are evaluated at the retarded time t', while q~ = t ' / to .  
Of course, the quantities (I)o, (I)~, and A~ satisfy the wave equations (3.1) 

with the appropriate source terms. Accordingly, the potentials (4.1), (4.2) 
satisfy Eq. (3.2) provided conditions (3.4), (3.5) are verified. Reasoning as 
in Sect. 2, it turns out that the surface q~ = 0 is the sphere ]x I = ct  expanding 
at light speed; hence the sufficient condition (3.6) is automatically satisfied. 
It is a straightforward application of the relations of Appendix to check that 
Eq. (3.7) is identically true on the surface t' = 0, and that Lorentz condition 
is fulfilled. 

From the familiar relations [6] 

1 8A 
E -  - V ~ ,  H = V x A ,  

c ~t 

and from (4.1) and (4.2) it follows that the electric field takes the form of 
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a first order shock wave, viz 

e = go + (e~ -- Eo)Y(q)) + eJ(q~), (4.5) 

the magnetic field being given by Eq. (2.4). The quantities in (4.5) have the 
following expressions 

e x  

E0- ix13, 
e 

e : ~- + c--~0 0 R, 

~ = c - - ~  R x  R -  x . 

where R = x - v t '  in view of  (2.1). 
As a final remark, we observe that the field E~ coincides with the static 

part  of  Eq. (2.3), whereas ~ has the same structure of  the radiative part. 
Moreover,  on the surface ~p = 0 we have R = x, whence e = ee,/]x[. 

5. Compat ib i l i ty  condi t ions  

In this Section we determine the compatibility conditions to be satisfied 
by a first order shock wave across the wave front ~o(x0 = 0. We restrict 
ourselves to the case of  linear systems, chiefly due to the difficulties of  
multiplying distributions. 

Precisely, consider a linear differential system of  the form 

A'c?~U= CU + B, (5.1) 

where A ~ and C are N x N matrices, while B is a N dimensional column 
vector, and look for solutions of  the type 

U = U (~ + (U (1) - U(~ Y(q~) + uS(q~), (5.2) 

the functions U (~ and U (1) separately being solutions to the system (5.1). In 
view of  this assumption, substitution of  (5.2) into (5.1) yield 

{A~( (u  (~) - u ( ~  + a~u) -Cu},~(~o) + A%~ou~'(~o) = 0. 

The Lemma provides immediately the sought conditions 

A~O~,qou = 0, (5.3) 

A~{(U (1) - U(~ + ~?~u} - Cu - ~ (A~O~ou) = 0, (5.4) 
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which must hold on the surface ~o(x ~) = 0. It should come as no surprise 
that the electromagnetic field (4.5), (2.4) makes conditions (5.3), (5.4) 
identically true. 

Notice that Eq. (5.3) is similar to the Rankine-Hugoniot  conditions 
(1.2) for linear systems, namely when f ~ =  A~U; on the contrary, condition 
(5.4) is typical of  first order shock waves. Of course, conditions (5.3), (5.4) 
reduces to the usual Rankine-Hugoniot  equations when u = 0. In general, a 
n order shock wave implies a hierarchy of n + 1 compatibility conditions, 
the first one being of  the form (5.3), where u is now the coefficient of 6 (" - t) 

Appendix 

Here we collect some useful relations valid when R(x, t )=  x -  vt. A 
guideline for proving them can be found in [6, p. 186]. 

Time derivatives 

OQ cQ c 
Ot' R ?2, 

OR cQ 
C, 

Ot' R 

Ot" R t~2t ' 

Ot ~' Ot 2 

OR 
Or' v, 

Q 0 

Spatial derivative at t = constant 

g v 
VQ= Q?2 C 

VR = R R |  
V |  

cQ 

R V2t, 1 (1-~ 
Vt' = cQ cQ 

where 1 denotes the unit tensor. 
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Abstract 

Shock waves and the relevant Rankine-Hugoniot conditions may be inadequate even in simple cases. 
As an example, the electromagnetic field generated by a point charge, whose velocity jumps from 0 to 
a constant value v, not only jumps across a spherical surface expanding at light speed, but also includes 
a 6-distribution term. This suggests that the concept of higher order shock waves be introduced, the 
associated compatibility conditions being also deduced. 

Sommario 

I1 concetto di onda d'urto pu6 rivelarsi inadeguato per descrivere situazioni anche semplici. A titolo 
di esempio, si determina esplicitamente l'espressione del campo etettromagnetico generato da una carica 
p untiforme la cui velocitfi passa istantaneamente da 0 a un valore costante v. I1 campo elettromagnetico 
non solo 6 discontinuo attraverso una superficie sferica che si espande alia velocit~i della luce, ma include 
anche un termine che coinvolge la distribuzione 6. Ci6 suggerisce di deflnire le onde d'urto di ordine 
superiore, per le quali si determinano le corrispondenti condizioni di compatibilitfi. 

(Received: June 6, 1989) 


